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Abstract—Nowadays companies increasingly aggregate loca-
tion data from different sources on the Internet to offer location-
based services such as estimating current road traffic conditions,
and finding the best nightlife locations in a city. However, these
services have also caused outcries over privacy issues. As the
volume of location data being aggregated expands, the comfort
of sharing one’s whereabouts with the public at large will
unavoidably decrease. Existing ways of aggregating location data
in the privacy literature are largely centralized in that they rely
on a trusted location-based service. Instead, we propose a piece
of software (SpotME) that can run on a mobile phone and is able
to estimate the number of people in geographic locations in a
privacy-preserving way: accurate estimations are made possible
in the presence of privacy-conscious users who report, in addition
to their actual locations, a large number of erroneous locations.
The erroneous locations are selected by a randomized response
algorithm. We evaluate the accuracy of SpotME in estimating
the number of people upon two very different realistic mobility
traces: the mobility of vehicles in urban, suburban and rural
areas, and the mobility of subway train passengers in Greater
London. We find that erroneous locations have little effect on the
estimations (in both traces, the error is below 18% for a situation
in which more than 99% of the locations are erroneous), yet they
guarantee that users cannot be localized with high probability.
Also, the computational and storage overheads for a mobile phone
running SpotME are negligible, and the communication overhead
is limited.

I. INTRODUCTION

If location-based services are to succeed, they will have
to alleviate growing privacy concerns over collecting people’s
whereabouts. Loopt.com, a mobile social-networking service,
has done so by instituting safeguards against abuse: it sends
reminders to users that their location is being shared and
allows them to post “erroneous” locations if they would like
to hide their current location. Researchers have taken this
approach one step further. They have proposed the use of
aggregate location data instead of location data about single
individuals [20] in order to preserve user privacy. Companies
have followed suit and proposed services based on analysis
of aggregate location data. TomTom, the Dutch maker of
navigation devices, has refined its ability to predict road traffic
congestion by analyzing the paths of millions of Vodafone
subscribers [5]. The company SenseNetworks analyzes tens
of millions of location estimates from mobile phones to help
people find the best corner to catch a cab in New York City
or get personalized recommendations of the best nightlife
locations in the city [17]. The resulting situation is that data
about an individual’s whereabouts is shared with companies

that then promise to aggregate such data.
One finds it difficult to believe that companies will discard

data about individuals and keep only aggregate versions of it,
not least because companies generate revenue from targeted
advertising, which can be done only with data about indi-
viduals. Often companies claim to be using only “aggregate
anonymous data” and then gloss over it in their “terms and
conditions” [4]. Only few months ago, The Centre for Democ-
racy & Technology, a privacy group, argued that the privacy
policies of companies collecting location data are “uneven at
best and inadequate at worst” [1].

We set out to explore a way of aggregating location data
that suits privacy-conscious individuals and, at the same time,
results in fully-working location services. As we shall see in
Section II, existing approaches trust a central server (e.g., the
location-based service itself, a location broker) to perform data
aggregation or carry out distributed tasks other than counting
people in geographic locations (e.g., distributed management
of push/pull queries [15, 21]). The idea behind our work is
to choose a promising data obfuscation technique, apply it
to the design of a privacy-preserving way of counting people
in geographic locations, and study when and how it works
upon real-data on a large-scale. Researchers have long been
designing distributed techniques for preserving location pri-
vacy, but the quantitative proof of how a given technique works
on a large-scale has not always been available. Being based
on quantitative and large-scale location data, this work adds a
new dimension to the current scholarship. More importantly,
our findings create an experimental basis for emerging mobile
social-networking services. People count is a simple task yet
supports a wide variety of services such as real-time traffic
regulation, urban areas profiling, rare events detection, and
crowd analysis (which is interested in modeling the behavior of
crowds for predicting the use of space, planning accessibility,
and planning emergency evacuations). More specifically, we
make two main contributions:
1. We propose a mechanism for aggregating user locations in
real-time. The idea is that users can disguise their real position
using an additional set of erroneous locations (Section III).
A randomized response algorithm selects these locations so
that the combined responses can be statistically analyzed
to estimate, for example, the actual number of people in a
given location. The result is that: i) users would alleviate
their privacy concerns by obfuscating their location; and ii)
the accuracy of the processed data will be only marginally



affected.
2. We evaluate the extent to which the effectiveness of
processing aggregate data would be affected by our proposal
upon two sets of real mobility traces (Section IV): i) traces
of vehicles in urban, suburban, and rural areas; and ii) real
traces of the journeys made by subway passengers of all the
train lines in Greater London. The results suggest that one
accurately estimates the number of users in a geographical
location in the presence of a large number of erroneous loca-
tions (roughly 99% of the locations are erroneous) - the error
is as low as 10% for both traces (Section IV-A). Erroneous
locations make it difficult to localize single individuals and,
if up to 60% of car drivers maliciously inject false location
information, the estimations are unaffected (Section IV-B). We
also find that, if 35% of the public use SpotME, we can still
estimate the number of individuals of the whole public (those
who use SpotME and those who do not) in a given location.
The communication, computational, and storage overheads
on mobile phones are negligible, even when the number
of erroneous locations for each user is pessimistically high
(Section IV-C).

We conclude in Section V by summarizing the key experi-
mental results. Nowadays mobile social-networking companies
may go bust because they find it difficult to collect data from
a critical mass of users. One way of solving this problem is to
make it possible for companies to collectively share a pool of
aggregate location data. We expect that SpotME users may be
willing to contribute to this common pool as they now have
the possibility to obfuscate their whereabouts directly on their
mobile phones.

II. EXISTING SOLUTIONS

Users may well trust location-based services to handle their
private data and, if they do so, they simply need to disclose
their location from their mobile phones in a way that no
unauthorized third party can access it. One way for a mobile
phone to do this is to use a connection to the Internet that
performs “onion routing” [10], whereby an Internet packet
is repeatedly encrypted and forwarded from one onion router
(network node) to another up to the destination. Each onion
router removes a layer of encryption to uncover routing
instructions. The result is that no third-party (including the
onion routers) knows the origin, destination, and content of
the packet.

Once a service receives location data, it stores the data
along with users’ privacy settings. The settings are then
translated into machine-readable policies [13], and access
control mechanisms interpret those policies to grant or deny
access to location data. For example, users may want to tune
their settings in a way that only their closest social contacts
can know their location outside working hours. However, to
regulate access in a variety of real-life situations, one would
require very complex, and therefore, hard to use privacy
settings [19]. That is why algorithms that automatically predict
privacy preferences from a user’s behavior have also been
proposed [6]. More recently, researchers have been working

on access control mechanisms that not only control the access
to private data but make it possible to “claim the data back”.
Geambasu et al. [7] proposed a system that, by integrating
cryptographic techniques with distributed hash tables (DHTs),
is able to make all copies of certain data become unreadable
after a user-specified time, even if one obtains a cached copy
of the data.

Access control mechanisms either grant or deny access to
location data. However, one may want to go beyond the simple
dichotomy access granted/denied by, for example, being able
to make aggregate location data publicly available. One way
to do so is “data generalization” [2, 11, 16]. The idea is
that a user sends her location to the service, which then
generalizes the location with a coarser-grained spatial range.
The goal is to guarantee the user’s k-anonymity. The user is
considered k-anonymous if her location is indistinguishable
from the location of at least (k-1) other mobile users [9].
More recently, Hoh et al. proposed a decentralized approach
of data generalization that relies on geographic markers in
a vehicular infrastructure [12]. In push/pull mobile query
systems, Kido et al. [15] and Shankar et al. [21] proposed
to preserve k-anonymity by generating fake queries based on
“usual patterns” extracted from user mobility, and Pingley et
al. [18] and Gedik and Liu [8] designed a family of principled
privacy-preserving techniques for query perturbation.

The approaches of onion routing, access control, and data
generalization are effective privacy tools but are meant to
work in specific situations. Those approaches often assume
that the location-based service is trusted and that it adheres
to the privacy preferences specified by users, they impose
considerable computational and communication overheads on
mobile phones, and they assume that users will regularly fiddle
with their privacy settings. Those assumptions are reasonable
for a specific class of applications and users but are not the best
ones for designing mobile applications working on aggregate
location data.

It thus seems that a new mechanism for collecting aggregate
location data is needed. But what sort of mechanism should we
use? Ideally, the mechanism should: i) conservatively distrust
location-based services; ii) run seamlessly on mobile phones;
and iii) require little user intervention.

III. OUR PROPOSAL: SPOTME

We design a mechanism (called SpotME) that allows users
to obfuscate their real location while still allowing aggregation.
Next, we will describe what SpotME is (Section III-A), when
it works (Section III-B), how it works (Section III-C), and
study its vulnerability to attacks (Section III-D).

A. What it is

Problem Statement: How a service accurately estimates
the number of people in a geographic location without
individuals unequivocally revealing their true position.



By accurate estimations, we mean that the estimate of the
number of people in a geographic location is close to the real
number of people. SpotME alleviates mobile users’ privacy
concerns by allowing them to report erroneous locations in
addition to their actual one. We use a technique called ‘ran-
domized response’ [22] to generate this report. This technique
is used in structured survey interviews to increase the validity
and reliability of self-reported behavior on sensitive issues. It
has been used to ask people sensitive questions, e.g., whether
they use drugs, whether they have been with a prostitute this
month, or whether they have evaded paying taxes.

To see how it works, let us assume that we are interested
in tax evasion. We ask an individual whether he has evaded
paying taxes, but before he answers, we ask him to secretly flip
a coin. He will then always answer “yes” if the coin came up
tails, but will otherwise be truthful. So if he answers “yes”,
nobody but him knows why – it could be because he got
tails or because he did evade his taxes. When applied to a
large population, with a fair coin, half of those who did evade
taxes will claim they did not, due to the coin toss. To find
the proportion of people who actually paid taxes, we double
number of the people who said “no”, as half of them were
forced to answer “yes”. For instance, if 40% answered “no”
then actually 80% of the population did not evade taxes.

More generally, let the probability of answering forced
“yes” be p (which is the probability of a biased coin coming
up tails). The proportion P̂no of claimed “no” answers from the
survey is: P̂no = Pno−p·Pno, where Pno is the true proportion
of “no”. In other words, the proportion P̂no of “no” answers
from the survey comes from the proportion of truthful “no”
answers Pno minus the proportion of actual “no” answers that
were forced “yes” (p · Pno).

So, given a survey answer, the proportion of actual “no”
answers can be estimated:

Pno =
P̂no
1− p

=
1− P̂yes
1− p

(1)

Going back to our previous example, if 40% answered “no”
(i.e., P̂no = 40%), then Pno = 40

0.5 = 80%. Likewise, if a biased
coin was used with p = 0.2, then Pno = 40

0.8 = 50%.
Similarly, the proportion of “yes” answers from the survey

comes from the proportion of truthful “yes” answers Pyes plus
the proportion of actual “no” answers that were forced “yes”:
P̂yes = Pyes+p ·Pno. By substituting (1) and solving for Pyes
we obtain:

Pyes = P̂yes − p · 1− P̂yes
1− p

=
P̂yes − p

1− p
(2)

From expression (2), one can estimate the number of true “yes”
answers from the number of claimed ones. In Section III-C,
we will see that, similarly, SpotME uses expression (2) to
estimate the number of people in a given area on input: i) of
the number of yes and no answers in the area; and ii) of a
fixed p.

Symbol Description
p Probability of forced “yes”
l A location in a map
k Number of locations in a position map

mt Position map at time t
m′

t Expanded position map at time t
r Rate of update for position maps

yesl,t Number of devices that claim to be in l at time t
nol,t Number of devices that claim not to be in l at time t

totall,t Number of answers given for location l at time t
w Window size for the moving average
u Proportion of the public using SpotME
v Proportion of malicious users

TABLE I
SYMBOLS AND TERMINOLOGY.

B. When it works

SpotME works under the assumption that it is possible to
divide a geographic area into a set of locations. A portable
device is able to compute its position and is able to place the
point into the corresponding location. Without loss of gener-
ality, in our evaluation (Section IV), locations are geographic
squares in the case of the vehicular traces and subway stations
in the case of the subway traces and, in general, locations can
be of any shape.

We do not assume that SpotME users are truthful. In our
robustness analysis (Section IV-B), we will see that SpotME
is robust against a large fraction of malicious individuals who
inject false location information.

C. How it works

SpotME ensures that users create and send their position
maps to a location-based service (Step 1), and that the service
is able to accurately compute the number and flow of users
in a location from those maps (Step 2):

Step 1: Users create and send their position maps. A portable
device’s position map is a set of k locations the device claims
to be in. One of those locations is the user’s true location. For
each location l in the map, a randomized response algorithm is
used to let the user claim to be present there or not as follows:
• Claims to be in location l with probability p.
• Or says the truth (whether it is actually in l or not) with

probability (1− p).
A portable device sends a new position map either at a

fixed rate (e.g., every minute) or whenever it moves from one
location to another. By contrast, if the device is stationary,
it does not disclose anything but an acknowledgment. The
acknowledgment is used to counter a simple localization attack
that will become clear at the end of Section III-D. It is also
used to signal that the user is still part of the system and the
user’s latest position map should be considered valid.

It is important to say that the device will not just send
the “yes” answers. It will send k answers where some of
them will be “yes” and some “no”, and both “yes” and “no”
answers are used to estimate the number of people in a



location.

Step 2: A service infers number and flow of people from
the maps. The location-based service collects all the maps it
receives and then processes them to infer, at each location l,
the number of individuals in l. More specifically, for a location
l, the service receives totall,t answers at time t: yesl,t of which
are “yes” and nol,t of which are “no”. The proportion of given
“yes” answers for location l is then:

P̂yesl,t =
yesl,t
totall,t

(3)

Given this sum of randomized answers, we are able to
estimate the real number of users at location l at time t:

estimatedl,t = totall,t · Pyesl,t

By substituting (2) and (3):

estimatedl,t = totall,t ·
P̂yesl,t − p

1− p
(4)

SpotME uses equation (4) to estimate the real number of users
in location l. Clearly, this number depends on the proportion
of the “yes”/“no” answers given and on the probability p.
For example, if we received totall,t = 100 answers for a
location l, and 80% of them claim to be in l, then, for
p = 0.5, the estimated number of actual users is: estimatedl,t =

100 · 0.8−0.51−0.5 = 60.
In reality, estimations are done at discrete time steps, and

short-term fluctuations may likely perturb such estimations due
to the variance of the binomial distribution. The simplest way
to smooth out short-term fluctuations and highlight longer-
term trends is to compute the moving average of the estima-
tions for a window w. So our estimated number of individuals
in location l at time [t− w, t] now becomes:

predictedl,t,w =

∑t
i=(t−w) estimatedl,t

w
(5)

In this expression, to make a prediction, we average the last w
estimations. In our evaluation (Section IV), we find that even
for very low values of w, the predictions can be effectively
smoothed out and, for w > 20, the prediction error remains
stable. Therefore we will use a window size w = 20.

SpotME is not only able to estimate the number of users
in one location but also to infer the number of people enter-
ing/exiting the location (the population flow). It may do so by
ignoring stationary users. Distinguishing between stationary
and mobile users is in fact very simple - stationary users send
acknowledgments and mobile ones send position maps. Then,
given a location l, by excluding stationary users, the location-
based service only counts recent arrivals at the location and,
as such, the resulting estimatedl,t,w (as per expression (5)) is
the predicted number of individuals who have recently arrived
in location l.

D. SpotME attack vulnerability
Let us assume now that the service is a malicious attacker

that wants to localize a SpotME user. To see how it might
do so, consider that the attacker collects three position maps
m1,m2, and m3 that the user generates at three consecutive
time steps (Figure 1). The black locations are the locations in
which the user claims to be. After receiving m1, the attacker
knows that the user is currently in one of the black locations.
In the next time step, if the user moves one location, then
they will be in one’s of m′1’s grey or black locations. m′1 is
the expanded version of m1 (locations adjacent to the black
ones are selected) and is created by the attacker to infer where
the user is likely to be next. In the next time step, the user
claims to be in the black locations in m2. The intersection
of m′1 and m2 gives the attacker four possible locations (the
black locations in m′2). Subsequently, the intersection of m3
and the expanded m′2 gives a single possible position in m′3.
The user’s true position has been found.

In reality, localizing the user is not as easy as we have
just shown. To disguise true locations, one may select fake
locations in a way that they do not affect the overall people
count and appear to be plausible (e.g., locations users are
likely to be in). For example, for push/pull mobile query
systems, Kido et al. [15] and Shankar et al. [21] proposed
to generate fake queries based on “usual patterns” extracted
from user mobility. One may also select fake locations in
a random way: we will evaluate the extent to which it
works to select fake locations in the position map at random
without any geographical constraint. Critics might rightly say
that randomly-chosen fake locations would be geographically
sparse, while true locations would be clustered or relatively
continuous. But that is true only if the value of p is low, as
it is in Figure 1 in which p is roughly 0.1 - the number of
black squares per map is 6 out of 64, so p ∼ 6

64 ∼ 0.1. In our
‘Evaluation’ (Section IV), we will see that, for p = 0.5 (i.e.,
the user claims to be in half of the location in m1), it is very
difficult to localize the user, yet the fidelity of the results from
aggregate location data remains extremely high.

Of course, if the user is stationary and were to periodically
send new position maps, then the attacker would quickly
localize the users. That is why, as mentioned in the previous
subsection, a stationary user does not send any new position
map but just an acknowledgment.

IV. EVALUATION

The goal of SpotME is to make it possible for mobile users
to report erroneous locations in addition to their actual one,
without compromising the precision of applications that rely
on aggregate location data. To ascertain the effectiveness of
our proposal at meeting this goal, our evaluation ought to
answer three questions:
• How effectively is the service able to estimate the number

of people in a location from the position maps sent by
SpotME users (Section IV-A)?

• To what extent would a malicious service be able to infer
a user’s location from the user’s position maps? To what
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Fig. 1. A malicious service provider infers the location of a victim from the
victim’s position maps.

(a) Urban area (b) Suburban area (c) Rural area

Fig. 2. The mobility traces of drivers are generated for three types of area
in Zurich.

extent would malicious users who inject false locations
be able to compromise the estimations (Section IV-B)?

• What communication, storage, and computational over-
head does SpotME impose on a mobile phone and on a
location-based service that supports it (Section IV-C)?

To answer those questions, we set up experiments using
movement data of different types of individuals.
The mobility traces we use are of two types:
1. Drivers of vehicles. We also use the mobility traces of
drivers generated by the widely-used microscopic traffic
simulator developed at ETHZ [3]. We generate the vehicular
traces upon three real maps of the Zurich areas. On input
of historical flows of vehicles in those areas, the traces are
generated in a way that the behavior of vehicles is reproduced
(e.g., stopping at traffic lights, vehicles queuing after each
other, priority to the right). Since the maps reflect three types
of area (urban, suburban, and rural), the resulting traces
reflect scenarios with different total number of vehicles,
density of vehicles, and vehicle speed:

Urban area: The number of vehicles is high (on average
there are 880 vehicles at the same time), and so is the density
of streets (see Figure 2(a)). The average speed is 20km/h and
the maximum is 60km/h.

Suburban area: The number of vehicles is medium (on
average there are 420 vehicles at the same time), and so is
the density of the streets (see Figure 2(b)). The average speed
is 25km/h and the maximum speed is 60km/h.

Rural area: The number of vehicles is low (on average there
are 200 vehicles at the same time), and so is the density of
streets (see Figure 2(c)). The average speed is 32km/h and
the maximum is 70km/h.

2. Subway passengers in London. We use the mobility traces
of subway passengers of all the London subway’s lines during
rush hour of a weekday. For each passenger, the traces keep
track of the stations the passenger enters and exits. This is
possible for the 22% of the London underground passengers
(which include commuters, shoppers, and tourists) who use
RFID tickets to pay their fares. The number of subway
stations considered is 426. The total number of passengers is
300,000, and the average number in a station each minute is
37 people with a peak of 702.

We divide the three maps in 100×100m grid cells, and each
cell is what we have called location. Instead, for the traces of
the subway passengers, a location is a subway station.

Validation Execution. For each time step t and each location
l, we compute the fraction of overestimated/underestimated
individuals:

fl,t =
reall,t − predictedl,t,w

reall,t

where reall,t is the actual number of individuals in location l at
time t and predictedl,t,w is the number of individuals SpotME
predicts based on the statistical analysis that we described in
the previous section. Of course, the error is only defined for
areas where there are more than one users.

We then compute the Root Mean Square Error (RMSE) for
time t over all locations l:

errort =

√∑n
l=1 f

2
l,t

n

where n is the number of locations considered (the number
of data points). We repeat this on all locations for 600 time
units (seconds) for the vehicular traces and for 120 time units
(2 hours) for the subway traces and take the average error of
the whole simulation. We use RMSE because, in our case,
large errors are particularly undesirable, and, since the errors
for each location are squared before they are averaged, the
RMSE gives a relatively high weight to large errors [14].

A. Effectiveness

One would expect that the ability to estimate the number
of people in a location is affected by three parameters:

1. The probability p of forced “yes”. We consider the worst
case in which k is maximum - a situation in which a user can
potentially claim to be in all locations of the entire geographic
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Fig. 3. The error versus p when each driver reports to be in all possible
locations with probability p for the vehicular traces.
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Fig. 4. The error versus p when each subway passenger reports to be in k
locations (k maximum is 426).

area. That is, k = 900 for drivers and k = 426 for subway
passengers. k maximum corresponds to the case of highest
error. That is because the error increases with the number of
individuals who claim to be in a location but are not there,
and this number is maximum when everybody claims to be
everywhere (k maximum). Figure 3 plots the error versus p

for k = 900 in the three areas of the vehicular traces. As one
expects, the error increases with p. However, for probability
p = 0.5 (users can claim to be in half of the geographic
area), the error is high in the urban area (error = 41%) but
is surprisingly low in the rural area (error = 11%). The error
will always be higher in dense areas (urban areas) since
the average number of people who claim to be in a given
location without being necessarily in it increases with the
population density. Interestingly, for p = 0 (users claim to be
in their true location), there is a residual error of 6% for the
rural area and of 11% for the urban and suburban areas. That
is because the moving average smooths short-term traffic
fluctuations and cannot reproduce them (hence the error).
Short-term traffic fluctuations are frequent in the urban area
where intersections and traffic lights produce bursty vehicular
traffic. However, at the price of having the residual error, we
obtain a significantly reduced error for p > 0. If we were not
to use the moving average, the error would roughly triple. For
subway passengers, the error for k maximum (which in this
case is 426) is reasonable and lower than that for vehicular
drivers (Figure 4); up to p = 0.6, the error is lower than 20%.
That is because the number of passengers is more than three

order of magnitude higher than the number of drivers and,
consequently, k’s impact is greatly reduced.

2. The number k of potential locations. Since the error is
unreasonably high for k maximum (especially for vehicular
drivers), we explore the whole range of k = [0, 900]. We find
that the error remains the same for k < 50 and becomes
undesirably high for k > 500. Consequently, to ease expla-
nation on how k and p affects the error, we graph the error
for k = {50, 100, 200, 500}. Figure 5 shows the error versus p

in the three different areas of the vehicular traces. From the
three graphs, we learn that:
• High values of error are registered in the urban area

because of bursty traffic and population density, as we
have already found.

• For the considered k’s in all the three areas, the error is
low and stable for p < 0.4 and becomes undesirable for
p > 0.5.

Based on the last point, we might say that, for p < 0.5,
the error is low. The same applies for subway passengers;
more specifically, the error is well below 18% for p = 0.5%

(Figure 4 for k = {85, 42}). As we shall see in Section IV-B
on the attacker model, for those values of p, localizing users
becomes hard and, using a value of p ∈ [0.4, 0.5], one is able to
strike the balance between low error and high undetectability.
Consequently, the location-based service fixes the value of
p in the range [0.4, 0.5], and users tune k depending on the
level of privacy they would like to attain. The product p × k

is the number of locations in which each user claims to be
on average and expresses the level of privacy one can expect
from the service. For example, if p = 0.5, a user claims to
be, on average, in 50 locations at the same time, if she sets
k = 100; or in 25 locations, if she sets k = 50. Of course,
to attain very low error, the service may well choose a low
value of p, say, 0.2; in that case, the users need to set a high
value of k, say, at least 200.

3. The fraction u of individuals running SpotME. The
previous results tell us that, by tuning the values of p and
k, one is able to accurately estimate the number of SpotME
users in a given location. Now, we will see that one is also able
to estimate the number of people (including those not using
SpotME) in a given location. Let us call u (uptake) the fraction
of SpotME users in the population. One way to estimate the
number of people peoplel,t in location l at time t is to compute:

peoplel,t =
predictedl,t,w

u
(6)

where predictedl,t,w is the number of SpotME users predicted
to be in l at time t. Expression (6) assumes that SpotME users
are distributed uniformly across locations (it assumes that u is
the same for all locations). In reality, we might have different
penetration rates for SpotME in different areas. To test the
extent to which this assumption affects the estimation of the
number of people, we compute the error in the estimation
versus u for the three areas and for the subway traces. In
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Fig. 5. The error versus p when each vehicular driver claims to be in 50,100, 200 locations at the same time with probability p. The results are for the three
areas in Zurich: (a) urban; (b) suburban; and (c) rural.
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Fig. 6. The error versus SpotME’s penetration rate u among vehicular drivers.

Figure 6, we see that, for u = 25% (14 of the population has
installed SpotME), one can still estimate the number of people
(non-SpotME users) with an error of 35% in the vehicular
urban area and 19% in the rural area. For subway passengers,
we also find a low error (below 20%) for a penetration rate
of 20% (Figure 7). Interestingly, since the number of subway
passengers is high, for penetration rates higher than 35%, the
error does not significantly decrease. This would suggest that if
35% of the subway passengers of our London subway’s traces
were to adopt SpotME, then the number of people who are
not necessarily using SpotME in each subway station could
be accurately predicted. Clearly, the estimation of the number
of SpotME’s users is unaffected by the penetration rate, and
the error is that we have discussed in the previous point.

B. Robustness against malicious providers and malicious
users

In Section III-D, we described how a malicious service
provider (attacker) could deduce the position of a victim
and we claimed that the higher the victim’s probability p,
the more difficult localizing the victim. To measure how p

impacts the attacker’s ability to localize the victim, we set up
a simulation in which, at each time step, the attacker collects
a new position map from the victim and then selects from the
map the locations in which the victim is likely to be. Being
about a single position map, this simulation is not affected
by mobility, so we do not use any mobility traces now. The
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Fig. 7. The error versus SpotME’s penetration rate u among subway
passengers.

percentage c of the selected locations (out of the total map)
is a measure of the attacker’s ability to localize the victim.
The lower c, the more refined the localization. Figure 8 plots
c versus time, for values of p = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9}. We
see that c tends to quickly stabilize over time. If the victim’s
probability p of forced “yes” is 0.1, then the attacker is able
to quickly identify the location in which the victim is. By
contrast, if p is 0.5, then the attacker predicts that the victim
is in half of the locations and cannot refine its prediction over
time. That is because the attacker guesses the victim’s position
by expanding the victim’s map; for example, by expanding m1
of Figure 1 into m′1. If p = 0.5, then the victim claims to be
in half of the possible locations (that is, half of the squares in
the victim’s map m1 are black) and, to guess where the victim
is, the attacker expands that map and obtain a new map m′1 in
which the victim is equally likely to be in any location of the
map; for p = 0.5, the attacker is unable to localize the victim.
In general, we might say that, for a given p, a user can expect
a fixed and known level of privacy protection. This level is
the product (p× k), which is the number of locations the user
claims to be at the same time (on average).

In addition to a malicious provider, we might also have
malicious users who try to subvert the system by injecting
false position maps. Those users follow all the steps of the
SpotME’s algorithm expect for one: they do not report their
current true locations, that is, they report locations at random.
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Fig. 9. The error in estimating the number of honest drivers versus the
fraction v of ‘injected’ malicious vehicular drivers.

If many users do so, then the corresponding error in counting
the number of the remaining (honest) users is expected to
increase. To measure the extent to which the error increases,
in our vehicular traces, we add a set of malicious users who
inject random location maps and we measure the resulting
error. Figure 9 plots the error versus the fraction v of vehicular
drivers who are malicious. This fraction is the number of
drivers who are malicious over the total number of (honest
and malicious) drivers. Interestingly, up to 60% of malicious
drivers, the error in estimating the number of the honest ones
only slightly increases. Again, for subway passengers, the
results are quantitatively similar.

C. Overheads

Storage Overhead. A device that runs SpotME stores one
position map and the list of visited locations. This size of this
information is very small (e.g., in our vehicular experiments
it was 30KB), making such an approach feasible to be used
in portable devices.

Computational Overhead. The computational overhead
comes from the generation of k random numbers every
time a new position map is created. Generating 2500
random numbers (worst case) on a mobile phone takes
few milliseconds and, as such, SpotME is expected to run
seamlessly on any modern mobile phone.

Communication Overhead. The communication overhead a
mobile phone would see in using SpotME largely depends
on three parameters: i) the number k of potential locations

a SpotME user can report to be in, ii) the frequency which
the phone sends a position map and iii) the dimensions of
a location. One expects that the communication overhead
increases linearly with the dimension k of the user’s position
map. Figure 10(a) shows that this is the case in our vehicular
traces for the three types of areas (urban, suburban, and
rural) and also shows that the overhead is extremely low:
for k = 1500, a user has to only transmit 0.02 KB/sec (72
KB/hour).

To further decrease the communication overhead, one may
have users not updating their position maps every time they
change location but updating them at a fixed rate. Figure 10(b)
plots the communication overhead for car drivers (KB/sec)
versus the frequency of updates (seconds). By comparing the
curves for ‘dynamic’ updates (maps updated at every change of
location) to the curve for fixed update (maps updated at every
given number of seconds), one concludes that having users
updating their maps with a frequency greater than 6 seconds
would result in a further decrease of communication overhead
(which is already low).

An additional factor expected to impact the communication
overhead is the dimension of each location in our maps. No
matter whether users update their map at every change of
location (dynamic update) or update them every seconds (fixed
update), the larger each location, the lower the communication
overhead. To see why, consider that:
• For dynamic update: The larger a location in the map,

the more time people spend in it, the fewer the number
of total changes of location overall, and the fewer the
number of updates that need be sent.

• For fixed update: The larger each location in the map,
the lower the number of total locations, the smaller each
update (position map).

Figure 10(c) plots the communication overhead (KB/second)
for car drivers versus the dimension of a location (meters).
For both types of update, the network overhead decreases as
expected, and it does so according to a power-law relationship.
However, if users update at every change of location, the
overhead decreases more rapidly than having users updating at
a fixed rate. This suggests that the fixed rate should be set in a
way that the resulting updating is less frequent than updating
at every change of location, and the choice of the rate will be
application-dependent.

For the subway passengers, the overall communication
overhead is even lower than that for vehicular drivers. That is
because the number of potential locations k is lower (at worst,
it is the number of subway stations) and so is the frequency
of updates (subway passengers move slower than vehicles).

V. CONCLUSION

SpotME makes it possible for services that rely on aggregate
location data to work in the presence of privacy-conscious
individuals who report erroneous locations in addition to
the actual ones. Using real mobility traces in very different
settings, we have seen that erroneous locations have little
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Fig. 10. The communication overhead as a function of: (a) the number k of potential locations each driver can report to be in; (b) the frequency of updates
of position maps in the range [1, 30]seconds; and (c) the dimension of each location in the three maps of the areas in Zurich.

impact on the estimation of number of people in a geo-
graphical area and allow users to obfuscate their location.
Also, SpotME scales (it entails reasonable communication
overhead, and negligible computational and storage overheads
on a mobile phone); is robust against injection of false location
information; and is easily deployable largely because it does
not require any additional infrastructure or any specialized
hardware.

We are currently working on a protection mechanism that
lets people signal whether they would like to be associated
with the data they place on location-based services, and to be
consulted about unusual uses.
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