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Abstract
Chronic diseases like cancer and diabetes are ma-
jor threats to human life. Understanding the dis-
tribution and progression of chronic diseases of a
population is important in assisting the allocation of
medical resources as well as the design of policies
in preemptive healthcare. Traditional methods to
obtain large scale indicators on population health,
e.g., surveys and statistical analysis, can be costly
and time-consuming and often lead to a coarse
spatio-temporal picture. In this paper, we leverage
a dataset describing the human mobility patterns
of citizens in a large metropolitan area. By view-
ing local human lifestyles we predict the evolution
rate of several chronic diseases at the level of a city
neighborhood. We apply the combination of a col-
laborative topic modeling (CTM) and a Gaussian
mixture method (GMM) to tackle the data spar-
sity challenge and achieve robust predictions on
health conditions simultaneously. Our method en-
ables the analysis and prediction of disease rate
evolution at fine spatio-temporal scales and demon-
strates the potential of incorporating datasets from
mobile web sources to improve population health
monitoring. Evaluations using real-world check-in
and chronic disease morbidity datasets in the city
of London show that the proposed CTM+GMM
model outperforms various baseline methods.

1 Introduction
Recent studies show that many chronic and malignant dis-
eases, e.g., heart disease, diabetes, and cancer, are extremely
prevalent in our society [Siegel et al., 2015]. To estimate dis-
ease penetration in a population and to be then able to im-
plement appropriate health-care and preventative measures,
healthcare administrators often perform statistical analysis
from the records of hospital visits or conduct survey among
a sample of residents. The analysis and survey usually incur
high labor costs and are time-consuming. In addition, they
often lead to coarse estimates both spatially and temporally.
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Although chronic diseases are, to some extent, related to
patients’ genetics, recent studies have shown that 70% to 90%
of chronic diseases can be attributed to other factors [Rap-
paport and Smith, 2010]. For example, there is a causal re-
lationship between chronic diseases and our daily habits,
such as diet [McCullough et al., 2002] and alcohol con-
sumption [Martı́nez, 2005], which reflect different aspects of
humans’ lifestyles. Lifestyle depicts typical routine lives of
people. Large-scale human mobility data collected through
location-based social network services can act as a proxy for
human lifestyle [Yuan et al., 2013]. For instance, regular vis-
its to college libraries, gyms, and lecture theaters, may cor-
respond to the lifestyle of a college student, while a record
of constant visits to meeting rooms and restaurants may indi-
cate the lifestyle of a white-collar employee. These lifestyles
are correlated with, and may reveal, certain chronic disease
conditions of populations.

The connection between human mobility and diseases has
been explored before. Several previous studies have investi-
gated the outbreaks of infectious diseases via social ties and
human mobility patterns [Meyers, 2007]. For chronic dis-
eases, researchers have explored the association between hu-
man online activities and obesity [Mejova et al., 2015]. How-
ever, little attention has been paid to lifestyes as a bridge
between human mobility and chronic diseases nor exploring
such correlation together with diseases-location similarity to
predict residents’ health.

In this work, we leverage the correlations between health
and lifestyle reflected in human mobility to predict human
health progression in populations. Using such data for these
estimates gives unprecedented spatial and temporal granular-
ity to the analysis but has also the potential to lower the costs
of these studies and enable them to be applicable to regions
for which other techniques would be deemed impractical or
too expensive (e.g. developing regions). Here, we use human
visitation patterns (check-ins) estracted from Foursquare (a
location intelligence application) and the statistics of chronic
disease morbidity in the London metropolitan area (presented
on the government opening data website of the UK). We cap-
ture regional lifestyles as reflected in Foursquare mobility
data, and apply a hybrid model to improve the prediction of
public health conditions over simply using historic dataset. In
summary, this paper offers the following contributions:
• We explore the correlations between human mobility pat-



terns and health conditions and apply a method which
combines Gaussian mixture models (GMM) with collab-
orative topic modeling (CTM) to predict the health levels
of a population, i.e., leveraging “where they go” to help
predict “how healthy they are”.
• We get clues about human lifestyles from mobility patterns

of residents, assuming that the groups of visited POIs are
proxies for different lifestyles. We then exploit these in-
puts to identify fine-grained spatio-temporal associations
between these lifestyles and chronic diseases for local pop-
ulations.
• We collect real-world chronic disease and check-in data to

evaluate our method and analyse the correlation between
lifestyles and chronic diseases. Compared with methods
using historic information solely, the proposed method
shows a 45.7% reduction in mean square erro (MSE) and
a 1.67 times increase in R-squared value (R2).

2 Related Work
Disease prediction. Many existing studies have tried to un-
derstand the spread of infectious diseases and forecast their
outbreaks. Some works have analysed the social or con-
tact networks formed by connections among individuals and
human mobility patterns to model the outbreaks of infec-
tious diseases [Meyers, 2007], while some others utilise large
amounts of users’ status posts on social networks, such as
Twitter, to analyse the public health on a large scale [Paul
and Dredze, 2011]. Some other studies target on chronic dis-
eases. Matic et al. [Matic and Oliver, 2016] seek help from
smartphone-based health applications and wearable devices
to continuously record human behaviour to analyse mental-
health condition of individuals. The work [Mejova et al.,
2015] employed both Foursquare and Instagram data to as-
sess the relationship between fast food and obesity. Mason et
al. [Mason et al., 2018] found that people who lived far away
from fast-food resturants were more likely to have small waist
circumference, espetially for women. Howere, there is a no-
ticeable lack of research about the effects of human mobility
patterns on the development of chronic diseases in small ur-
ban areas. To the best of our knowledge, no one has explored
the similarities between chronic diseases and urban regions
simultaneously. Our work aims to fill this gap.
Human mobility analysis. Patterns of human mobility are
predictable and reflect how the residents of a certain area live
in the physical world [Cho et al., 2011]. Many scholars have
tried to learn such patterns in order to predict the movement of
individuals [Gao et al., 2012]. Extensive research efforts have
also been focused on, e.g., finding typical travel sequences
by studying users’ check-in trajectories [Zheng et al., 2009],
predicting users’ moving patterns by exploiting both the regu-
larity of human mobility and influence of others [Wang et al.,
2015], and making location recommendations with graphical
models that integrates users’ preferences with their sequential
movement patterns [Wang et al., 2016]. Different from above
studies, in this paper we investigate the correlations between
residents’ chronic disease development and their lifestyles in-
dicated by their frequently visited venues and mobility habits.

Topic and Gaussian mixture models. Our analysis utilises
topic modeling [Blei et al., 2003] and Gaussian mixture mod-
els [Friedman and Russell, 1997]. Topic modeling has been
widely used generate latent topics of documents [Wang and
Blei, 2011] and learn human habits in daily lives [Yuan et al.,
2013]. Gaussian mixture models are often used to describe
the joint effect of multiple segments and factors [Bilmes and
others, 1998]. It is widely utilised on cluster problems be-
cause of its unconstrained covariance structure and flexible
application scenarios.

3 Disease Rate Evolution Prediction
3.1 Problem Definition
Human mobility records, e.g., the check-ins, reflect people’s
movements in the physical world and to some extent reveal
their lifestyles, which gradually affect their health conditions.
Here we utilise the check-in dataset of Foursquare and the
chronic disease dataset in London as an example for analysis.
The Foursquare dataset contains check-in records from Dec.
2010 to Dec. 2013 created at 18,018 POI venues in 426 cat-
egories, e.g., fast food restaurant, gym, park, etc. There are
over 4 million check-in transition between pairs of POIs, in
each of which we have check-in timestamp and venue id (no
user information). The chronic disease dataset contains the
morbidity of 20 chronic diseases of 567 wards in London.

To exam the relationship between chronic diseases and hu-
man mobility patterns extracted from location-based services,
we employ Pearson correlation analysis. More specifically,
the correlation results between evolution rate of 7 most com-
mon chronic diseases and check-in amount of 17 categories of
POIs from 2010 to 2013 in London are tested and presented
in Figure 1(a). Here, for each chronic disease, we sort the dis-
ease evolution rates of 567 wards and split the ranking list into
r segments averagely (we set r = 19, so there are 30 wards in
each of the first 18 segments and 27 wards in the last one). We
calculate the mean value of disease evolution rate and mean
check-in volume of each category of POI in every segment
to get two r-length sequences. Then, through calculating the
correlation coeficient between the two types of sequences, we
find that several categories, such as Malaysian restaurants,
Chinese restaurants, and fast food restaurants, have high pos-
itive correlations with most of the 7 diseases except cancer.
Some diseases have similar correlations with all the 17 cate-
gories of POIs, e.g. hypertension, heart failure, and obesity.

There are many confounding factors influencing popu-
lation health across geographies. Our goal is not to draw
causal conclusions regarding health. Instead we mine geo-
referenced data emerging in urban environments so as to in-
form prediction models and attain better prediction results.
Urban activities of users engaging with location intelligence
systems can be indicative of lifestyle choices, some of which
could be linked to health, yet describing a causal link is not
the purpose of this paper.

People’s health conditions can be treated as dynamic fac-
tors. A healthy lifestyle may not prevent illness but may re-
duce the risk. Therefore, we focus on how people’s lifestyles
may influence the development of these chronic diseases. As-
sume there are W regions in an area, represented as R =
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Figure 1: (a) Correlation between the evolution rate of 7 chronic diseases and check-in amount of 17 POI categories. (b)
Distribution of the amount of POIs in the 630 wards of London. (c) 3-D projection of embedding results for POI categories.

{r1, r2, ..., rW }. Let D = {d1, d2, ..., dS} denote S chronic
diseases and H∈RW×S denote the evolution matrix of all the
S diseases in W regions , where hw,s is the evolution rate of
disease ds from last year to this year in region rw (a positive
number denotes an increasing rate and a negative number de-
notes an decreasing rate). In practical terms, the disease data
for some regions might be unavailable due to a tight budget.
If we can only collect data in a subset R̂ regions of R, which
fill in Ŵ rows in the region-disease matrix H and let oth-
ers be zero (we denote H matrix with zero rows by Ĥ), our
goal is to predict the chronic disease development of the rest
W̃ = W − Ŵ regions in set R̃.

3.2 Overview
We adapt a prediction method which systematically integrates
collaborative topic modeling and Gaussian mixture approach.
Specifically, we firstly leverage an embedding method and a
Gaussian mixture approach to aggregate categories of venues
into several clusters according to their check-in patterns.
Through that, we obtain a denser region-cluster-of-venues
matrix. Then we apply a collaborative topic modeling method
to extract lifestyle patterns of each region from human’s
check-in mobility. We hypothesise that lifestyle patterns in
all regions and chronic disease evolution rates in some of the
regions can be alble to help exploring the chronic disease con-
ditions in the missing regions.

3.3 Method
Venue Aggregation. Assuming there are N categories of
venues, denoted as V = {v1, v2, ...vN}, we can collect the
check-in amount of each category in V and each region in R
(mentioned in Section 3.1), and build a region-category ma-
trix Y∈RW×N . However, the spatial distribution of POIs is
usually unbalanced in the city. In Figure 1(b), the amounts
of Foursquare POIs in the 630 wards are presented. We can
clearly see that central London and the region containing
Heathrow Airport (the deep blue region on the left) have
denser POI distribution. However, in some other regions the
amount of POIs are considerably sparse, which leads to the
sparsity of matrix Y. To address this problem, we extract
users’ similar check-in preferences for some categories of
POIs and aggregate these categories into a cluster. For exam-
ple, if users often go shopping after having French or Italian
food, we will cluster French and Italian food into a group.

To aggregate venues based on check-in patterns, we firstly
represent each category of POI as a feature vector. Those cat-
egories with similar check-in patterns will have smaller vec-
tor distances from each other. This is similar to the embed-
ding task in natural language processing, where each cate-
gory of POI can be seen as a word, and users’ transitions be-
tween categories of POIs is analogous to a sentence. Here we
embed each category of POI into a P -length vector through
word2vec method [Rehurek and Sojka, 2010]. Figure 1(c)
shows a part of the 3-D projection1 of embedding result for all
the 426 categories of POIs when P is set to 100. Each circle
denotes one category. The colored circles are the categories
having shortest cosine distances to the category “women’s
stores”. Redder colors represent closer relationships. The size
of a circle indicates it’s “depth” from the surface of screen
(foreshortening effects). We can observe that shoe stores,
clothing stores, lingerie stores, and men’s stores, have the
most similar check-in patterns with women’s stores.

We aggregate the N categories of POIs into C clusters by
adopting Gaussian mixture method (GMM) [Friedman and
Russell, 1997]. Compared with other cluster methods, e.g.,
k-means, GMM provides unconstrained covariance structure
for each cluster, making the method more flexible. As illus-
trated in Figure 2, φ∈RN×P is the venue-embedding matrix.
The GMM can be described as follows:

πn ∼ Dirichlet(γ),

σc ∼ Γ(τ, σ0), µc ∼ N (µ0, νσc), c = 1, ..., C,

gn ∼ Categorical(πn), φn ∼ N (µgn ,σgn), n = 1, ..., N,

where πn and gn are the parameter of categorical distribution
and the component of the nth observation respectively. µc, σc

are the parameters of Gaussian distribution of component c.
γ, τ, σ0, µ0, ν are the shared hyperparameters. Let X∈RW×C

represent the region-cluster matrix, which can be estimated
through parameter π and check-in matrix Y:

X = Y · π, (1)

where xi,j denotes the check-in amount of venue cluster j in
region ri. Figure 2 presents the association from Y and π to
matrix X through dotted lines.
Collaborative Topic Model. Until now, we have obtained the
region-cluster matrix X. Our objective is to extract lifestyle
information from X helping to predict chronic disease con-
ditions in missing regions. Traditional probabilistic matrix

1http://projector.tensorflow.org/



factorization (PMF) is a perfect method for recommenda-
tion tasks, leveraging the similarity among different users and
items to complement the user-item matrix [Salakhutdinov and
Mnih, 2007]. Similarly, as presented in Figure 1(a), similar-
ities exit among diseases when analysing the correlation be-
tween diseases and check-ins. If we assume that similarities
could also be found among regions, we can in the same way
factorize regions’ disease evolution rate matrix H into two
low dimensional latent matrices L and Λ, both with dimen-
sionK. We denoteK as the number of latent lifestyles, vector
Li as the weight of latent lifestyles in region ri, and vector Λj

as the influence from latent lifestyles on chronic disease dj .
Thus we can generate H through the distribution:

hi,j ∼ N (Li ·Λ>
j , ςi,jλ

2
H), (2)

where ςi,j is 0 if the data of hi,j is missing, and 1 otherwise.
The distribution of region and disease vectors are:

Li ∼ N (0, λ2
LIK), Λj ∼ N (0, λ2

ΛIK),

where IK is aK-dimensional identity matrix. A common way
to optimize parameters L and Λ is to minimize the squared-
errors objective function with regularization terms:

Ω = I � ‖H− LΛ>‖2F +
λ2
H

λ2
L

‖L‖2F +
λ2
H

λ2
Λ

‖Λ‖2F , (3)

where ‖ · ‖F denotes the Frobenius norm and � denotes the
Hadamard product operator [Kolda and Bader, 2009].

However, as only the data of R̂ regions are avaliable, in-
formation for leveraging similarities among the missing rows
and the existing rows in matrix Ĥ is lacking. Hence we use
the region-cluster matrix X obtained in the last section. We
assume each region is characterized by a particular set of
lifestyles, and each cluster of categories of POIs may re-
flect human’s various lifestyles in different probabilities. It
is similar to a topic structure: if we regard all the regions
as documents, the check-in patterns of various POI clusters
in a region can be considered as the words in a document.
In analogy with the assumption that each topic is described
by several representative words, each lifestyle is reflected in
different check-in patterns. Intuitively, a typical topic model,
LDA [Blei et al., 2003], can be applied here to model the
lifestyles in different regions.

However, LDA does not tackle the main problem in this
work: how to leverage the lifestyles extracted from check-
in mobility to fill the missing parts in matrix Ĥ. We adopt
the collaborative topic model (CTM) proposed in [Wang
and Blei, 2011] here to combine probabilistic matrix fac-
torization and topic modeling. Different from the assump-
tion in [Wang and Blei, 2011], that offsets exist between
the document-topic factor factorized from document-user part
and document-word part respectively, we propose that peo-
ple’s general lifestyles, reflecting in check-in patterns and
health conditions, are relatively consistent. POIs’ visiting and
chronic disease condition are just two views of lifestyles,
where the former one is the perspective in people’s daily life
activities, and the latter one is how these lifestyles influence
people’s health status. Therefore, we leverage the same factor
L, to represent region-lifestyle interactions in topic modeling.

Specifically, the generative process of the hybrid method is
as follows (illustrated in the bottom part of Figure 2):
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Figure 2: Illustration of CTM+GMM method.

asthma chronic obstructive heart failure
atrial pulmonary learning

fibrillation (AF) disease (COPD) disabilities (LD)
cancer diabetes mental health

chronic kidney epilepsy obesity
disease (CKD) hypertension palliative care
coronary heart hypothyroidism smoking
disease (CHD) heart failure stroke or transient

dementia due to LVD ischaemic attacks
depression (HFLVD) (stroke or TIA)

Table 1: 20 chronic diseases and their abbreviations.

1. For each chronic disease j, draw disease latent factor
Λj ∼ N (0, λ2ΛI).

2. For each region i:
(a) Draw lifestyle factor Li ∼ Dirichlet(λL).
(b) For each category of venues xi,c:

(i) Choose lifestyle assignment zi,c ∼Mult(Li).
(ii) Choose a category of venues xi,c ∼Mult(βzi,c ).

3. For each region-disease pair hi,j , draw hi,j ∼ N (Li ·
Λ>j , ii,jλ

2
H),

where βzt is the distribution of POI clusters in lifestyle zt.
Optimization. We apply EM method [Bilmes and others,
1998] to estimate the parameters {µc,σ

2
c}(c = 1, ..., C) and

π in GMM part. For the CTM part, we need to estimate the
parameters {L,Λ}, where factor L is employed both in PMF
and topic modeling. We iteratively optimize parameters by
two steps. Firstly, for topic modeling, we estimate L through
EM method, which is a typical optimization method for topic
modeling. Then in the second step, we apply Gradient De-
scent method to estimate {L,Λ} (we use the L factor in the
first step as the initialization here). We then go back to step 1
and set L as the prior of region lifestyle distribution.

4 Evaluation
4.1 Set-Up
Data. We use three datasets in our experiment:

Foursquare dataset: The check-in records from Dec. 2010
to Dec. 2013 and the POI information in London. The details
of Foursquare dataset are introduced in Section 3.1. In August
2015, Foursquare had more than 50 million active users and
more than 10 billion check-ins already. The dataset used in



Cluster 1 Cluster 2
gardens, Russian r, malls, hotels, jazz clubs, skate parks,
office supplies stores, banks, tattoo parlors, nightlife spots,
art galleries, music stores, Latin American r, social clubs,
bowling alleys, theme park, cupcake shops, smoke shops,
dessert shops, comedy clubs, beer stores, laundry services,
Taiwanese r, college libraries, dinners, modern European r,
bookstores, souvenir shops, convenience stores, bridges
snack places, cosmetics shops

Table 2: Several categories of POIs in 2 clusters in venue ag-
gregation part (r: restaurants).

this research is shared directly by Foursquare under a research
contract agreement.

Boundary-line dataset of London: The dataset is collected
from UK government websites2, which contain the shapefiles
of ward-level (electoral districts at sub-national level) bound-
ary lines in London. In total, there are 630 wards. This spatial
data contains the shape line, name, and id of each ward (shape
lines are shown in Figure 1(b)).

Disease dataset: We collect the data from a government
open data website of UK3. They publish the population, the
annual morbidity (value of patients/population in an area) of
19 prevalence diseases (Table1), and the utilization rate of
“palliative care” from year 2005 to 2015. Palliative care4 is a
specialized medical care for people with life-threatening ill-
ness. Since we consider it as an indicator for the morbidity
of malignant diseases, we call it “disease” here. The data for
each year is from Apr. of one year to Mar. of the next year. For
convenience, we use dataset “2013”, for example, to represent
the annual dataset from Apr. 2013 to Mar. 2014 in the rest of
the paper. We collected the data from 2009 to 2013, consis-
tent with the period of check-in data. The dataset contains the
popularity and morbidity data of 567 wards in London (no
data for the rest 63 wards).
Metrics. We apply two metrics here to evaluate the prediction
performance: (MSE) and R2 score:

MSE(H, H
′
)R̃ =

1

W̃ · S

∑
ri∈R̃

S∑
j=1

(hri,j − h
′

ri,j)
2,

R2(H, H
′
)R̃ =

1

W̃

∑
ri∈R̃

(1−
∑S

j=1(hri,j − h
′

ri,j
)2∑S

j=1(hri,j − h̄ri)2
),

where h
′

ri,j
is the prediction result of item hri,j and h̄ri =

1
S

∑S
j=1 hri,j . W̃ is the amount of regions in testing set. R2

score reflects how well the model performs in the prediction,
considering the error and the mean of true values simultane-
ously. Here lower MSE and higher R2 represent better result.
Baselines. We compare the hybrid method with 4 methods:
• Regression: We apply two regression methods using his-

tory data solely: boosting regression (BR) and support vec-
tor regression (SVR). They utilise the data of chronic dis-

2https://www.ordnancesurvey.co.uk/opendatadownload/
products.html#BDLINE

3https://data.gov.uk/dataset/quality_and_outcomes_
framework_achievement_prevalence_and_exceptions_data

4https://en.wikipedia.org/wiki/Palliative_care
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Figure 3: Prediction performance of all the evaluated methods
on (a) MSE and (b) R2, when training size is 70% or 80%.

Disease ER R2 S Disease ER R2 S
asthma -0.03 0.155 hypertension 0.07 0.156
AF 3.17 0.166 hypothyroidism 2.94 0.129
cancer 7.12 0.150 heart failure 0.59 0.160
CKD -2.12 0.157 HFLVD -44.27 0.150
CHD -1.17 0.159 LD 4.36 0.175
COPD 2.94 0.166 mental health 2.37 0.170
dementia 11.13 0.163 obesity -16.10 0.133
depression 12.15 0.144 palliative care 21.92 0.140
diabetes 3.10 0.141 smoking 1.18 0.181
epilepsy 2.02 0.168 stroke or TIA 1.11 0.142

Table 3: Average evolution rates of the 20 diseases and their
R2 scores in prediction (ER: evolution rate (%), S: score).

ease evolution rate (2009 - 2012) to predict the evolution
rate from 2012 to 2013.
• Probabilistic matrix factorization (PMF): In PMF, the

region-disease matrix Ĥ (with missing rows) is decom-
posed through equation 3 (H is replaced with Ĥ).
• Collaborative topic modeling (CTM): We compare our

method with CTM to emphasize the improvement
achieved through venue aggregation.

4.2 Results
We compare the prediction performance of our method
with baseline models in this section. Here we embed each
POI category into a 100-length vector, and produce matrix
φ∈R426×100. Each vector represents POI category’s features
in check-in pattern space, where a shorter distance between
two categories indicates more similar check-in patterns. We
aggregate the 426 embedded vectors into C clusters through
a GMM method. Table 2 shows POI categories in two typ-
ical clusters when C=20. We can see that most POIs in the
first cluster are more about nature (parks, gardens, etc.), art
(art galleries, music stores, comedy clubs, etc), and reading
(libraries and bookstores), while the second cluster mainly
includes nightlife-related venues. The clustering results pro-
vide us new perspectives on London citizens’ visitation to
POIs, which are not totally consistent with our experience.
For instance, it is unexpected that bridges have similar check-
in patterns with some clubs and nightlife spots. This may be
because that the fantastic lighting systems of some famous
bridges in London, such as Albert Bridge and Tower Bridge,
attract a large number of viewers during the night hours.

Next, we predict the missing rows in matrix H, in which
item hi,j is the evolution rate of disease dj in ward ri
from year 2012 to 2013. hi,j is generated from the equation



hi,j = (m2013
i,j − m2012

i,j )/m2012
i,j , where m represent mor-

bidity. Firstly, we obtain the region-cluster matrix X through
Equation 1. Then, the latent lifestyle factor L and latent
chronic disease factor Λ are estimated through CTM in Sec-
tion 3.3. Finally, we predict the missing regions R̃ in matrix
H through Equation 2. We randomly select 70% and 80%
rows in matrix H as training data and evaluate the prediction
performance in the rest rows, respectively. Due to the space
limit, for all the methods, we tune the parameters through the
training set and show the best prediction results on testing set.
For each method, we run the analysis for 20 times and show
the average results in Figure 3. The latent dimension length
K and the amount of lifestyles T (in CTM part) are set to
50. As for C, the amount of component (in GMM part), is
set to 20. It is obvious that CTM+GMM has the best perfor-
mance on the two metrics. The two regression methods have
the highest MSE results and lowest R2 scores. We can infer
that the historic evolutions of these chronic diseases cannot
provide enough regular patterns (e.g. linear or periodic pat-
terns) for future prediction. Compared with traditional PMF,
CTM has an average improvement of 13% in MSE and 59%
in R2 score. Moreover, when we add the GMM part to CTM,
it furtherly achieves a 7.6% improvement in MSE and a 3.7%
improvement in R2 score.

We show the average evolution rate of all the diseases and
their R2 scores in predictions through CTM+GMM method
from 2012 to 2013 in Table 3 (different from the definition
in Section 4.1, we here show the R2 scores along each dis-
ease). The Pearson correlation coefficient of evolution rate
list and R2 score list in the table is 0.111, which means that
there is no obvious correlation between these two factors: the
predictability of a disease is neither positively nor negatively
related to its own evolution rate. From this table, we can see
a significant growth of palliative care during that year, indi-
cating that the morbidity of malignant diseases, e.g., cancer,
had increased. Also, the morbidity of all the psychiatric and
mental diseases, e.g. depression, dementia, and mental health,
increased dramatically in that period. Actually, as illustrated
in [Muliyala and Varghese, 2010], depression and dementia
have complex relationships: depression has been both a risk
factor and a prodrome of dementia, which is also reflected
in the close evolution rates between them. Good news is that
the obesity cases in London decreased in the same period,
which has been a serious health concern in UK for a long
time. Moreover, we observe that obesity has a relatively low
R2 score in the experiment for both our method and baselines.
This may be due to the fact that different from some incurable
chronic diseases, e.g., diabetes [Etuk and others, 2010], of
which the morbidity is more stable, people may lose weight
through various approaches, making the evolution of obesity
more difficult to predict.

5 Lifestyle and Chronic Diseases
We present the correlation between the 20 chronic diseases
and various lifestyles. We leverage the check-in pattern as
a projection of lifestyle. Specifically, we use the lifestyle-
cluster factor (β in Section 3.3), and the disease-lifestyle fac-
tor Λ, to uncover the hidden relationship between chronic
diseases and POIs. Some of the observed correlations are

Check-in Lifestyles Correlated Dis
government buildings, pubs, sushi r, plazas, heart failure,
candy stores, steakhouses, burger joints, attacks, asthma,
Subways, Chinese r, churches, bookstores, COPD,
fast food r, coffee shops, nightclubs coronary heart
Indian r, convention centers, fast food r, disease, diabetes,
sandwich places, grocery stores, Thai r, hypertension,
dim sum r, hotel bars, bakeries, hostels, obesity, HFLVD,
nightclubs, fried chicken joints stroke or TIA
dessert shops, organic groceries, gay bars, cancer, smoking
middle eastern r, sports bars, cocktail bars, chronic kidney,
whisky bars, nightclubs, offices, boutiques, depression,
Chinese r, hotel bars, hotels, Italian r disease, obesity,

Table 4: Typical check-in lifestyles and the highly-correlated
diseases (Dis: Diseases, r: restaurants).

consistent with the research findings in clinical medicine and
physiology, while others provide new insights into some open
problems. We list 3 typical check-in lifestyles and their highly
correlated diseases in Table 4.

The top two lifestyles are dominated by fast food venues:
fast food restaurants, pizza places, fried chicken joints,
and Asian food (Chinese and sushi restaurants). These two
lifestyles show association with 10 chronic diseases listed on
the right. This is coherent with the statement that some dis-
eases, like heart-related diseases, hypertension, obesity, and
diabetes, are correlated with diets high in sugar and fat. Ad-
ditionally, asthma and chronic obstructive pulmonary disease
are also highly correlated with these two lifestyles. This is
consistent with previous studies in physiology [Rosenkranz
et al., 2010] claiming that a high-fat diet may contribute to
chronic inflammatory diseases of airways and lungs.

The third lifestyle is alcohol-oriented, where 6 of the 14
categories of POIs are bars or clubs. The induction of alcohol
on some diseases, like cancer, depression, have been proved
in previous studies [Martı́nez, 2005]. However, as illustrated
in [White et al., 2009], evidence of an association between
alcohol consumption and chronic kidney disease is conflict-
ing. Here we draw inspiration from large-scale human mobil-
ity data and provide an intuitive perspective on the positive
correlation between lifestyles related to alcohol and chronic
kidney disease.

6 Conclusion
In this paper, we leverage human mobility data to study the
evolution of human health conditions. We embed the POIs
into vectors according to human transition patterns to capture
their semantic meanings. Then we combine Gaussian mixture
methods with collaborative topic modeling to predict health
conditions, which is able to deal with data sparsity and extract
human lifestyles from check-in patterns. Extensive experi-
ments using real-world datasets indicated that CTM+GMM
has a significant improvement on prediction tasks compared
to other methods.
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