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Abstract

The popularity of the Web has allowed individuals to commu-
nicate and interact with each other on a global scale: people
connect both to close friends and acquaintances, creating ties
that can bridge otherwise separated groups of people. Recent
evidence suggests that spatial distance is still affecting social
links established on online platforms, with online ties prefer-
entially connecting closer people.
In this work we study the relationships between interaction
strength, spatial distance and structural position of ties be-
tween members of a large-scale online social networking plat-
form, Tuenti. We discover that ties in highly connected social
groups tend to span shorter distances than connections bridg-
ing together otherwise separated portions of the network. We
also find that such bridging connections have lower social in-
teraction levels than ties within the inner core of the network
and ties connecting to its periphery. Our results suggest that
spatial constraints on online social networks are intimately
connected to structural network properties, with important
consequences for information diffusion.

Introduction
Social science has been analyzing and discussing the re-
lationship between spatial distance and social structure for
more than 60 years. There is evidence that closer pairs of in-
dividuals are more likely to develop social bonds than distant
ones (Merton 1948; Festinger, Schachter, and Back 1950). In
particular, the probability that two individuals engage in so-
cial interactions quickly decays as an inverse power of their
relative geographic distance (Stewart 1941). Indeed, it seems
that social structure does not escape the first law of geog-
raphy: “everything is related to everything else, but near
things are more related than distant things” (Tobler 1970).

Even if spatial proximity strongly affects how people cre-
ate and arrange their social ties, the tools and techniques de-
veloped to understand and analyze social network structure
have largely ignored such spatial constraints. The main fo-
cus of social network analysis has been to study the struc-
ture of interpersonal ties by considering mainly the topolog-
ical properties of the resulting network: individuals are rep-
resented as nodes in an abstract, dimensionless space, con-
nected by pairwise relations (Wasserman and Faust 1994).
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While ignoring spatial distances might bear no influence in
some geographically limited cases, this is not possible when
dealing with large-scale online social systems.

The social structure of online networks
The wealth of methods and procedures of social network
analysis have been used to study and analyze the social
structure arising among users of online social services (Ku-
mar, Novak, and Tomkins 2006; Mislove et al. 2007; Ahn et
al. 2007). A strong difference with respect to the previous
sociological studies is that these systems accumulate mil-
lions of users across all the planet, allowing researchers to
easily gather large amounts of data about online interactions.
Hence, space and distance might be important factors shap-
ing these online social networks.

On the other hand, the online nature of these systems
has inspired many authors to suggest that physical distance
might be losing its influence: as online communication tools
become faster and more reliable, allowing people to interact
regardless of where they are located, the costs imposed by
geographic distances might be vanishing. As a result, dis-
tance might be effectively “dead”, ceasing to play a role
in online communication (Cairncross 2001). Nonetheless,
some recent initial results demonstrate that the probabil-
ity of social connection between two individuals on online
social networking services still decreases with their geo-
graphic distance, although the exact relationship between
these two variables is still unclear (Liben-Nowell et al. 2005;
Backstrom, Sun, and Marlow 2010). Overall, the evidence is
that social factors or spatial factors alone cannot capture the
properties of real-world social systems over space (Scellato
et al. 2011).

Structure, tie strength and distance
Another important aspect of social networks, even in their
online versions, is that not all ties are equal: each bond
between two individuals can be characterized by a partic-
ular level of interaction strength, denoting, for instance,
whether they are close friends or just acquaintances. In on-
line social services the amount of information about user
interactions can be successfully used to quantitatively esti-
mate how much an online connection binds two users to-
gether (Kahanda and Neville 2009; Gilbert and Karahalios
2009). The importance of tie strength is directly connected



to the hypothesis that ties with different strength occupy dif-
ferent positions in the network structure: weak ties are more
likely to connect together otherwise separated portions of
a network, playing an important role in information diffu-
sion1 and resilience to network damage (Granovetter 1973;
Onnela et al. 2007). The fact that some social ties act as
bridges between otherwise separate communities, closing
“structural holes” that would otherwise disconnect the so-
cial fabric, has been widely discussed in sociology. The ev-
idence suggests that individuals in these structural positions
can be more powerful or more innovative (Burt 1992). Yet,
space is constraining network structure as well: in fact, so-
cial communities tend to be limited in their geographic span,
denoting a potential relationship between structural position
and geographic distance (Onnela et al. 2011).

The plausible interaction between tie strength, social
structure and spatial distance is therefore evident: the
strength of a tie is related to the position of that link within
the network, while the spatial distance between two individ-
uals affects how likely they are to be connected. Thus, these
three properties represent three different facets of a single
system which combines spatial and social factors and binds
together individuals, affecting complex processes such as
the spreading of information over social links (Rogers 1995;
Newman, Barabasi, and Watts 2006) or the ability to nav-
igate the social networks to route a message to a particular
individual (Kleinberg 2000). Nonetheless, the research com-
munity still lacks a broad understanding of the interplay be-
tween the structure of a social network, the strength of its
ties and the space that embeds it.

Our work
Given the importance of spatial distance on online social
interaction, and the important structural properties arising
from the interplay between tie strength and network struc-
ture, the main research question we address in this work is:
what is the relationship between the structural properties of
online social ties and the spatial distance they span? This
question is purposefully generic, as we aim to study a se-
ries of properties of the spatial social network arising from
a large-scale online social networking service, Tuenti, with
more than 10 millions active users in Spain. We have access
to the social ties among Tuenti members, to their online in-
teractions and to their home locations.

Our findings support the claim that social ties arising
among Tuenti members are heavily constrained by space,
with individuals at closer distance more likely to establish
social connections. The social network appears divided into
an inner, well-connected core and a periphery of less con-
nected users: while the social links in the core tend to span
shorter geographic distances, outer ties are much longer.
Finally, we observe how interaction levels are higher inside
the core and connecting to the periphery, but much lower
on bridging ties, with the net effect that social interaction
between friends appears independent of spatial distance.

These results highlight how the spatial properties of an

1A recent study confirmed this finding on the Facebook social
network http://goo.gl/giDq5.

online social network are influencing its structure, which
then impacts important processes taking place on the net-
work itself, such as information diffusion. In particular, the
presence of spatially-limited and well-connected cores of in-
dividuals suggest how information might be trapped inside
socially and spatially confined areas, hampering diffusion to
the fringe of the network. This conclusion has significant
consequences for systems and applications built on top of
online social platforms.

Dataset
In this section we describe Tuenti, the online social ser-
vice under analysis, and we present some basic properties
of the dataset we study, introducing the notation we will use
throughout our work.

Tuenti
Tuenti2 is an invitation-only social networking service
founded in 2006 in Spain. Thanks to its widespread popular-
ity in this country, Tuenti is often referred to as the “Spanish
Facebook”. As other popular social networking platforms, it
allows users to set up their profile, connect with friends and
share links and media items. Tuenti users can interact with
each other by writing messages on each other’s walls.

The dataset under analysis in this work is a full
anonymized snapshot of Tuenti friendship connections as
of November 2010. It includes about 9.8 million registered
users (25% of Spanish population), more than 580 million
friendship links and 500 million message exchanges over a
period of 3 months. Since Tuenti members must choose a
location of residence from a list of Spanish cities to be able
to join the service3, we are able to assign a spatial home lo-
cation to each user. Tuenti was originally popular in the city
of Madrid, then further gained popularity in Seville, Valen-
cia, Malaga and Gran Canaria, progressively gaining enough
traction in the entire Spanish country: in fact, the service has
become pervasively used in many cities.

Notation
The main goal of this work is to investigate the interplay
between social network structure, spatial distance and tie
strength. We note that Tuenti members can take part in a
series of online interactions with each other, ranging from
explicitly declaring a social connection (a friendship) to ex-
changing direct wall messages. Tuenti only allows users that
are friends with each other to exchange wall messages.

We model the social network among Tuenti users as a
directed weighted graph G = (V,E): the set of nodes
V = {u1, u2, . . . , un} is composed of n users and the set
of edges E is composed of pairs of users that are present
in each other’s friend lists. We define Γi as the set of users
connected to user ui in graph G, so that degi = |Γi| is the
number of friends of ui. We denote as wi,j the number of
messages user ui posted on the wall of user uj . When user
ui has never left a message on user uj’s wall we setwi,j = 0.

2http://www.tuenti.com
3This requirement has changed after our dataset was collected.
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Figure 1: Complementary cumulative distribution of the
number of friends and messages sent by Tuenti users.

For every edge ei,j = (ui, uj) ∈ E between user ui and user
uj we introduce an associated balanced interaction weight:

w̄i,j = min(wi,j , wj,i) + (1− δwi,j ,wj,i)/2,

where δx,y is Kronecker delta (returns 1 if arguments are
equal and 0 otherwise). We use the minimum of the inter-
action weights to emphasize reciprocated interactions, since
non-reciprocated interactions may indicate spam. Therefore,
for the non-reciprocated interactions we only add 1/2 no
matter the difference in the numbers of messages exchanged.
The distribution of the balanced interaction weights is de-
picted in Figure 2(b).

We define di,j as the geographic distance between the
cities of residence of user i and user j, computed as the
great-circle distance over the planet: we define di,j = 0 if
they report the same city of residence. In Table 1 we report
the main properties of the dataset under analysis.

Basic properties
The social network arising among Tuenti members includes
about 10 million members and more than 500 million edges:
thus, the average number of friends a user has is about 126.
However, the complete distribution of the number of friends
is heterogeneous, as depicted in Figure 1. The vast major-
ity of users have less than 10 friends, while about 1% of
users have more than 200 friends: thus, the presence of pop-
ular users heavily affects the overall distribution of social
ties among Tuenti members. The peak noticeable at 1,000
friends is due to a limit imposed by Tuenti on the number of
connections made by each users. Though, apparently there
are few users that manage to evade this limit.

There is a dominating giant connected component which
contains about 97% of all the members, thus leaving aside
about 300,000 users. The social network exhibits a relatively
high average clustering coefficient of 0.2: that is, users form
richly connected local clusters of nodes. At the same time,
the network exhibits short path lengths between users: on
average two nodes are divided by 5.2 social links and 90%
of pairs of users are within 5.8 hops. These two properties,
high local clustering and low average path length, confirm
the small-world nature of the Tuenti social network (Watts
and Strogatz 1998), as found in many other online social
systems (Kumar, Novak, and Tomkins 2006; Mislove et al.
2007; Leskovec and Horvitz 2008).

N 9,769,102 deff 5.8
K 587,415,363 dmax 9

NGC/N 0.97 〈dpath〉 5.2
〈deg〉 126 〈D〉 531.2
〈C〉 0.200 〈l〉 79.9

Table 1: Properties of the social network among Tuenti
members: number of nodesN and edgesK, size of the giant
connected component GC, average node degree 〈deg〉, aver-
age clustering coefficient 〈C〉, 90-percentile effective net-
work diameter deff , maximal distance dmax between two
nodes in the network, average path-length between nodes
〈dpath〉, average geographic distance between nodes 〈D〉
[km], average link length 〈l〉 [km].

From a spatial point of view, we note that the average ge-
ographic distance between users 〈D〉 is about one order of
magnitude larger than the average geographic distance be-
tween friends 〈l〉: this indicates that spatially closer users
are much more likely to engage in a social connection (e.g.
become friends) than users separated by larger distances.
This is confirmed by the entire distribution of spatial dis-
tances between friends: in detail, there are about 50% of so-
cial links between users at a distance of 10 km or less (see
Figure 2(a)).

Not all the social connections imply online interactions
between Tuenti users: about 80% of social links exhibit no
messages exchanged. The distribution of the number of mes-
sages sent for all the social connections with at least one ex-
changed message is depicted in Figure 1. The distribution
shows a heavy-tail behavior, with the majority of connec-
tions having only few interactions and few connections hav-
ing many thousands messages. Hence, there is huge hetero-
geneity across online social interactions: in the next sections
our aim will be to understand how the strength of online
social ties is related to their structural position and to their
spatial properties.

Structural position of social ties
As we have discussed earlier, not all the edges in a social
network are equal, as they carry different importance; at the
same time, edges occupy different structural positions within
the network itself. Our aim now is to introduce measures that
help us to understand the structural position of a social tie.
Overall, a given connection between two nodes in a network
can be characterized from a local point of view, thus observ-
ing only the properties of the two endpoints and their relative
neighborhood, and from a global perspective, assessing the
position that a particular connection has with respect to the
entire network.

For example, a single link connecting together two oth-
erwise disconnected components of a network would be of
lower importance from a local point of view, as the two end-
points have no other connection in common: on the con-
trary, it would exhibit an extremely important global role,
as it keeps the entire network connected, allowing the flow
of information. Thus, we introduce two metrics that capture
these different structural properties of a social tie: the social
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Figure 2: Complementary cumulative distribution function of spatial length, balanced interaction weight, social overlap and
k-index for the social ties in the Tuenti social network.

overlap and the k-index.

Local position
The structure of social networks tends to reflect that indi-
viduals usually belong to social groups: that is, friends usu-
ally know each other, creating clusters of individuals that are
mutually connected to one another. In particular, when two
connected users have several friends in common that is an
indication that their social link is situated inside a particu-
larly well connected social community. Hence we define the
social overlap of an edge ei,j as oi,j = |Γi ∩ Γj |.

The distribution of social overlap values for all the edges
in the social network under analysis is depicted in Fig-
ure 2(c): the median value is about 20, while only 10% of
edges have a social overlap higher than 100. We also note
that about 5% of edges have a social overlap equal to zero
(not depicted), thus acting as perfect local bridges.

Global position
Understanding the position of a single edge with respect
to the entire social network can be a daunting and elusive
proposition: standard approaches that focus on the impor-
tance of the edge in the information flow supported by the
network can be computationally unfeasible on large-scale
social networks. Thus, the approach we adopt in our work
is to rely on a node property, the k-index, and then derive
a measure of the global position of a social link by consid-
ering the properties of its endpoints. The k-index has been

k=1

k=3

k=2

Figure 3: An example of the k-core decomposition.

found to be an indicator of influential nodes within a social
network (Kitsak et al. 2010).

The k-core of a network is the maximal subgraph in which
each node is connected to at least k other nodes of the sub-
graph (Seidman 1983). The k-index of a node is v if it be-
longs to the v-core but not to the (v+1)-core. In Figure 3 we
present an example for the k-core decomposition of a small
network.

The k-index of a node reveals whether it lies in a central
core position with respect to the entire network, whether it
lies on the periphery of the network itself, or whether it is lo-
cated on a smaller core in between. The k-index thus reveals
the global position of a node within the network.

In this work we are interested in social connections, there-
fore we define the k-index kij of an edge as the minimum of
the k-indexes of its two endpoints. Using such definition of



0 20 40 60 80 100 120 140 160 180
75

85

95

105

115

125

135

145

155

165

175
180

average max k−index vs edge k−index

edge k−index

av
er

ag
e 

m
ax

 k
−

in
de

x

Figure 4: Average value of the maximum k-index of the two
endpoints of an edge as a function of edge k-index.

the edge k-index we distinguish if the edge connects nodes
inside a core or whether it links to a node in the periphery.
The distribution of k-index values for all the edges in the
social network is shown in Figure 2(d): we notice a large
number of edges having k-index values close to 150, which
denotes how edges tend to connect nodes inside the core of
the network.

In Figure 4 we study how the k-index of an edge, which
is the minimum k-index of the two endpoints, is related to
the maximum k-index of such endpoints. Even edges with
low k-index are connected to nodes with high k-index. This
suggests that edges tend to be between nodes in the core or
between nodes in the periphery and nodes in the core, while
nodes in the periphery seldom connect to each other. Hence,
most of the nodes in the social network can be assigned to
a core section, where users have a large number of links be-
tween them, and to a periphery, with users with only few
friendship connections going mainly to the core.

Structural patterns
In the following analysis we will analyze the pairwise rela-
tionship between different measures of social links. In each
case, as we increase one variable X we compute the average
value of the other variable Y , aggregating together all links
that have the same value of the first one. We do not show
standard deviation values as they are negligible. Hence, in
order to fully grasp the relationship between the two vari-
ables, we present each comparison in both directions.

The interplay between the local properties of a social tie
and its global position reveals what type of structure the en-
tire network exhibits. The definition of social overlap and
k-index allow network scenarios where links may have high
k-index and low overlap, or the other way round. For in-
stance, a network whose nodes are arranged and connected
as the vertexes of a high-dimensional cube would have all
edges with high k-index and zero overlap. However, social
networks tend to have densely connected local communities.
Thus, we would expect that edges within a large social com-
munity have both high social overlap and high k-index.

In fact, as seen in Figure 5(a), as the social overlap of an
edge increases, its average k-index quickly grows as well. At
the same time, as depicted in Figure 5(b), when the k-index
increases, the average social overlap grows slowly, reaching
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(b) Average social overlap vs k-index

Figure 5: Relationship between social overlap and k-index
of social links.

extremely high values only for k-index values larger than
150. These relationships confirm our findings on the struc-
ture of the network: there are inner cores where users are
tightly connected to each other, while other parts of the net-
work include more isolated users that tend to not belong to
any community.

Tie strength and socio-spatial properties
The social network among Tuenti members exhibits a clear
structure with well-connected inner cores and isolated nodes
in the fringe. Our analysis turns now its focus on the relation-
ship between spatial length of social links and their struc-
tural position, investigating how space influences, maybe in
different ways, social ties in the core and in the periphery.

Structural position and spatial length
We first note that the geographic distance between two con-
nected users decreases as they share more and more friends,
as shown in Figure 6(a). At the same time, again in Fig-
ure 6(b), when looking at social links of increasing length,
social connections which span less than 60-80 km exhibit
higher values of social overlap, whereas the social overlap of
longer links quickly tumbles down. This indicates how so-
cial links can be divided in short-range and long-range, with
the separation distance being between 50 and 100 km, sug-
gesting a division in intra-city and inter-city social bonds.

From a global point of view, the average spatial length of
social links decreases as their k-index increases, as depicted
in Figure 7(a): thus, social links inside the core tend to be
shorter than the ones reaching the periphery of the social
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Figure 6: Relationship between link length and social over-
lap.

network. Even when swapping the two variables, when the
spatial length of social links increases their k-index drops
accordingly, as seen in Figure 7(b).
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Figure 7: Relationship between link length and k-index.
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Figure 8: Average link length as a function of interaction
weight.

This analysis indicates how the division of the social net-
work into a core and a periphery does not take place inde-
pendently of spatial distance. Instead, social ties belonging
to the core of the network, connecting together popular users
with several friendship connections, tend to arise at shorter
spatial distances than social ties established by less popular
members in the periphery. Hence, isolated members tend to
seek connections even at longer distances: this would sig-
nal that either they have no potential connection available at
short distance, as they may be located in a scarcely popu-
lated area, or they are more willing to connect to individuals
far away. Hence, there is evidence of a bridging behavior
of spatially longer social links, connecting together diverse
portions of the network, while shorter links are tightly inte-
grated inside social groups.

The impact of tie strength
An important facet of social relationships that we capture in
our Tuenti dataset is the strength of the interaction between
two members: the balanced interaction weight we assign to
each social link captures how likely is a social tie to be used
to spread information. The importance of tie strength with
respect to the structural and spatial properties lies on the
fact that not all the links are equally likely to be used: to
fully understand how the social network carries and spread
information, we study whether tie strength is correlated with
the structural position and the spatial length of a social link.

Surprisingly, our first observation is that the amount of
interaction is fairly uncorrelated to spatial distance: in fact,
as the interaction weight of a social link increases its spa-
tial length remains fairly constant, as shown in Figure 8.
Thus, even though the likelihood that two individuals are
connected is heavily dependent on distance, when consider-
ing how much friends interact geographic distance is not a
limiting factor.

When considering the impact of social overlap on interac-
tion, we discover that the interaction weight remains fairly
constant for social overlap values up until 100: after this
threshold the amount of interaction exponentially grows, as
seen in Figure 9(a). Recall that about 90% of social links
have a social overlap smaller than 100: this suggests that
the extremely high levels of interaction mainly take place
between users with several shared friends, which are likely
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Figure 9: Relationship between social overlap and interac-
tion weight of social links.

to be in the network core. In fact, as the interaction weight
increases the social overlap grows only slowly, as seen in
Figure 9(b).

In Figure 10 this outcome is further confirmed as we in-
vestigate the relationship between interaction weight and k-
index of social links. Ties in the inner cores have the high-
est levels of interaction. However, we also note something
strikingly more surprising: interaction weights are almost
equally high for social ties with low k-index, while social
links with intermediate k-index values reach a minimum of
interaction weight. In agreement with these results, when we
consider social ties of increasing weight we find that the k-
index grows but suddenly reaches a plateau, as both links
with low and high k-index have the highest levels of interac-
tion. These relationships suggest that interaction levels tend
to be higher when links are completely inside the network
core, corresponding to high k-indexes, or connecting to the
periphery, thus having low k-indexes. Social ties with inter-
mediate k-index, likely to bridge together different portions
of the network, experience the lowest interaction levels.

Discussion
The social network arising among Tuenti members has a
well-defined structure: users have heterogeneous properties,
with few popular nodes belonging to an inner core of tightly
connected individuals and nodes with less connections lo-
cated on the periphery of the network. Yet, nodes belonging
to the core are still connected to the fringe of the network,
since an overwhelming majority of users belong to the same
connected component.
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Figure 10: Relationship between k-index and interaction
weight of social links.

This strong structural division results in ties located in-
side the core and ties that stretch out to connect users in
the periphery. The former ties are strongly embedded inside
social communities, connecting together users that tend to
share a large fraction of common friends. The latter con-
nections act then as bridges, maintaining the entire network
connected and allowing the flow of information. These prop-
erties are aligned to what has been often found in other
online social services (Kumar, Novak, and Tomkins 2006;
Mislove et al. 2007).

From a spatial perspective, the interplay of geographic
distance and structural network properties is evident: so-
cial connections between users inside the core tend to have
shorter geographic spans than connections stretching out-
side the core. Geographic closeness not only increases the
likelihood of connections, but also increases the likelihood
that users belong to the same, tightly connected group of
individuals. Instead, social ties outside the core tend to be
much longer than the other links: the length of these bridge
ties is thus creating not only network shortcuts, but also spa-
tial shortcuts. The role of these spatially long bridges is cru-
cial to spread information over the network and, at the same
time, over space.

Surprisingly, the amount of interactions appears indepen-
dent of spatial distance: interaction levels appear higher in-
side well-connected cores and on links connecting to the
fringe of the network. The effect of social overlap, instead,
seems to be much weaker on online interaction, albeit it
does offer a certain correlation. Overall, our findings sug-
gest that online interaction remains largely untouched by the



influence of distance, although spatial constraints still limit
which social links are established.

In summary, even though online social networks con-
nect individuals through short chains of social bonds, as
epitomized by Milgram’s experiment (Travers and Mil-
gram 1969), the combined influence of geographic space
and tie strength when people create these chains is ex-
tremely strong, as seen also in many offline and online net-
works (Dodds, Muhamad, and Watts 2003; Liben-Nowell et
al. 2005). Our work provides useful and promising results to
further unravel the close relationship between where users
are located and whom they interact with.

Conclusions
In this paper we have studied the interplay between spatial
distance, interaction strength and structural properties in so-
cial ties arising among members of an online social plat-
form. We have analyzed a large-scale dataset collected from
Tuenti. We found how the social network appears divided in
a tightly connected core and a periphery with less connected
users, with some edges acting as bridges to keep the entire
network connected. These bridges span longer geographic
distances, creating shortcuts both over the network and over
space. To our surprise, the interaction levels tend to be more
correlated with the structural properties of a social tie rather
than to its spatial length.

Our findings shed for the first time light on how spatial
constraints influence network structure: since the structural
properties of a network are of crucial importance in influ-
encing processes taking place on online social networks, this
work demonstrates that space is equally fundamental.
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