
1-4244-1455-5/07/$25.00 c©2007 IEEE

Opportunistic Mobile Sensor Data Collection with SCAR

Bence Pásztor, Mirco Musolesi and Cecilia Mascolo
Department of Computer Science, University College London

Gower Street, London, WC1E 6BT, United Kingdom
{b.pasztor|m.musolesi|c.mascolo}@cs.ucl.ac.uk

Abstract

Sensors are now embedded in all sorts of devices (such
as phones and PDAs) and attached to many moving things
such as robots, vehicles and animals. The collection of data
from these mobile sensors presents challenges related to the
variability of the topology of the sensor network and the
need to limit communication (for energy or bandwidth sav-
ing). Fortunately, the data collected, despite considerable,
is often delay tolerant and its delivery to the sinks is, in most
cases, not time critical.

We have devised SCAR, a context aware opportunistic
routing protocol which allows efficient routing of sensor
data to sinks, through selection of best paths by prediction
over movement patterns and current battery level of nodes.
In this paper we present the implementation of the protocol
in Contiki and validate the approach through the use of the
COOJA simulator with mobility traces provided by the Ze-
braNet Project. We compare the performance with respect
to random choice based dissemination.

1 Introduction

Sensor devices are now starting to be embedded in vir-
tually all sorts of items, from vehicles and furniture to hu-
mans and animals. This generates networks of wirelessly
connected devices with topologies which could be very dy-
namic. These devices are used to monitor a very large set
of environmental indicators such as temperature, humidity
or chemical pollution; innovative applications include body
measurements and the analysis of mobility and interactions
among individuals or wildlife species. The amounts of data
generated are usually quite large, however, fortunately, the
data is, in most cases, also delay tolerant, in the sense that
it can wait in the network for quite a while before being
collected.

The scenario we envisage in this paper is one where the
mobile sensor nodes (e.g., animals, vehicles or humans)
route data through each others in order to reach sink nodes,

which can be either mobile or fixed. The fixed nodes
are intended as nodes connected to a backbone network
and, therefore, able to forward the data to the appropriate
place when this is reached. The challenges offered by this
scenario are many and include the quantity of data to be
shipped to the sinks, the potentially scarce communication
power (i.e., energy and bandwidth) of the nodes, the possi-
ble communication and sensor hardware faults, the mobility
and the limited buffer size of the nodes.

Different techniques could be employed for mobile sen-
sor data gathering. A basic strategy would be to only allow
data delivery when sensors are in direct proximity of the
sinks. This technique has very little communication over-
head, given that messages are only sent directly from the
sensor node generating messages to the sink. However, de-
pending on how frequently sensor nodes meet the sinks, the
delivery of the data might be very poor. This is particularly
true if the sinks are very few and spread out. More refined
techniques include epidemically inspired approaches [24],
which would randomly spread the data over the sensor net-
work, so that eventually a sink could be reached. These
approaches have very good delivery ratio if buffers are suf-
ficiently large, however the overhead in terms of commu-
nication and, therefore, energy, is quite high. A major re-
search effort in the direction of opportunistic sensor rout-
ing is the ZebraNet Project [12, 16] at Princeton Univer-
sity: researchers used collars with sensors to collect envi-
ronmental information and to study the movement of ani-
mals. Data are replicated using a modified epidemic pro-
tocol based on priorities considering the originator of the
information. The data created locally are the last to be
deleted. In [23], Small and Haas describe another inter-
esting application of epidemic routing protocols to a prob-
lem of cost-effective data collection, using whales as mes-
sage carriers. Fixed buoys are used to collect data that are
copied epidemically, stored and spread among the whales.
In [25] an approach which is based on a probabilistic de-
livery approach for data messages is presented. The paper
also discusses how the replication of the data over the sen-
sor network can be constrained using a fault tolerance value

associated to each data message. However, this approach
still has quite a high overhead in terms of message spread-
ing, due to the coarse grained delivery probability technique
used for the choice of the nodes on which to replicate and
the amount of replication involved by the approach. In sen-
sor networks where energy and, therefore, communication
overhead is an issue, the spreading of the message needs to
be carefully controlled and traded off for the delivery ratio.
This is even more true if the nodes have limited memory so
that the buffer size is small and very few messages can be
stored.

In this paper we present the design, implementation and
evaluation of SCAR (Sensor Context-Aware Routing), a
routing approach which uses prediction techniques over
context of the sensor node (such as previously encountered
neighbours, battery level, etc.) to foresee which of the sen-
sor neighbours are the best carriers for the data messages.
This approach is suitable for environments where mobility
patterns can be predicted to a certain extent (such as hu-
mans and animals). We further adopt different classes of
messages in order to achieve an intelligent buffer manage-
ment.

Multiple carriers are chosen among the neighbours of the
data source sensor, based on their history in terms of en-
counters, mobility and resources, however the number of
replicated data around in the network is still considerably
smaller than in any epidemic based approaches, in particu-
lar than in [25], where the effects of replication may lead to
an epidemic-like spreading of the message.

Our prediction framework for choosing a carrier is based
on Kalman Filter based forecasting model and has been ex-
ploited in [20], where we describe our Context-aware Adap-
tive Routing (CAR) protocol for mobile ad hoc networks.
SCAR has maintained the prediction based approach used
in CAR but all the aspects related to the communication and
the replication had to be redesigned. In particular, SCAR
has to suit the high data traffic of sensor networks. This is
achieved by limiting the horizon in which deterministic in-
formation is kept to the neighbours of a sensor, and, given
the fault rate of a sensor network, we have introduced an
intelligent buffer management algorithm and multiple car-
riers for the message. An initial design of SCAR has been
presented in the short paper [18].

In this paper we provide a detailed description of its de-
sign, its implementation based on the Contiki operating sys-
tem [7] and a simulation evaluation with real movement
traces in the COOJA simulator [22] to analyse its perfor-
mance in a large scale scenario. The structure of this paper
is as follows: in Section 2 we present our approach, whereas
in Section 3 we discuss the details of our implementation of
SCAR. In Section 4 we describe the results of our evalua-
tion using the COOJA simulator. In Section 5 we compare
our approach with the state of the art. Section 6 concludes

Figure 1. Sensor network composed of sen-
sors (indicated with letters) and sinks (indi-
cated with numbers). Sensors and sinks can
be mobile or fixed.

the paper, outlining our current research directions.

2 SCAR

In this section we discuss the details of SCAR. Our ap-
proach can be summarised as follows: the mobile sensor
nodes (e.g., attached to animals) try to send their data to
sink nodes, scattered over the field (e.g., a forest); each sen-
sor node will try to deliver its data in bundles to a number of
neighbouring sensor nodes which seem to be the best carri-
ers to reach a sink. The system is depicted in Figure 1.

The decision process by which nodes select the best car-
riers is based on the prediction of the future evolution of the
system in terms of colocation, mobility and battery level.
More specifically, our solution relies on the analysis of the
history of the movement patterns of the nodes and their
colocation with the sinks and on the evaluation of the cur-
rent available resources of the sensors. Each node evaluates
its relative mobility, calculating its change rate of connec-
tivity with other sensors, colocation with sinks, and battery
level. The forecasted values of the attributes describing the
context are then combined to define a delivery probability
P (si) of delivering bundles to sinks for each sensor si.

While moving, the sensors will transfer their data to
other sensors only if these have a higher probability to de-
liver the data to sinks (i.e., they are better carriers). The
calculation of the delivery probability is local and it does
not involve any distributed computation. Nodes only peri-
odically exchange information about their current delivery
probability and their available buffer space with the neigh-
bours.

We assume that each device of the system is actively in-
volved in the storing-and-forwarding process: usually sen-
sor networks are owned and deployed by a single organisa-
tion. For the sake of this work we also assume that nodes
have synchronised clocks: this is a reasonable assumptions

as digital clocks are getting cheaper and more precise, how-
ever we are working on relaxing this assumption, especially
in cases where the data resolution needed is not so small.

We will now go into the details of the protocol.

2.1 Multi-carrier Selection

Each sensor that is the source of some data tries to place
bundles on a number of neighbouring nodes which have the
best chance to deliver them to a sink node. Each node main-
tains an ordered list of the neighbouring nodes (including it-
self) decreasingly ordered according to their delivery prob-
abilities. Each node then replicates the bundle to the first R
nodes (R − 1 nodes if the node itself is in the first R posi-
tions of the list). The value of R is application specific and
can be considered as a priority level associated to the data
retrieved by the sensor.

The replica sent to the node with the highest delivery
probability is labelled as master copy. The other replicas
are labelled as backup copies. These can be overwritten
if buffers are full, whereas master copies are deleted only
when sensors exchange the data with the sinks. In general,
this distinction is used for an intelligent management of the
buffer, that we will describe in Section 2.3. A unique iden-
tifier is also associated to each bundle. Replicas of the same
bundle have the same identifier.

Each node keeps monitoring for neighbours with better
probability of delivery than its own. If these exist, the data
bundles are transferred from one buffer to the other. This,
however, implies that the bundles are only replicated on a
number of nodes in the first hop, while they are forwarded
(i.e., deleted from one node and copied on another), later
if the carriers, while roaming, find either a sink or a better
carrier.

As this is a sensor network, the high level of faults in
the nodes implies that some replication on the data needs
to be allowed. However, if the amount of data generated
by the sensors is considerable, the approach of replication
adopted by epidemic-like protocols incurs in heavy over-
heads. SCAR replicates less but tries to control the replica-
tion in an intelligent way by predicting the future evolution
of the system.

As it will be explained in the following section, the de-
livery probability of the nodes also keeps into account the
energy level of the nodes, so to avoid that some best carriers
become strong attractors and run into low battery problems
more quickly than others. In other words, we will show
that as the battery level decreases, the probability of being
selected decreases.

2.2 Choice of Best Carriers

In order to select the best carrier(s) for the data bundles,
we use a mechanisms based on the estimation of the future
behaviour of each sensor node which depends on the history
of its colocation with sinks, its changing rate of connectiv-
ity (i.e., its mobility), and its power level1. The prediction
algorithm is completely local: each node collects the con-
text information, analyses the data and predicts the future
evolution of the context indicators.

2.2.1 Forecasting techniques for probabilistic routing

Each node predicts, using time series forecasting tech-
niques, the evolution of its context described by a set of
attributes. In particular, we consider three indicators de-
scribing its colocation with the sinks, its change degree of
connectivity and its battery level.

More specifically, a utility function is associated to each
context indicator. Our aim is to maximise each attribute, in
other words, to choose the node that presents the best trade-
off between the attributes representing the relevant aspects
of the system for the optimisation of the bundle delivery
process. Analytically, considering k attributes with asso-
ciated utility functions U1(si), ..., Uk(si), the problem can
be reformulated as a multiple criteria decision problem [14]
with k goals:

Maximise{U(si)} = f(U1(si), ..., Uk(si)) (1)

The combined goal function, using the the so-called Weights
method, can be defined as

Maximise{
n∑

j=1

wjUj(si)} (2)

where w1, w2, ...wk are significance weights reflecting the
relative importance of each goal. In our case, the solution is
very simple, since it consists in the evaluation of the func-
tion f(U1, ..., Uk) using the values predicted for each node
and in the selection of the node(s) i with the maximum of
such values.

The overall utility function U(si) gives a measure of the
probability that a node si is able to deliver bundles to any
sink. The delivery probability of each sensor will be equal
to its composed utility function. More formally, the delivery
probability of a sensor si is defined as

P (si) = U(si) (3)

This utility function is therefore computed by considering
its relative mobility (calculated by evaluating its change

1Obviously the choice of these parameter is application specific: for
wildlife monitoring applications (our main target), battery power is a vital
parameter, while this is not the case for vehicular applications. If SCAR
was to applied to vehicular applications this parameter should not be used.

degree of connectivity history), its colocation with sinks,
and its survivability (calculated by considering its battery
level history)2. We associate a utility function to each
of these indicators, respectively Ucdc(si), Ucoloc(si) and
Ubattery(si)), and we compose these utility functions using
a weighted sum as follows:

U(si) = wcdcÛcdc(si) + wcolocÛcoloc(si) + wbatÛbat(si)
(4)

where

• Ûcdc(si) measures the change degree of connectivity
of the node i that we define as the number of connec-
tions and disconnections that a node has experienced
over the last period of [t − 1, t] seconds normalised
by considering the nodes that have been in reach in
this period. This parameter measures relative mobil-
ity and, consequently, the probability that a node will
meet different nodes in a given period of time, that is
the aspect that we are interested in. In fact, being in
reach of a large number of different nodes increases
the probability of meeting sensors with higher deliv-
ery probability or sinks. On the other hand, it may be
possible to have a node that moves around but always
together with the same nodes; in this case, the node
is always colocated with the same devices. Even if its
physical mobility is high, its topological mobility (i.e.,
considering its abstract connectivity graph) is equal to
0.

More precisely, let Nit−1 the set of the neighbours of
the node h at time t, the input value to the predictor at
time t for Ûcdc(si) is equal to:

Ucdc(si) =
|Nit−1 ∪Nit

| − |Nit−1 ∩Nit
|

|Nit−1 ∪Nit
|

(5)

where Nit is the number of nodes in reach of the sensor
si at time t. Intuitively, this corresponds to the number
of nodes that have transitioned from the in reach to
out of reach status or vice versa in the time interval
[t−1, t], normalised by dividing it for the total number
of nodes met in the same time interval.

• Ûcoloc(si) summarises the history of colocation of
the sensor si with a sink. Therefore, the value of
Ûcoloc(si) is high if a node has been close to a sink.

The input of this filter is equal to
1
d

with d number of
hops from the closest sink. Doing this, we obtain a
decreasing gradient of this value as the distance from a
sink increases. If a path does not exist between the sink

2Even if we take into consideration only these three context indica-
tors, our framework allows for the integration of other utility functions
describing other aspects of the system that may be important to improve
the performance of the storing-and-forwarding strategy.

and the host, the input is set to 0. This information is
extracted from the routing table (a special out-of-range
utility value is assigned to sinks).

• Ûbat(si) gives an estimation of the future battery level
of the node. The value 1 corresponds to a full battery,
whereas 0 corresponds to an empty one3.

The relative importance of these utility functions is de-
fined by using the weights wcdc, wcoloc and wbat. Weights
are used to assign different importance to the different di-
mensions of the sensor context. For example, if the battery
level is a critical dimension (that is often the case in wire-
less sensor networks, except for devices embedded in cars,
planes or trains), a high value should be assigned to wbat.

It is important to note that these utility functions rep-
resent an estimation of the future trend of these indicators
calculated by exploiting time series analysis and forecasting
techniques and not the current values of these utility func-
tions. We use the symbol ̂ to indicate the fact that these
are predicted values and not current ones. The forecasted
values are calculated by exploiting Kalman filter prediction
techniques [13] that were originally developed in automatic
control systems theory. These are essentially a method of
discrete signal processing that provides optimal estimates of
the current state of a dynamic system described by a state
vector. The state is updated using periodic observations of
the system, if available, using a set of prediction recursive
equations.

One of the main advantages of the Kalman filter is that it
does not require the storage of the entire past history of the
system, making it suitable for a sensor network setting in
which computational and memory resources are very lim-
ited. Moreover, this technique is also very lightweight from
a computational point of view, since the forecasting model
only requires the update of the values representing the state
using a system composed of linear equations (without any
integration or differentiation required). We present a brief
summary of the mathematical aspects of the application
of state space models theory and Kalman filter time series
analysis to our problem in the appendix of this paper. The
interested reader can find more details in [20].

2.3 Buffer Management

2.3.1 Bundle Priorities

As discussed, a replica of a bundle can be a master or
backup copy. When two nodes exchange their delivery
probability, they also send the number of available slots in
their buffer. We assume that the size of the buffer slots is

3We assume mobility is not a source of energy consumption, i.e., that
nodes move using other sources of energy (like in the case of animals car-
rying the sensors in wildlife monitoring applications).

MASTER

MASTER

BACKUP

BACKUP

BACKUP

EMPTY

EMPTY

Figure 2. Buffer Management: the figure
shows a buffer with a size equal to 7, with 2
master copies in it. In this case, the node will
advertise 5 available slots.

fixed4. A slot is considered available, if it does not con-
tain a bundle or if its content can be overwritten (i.e., the
slot contains a backup copy). For example, in Figure 2, a
buffer composed of 7 slots is represented. The buffer con-
tains three backup copies and two slots are empty. The sen-
sor will then advertise 5 available slots.

Bundles are copied in the buffer of the other sensors
firstly using the available empty slots and then overwriting
the slots containing backup copies. Finally, we would like
to discuss an interesting limit case. It may happen that a
buffer is full and contains only master copies. In this case,
the sensor will not accept any bundle from the other nodes5.
However, if the node has been selected to carry so many
master copies, as its probability of being in reach of a sink
is very high, it is likely that the sensor will quickly reach a
sink and will transfer all the bundles and then free all the
slots in its buffer.

2.3.2 Bundle Deletion Mechanisms

When a sensor meets a sink, the latter sends a hash table
containing the identifiers of the bundles to the former. The
sensor deletes all the bundles that have already been deliv-
ered from its buffer and then sends all the bundles that have
not been delivered yet to the sink.

When two mobile sinks get in reach, they exchange these
hash tables. Then, each sink updates its hash table adding
the identifiers of the bundles delivered to the other sink and
not already present in it. A timestamp is associated to each

4For simplicity, we also assume here that all the bundles have the same
size. However, this mechanism can be easily extended in order to consid-
ered bundles of variable size, such as bundles that require two buffer slots
and so on.

5When the number of slots is equal to 0, sensors will not advertise their
deliver probability, in order to avoid a waste of energy, since this action
will be completely useless.

entry of the tables and the older ones are periodically re-
moved.

2.4 Exchange of Context Information

Neighbours exchange their own delivery probabilities.
Each node maintains an ordered delivery probability list.
Each entry of this table has the structure (sensorId, deliv-
eryProb, availableSlots); where sensorId is the sensor iden-
tifier, deliveryProb is its current delivery probability and the
last field is the number of available slots defined as dis-
cussed in Section 2.3.

Periodically, each sensor sends its delivery probability to
their neighbours together with the number of the available
slots.

2.5 Replication Process

As said before, each sensor keeps monitoring if neigh-
bours with better probability of delivery than its own are in
reach. This is done by examining the context information
received by the other nodes. If there is a node in proxim-
ity with a higher delivery probability, the bundles are trans-
ferred to that node.

A bundle is copied from a sensor sA to a sensor sB if and
only if the probability of sA is a lot larger than the proba-
bility of sB :

P (sB) � P (sA) (6)

This is evaluated by setting an exchange threshold ζ. There-
fore, the replication process between sA and sB happens if
and only if

P (sB)− P (sA) > ζ (7)

This prevents replication actions that are not characterised
by a good trade-off between delivery probability and energy
consumption. Moreover, it avoids possible bundle thrash-
ing, that may cause considerable waste of energy.

Finally, if the buffers of the other nodes are full, not all
the bundles can be transferred. In this case, priority is given
to the master copies. If there is not enough space for all the
master copies, these are selected for replication randomly6.
The same happens for the backup copies.

2.6 Emergency Replication

An additional mechanism is introduced in order to cope
with situations where nodes carrying master copies exhaust
their battery. When the battery level is low (i.e., under a cer-
tain threshold), the master copies of the bundles are copied

6Alternatively, a priority may be associated to each bundle and used for
this selection process. The number of initial replicas can also be used as
priority. In this paper, we assume that all the data sources have the same
importance (i.e., priority).

SCAR Scheduler

Network
Communication

Module

Message
Classifier

Incoming
message

Routing Table
Transmitter

Routing
 Table

Retransmission
 timeout

Message
Transmitter

BufferRouting
Table

Routing Table
Updater

Routing
 table

Buffer Manager

Retransmission
 timeout

Data

Context
Manager &

Kalman Filter
Predictor

Prediction interval
timeout

TCP/IP Contiki Stack

Figure 3. Architecture of the SCAR implemen-
tation on Contiki.

to the nodes in reach that have a sufficient number of free
slots without considering the current values of their delivery
probabilities.

In general, the fact that the battery level is taken into
consideration in the calculation of the delivery probability
should be sufficient to avoid these situations. However, it
may happen that nodes with low battery level store master
copies because of a particular combination of weights that
gives a low relative importance to battery level and/or high
values of the colocation and change degree of connectivity
attributes. For this reason, this mechanism is introduced to
increase the fault tolerance of the system and it will be used
only in “emergency” situations.

2.7 Predictability of the Sensor Network
Scenario

Our system relies on predictions about the future values
of context attributes. However, in some conditions predic-
tions are not reliable, e.g., because the prediction model
used in the forecasting framework does not provide suffi-
cient accuracy.

To assess the quality of context predictions it is possible
to use the technique presented in [21], based on the analysis
of the forecasting error [3]. The analysis of the predictabil-
ity of the time series can be performed periodically in order
to save resources. However, it is worth noting that this tech-
nique is lightweight from a computational point of view.

When the predictability component determines that pre-
dictions are unreliable, we will use alternative protocols to
carry the data, for example epidemic-style approaches.

3 Implementation Details

In this section we describe the implementation of
SCAR on top of the Tmote Sky nodes [19], equipped
with a MSP430 microprocessor, a cc2420 Chipcon radio
chipset [4] and a number of sensors (i.e., temperature, light
and humidity).

The nodes are running the Contiki Operating System [7].
Contiki is an open source, highly portable, multi-tasking
operating system for memory-constrained networked em-
bedded systems. Contiki consists of an event-driven ker-
nel on top of which application programs are dynamically
loaded and unloaded at runtime. Contiki processes use pro-
tothreads [8] that provide a thread-like programming ab-
straction on top of the event-driven kernel.

SCAR is implemented as a Contiki process loaded with
the kernel. The routing protocol itself consists of a pro-
tothread called SCAR process, waiting for different events:
incoming data or timer-notifications. A timer is used to time
the periodic transmission of routing beacons containing the
current delivery probability and buffer size of the node. An-
other timer is used to send data messages periodically. Each
message is uniquely identified by the host name and a mes-
sage number generated using a counter that is incremented
by one for each message sent. Whenever these timers ex-
pire, or there is an incoming packet, an event is fired. Each
event is caught in the main loop of the process, and dealt
with (when the routing timer expires, a routing message is
sent). The SCAR process is also waiting for incoming data,
which is processed and stored depending on the message
type. If it is a routing message, then the information is ex-
tracted and the corresponding routing table entry is updated.
If it is a data message, then an ACK is sent and the message
is stored in the buffer. Messages are not deleted from the
buffer unless they are acknowledged or the buffer becomes
full as described above. The architecture of the SCAR im-
plementation on Contiki is shown in Figure 3.

Each node has a routing table with entries holding infor-
mation (i.e., buffer size, availability, delivery probability)
about other, neighbouring nodes. When a message is to be
transmitted, this routing table is considered and the message
is forwarded to the node with the best characteristics. If no
such neighbour is available, then the message is stored in
the buffer, and transmitted later. Both the routing table and
the messages are stored as C structures. The routing table is
updated when a routing message is received, and also just
before the current node sends a routing message. In this
way, the node can check whether it has gone out of reach of
any of its previous neighbours, or gained a new neighbour-
ing node, and updates its local Kalman predictor.

Kalman filter prediction technique may appear heavy-
weight from a computational point of view. Instead, since
they require only the storage of the current predicted val-

Program 1 Excerpt of the code used for the calculation of the predicted value using Kalman filter forecasting.
void getPredictedValue(struct kalmanStruct* kalman, float currentValue, float
initialValue) {
float residual;
kalman->currentInputValue=currentValue;
kalman->pastPredictedValue=kalman->currentPredictedValue;

if (kalman->counter==1) {
kalman->currentValue=currentValue;
kalman->currentPredictedValue=initialValue;
kalman->currentOmegat=initialOmegat;
kalman->counter++;

} else {
kalman->currentValue=currentValue;
kalman->currentPredictedValue=kalman->currentPredictedValue+kalman->currentOmegat*
(kalman->currentValue-kalman->currentPredictedValue)/(kalman->currentOmegat+kalman->rt);
kalman->currentOmegat=kalman->currentOmegat+kalman->qt-kalman->currentOmegat*kalman->currentOmegat/
(kalman->currentOmegat+kalman->rt);
kalman->counter++;

}
}

ues and the state of the filter, they are also suitable for very
resource-constrained devices like motes. However, since
the motes have a simple, 16-bit processor without floating-
point support, floating-point arithmetic had to be added at
the software level.

An excerpt of the code used to update the state of one
Kalman filter predictor is presented in the box Program 1. It
essentially consists of the update of two recursive equations
for the calculation of the current state and current predicted
value given the observed value of the attribute taken into
consideration.

The memory footprint of the implementation of SCAR
is 16 KB. The number of lines of code is about 700. The
memory required by the operating system is 28KB in the
configuration used in our implementation. Additional space
is required to store the routing table and the message buffer,
but the entire program can be loaded onto a Tmote Sky, still
leaving some space for other applications. The size of a
routing table entry is 10 bytes. A SCAR message has the
following structure:

struct message{
int msgType;
uip_ipaddr_t nextHop;
int index;
int msgId;

uip_ipaddr_t msgSource;
int isBackup;
float delProb;
struct data msg[7];
};

The message type (msgType) describes the type of the
message (routing, data or ack message). nextHop indi-
cates the next recipient for the message while index is the
hopcount for the message. msgId is the identifier of the
message, which is a unique identifier per message source
(msgSource). isBackup indicates if the message is a
master copy or a replica, while delProb indicates the de-
livery probability: this is used for routing messages. The

message content is in data.
Integers are 2 bytes, floats are 4 bytes while

uip_ipaddrs are 8 bytes. The full header of the mes-
sage is 26 bytes.

4 Evaluation

In this section we report on the evaluation of SCAR
through the use of the COOJA simulator [22] and realistic
connectivity traces generated with the Zebranet trace gener-
ator [16].

COOJA [22] is a wireless network simulator for the Con-
tiki OS. It is written in Java and uses the Java-Native In-
terface (JNI) to translate programs written in Contiki into
Java code. COOJA provides plug-ins to monitor the nodes,
from their power level to the state of their LEDs with the
possibility of easily plugging extensions. The standard ver-
sion of COOJA does not provide support for mobility. We
have added this functionality by means of an additional
Positioner interface. Using this, COOJA can read co-
ordinates from a file and move the nodes accordingly. With
an additional RadioInterface, we enabled COOJA to
read connectivity traces, i.e., traces containing information
about the topology of the network in terms of connections
and disconnections duration among each pair of the nodes
of the system.

4.1 Simulation Settings

The simulation settings of COOJA are indicated in Ta-
ble 1, unless otherwise specified. We have tried to mirror
the TMote Sky radio capabilities.

The traces we have used are the ones generated by the
Zebranet trace generator written by Yong Wang to generate
traces for a different number of nodes with the same dis-
tribution of node speed and movement patterns. The script

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

de
liv

er
y

ra
tio

network size

delivery vs network size

SCAR - 50 buffer
random - 50 buffer
SCAR - 100 buffer

random - 100 buffer

Figure 4. Delivery ratio vs node density.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 15 20 25 30 35 40

ov
er

he
ad

network size

overhead vs network size

SCAR - 50 buffer
random - 50 buffer
SCAR - 100 buffer

random - 100 buffer

Figure 5. Overhead vs node density.

generates random traces based on real data. The positions
of the nodes were updated every 8 minutes, routing mes-
sages and data messages were sent every 2 and 5 minutes,
respectively. The nodes stopped sending after the 100th sent
message, and acted as intermediate nodes until the simula-
tion ended. Each simulation lasted for 10 simulated hours;
the messages were sent in the first 8 hours approximately
(i.e., with a transmission interval equal to 5 minutes).

We compared SCAR with a random choice based proto-
col which replicates to k neighbours as SCAR does but does
not rely on any predictive mechanism to choose the best car-
riers for the data. This is fair comparison as it allows us to
evaluate the accuracy of the prediction based choice. The

 0

 20

 40

 60

 80

 100

 60 80 100 120 140 160 180 200

de
liv

er
y

ra
tio

buffer size

delivery vs buffer size

SCAR
random

Figure 6. Delivery ratio vs buffer size.

 0

 50000

 100000

 150000

 200000

 60 80 100 120 140 160 180 200

ov
er

he
ad

buffer size

overhead vs buffer size

SCAR
random

Figure 7. Overhead vs buffer size.

implementation of this protocol is very similar to SCAR
except for the decision-making part, which is random. The
only exception is the case when a sink is in reach; then the
node will transmit its messages to the sink directly also in
the case of the random choice.

4.2 Simulation Results

We now report the results of the simulation. The met-
rics we have concentrated on are message delivery ratio and
message overhead (which is important for estimating sen-
sor energy consumption). In studying the performance we
have varied the number of nodes in the scenario, increasing

 0

 20

 40

 60

 80

 100

 1 2 3 4

de
liv

er
y

ra
tio

number of copies

delivery ratio vs number of copies

SCAR
random

Figure 8. Delivery ratio vs number of copies.

 0

 50000

 100000

 150000

 200000

 1 2 3 4

ov
er

he
ad

number of copies

overhead vs number of copies

SCAR
random

Figure 9. Overhead vs number of copies.

density, the buffer size and the number of replicas made by
each sensor.

Figure 4 shows the delivery ratio against the number of
nodes in the network for different buffer sizes for the two
protocols. The associated overhead in terms of number of
messages sent is reported in Figure 5. As the buffer size in-
creases, the delivery ratio increases, given the lower prob-
ability of losing messages due to memory limitations. In a
less dense network the gap in terms of performance between
SCAR and random is more evident: in a more connected
graph, the random selection protocol has a higher probabil-
ity of being in contact of the recipient of the message by
means of the random forwarding. We observe that our main

 0

 0.5

 1

 1.5

 2

 2.5

 3

 60 80 100 120 140 160 180 200

av
er

ag
e

nu
m

be
r

of
 h

op
s

pe
r

m
es

sa
ge

buffer size

number of hops vs buffer size

SCAR
random

Figure 10. Hops vs buffer size.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4

av
er

ag
e

nu
m

be
r

of
 h

op
s

pe
r

m
es

sa
ge

number of copies

number of hops vs copies

SCAR
random

Figure 11. Hops vs number of copies.

application scenarios (wildlife monitoring) are usually char-
acterised by very sparse intermittently connected networks.
The performance of the two protocols are similar for denser
networks, but the overhead associated to the random selec-
tion one is much higher. The random protocol is reaching
a high overhead due to random walk-like forwarding of the
copies. Figures 6 and 7 show the influence of the buffer size
in scenario composed of 20 sensors for a larger range of
values. With a large buffer, the random protocol has similar
performance in this scenario, but the associated overhead is
nearly an order of magnitude higher.

The improvement of the delivery ratio using an increas-
ing number of copies can be observed in Figure 8. In these

Area Size 2 km x 2 km
Radio Range 200 m
Transmission Rate 250 kbps
Number of Sensors 10 to 40 (step: 5)
Number of Sinks 10% of Sensors
Buffer Size 50-100-150-200
Number of Pack. Sent (per host) 100
Routing Retrans. Interval 120 s
Message Retrans. Interval 300 s
Number of Replicas 1-2-3-4
Simulation Duration 10 h

Table 1. COOJA settings.

simulations, we consider a 20 hosts scenario; the buffer was
set to 100. There is a high price to pay in terms of over-
head as shown in Figure 9. The random protocol outper-
forms SCAR, but its overhead is extremely high in compar-
ison with our protocol from an energy consumption point of
view. The saturation of the delivery ratio of SCAR is due
to the limited duration of the simulation. SCAR is able to
reach 100% delivery ratio also in this sparse scenario with
a longer simulation time. We also observe that increasing
the number of copies beyond two does not increase the de-
livery ratio. This is due to the fact that the number of better
carriers in terms of delivery probability is usually equal to
or lower than two.

To further assess the efficiency of SCAR compared to
random routing, we have plotted the average number of
hops a message travelled from source to destination against
different buffer sizes and varying number of copies. For
these experiments, the network size was set to 20. In Fig-
ure 10 the number of traversed hops is more or less constant
for the random protocol, while it decreases as the buffer size
increases in SCAR. This can be explained by the intelligent
forwarding of SCAR. As we increase the buffer, a good car-
rier can take more messages to the sink, thus SCAR uses
less nodes to deliver a message on average.

Figure 11 shows the average number of hops considering
different number of copies. The buffer size was set to 100.
We only considered the first delivered copy in our simula-
tions. The graph shows a constant number of hops for both
protocols as the number of copies increases. This can be ex-
plained by observing that, in most cases, the master copy is
delivered to the sink successfully. Again, the graph shows
a higher average number of hops for the random routing
protocol than SCAR: this is also due to effectiveness of the
prediction based routing mechanisms.

To summarise, we have shown that SCAR performs rea-
sonably well in scenarios characterised by sparse topolo-
gies. A higher buffer size and number of copies ensure
better performance but with an increased overhead and re-

source consumption. With respect to the random selection
protocol, the simulations demonstrate the effectiveness of
the prediction mechanism for the intelligent forwarding of
the replicas. This mechanism ensures very high delivery
ratio with a considerably smaller overhead.

5 Related Work

There have been a number of attempts of dealing with
delay tolerant networks [9] overcoming the limitation of
synchronous forwarding. In the area of mobile ad hoc net-
working, for instance, epidemic routing protocols [24] form
the basis for much of the work in this field.

In [23], Small and Haas describe an interesting appli-
cation of epidemic routing protocols to a problem of cost-
effective data collection, using whales as message carriers.
In [15], Lindgren et al. propose a probabilistic routing ap-
proach to enable asynchronous communication among in-
termittently connected clouds of nodes. Their approach is
based on the fact that the exploited communication model
is typically transitive and, for this reason, the probability of
message delivery must be calculated accordingly. Zhao et
al. in [26] discuss the so-called Message Ferrying approach
for message delivery in mobile ad hoc networks. The au-
thors propose a pro-active solution based on the exploitation
of highly mobile nodes called ferries. These nodes move ac-
cording to pre-defined routes, carrying messages between
disconnected portions of the network.

In terms of sensor networks a lot of effort has been de-
volved into data forwarding in static sensor networks [6,10,
17]. Some attempts have also been done in the direction
of more dynamic sensor networks where mobile sinks are
available such as [5, 11]. In ZebraNet [12, 16] mobile sen-
sors are deployed for tracking zebras in a hostile and wide
environment. This is one of the closest work to ours to-
gether with [25].

However, with respect to these works, our data transmis-
sion overhead is lower (we do not have epidemic-like dis-
semination) and, thanks to the prediction techniques used
to calculate the probabilities, the delivery of data is still rea-
sonably high. In other words, we believe that our solution
provide a better trade-off between the delivery ratio and the
energy consumption (i.e., improved sensor survivability).

More recently, the MetroSense project [2] is investigat-
ing the possibility of deploying a large scale sensing in-
frastructure, where delay-tolerant data collection play a key
role. SCAR can be seen as a possible protocol to support
asynchronous data retrieval in this kind of settings.

6 Conclusions

In this paper we have described SCAR, a protocol for
data forwarding on mobile sensor networks towards a num-

ber of fixed or mobile sinks. We have illustrated the details
of the SCAR implementation over Tmote Sky nodes, and of
the evaluation through the COOJA simulator with realistic
mobility traces.

We are investigating real deployment issues in the con-
text of our wildlife monitoring project with tagged animals
as sensor nodes.

Acknowledgments We thank EPSRC through projects
CREAM and WILDSENSING and the European Union
through project RUNES.

References

[1] P. J. Brockwell and R. A. Davis. Introduction to Time Series
and Forecasting. Springer, 1996.

[2] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo,
and R. A. Peterson. People-centric urban sensing. In Pro-
ceedings of 2nd ACM/IEEE International Wireless Inter-
net Conference (WICON 2006), August 2-5, 2006, Boston,
USA.

[3] C. Chatfield. The Analysis of Time Series An Introduction.
Chapman and Hall, 2004.

[4] Chipcon. 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF
Transceiver Datasheet, 2007. www.chipcon.com/.

[5] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy,
and G. P. Picco. TINYLIME: Bridging Mobile and Sensor
Networks through Middleware. In Proceedings of PerCom
2005, pages 61–72, Kauai Island (Hawaii, USA), Mar. 2005.
IEEE Computer Society.

[6] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao.
Energy-Efficient Data Management for Sensor Networks. In
Proceedings of the IEEE Upstate NY Workshop on Sensor
Networks 2003, 2003.

[7] A. Dunkels, B. Grnvall, and T. Voigt. Contiki - a
Lightweight and Flexible Operating System for Tiny Net-
worked Sensors. In Proceedings of the First IEEE Work-
shop on Embedded Networked Sensors (Emnets-I), Tampa,
Florida, USA, Nov. 2004.

[8] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In Proceedings of
SenSys’06, page 14, Boulder, Colorado, USA, 2006.

[9] K. Fall. A delay-tolerant network architecture for challenged
internets. In Proceedings of SIGCOMM’03, August 2003.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In Proceedings of ACM/IEEE MOBI-
COM’00, pages 56–67, 2000.

[11] D. Jea, A. A. Somasundara, and M. B. Srivastava. Multi-
ple Controlled Mobile Elements (Data Mules) for Data Col-
lection in Sensor Networks. In Proceedings of DCOSS’05,
pages 244–257, 2005.

[12] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with Ze-
braNet. SIGOPS Operating Systems Reviews, 36(5):96–107,
2002.

[13] R. E. Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME Journal of Basic
Engineering, March 1960.

[14] R. Keeney and H. Raiffa. Decisions with Multiple Objec-
tives: Preference and Value Tradeoffs. Wiley, 1976.

[15] A. Lindgren, A. Doria, and O. Schelen. Probabilistic rout-
ing in intermittently connected networks. Mobile Computing
and Communications Review, 7(3), July 03.

[16] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. Imple-
menting software on resource-constrained mobile sensors:
experiences with Impala and ZebraNet. In Proceedings of
MobiSys’04, pages 256–269, New York, NY, USA, 2004.
ACM Press.

[17] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
a Tiny Aggregation Tree for ad-hoc sensor networks. In Pro-
ceedings of OSDI’02, 2002.

[18] C. Mascolo and M. Musolesi. SCAR: Context-aware Adap-
tive Routing in Delay Tolerant Mobile Sensor Networks. In
Proceedings of the Delay Tolerant Networks Symposium.
ACM International Wireless Communications and Mobile
Computing Conference (IWCMC) 2006. ACM Press, June
2006.

[19] Moteiv. Tmote Sky – Ultra low power IEEE 802.15.4
compliant wireless sensor module datasheet, 2007.
www.moteiv.com/products/docs/tmote-sky-datasheet.pdf.

[20] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive routing
for intermittently connected mobile ad hoc networks. In Pro-
ceedings of IEEE WoWMoM 2005. Taormina, Italy. IEEE
press, June 2005.

[21] M. Musolesi and C. Mascolo. Evaluating context informa-
tion predictability for autonomic communication. In Pro-
ceedings of ACC’06, Niagara Falls, NY, June 2006. IEEE
Computer Society Press.

[22] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with cooja. In Pro-
ceedings of Proceedings of SenseApp 2006, Tampa, Florida,
USA, 2006.

[23] T. Small and Z. J. Haas. The shared wireless infostation
model- a new ad hoc networking paradigm (or where is a
whale, there is a way). In Proceedings of MobiHoc’03, June
2003.

[24] A. Vahdat and D. Becker. Epidemic routing for partially
connected ad hoc networks. Technical Report CS-2000-06,
Department of Computer Science, Duke University, 2000.

[25] Y. Wang and H. Wu. DFT-MSN: The Delay/Fault-Tolerant
Mobile Sensor Network for Pervasive Information Gather-
ing. In Proceedings of INFOCOM’06, Barcelona, Spain,
April 2006.

[26] W. Zhao, M. Ammar, and E. Zegura. A message ferrying
approach for data delivery in sparse mobile ad hoc networks.
In Proceedings of MobiHoc’04, May 2004.

A SCAR Forecasting Model

In this appendix we present the forecasting model used
for the prediction of context information in SCAR.

A state space model for a time series Yt consists of two
equations. The first one called the observation equation is
the following

Yt = GtXt + Wt t = 1, 2, ...

with Wt defined as7

Wt = WN(0, Rt)

This equation defines the w-dimensional observation {Yt}
as a linear function of a v-dimensional state variables {Xt}
and a noise term. The second one is the state equation de-
fined as follows

Xt+1 = FtXt + Vt t = 1, 2, ...

with Vt defined as

Vt = WN(0, Qt)

This equation determines the state Xt+1 at time t + 1 in
terms of the previous state Xt and a noise term. Let w as
the dimension of Yt and v as the dimension of Xt, {Gt} is
a sequence of w×v matrices and {Ft} is a sequence of v×v
matrices. We assume that {Vt} is uncorrelated with {Wt},
even if a more general form of the state space model allows
for correlation between these two variables. Analytically,
we can rewrite this condition as follows

E(WsVT
t) = 0 ∀ s, t

We also assume that the initial state X1 is uncorrelated with
all of the noise terms {Vt} and {Wt}.

With the notation of Pt(X) we refer to the best linear
predictor (in the sense of minimum mean-square error) of
X in terms of Y at the time t. Pt(X) is defined as follows

Pt(X) ≡
[

Pt(X1) ... Pt(Xv)
]T

where
Pt(Xi) ≡ P (Xi|Y0, Y1, ..., Yt)

P (Xi|Y0, Y1, ..., Yt) indicates the best predictor of Xi

given Y0, ..., Yt. We can also observe that Pt(X) has the
following form

Pt(X) = A0Y0 + ... + AtYt

since it is a linear function of Y0, ..., Yt. It is possible to
prove [1] for the state space model discussed in the previous
section that the one-step predictor

X̂t ≡ Pt−1(Xt)
7WN stands for White Noise, a term that derives from telecommuni-

cation engineering. A white noise is a sequence of uncorrelated random
variables Xt, each with the same mean and variance σ2. Therefore, white
noise is also an example of stationary time series. More specifically, the
notation WN(0, {Rt}) indicates white noise with zero mean and variance
Rt.

and their error covariance matrices

Ωt = E[(Xt − X̂t)(Xt − X̂t)T]

are determined by these initial conditions

X̂1 = P (X1|Y0)

Ω1 = E[(X1 − X̂1)(X1 − X̂1)T]

and these recursive equations

X̂t+1 = FtX̂t + Θt∆−1
t (Yt −GtX̂t)

Ωt+1 = FtΩtF
T
t + Qt −Θt∆−1

t ΘT
t

where
∆t = GtΩtG

T
t + Rt

Θt = FtΩtG
T
t

As estimation model, we use a basic state space model com-
posed of the following two scalar equations

Yt = Xt + Wt t = 1, 2, ...

with
Wt = WN(0, Qt)

and
Xt+1 = Xt + Vt t = 1, 2, ...

with
Vt = WN(0, Rt)

With respect to the Kalman filter prediction, we can con-
sider a mono-dimensional system with

Gt = [1]

Ft = [1]

Therefore, we can derive the recursive equations of the
Kalman filter for the prediction of the values of this se-
ries. Given the previous observed value Yt and the predicted
value at time t, X̂t, the recursive equation for the determi-
nation of the predicted value at time t + 1 is

X̂t+1 = X̂t +
Ωt

Ωt + Rt
(Yt − X̂t)

with

Ωt+1 = Ωt + Qt −
Θ2

t

Ωt + Rt

Since in this case
Ωt = Θt

we can also write

Ωt+1 = Ωt + Qt −
Ω2

t

Ωt + Rt

