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Abstract. We have recently witnessed a growing interest in self organis-
ing systems, both in research and in practice. These systems re-organise in
response to new or changing conditions in the environment. The need for
self organisation is often found in mobile applications; these applications
are typically hosted in resource-constrained environments and may have
to dynamically reorganise in response to changes of user needs, to hetero-
geneity and connectivity challenges, as well as to changes in the execution
context and physical environment. We argue that physically mobile appli-
cations benefit from the use of self organisation primitives. We show that
a component model that incorporates code mobility primitives assists in
building self organising mobile systems. We present SATIN, a lightweight
component model, which represents a mobile system as a set of interop-
erable local components. The model supports reconfiguration, by offering
code migration services. We discuss an implementation of the SATIN mid-
dleware, based on the component model and evaluate our work by adapt-
ing existing open source software as SATIN components and by building
and testing a system that manages the dynamic update of components on
mobile hosts.

1 Introduction

The recent advances in mobile computing hardware, such as laptop comput-
ers, personal digital assistants (PDAs), mobile phones and digital cameras, as
well as in wireless networking (with UMTS, Bluetooth and 802.11), deliver so-
phisticated mobile computing platforms. We are observing a further and rapid
decentralisation of computing, with computers becoming increasingly capable,
cheaper, mobile and even fashionable personal items. Mobile computers are ex-
posed to a highly dynamic context and can connect to information on different
networks through wireless links.

Mobile computing systems are highly dynamic systems. They dynamically
form networks of various different topologies, they are heterogeneous both on
the software and hardware layers, and resource constrained and are exposed to
a dynamic environment. Consequently, the requirements for applications de-
ployed on a mobile device are a moving target: The context in which a mobile



application is embedded can be highly dynamic and changes in the environ-
ment may require changes to the application (such as integration with a new
service).

The current state-of-practise for developing software for mobile systems
offers little flexibility to accommodate such heterogeneity and variation. Cur-
rently, application developers have to decide at design time what possible uses
their applications will have and the applications do not change or adapt once
they are deployed on a mobile host. In fact, mobile applications are currently
developed with monolithic architectures, which are more suitable for a fixed
execution context.

We argue that more flexible solutions are required that empower applica-
tions to automatically adapt to changes in the environment and to the users’
needs. Power [33] postulated more than a decade ago that it is common in dis-
tributed systems that

“when something unanticipated happens in the environment, such as
changing user requirements and/or resources, the goals may appear
to change. When this occurs the system lends itself to the biological
metaphor in that the system entities and their relationships need to self
organise in order to accommodate the new requirements.”

Along those lines, we define a self organising system as a system which is able to
adapt to accommodate changes to its requirements. As a highly dynamic sys-
tem, a mobile system will encounter changes to its requirements; We therefore
argue that mobile systems can benefit from the usage of primitives for self or-
ganisation. However, the literature on self organising systems largely focuses
on the application of genetic algorithms, expert and agent-based systems [33,
32, 20]. Other approaches focus on using self organising primitives for reliabil-
ity and service availability of legacy systems [21]. These approaches tend to
be heavyweight and appear unsuitable for mobile applications as they are ex-
ecuted on hosts that are by orders of magnitude more resource-scarce than the
fixed systems for which these self organisation primitives have been devised.

In this work, we exploit logical mobility and components to offer self or-
ganisation to mobile systems. Logical Mobility is defined as the ability to ship
part of an application or even to migrate a complete process from one host to
another. Logical mobility primitives have been successfully used to enhance a
user’s experience (Java Applets), to dynamically update an application (Anti-
Virus software etc.), to utilise remote objects (RMI [40], Corba [28], etc), to dis-
tribute expensive computations (Distributed.net [34]) etc. Component Models
on the other hand, argue for the decoupling of a system into a set of interacting
components with well defined interfaces. Components promote decomposition
and reusability of software. There are numerous component models already de-
veloped and discussed in the literature [38, 36, 22, 29], offering various services
such as transactions and concurrency control and which have been used to rep-
resent systems as a collection of either local or remote components.

The novel contribution of this paper is threefold: We argue for the advan-
tages that self organisation brings to mobile computing and how this compares



to other approaches. We develop and discuss a lightweight component model
that uses logical mobility to offer self organisational abilities to mobile sys-
tems. Finally, we introduce an implementation of the SATIN middleware based
on the component model and evaluate it, by converting existing open source
projects into SATIN components and by developing a component deployment
and update system for mobile hosts. The applications show system adaptation
responding to context changes, demonstrate end-user ease of use and show
how new functionality can be integrated into the system.

This paper is structured as follows: Section 2 presents the motivation for
our work and gives some background into our area of research. Section 3 de-
scribes the SATIN component model and middleware. Section 4 evaluates our
system, while Section 5 is a critical summary of related work. Finally, Section 6
concludes the paper, giving some ideas for future research.

2 Background and Motivation

2.1 Motivating Example

This section presents an industrial example in order to motivate our work. We
give an overview of how it works, highlight its limitations and describe how a
self organising approach based on components and the systematic use of logical
mobility primitives can help in overcoming them.

Case Study: Industry State-of-the-Art mobile application development Pal-
mOS [31] is the most widely used operating system for PDAs; it powers more
than 30 million devices worldwide, including mobile phones, GPS receivers,
PDAs and sub notebooks. For example, a popular device running PalmOS has
64MB of RAM (which is used both as storage and heap memory), Bluetooth, in-
frared and 802.11 wireless networking and wired (serial) networking interfaces,
as well as a 400MHz ARM processor. The current version of PalmOS allows for
the creation of event driven, single-threaded applications. All files (applications
and data) are stored in main memory. Developers compile an application into
a single Palm Resource File (PRC) and application data can be stored in Palm
Databases (PDBs). The operating system allows for limited use of libraries. Ap-
plications are identified by a unique 4 byte identifier, the Creator ID. Develop-
ers register Creator IDs for each individual application with the operating sys-
tem vendor. A PalmOS device usually ships with personal information man-
agement (PIM) software installed. Installing new applications requires either
locating a desktop computer and performing the installation there or having
the application sent by another device directly, a procedure which is not auto-
mated. Statistics show that users rarely install any 3rd party applications, even
though there is a plethora available.

This model has various disadvantages: there is very little code sharing be-
tween applications running on the same device. There is no middleware pro-
viding higher level interoperability and communication primitives for applica-
tions running on different devices. Applications are monolithic, composed of a



single PRC, which makes it impossible to update part of an application. The fact
that users rarely install any third party applications is usually attributed to the
fact that it is difficult to do so. Palm-based computers can be deployed in both
a nomadic and ad hoc networking settings. The potential for interaction with
their environment is great, however PalmOS does not provide any primitives
to do this. The result is that PalmOS based PDAs are still seen as stand-alone
independent devices which interact mainly with a desktop computer to syn-
chronise changes to shared data - interaction with their environment and peers
is either not considered or is very limited.

A component based approach using logical mobility primitives would have
several advantages:
- Representation of applications as interoperable components allows for updat-
ing individual parts.
- Componentisation promotes code reusability, preserving the limited resources
of mobile devices.
- Logical mobility primitives allow for transferring components existing in any
host that is in reach, in a peer to peer fashion. This makes application installa-
tion and updating easier.
- A component model can provide higher level interaction and communica-
tion primitives between components, located either on the same or on different
hosts.

Please note that in other, less popular PDA operating systems, such as Win-
dows CE and Linux, the use of components is more prevalent, especially by as-
pects of the operating system. However, most of the problems outlined above
are still relevant, as those devices also do not interact with their environment,
applications are usually monolithic, not taking advantage of the component
mechanism offered and the use of logical mobility primitives is not provided.

2.2 Logical Mobility and Components for Self Organisation

Logical mobility is defined as the ability to move parts of an application or
migrate a complete process from one processing environment to another. Com-
monly implemented using code mobility [12] techniques, information transfered
can include binary code, compiled for a specific architecture, interpreted code,
bytecode compiled for a virtual platform, such as the Java Virtual Machine
(JVM), but also application data such as profiles, remote procedure call param-
eters etc. We define a Logical Mobility Unit (LMU), as a container that can en-
capsulate any combinations of binary or interpreted code and application data
and that can be serialised on one host, or execution environment, transfered to an-
other one and get deserialised and used there. As such, logical mobility primi-
tives can be expressed by composing the LMU, transferring it from one execution
environment to another, and then deploying it. The execution environments can
range from different physical nodes, to different sandbox processes residing on
the same host.

In the work presented in this paper, we use logical mobility to assist in the
construction of self organising systems because:



- Logical mobility allows applications to update their codebase, thus acquiring
new abilities.
- Logical mobility permits interoperability with remote applications and envi-
ronments, which have not been envisioned at the design time.
- Logical mobility potentially achieves the efficient use of peer resources, as
computationally expensive calculations can be offloaded to the environment.
- Logical mobility facilitates the efficient use of local resources, as infrequently
used functionality can be removed to free some of the limited memory that mo-
bile devices are equipped with, to be retrieved later when needed.
- Functionality acquired by a self organising system can be represented as an
LMU, transferable to other hosts.

Components, Distribution and Collocation: Although component based sys-
tems are widely used in business client/server type applications, as well as in
desktop systems [13], their use in mobile devices has been very limited. Sec-
tion 2.1 has shown some of the limitations of current approaches; namely, mo-
bile systems are monolithic and fail to interact with their environment and to
adapt to changes to it.

We believe that logical mobility should be combined with a component-
based approach to structure systems for the following reasons:
- Components break the monolithic structures that currently prevail in mobile
systems by promoting the decomposition of applications into interacting com-
ponents.
- Components logically structure applications into distinct units, which can be
moved around the network. As such, they can provide a coarse-grained guide
onto how a system can reorganise.
- Components encourage reusability, which is particularly important in the re-
source constrained settings of mobile devices. For example, a component that
implements a compression algorithm can be reused by multiple applications.
- By representing a system as a set of interoperable components, logical mobil-
ity primitives allow us, in principle, to dynamically add, remove and replace
components, thus adapting the overall behaviour of the system.
At first glance, it would seem that distributed component models are ideal for
mobile devices, since they already address issues of heterogeneity, which are
inherent in mobile computing. The comparison between distribution and collo-
cation for object systems is made in [9]. There are three main reasons for which
we argue that component model systems that enforce distribution are unsuit-
able for mobile devices:
Size: mobile devices have very limited resources. Distributed component
model implementations usually require large amounts of memory and signifi-
cant CPU power to deliver functionalities such as transactions, persistence and
concurrency control, which are not considered essential in a mobile setting.
Network Connectivity: A reference to a component in a local, shared memory
system, is usually a pointer, which is a lightweight data structure. In distributed
systems however, the reference is usually a more substantial data structure, that
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Fig. 1. The SATIN Meta Model. Note that Node, Classifier, Class, Interface and Instance
are taken from UML.Core.

encodes location and security information. The process of calling a function in
a distributed object, involves marshaling and unmarshaling both request and
reply. Most distributed component model implementations assume continuous
network connection with a high bandwidth and low latency to deliver syn-
chronous remote procedure calls. On the other hand, mobile devices usually
have intermittent network connectivity at low bandwidth and high latency.
Invalidating those assumptions usually implies invalidating the remote com-
ponent reference. As such, network references are often unsuitable for mobile
applications, not providing for system autonomy when invalidated.
Complexity: Distributed component models usually assume a client / server
architecture, with a predictable number of clients accessing one or more servers.
An individual application is seen as a collection of components distributed in
a predictable number of potentially heterogeneous devices. The physical mo-
bility and temporal nature of the networking connectivity of mobile devices
means that the devices form highly dynamic networks, which may even be
completely structureless (ad hoc). Even when the latter is not the case, mobile
devices form significantly less predictable topologies than standard distributed
systems. Given this, mobile applications are hardly comparable to standard dis-
tributed systems, in terms of structure and complexity.

The next section presents the SATIN component model and its middleware
system instantiation, which tackles the problems outlined above. A more thor-
ough comparison of our model and traditional distributed component models
can be found in Section 5.



3 SATIN

3.1 Component Model Overview

The SATIN component model is a local component model, targeting mobile
devices, that uses logical mobility primitives to provide distribution services;
Instead of relying on the invocation of remote services via the network, the
component model supports the cloning and migration of components between
hosts, providing for system autonomy when network connectivity is missing
or is unreliable. An instance of SATIN is represented as a collection of local com-
ponents, interconnected using local references and well defined interfaces, de-
ployed on a single host.

The SATIN component model 1 is a Meta Object Facility [15]-compliant ex-
tension of the UML [27] meta model. We build upon and extend the concepts
of Classifier, Interface, Class, Instance, and Node. The most novel aspect of the
model is the way it offers distribution services to local components, allowing
instances to dynamically send and receive components at runtime. We are now
going to describe the model in detail as well as our implementation of the SATIN
middleware system.

3.2 Components

A SATIN component encapsulates particular functionality, such as, for instance,
a user interface, an advertising mechanism, a service, an audio codec or a com-
pression library. SATIN components separate interfaces and implementations.
A component has one or more interfaces, called facets, with each facet offering
any number of operations. The SATIN component model does not support ab-
stract components (which cannot be instantiated) as the objective of abstract
components can also be achieved using facets. The component implementation
is achieved by one or several SATIN classes.

Component Metadata Although the SATIN component model is a local one,
it is used to represent a largely heterogeneous set of devices and architectures.
As such, the SATIN component abstraction must be rich enough to be able to
describe components that will be deployed over a large number of platforms.
To this end, we draw parallels with the Debian Project’s [23] package system.
Debian is an operating system the packages of which are deployed over twelve
different hardware architectures – a Debian system may run the Linux, Hurd,
NetBSD or FreeBSD kernels; it is composed of hundreds of different installable
packages, most of which have various inter-dependencies, to create a complete
system. The Debian package format uses metadata to describe the heterogene-
ity of these platforms. SATIN follows a similar approach using attributes to de-
scribe a component.

A SATIN attribute is a tuple containing a key and a value. Attributes can be
immutable. The set of attributes for a component is not fixed, but can be ex-
tended. SATIN requires that each component has an ID attribute, that acts as a



component identifier, similar to the PalmOS Creator ID (see Section 2.1) and a
VER attribute, which denotes the version of the component implementation. As
such, a component implementation is uniquely identified using the ID and VER
attributes. A SATIN component can also depend on other components. These
dependencies are expressed as a component attribute.

Components and Containers The central component of every instance of
SATIN is the container component. A container is a component specialisation
that acts as a registry of components that are installed on an instance of SATIN.
As such, a reference to each component is available via the container. Com-
ponents can query the container for components satisfying a given set of at-
tributes.

SATIN components can register listeners with the container to be notified
when components satisfying a set of attributes given by the listener is added
or removed. When querying the container or notifying listeners, satisfiability
of the given set of attributes is verified by a Match Filter, which is a SATIN in-
terface implemented by the listener. As such, satisfiability verification is highly
customisable and allows for complex semantics for matching component im-
plementations based on attributes. This allows components to react to changes
in local component availability. For example, media player applications can be
notified when components implementing the AUDIOFORMATfacet are installed
in the system (see Section 4).

The container delegates registration and de-registration of components to
one or more registrars. A registrar, which is also a component specialisation, is
responsible for loading the component, validating its dependencies and adding
it to the registry. When removing a component, a registrar is responsible for
checking that the removal of the particular component will not invalidate the
dependencies of others. Different registrars can have different policies on load-
ing and removing components (from different sources for example) and veri-
fying that dependencies are satisfied. For example, we have developed an im-
plementation of the container and registrar, that keeps track of how often com-
ponents are used - This frequency based approach is used to drop least used
components when the system runs out of memory.

SATIN does not allow for the existence, on the same instance, of two com-
ponents with the same identifier, unless they are two different versions of the
same component implementation. As such, instances of SATIN can host differ-
ent versions of the same component.

Distribution and Logical Mobility SATIN provides for the reconfiguration of
applications via the use of logical mobility primitives. Distribution is not built
into the components themselves, as SATIN is a local component model, but it is
provided by the model as a service. This allows SATIN instances to dynamically
send and receive components. We define a Logical Mobility Entity (LME), as a
generalisation of a SATIN object, class, or component. As such, a SATIN LMU, as
defined in Section 2.2, is a container, which is able to store arbitrary numbers



of Logical Mobility Entities (see Figure 1 for the representation of these rela-
tionships). An LMU can therefore be used to represent various granularities
of logical mobility, from complete applications and components, to individual
classes and objects. The LMU has a set of attributes, the LMU properties, which
are the union of the attributes of its contents. The LMU properties set is ex-
tensible. An LMU is always deployed in a Reflective component, a component
specialisation that can be adapted at runtime, i.e., can receive new code or ap-
plication data from the SATIN migration services. By definition, the container is
always a reflective component, as it can receive and host new components at
runtime.

The LMU has two special attributes, TARG, which specifies the intended re-
cipient host and LTARG, which specifies the reflective component in the TARG
host the LMU is going to be deployed into. A reflective component may inspect
an LMU before accepting or rejecting it. Moreover, it can also accept parts of it
and reject others. An LMU can optionally contain a Handler class, which can be
instantiated and used by the receiver to automatically deploy the LMU to the
reflective component; This mechanism can be used if the latter lacks knowledge
of how to deploy and use the unit received. Finally, an LMU can be digitally
signed.

A component cannot send an LMU directly. The functionality of sending,
receiving and deploying components is abstracted and handled by the Deployer.
The Deployer is a SATIN component specialisation that manages requesting,
creating, sending, receiving and deploying LMUs to the appropriate reflective
components. A Deployer is directly accessible to any component through the
container.

When sending an LMU, a Deployer will reject any requests to send LMUs
that do not have a TARG or LTARG attributes. Otherwise, it is responsible for
serialising and sending the LMU to the Deployer component instance located at
TARG. When receiving an LMU, the Deployer uses the container to verify that
the component identified by LTARG exists in the local SATIN instance and that
it is a reflective component. The LMU is then moved to the component it is des-
tined to (identified by the LTARG attribute), which has the option of inspecting
the component before deployment; The inspection results either in full accep-
tance, which means that the content of the LMU is accepted; partial acceptance,
which means that parts of the LMU are accepted and others discarded; rejection,
which means that the LMU is rejected and dropped; Handler instantiation, which
means that the reflective component instantiates the Handler, encapsulated in
the LMU, to perform the deployment. The result is determined by the reflective
component, based on the content of the LMU.

A Deployer also listens to requests for components from other hosts. Upon
receiving a request, the deployer checks if the component exists in the host. If
it does, it clones it, encapsulates it in an LMU, serialises it and sends it to a
Deployer instantiated at the requester.

Implementations of the Deployer could check for digital signatures and ver-
ify that an LMU is not malicious. This is further discussed in Section 6.
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3.3 The SATIN Middleware

This section describes a possible middleware system instantiating the SATIN
component model. The middleware, as well as any services and any appli-
cations deployed over it, are represented as collections of SATIN components,
which can be dynamically added and removed. In particular, this section dis-
cusses advertising and discovery, which are represented as components them-
selves.

Advertisement and Discovery Services One of the pivotal requirements of
mobile and pervasive computing, is the ability to reason about the environ-
ment. The environment is defined as the network of devices that can, at a spe-
cific point in time, communicate with each other. The devices can be both mo-
bile and stationary - with the presence of mobile devices, however, the environ-
ment can be rapidly changing. In order to self organise, a mobile application
needs to be able to detect changes to its environment. As the device itself is also
part of that environment, it needs to advertise its presence. A mobile device,
however, may be able to connect to different types of networks, either concur-
rently or at different times, with different hardware. There are many different
ways to do advertisement and discovery. Imposing a particular advertisement
and discovery mechanism can hinder interoperability with other systems, mak-
ing assumptions about the network, the hosts and even the environment, which
may be violated at some stage or not be optimal in a future setting - something
which is likely to happen, given the dynamicity of the environment.

From the point of view of SATIN, the ability to reason about the environ-
ment is translated into the ability to discover components currently in reach
and to advertise the components installed in the local system. Components that
wish to advertise their presence in the environment are advertisable components.
Examples include codec repositories, services, etc. An advertisable component
provides a message that is used for advertising. An advertising technique is



represented by an advertiser component. An advertiser component is responsi-
ble for taking the message of advertisable components, potentially transform-
ing it into another format and using it to advertise them. An advertiser allows
components that wish to be advertised to register themselves with it. As such,
an advertisable component can register with the container to be notified when
new advertisers are added to the system. It can then register to be advertised
by them.

Similarly, discovery techniques are encapsulated using discovery compo-
nents. There can be any number of discovery components installed in a sys-
tem. A discovery component is a registry of advertisable components located
remotely. A Remote Component cannot directly be used by local components. It
only provides methods to access its attributes, location and advertising mes-
sage. Discovery components emit events representing components found re-
motely. Local components can register listeners with a discovery component,
to be notified when components satisfying a given set of attributes are located
or are out of reach. Satisfiability is verified using match filters. For the time be-
ing, we have implemented match filters for “greater than” and “lesser than” for
numerical values, exact matching and string matching based on regular expres-
sions.

Given the similarities between the container and a discovery component,
the container is a specialisation of a discovery component in the SATIN middle-
ware system, as it “discovers” components located and registered locally. This
is shown in Figure 2.

4 Implementation and Evaluation

SATIN has been implemented using Java 2 Micro Edition (Connected Device
Configuration, Personal Profile) [41]. It occupies 84 kilobytes, as a compressed
Java archive, and includes a deployer implementation, multicast and cen-
tralised publish/subscribe advertising and discovery components and numer-
ous match filters. We have used SATIN to implement the following:

The SATIN Program Launcher: Inspired by the problems discussed in Section
2.1, this application is a Dynamic Program Manager or Launcher for mobile
devices. It is similar to the PalmOS Launcher, in that its basic purpose is to
display and launch applications that are registered with the container. The ap-
plications installed are shown as buttons, with the component identifiers as la-
bels. The Launcher also manages and controls all components installed. Appli-
cations are components that implement the Application facet. As such, the
program launcher registers itself with the container, to be notified when a com-
ponent implementing the Application facet is registered. The dynamic pro-
gram launcher offers the following services: Using a deployer, it can install any
component from any discoverable source (through any discovery service). Fig-
ure 3 shows the Launcher displaying the components that are currently adver-
tised by hosts in reach and installing one with identifier STN:TESTAPP. More-



Fig. 3. (a) Showing what components are advertised on all networks, including those of
the local host. (b) Component “STN:TESTAPP” was installed from a remote host and is
displayed by the Launcher.

over, using the same mechanism, it can update the components installed in the
system, either transparently or as a result of a user command. We deployed an
implementation of the container, that monitors the usage of the components in-
stalled: If the device running the Launcher runs out of resources, it can delete
unused components based on their frequency of use. The SATIN Launcher is
implemented as a collection of interdependent components.

We have tested the application with three devices: a PDA equipped with an
802.11b card in ad hoc mode, a laptop equipped with an 802.11b card (again
in ad hoc mode) and an Ethernet card, and a desktop with an Ethernet card.
As such, the laptop could communicate with both the desktop and the PDA,
whereas the PDA and the desktop could only communicate with the laptop.
All three machines were running Linux. The PDA specifically, was running a
beta version of JDK-1.3, with no Just In Time (JIT) compilation.

The laptop and PDA used the multicast advertising and discovery service
to communicate over the wireless network, whereas the laptop and the desktop
used the centralised advertising and discovery services over Ethernet. In our
tests, the desktop was advertising the availability of version 2 of a component
with identifier STN:TESTAPP, version 1 of which was installed on the PDA.
The laptop installed version 1 of the component from the PDA and updated
it to version 2 from the desktop. The PDA then discovered the availability
of version 2 on the laptop and updated its copy. The table below shows the
Java heap memory usage and the startup time for the Launcher on the PDA,
the time it took for STN:TESTAPP to be installed from the PDA to the laptop,
the time it took for the laptop to update STN:TESTAPP to version 2 from the
desktop and the time it took for the PDA to update to version 2 from the laptop.

Startup Time on PDA 21 seconds
Memory Usage on PDA 1155KB

Time to install component from PDA to Laptop: 1998ms
Update time from Desktop to Laptop 1452ms
Update time on from Laptop to PDA 2063 ms



Fig. 4. The SATIN Music Player.

The results obtained above show that the system implementation is reason-
ably lightweight. The components that make up the launcher occupy 22 kilo-
bytes as a compressed Java archive. Please note that SATIN is not optimised yet.
Moreover, note that as the container allows for multiple version of the same
component implementation, updating does not break references to the previ-
ous version of a component implementation. We attribute the large time dif-
ference between the tests when the PDA was involved (installation time from
the PDA to the laptop and update time from the laptop to the PDA) and when
it was not (update time on from the desktop to the laptop) to the fact that the
PDA runs a beta version of an interpreted JVM and to the nature of the wire-
less network that was used. We attribute the time difference between installing
from the PDA to the laptop and updating from the laptop to the PDA to the fact
that the PDA discovery component had to discover the updated version of the
component in reach.

The SATIN Music Player: We have implemented a simple music player for
SATIN. Components that implement audio codecs have the AUDIOFORMATat-
tribute defined. As such, the Music Player uses the notification service to be no-
tified whenever a component that has this attribute implemented is registered.
Moreover, it uses the deployer and the discovery components to download any
codecs that are found remotely. The application itself occupies 3.6 kilobytes as
a compressed Java archive.

We have also adapted JOrbis [18], an open source Ogg Vorbis [11] imple-
mentation to run as a SATIN audio codec component. As such, we are able to
send and receive either the music player application or the audio codec. The ap-
plication is automatically notified when the component is found and adapts its
interface appropriately. The JOrbis component occupies 105 kilobytes as a com-
pressed Java archive. Please note that the Music Player application is a Java 2
Standard Edition application. This is denoted in the component attributes. We
used Java 2 Standard Edition, because there are very few open implementations
of the Java Mobile Media API [39] for the Connected Device Configuration of
Java 2 Micro Edition.

The Music Player demonstrates an application that uses the container to
listen to the arrival of new components, adapting its interface and functionality
upon new component arrival. It also demonstrates reaction to context changes,
as the application monitors the discovery services for new codec components
and schedules them for download as soon as they appear.



-=Initialising the Container=-
-=Container (ID=STN:CONTAINER,FACETS=Discovery,VER=1)

initialised=-
-=Creating Self=-
-=Registering Self (ID=STN:SHELL)=-
-=This is SATIN version 0.8=-
-=Running on Linux 2.6.5-1.358 / i386=-
-=Hostname: hamsalad.cs.ucl.ac.uk=-
-=Java 1.4.2_04 / Sun Microsystems Inc.=-
-=A reference to the container will be made available via the

object reference container=-
-=Starting the beanshell...=-
BeanShell 2.0b1.1 - by Pat Niemeyer (pat@pat.net)
bsh % Component c=container.getComponent("STN:SHELL");

Fig. 5. The SATIN Shell.

The SATIN Scripting Framework: We have adapted BeanShell [26], an open
source Java source interpreter and scripting mechanism as a SATIN component.
This allows SATIN components to use scripts and to be scripted. Using this, we
have created a “shell” for SATIN, which allows developers to manipulate the
container and its contents by typing Java statements at runtime. The Scripting
Framework component and the shell component occupy 280.6 kilobytes as a
compressed jar file. Figure 7 shows sample output from the shell. The last line
in particular, shows how to get a reference of a component from the container.

The SATIN shell demonstrates how a library is added into the system, pro-
moting reusability between components. Moreover, the scripting framework
can be expressed as a component dependency, for components (such as the
shell) that require it and can be registered dynamically, when needed.

We believe that the implementation of the SATIN middleware system and
the applications confirm that SATIN is reasonably lightweight, despite the of-
fered features and added flexibility. The examples demonstrate applications
that can monitor their context and adapt to changes to it. The next section
presents a critical summary of related work.

5 Related Work and Discussion

Despite the evident suitability of logical mobility to the dynamicity of a mo-
bile computing environment, its use to support self organisation has been very
limited. Most approaches employ logical mobility to provide specific func-
tionality to applications. Lime [24] is a mobile computing middleware sys-
tem that allows mobile agents to roam to various hosts sharing tuple spaces.
PeerWare [8] allows mobile hosts to share data, using logical mobility to ship
computations to the remote sites that host the data. Jini [2, 35] is a distributed
networking system, which allows devices to enter a federation and offer ser-
vices to other devices, or use code on demand to download code allowing
them to utilise services that are already being offered. The Software Dock [16] is
an agent-based software deployment network that allows negotiation between



software producers and consumers. one.world [14] is a system for pervasive
applications, that allows for dynamic service composition, migration of appli-
cations and discovery of context, using remote evaluation and code on demand.
FarGo-DA [42] is an extension of FarGo [17], providing a mobile framework for
resource-constrained devices that uses remote procedure calls and code on de-
mand to offer disconnected operations. The limitation of these approaches is
in the fact that their use of logical mobility is focused to solving specific prob-
lems of a particular scope, such as data sharing, distributed computations or
disconnected operations. In contrast, SATIN allows for the flexible use of logi-
cal mobility by applications for any purpose. Moreover, these approaches are
not suitable for heterogeneity and mobility, as they usually pre-define advertis-
ing and discovery services, making interoperability with different middleware
systems and networks particularly difficult.

Other approaches focus on building reconfigurable middleware systems,
using logical mobility primitives. ReMMoC [30] is a middleware platform
which allows reconfiguration through reflection and component technologies.
It provides a mobile computing middleware system, which can be dynami-
cally reconfigured to allow the mobile device to interoperate with any middle-
ware system that can be implemented using OpenCOM components. UIC [37]
a generic request broker, defines a skeleton of abstract components which have
to be specialised to the particular properties of each middleware platform the
device wishes to interact with. The limitation of these approaches is that they
do not provide reconfigurational abilities or the use of logical mobility prim-
itives to the applications running on the middleware; they only allow for the
reconfiguration of the middleware system itself.

There has also been some work on component based reconfiguration sys-
tems. Beanome [6] is a component model for the OSGi Framework [1], allow-
ing Beanome applications to retrieve new components at runtime. Gravity [7]
allows for reconfiguration of user-oriented applications. These approaches are
limited: Beanome makes a clear distinction between hosts that can send com-
ponents and between hosts that can receive them. SATIN on the other hand al-
lows mobile devices to form large peer to peer networks of offered components.
Gravity does not allow for system reconfiguration.

P2PComp [10] and PCOM [3] are mobile distributed component models.
These approaches suffer from the problems examined in Section 2.2. Net-
working references in the absence of connectivity are invalidated, making au-
tonomous operation of the system problematic.

Compared to related work, our approach does not limit how applications
use logical mobility techniques; As SATIN takes a finer grained approach to
logical mobility, allowing components to send and receive individual objects
and classes as well as complete components, it can be used to implement the
solutions of previous approaches, but its use and applicability is much more
general. For example, existing middleware systems such as Lime can be im-
plemented on top of SATIN, giving SATIN applications interoperability with
hosts running Lime. Moreover, the way in which ReMMoc tackles heterogene-



ity through discovery and adaptation to different services can also be emulated
with SATIN. The general adaptability and flexibility through logical mobility al-
lows SATIN-based applications to heal and mutate according to context, which
they can monitor, making them suitable for mobile computing. Moreover, the
complete componentisation of all system aspects, including advertising and
discovery, makes SATIN demonstrably suitable for roaming. The collocation of
SATIN components allows a system to be autonomous; As SATIN focuses on the
reconfiguration of local components, it allows for applications to function in
the event of disconnection from remote hosts - This is particularly important,
given the dynamicity of the network connectivity of mobile devices. Moreover,
SATIN allows for devices to both send and receive LMUs; By not making any
distinction between server and client, SATIN allows for the potential creation of
a large peer to peer network of offered functionality.

SATIN is not the first project in which we use logical mobility techniques in a
mobile environment. An earlier approach was used in XMIDDLE [19], a mobile
computing middleware system, which allows for the reconciliation of changes
to shared data. In the development of XMIDDLE, we realised that it would be ad-
vantageous to be able to chose at runtime which protocol to use to perform the
reconciliation of changes and designed an architecture which allowed for decid-
ing upon, retrieving and using a reconciliation protocol at runtime. In previous
work [44], we also identified a number of examples showing that logical mobil-
ity can bring tangible benefits to mobile applications. Our efforts in designing
SATIN are based on that experience. Initial work on SATIN [45, 43] focused on
providing a middleware system that allowed for the flexible use of logical mo-
bility primitives. We realised, however, that our approach can be formalised
and offered in terms of a component model, with all the advantages for mobil-
ity that this entails, as shown in Section 2.2. This paper reflects the evolution of
this work in this way.

It is worth considering that SATIN can easily be turned into a distributed
component model, by allowing two types of containers in one instance of the
system: One that would host the local components and another that would host
the remote ones. Moreover, the completely decoupled nature of SATIN allows
for strong customisation. For example, a registrar implementation could offer
notification services when a component fails to register because of an unmet
dependency. Similarly, a Deployer implementation could offer notification of
failed or malicious LMU transfers. We believe that these examples show the
flexibility of our architecture.

6 Conclusions

In this paper we have argued that mobile systems suffer from a number of prob-
lems related to their nature, heterogeneity and dynamicity in particular. We ar-
gue that these are problems that cannot be tackled by static applications and
that mobile systems can benefit from the use of self organising primitives. We
proposed the use of SATIN, a component model offering distribution services.



We have designed and implemented SATIN as a generic platform that offers
self organisation through logical mobility and componentisation, with reason-
able performance trade-offs as Section 4 shows. Unlike other approaches, SATIN
allows applications to use any logical mobility paradigm and can be used to
tackle the dynamicity inherent in this setting. The applications built demon-
strate this functionality.

We intend to investigate a number of ideas in the future. An issue of great
importance in a mobile system that can receive code from other parties is secu-
rity. At the current stage, our architecture provides for the use of digital signa-
tures embedded in LMUs. This assumes the existence of a trusted third party,
such as the ISP of the user. In future implementations, we plan to investigate
the use of Proof Carrying Code [25] techniques, which may alleviate this need.
We are considering implementing CARISMA [4], a platform that uses reflection
to allow applications to reason about the local execution context, as a collection
of SATIN components. We have already identified the advantages of combin-
ing logical mobility and reflection primitives in previous work [5]. In essence,
this will allow applications to use the SATIN adaptive mechanism to adapt to
changes (through code download and upload), while using CARISMA to mon-
itor and reason about the local execution context, such as battery power levels.
Finally, we intend to continue testing with other networking interfaces, such
as Bluetooth, to examine the behaviour and performance of SATIN on those
interfaces. We are also considering implementing routing and communication
components, that could be dynamically loaded when needed. This would al-
low us to route packets between networks, and attach metadata (that could
contain security information, for instance) identifiers to the routing layer, thus
introducing more flexibility over traditional routing techniques in terms of self
organisation in the dynamic environment imposed by mobile computing.
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