
Writing on the Clean Slate:
Implementing a Socially-Aware Protocol in Haggle

Mirco Musolesi
Dartmouth College, USA

musolesi@cs.dartmouth.edu

Pan Hui, Cecilia Mascolo and Jon Crowcroft
University of Cambridge, United Kingdom

[pan.hui|cecilia.mascolo|jon.crowcroft]@cl.cam.ac.uk

Abstract

Developing protocols and applications for opportunis-
tic networking can represent a daunting task given the
many aspects that must be taken into consideration, such
as intermittent connectivity, smart choice among multiple
interfaces and intelligent data storage. The implementa-
tion of these protocols can be based on generic layer-less
communication frameworks that provide programming ab-
stractions for the extraction and analysis of social, coloca-
tion and mobility information and allows data exchange by
means of heterogeneous devices.

We propose Gently, a novel fully implemented solution
which combines techniques of context awareness and so-
cial knowledge to concretely solve issues related to oppor-
tunistic forwarding. More precisely, Gently is born as the
combination of the Context-aware Adaptive Routing (CAR)
and the socially aware LABEL protocol. We discuss the im-
plementation of our solution on top of the layer-less Hag-
gle framework presenting the key design choices and the
lessons learnt.

1 Introduction
Recent wireless technologies have enabled novel com-

munication paradigms capable of taking advantage of the
presence of multiple interfaces on a single device and of the
inherently opportunistic nature of the communication me-
dia. Furthermore, some of the ad hoc communication tech-
nologies, such as Bluetooth and Zigbee, have increased the
ability of people to interact by following more natural social
patterns.

A considerable number of research projects with the aim
of designing protocols to support communication in these
kind of social contexts have been carried out in the recent
years. These research efforts are collectively referred to as
opportunistic networking (also called Pocket Switched Net-
working) [13] and constitutes a particular class of delay tol-
erant networked systems [5]. Many of the routing protocols
for this class of network are based on the exploitation of mo-

bility [12] and colocation information, such as [9, 11], and
social information, such as [8, 6, 2, 3]. In addition to routing
protocol there is also a need for the provision of frameworks
that are able to support programming abstractions for this
kind of systems. A classic layer-based infrastructure might
not be sufficiently flexible for opportunistic protocols that
often interact with different components/layers of the sys-
tem at the same time. Haggle [13] and the DTN2 [4] frame-
works are recent examples of generic communication plat-
forms for heterogeneous delay tolerant networks.

In this paper we present the implementation of Gently1,
a protocol which combines our experience with context-
aware and socially-aware routing and practically shows how
the protocol can be embedded into a DTN framework. More
specifically, Gently is based on the Context-aware Adap-
tive Routing (CAR) protocol [11] and LABEL [8], a social-
aware protocol. CAR is a natural fit for the Haggle vision,
since it exploits prediction of people movement and coloca-
tion patterns to deliver messages in an asynchronous way.
At the same time, LABEL is able to exploit social clustering
in order to support message asynchronous delivery to mem-
bers of a specific community. It represents a complemen-
tary mechanism to the prediction based technique offered
by CAR. To summarise, the contributions of this paper are
as follows:

• We present a new protocol (Gently) which combines a
social-tag based method like LABEL and a predictive
protocol like CAR to support opportunistic communi-
cation.

• We discuss the implementation of this solution accord-
ing to a clean slate networking approach in the Haggle
platform.

The remainder of this paper is organised as follows: in
Section 2 we present the CAR and LABEL protocols. In

1The protocol is named after the Dirk Gently character in Douglas
Adams’ Dirk Gently’s Holistic Detective Agency [1]. In the novel Dirk
Gently uses a holistic approach, based on the (social) interconnectedness
of all things; he follows (any) car that looks like it knows where it is going,
because it will probably lead him where he wants to be.

Section 3 we describe how the two protocols have been in-
tegrated in Gently. Section 4 contain the implementation
details of the new protocol in Haggle and outlines the main
design challenges. Section 5 focusses on the open issues in
designing probabilistic protocols for communication in in-
termittently connected networks, while Section 6 concludes
the paper.

2 CAR and LABEL
This section outlines the two protocols which are at the

basis of our approach.

2.1 Context-aware Routing (CAR)

The design goal of the CAR protocol is to support oppor-
tunistic communication in intermittently connected mobile
ad hoc networks. A detail description and the performance
evaluation of this protocol can be found in [11]. The ba-
sic assumption of CAR is that a path between sender and
receiver may not exist when the message is sent. Store-
and-forwarding mechanisms are necessary to allow for the
delivery of the message to the destination. The key routing
problem is the selection of the carrier by means of an intel-
ligent forwarding mechanism. The CAR algorithm is based
on the application of forecasting techniques and utility the-
ory for the evaluation of different aspects of the system that
are relevant for making routing decisions.

CAR is able to deliver messages synchronously (i.e.,
without storing them in buffers of intermediate nodes)
and asynchronously (i.e., by means of a store-and-forward
mechanism). The delivery process depends on whether or
not the recipient is present in the same connected region of
the network (cloud) as the sender. If both are currently in
the same connected portion of the network, the message is
delivered using an underlying synchronous routing protocol
to determine a forwarding path. If a message cannot be de-
livered synchronously, the best carriers for a message are
those that have the highest chance of successful delivery,
i.e., the highest delivery probabilities.

Delivery probabilities are synthesised locally from con-
text information. More specifically we use the change rate
of connectivity of a host (which, in our model, is used to
measure the likelihood of it meeting other hosts) and its
colocation with the message recipients.

2.2 Socially-Aware Forwarding (LABEL)

Identifying social information such as community mem-
bership about recipients can help to select suitable for-
warders, and reduce the delivery cost compared to naive
“oblivious” flooding.

The most simple socially-aware forwarding scheme is
called “labelling strategy” [8]. The protocol is based on the
assumption that each node has a label telling others about
its affiliation/group, just like in conference badges. The
strategy chosen is exclusively to forward messages to desti-

nations, or to next-hop nodes belonging to the same group
(same label) as the destinations. The evaluation of this pro-
tocol with different real data sets can be found in [8].

The problem with the simple “labelling strategy” is that
the source needs to wait until the community members of
the destination or the destination are at 1-hop distance from
itself to start the forwarding. This may be not acceptable in
many situations, since it may happen that the sender will
never be in reach of a member of the community of the
message recipient. Therefore, we propose an approach that
combines CAR and LABEL. CAR can be used to reach a
community, to route a message inside a community or when
social information is not available. The details of our solu-
tions are presented in the following section.

3 Gently
CAR was initially designed for unicast communication.

We have relaxed this assumption in Gently and support
anycast communication or, more in general, multicast to-
wards communities by means of its store-and-forward rout-
ing mechanisms. Gently defines collective names, or, more
precisely, names that identify groups of hosts: a recipient i
of a message can be a single host or a group/community of
hosts (e.g., communities of individuals or people interested
in messages of a certain type, like in content based routing).
We adopt a simple solution: a generic name i refers to a
generic class of hosts which can be a singleton set, in the
case of unicast, or a set with a higher cardinality, in the case
of communities. The labels that are used to identify com-
munities in LABEL are used in Gently as names for these
classes of hosts. Every host may be assigned to a group
identified by a certain label, if this information is available.

Let us assume that a host Hz has to send a message to a
generic host Hx belonging to a community Cy . Let us also
suppose that Hz does not belong to Cy in order to consider
the more general case. The Gently forwarding process is
based on the following algorithm:

• If Hx is in reach, the message is delivered syn-
chronously.

• If Hx is not in reach, but a host belonging to Cy is
in reach (LABEL based routing), the message is for-
warded to it; the host will store the message in its
buffer. Gently will then use a CAR-like routing ap-
proach inside the community for delivering the mes-
sage to the specified member of the group by means of
the best carrier among the group members.

• If a host belonging to CY is not in reach, the message
is sent to the best carrier for Hx that will store the mes-
sage (CAR-like routing). The best carrier may be the
node itself.

• If no information is available about the best carrier for
the destination Hx, the message is sent to the best car-
rier for the community Cy . This host is chosen by eval-
uating the best known carrier for a host of the commu-
nity Cy that is characterised by the highest delivery
probability.

This process is performed periodically and the number of
retransmissions can be set by the developer, for example
to limit the network traffic. If the recipient of a message
is a group, the message is forwarded to any member of the
group and then replicated in an epidemic manner among the
members of the group. In scenarios where memory and en-
ergy consumption do not represent an issue or if it is neces-
sary to increase the reliability of the delivery process, mul-
tiple copies can be used to reach a group and/or the message
recipient. The investigation of this mechanism is outside the
scope of the present work. In the next section we describe
how Gently has been integrated into Haggle.

4 Implementation of Gently
4.1 The Haggle Platform

We now briefly present the aspects of the Haggle plat-
form that are relevant to the implementation of Gently. Hag-
gle is an example of a novel DTN non-layered software ar-
chitecture. The architecture of Haggle is composed of six
independent Managers forming a layer-less communication
framework [13]:
Data Manager This entity is responsible for managing the
data that are stored in a searchable repository of Data Ob-
jects, an abstraction used in Haggle to store data with a set
of attributes.
Name Manager This entity is responsible for the map-
ping between different names identifying the user-level end-
points. The names of entities are stored as Name Objects.
Forwarding Manager This manager is responsible for de-
livering Data Objects to other hosts. It encapsulates a cer-
tain number of Forwarding Algorithms that are used to de-
liver the data to the final destinations. CAR is implemented
as one of these algorithms. Applications can start a data
transfer by specifying a set of Data Objects and a set of
Name Objects. The Forwarding Manager then constructs a
Forwarding Object that is a wrapper of a Data Object con-
taining metadata needed to the forwarding operation. The
metadata can also include expiration times and hop counts.
Protocol Manager This manager is only responsible for en-
capsulating and managing a set of Protocols. According to
the Haggle terminology, a Protocol is defined as a method
used to transfer a Forwarding Object between two nodes
(i.e., to enable point-to-point communication).
Connectivity Manager This manager is responsible for en-
capsulating a certain number of so-called Connectivities,
representing the available network interfaces. It provides

support for neighbour discovery and for managing com-
munication channels between two hosts. The Connectivity
Manager provides the abstraction of Neighbour that is a po-
tential next-hop by which a Protocol may know how to send
data of certain types to specific Name Objects.
Resource Manager This manager schedules the various
Tasks (i.e., operations) according to a predefined cost-
benefit algorithm. Different algorithms can be plugged in
by developers. All the outgoing and incoming network con-
nections are proposed for the scheduling to the Resource
Manager and executed according to their priorities based
on the evaluation of their possible benefits.

All Haggle managers provide interfaces which are used
for the communication and coordination among each oth-
ers, including the Forwarding Algorithms, like Gently. In
particular, our Gently implementation interacts with the
Data Manager in order to store and retrieve Data Objects,
with the Protocol Manager to obtain the list of the hosts
that are currently reachable and with the Name Manager
to manage the identities of the hosts and the users. The
role of Forwarding Algorithms is to route the Forward-
ing Objects to the final destination(s). Gently is imple-
mented as a pluggable Forwarding Algorithm for Haggle.
For each Forwarding Object that has to be sent, the For-
warding Algorithm creates a Forwarding Task that is exe-
cuted by the Resource Manager according to priorities eval-
uated with a decision algorithm that calculates the benefit
of performing a certain task. In our implementation, we
set the benefit to the maximum to guarantee the immedi-
ate scheduling of the task. When executed, the Forwarding
Task causes the associated Protocol to send the Forward-
ing Object to the specified recipient. From a more practi-
cal point of view, Forwarding Algorithms must implement
the setForwardingTasks() method that receives in
input the list of the pending Forwarding Objects. These
Forwarding Objects may have been created by the host or
may have been received from other hosts and stored tem-
porarily. Periodically, the Forwarding Manager invokes the
setForwardingTasks() method. In the current im-
plementation of Haggle, this interval is fixed, but this can
be easily modified by developers.

4.2 Implementation Overview

Gently is implemented as a single Forwarding Algorithm
for the Haggle platform. The implementation of this so-
lution is presented in the following section. We designed
a prototype implementation of Gently supporting one hop
synchronous communication combined with the commu-
nity based forwarding. From a practical point of view, in or-
der to run Haggle with Gently, this needs to be added to the
list of the routing protocols available for the forwarding pro-
cess in the configuration file of Haggle. No modifications
to the Haggle codebase is necessary. The main class of the

Gently package is GentlyForwardingAlgorithm;
encapsulates the logic of the algorithm implementing the
interface ForwardingAlgorithm. This class also im-
plements the LABEL based mechanisms that can be acti-
vated/deactived by the developer. The constructor of this
class launches three threads, responsible for forwarding the
data and control messages for creating and updating the pre-
dictors.

When the setForwardingTasks() is invoked, the
recipient of each Forwarding Object passed as a parameter
is extracted. Then, the protocol verifies if the recipient is
currently a neighbour (i.e., reachable at least through one
of the available interfaces) and, if this the case, the object
is forwarded to it. If a synchronous delivery is not possi-
ble, the forwarding process described in Section 3 is per-
formed. If the message can be forwarded to a member of
a certain community or to the Gently best carrier, the mes-
sage is added to the list of Forwarding Objects that is man-
aged by the Resource Manager. Otherwise, the message is
forwarded to the best carrier currently in reach. We note
that we had to provide support for multi-regions routing. In
other words, a host may be reachable through different net-
work interfaces. Different cost metrics can be assigned to
different interfaces.

Haggle does not provide any mechanism for exchang-
ing information periodically, like routing tables; however,
this is essential for proactive protocols. We implemented
the support for it by means of the classic threads syn-
chronisation techniques available in Java and the avail-
able Haggle components and abstractions. In particular,
the routing table messages are implemented as a special
type of Forwarding Object. More precisely, we added
a field in the Data Object that distinguishes these ob-
jects from those carrying data called ProtocolCode.
Forwarding Object containing routing tables are charac-
terised by a specific value of this variable. This field is
used for searching among the Forwarding Objects stored
in the Data Manager. Since the current version of Hag-
gle does not support binary fields in the Data Object but
only Java strings, we implemented two methods to seri-
alise and deserialise the routing tables into/from strings
(i.e., the encodeRoutingTableIntoString and the
encodeStringIntoRoutingTable methods).

Each host maintains a routing table that is implemented
as a HashMap containing entries that are instances of
the class GentlyRoutingTableEntry. The entries
of the routing table contains the nextHopHostId (that
is used for synchronous routing), the bestProbHostId
(for CAR-based routing) and the community fields (for
LABEL-based routing). The routing table is indexed using
targetHostId (i.e., the identifier of the destination).

CAR Forwarding Algorithm

Routing Table
Sender Worker

Thread

Routing Table
Checker Worker

Thread
Prediction Worker

Thread

Figure 1. Multithreaded structure of the im-
plementation.

4.3 Multi-threaded structure

Our goal was to encapsulate all the logic of the protocol
in one class in order to simplify the integration of Gently
in the platform. The multi-threaded structure of the class
implementing the forwarding algorithm is presented in Fig-
ure 1. We now describe the role of each thread in detail:
Prediction Worker The PredictionWorker is respon-
sible for updating the delivery probabilities by retrieving
information about the context from other Haggle man-
agers and by calculating the next step prediction using the
Kalman filter based local predictors. More specifically,
the PredictionWorker firstly updates the colocation
predictor by checking if the host is a neighbour (i.e., it is
reachable through at least one of the available interfaces).
This is performed by requesting the list of Protocols to
the Name Manager and then by checking all the reachable
neighbours through a specific protocol. This logic is im-
plemented by the method isColocated() that receives
a Name Object as parameter. If a new node is discovered,
a new Kalman filter predictor is initialised and added to the
pool of the predictors2. The thread also updates the current
change degree of connectivity and the related Kalman filter.
Then, for each host, the combined weighted utility is calcu-
lated. The estimated delivery probabilities of all the nodes
that are present in the routing tables are also updated. The
other role of the thread is to check if the delivery probabil-
ity of the host is higher than the one stored in the routing
table and, if this is the case, to insert its identifier as best
carrier and record its corresponding current delivery proba-
bility. Finally, this thread also checks if new names of the
host have been added to the Name Manager, inserting these
names to the routing tables for the delivery of the messages.
A host can have different entries in the routing tables, one
for each name. A different metric can be associated to dif-
ferent types of names (i.e., communication domains). An

2In the current implementation, no predefined size of the pool is set.
However, a possible choice is to enforce a fixed size by removing the hosts
of the pool with the lowest colocation values.

fragola
128.16.3.45

00:0f:b5:89:c8:2d
mirco@googlemail.com

pasta
128.16.10.27

00:0f:b5:89:d0:3b
ben@googlemail.com

pizza
128.16.10.26

00:18:4d:6e:56:9e
jon@googlemail.com

lenticchia
128.16.11.121
00:18:4d:56:90

cecilia@googlemail.com

Figure 2. Topology and addresses of the
hosts of the Haggle testbed.

alternative choice is to keep a name graph for all the names
indicating the same host, but this does not allow for imple-
menting specific calculation of the best path according to a
given metric or to particular cost/benefit mechanisms.

Routing Tables Sender Worker The role of the
RoutingTablesSenderWorker thread is the periodic
transmission of the routing tables to the other nodes that are
currently in reach. The routing tables are implemented as a
special type of Forwarding Objects that are generated by the
Forwarding Algorithm itself by constructing them as Data
Objects. They are then sent as standard Forwarding Objects
to all the neighbours on all the interfaces.

Routing Tables Checker Worker Another worker, imple-
mented by the RoutingTableCheckerWorker thread,
is responsible for checking if Forwarding Objects contain-
ing routing tables have been received. This is necessary,
since an architecture based on listeners for particular types
of messages (based on message filters) is not currently
available in Haggle. This thread periodically checks if the
Data Manager is currently storing routing tables by means
of a filter on the protocolCode field. In theory, this
should be done using a persistent filter that notifies an event
handler, but this has not yet been implemented in Haggle.
If Forwarding Objects containing routing tables have been
received, these are deserialised and the information is used
to update the local routing table. These threads are started
as daemons (according to the Java terminology) when Hag-
gle is launched. The interval of retransmissions of routing
tables and updating of the predictors can be set by develop-
ers.

4.4 Functional Testing

In order to perform a functional test of the integration of
Gently in Haggle, we have set up a testbed of four desk-
top computers equipped with 108 Mbps Netgear WG113T
Wireless Adapters. The testbed is represented in Figure 2.
We simulated disconnections at software level, testing dif-
ferent virtual topologies; one of these is shown in Fig-
ure 2, where even if the four hosts are physically in radio
range, the host pasta is not able to communicate using
synchronous routing to pizza.

We used a SMTP/POP application to test the plat-
form. This application is composed of two components:
a SMTP/POP proxy for the interaction with an email client
(like Thunderbird) and SMTP and POP protocols (imple-
menting the Protocol interface) inside Haggle that com-
municate with email servers. The SMTP proxy translates
the email sent by the client into a Forwarding Object with
one or more Data Objects, one containing the email itself
and the others if attachments have to be sent. The POP
proxy listens on port 110 for incoming connections from
the user’s client. When the client checks for email for the
first time, the POP proxy inserts a new known name (the
email address of the host) in the Name Manager. CAR is
periodically checking if new names have been registered re-
questing the list of known names of the host to the Name
Manager, as described above. The new names are then in-
serted in the routing table. In Figure 2 we indicate all the
names associated to the hosts (DNS name, IP address, Eth-
ernet 802.11 address and email address of the user). We ran
different test to observe if the asynchronous delivery pro-
cess was working correctly. We tested the routing tables
dissemination, the store-and-forward and the selection of
the best carrier mechanisms3.

Since our Gently prototype relies on Haggle for the com-
munication between pairs of nodes in ad hoc mode, the
transmission delay between two hosts is not influenced by
our implementation of Gently. Some measurements of these
delays are presented in [13].

5 Lessons Learnt and Open Issues
In this section, we discuss some key aspects of our

implementation experience in more details, outlining the
lessons learnt, with the aim of providing a number of sug-
gestions for the challenged networking community for the
design of future opportunistic communication frameworks
and protocols.

Deterministic and Probabilistic Delivery Mechanisms
In Gently a host h calculates (and keeps information about)
its delivery probability Ph,i for a certain number of hosts

3We also implemented a carrier testing mode. A host in carrier mode
will have delivery probability set to 1 for all the hosts and then it will
always be chosen as best carrier.

i (or classes of hosts i). By exchanging the routing infor-
mation, every host maintains information about a certain
number of potential carriers for hosts/classes i. In case the
delivery of the message is not based on a predicted or poten-
tial connectivity, but is rather certain, since the characteris-
tics of the network infrastructure or, more in general, the
future connectivity of the delay tolerant scenario is known
and/or planned a priori, we refer to it as deterministic. In
this case, the delivery probability will be equal to 1. For ex-
ample, the delivery probability Ph,i of a host h connected to
a host i by means of a satellite link available during sched-
uled transmission slots will be equal to 1, since we know
a priori that the delivery of the message will be possible in
the future. Similarly, a bus that has a fixed and predefined
route and that will deliver the message to a wireless Internet
gateway will be associated to a delivery probability equal
to 1 for the Internet-related addresses. With this model, we
can treat and unify deterministic and probabilistic delivery
mechanisms in our implementation of Gently, by exploiting
the heterogeneous network interfaces provided by Haggle.

Definition of Metrics and Costs With respect to deter-
ministic routing, the selection among multiple routes can be
based on the the calculation of the shortest path considering
different weights for links of distinct network domains. For
example, a GPRS link should be characterised by a weight
higher than the sum of the weights associated to several
802.11 links in order to avoid to be selected even if, from
a topological point of view, it is only one single hop from
the recipient. In any case, rule-based selection may also
be enforced for prediction based and socially-aware routing
decisions. We believe that the assignment of these costs, for
example using market-based strategies, represents an open
issue for the opportunistic network community.

Automatic Selection of the Protocols Another interest-
ing problem is the definition of the automatic selection of
protocols according to the context characteristics and the
application scenario requirements. The routing decisions
may be rule-based (i.e., static) or can rely on the evaluation
of the current state of the system (i.e, dynamic) in terms
of current resource availability, connectivity, security and
cost. In fact, users may want to use the cheapest transmis-
sion medium (for example, a mobile phone carrier instead
of a GPRS link). This information can also be included
in the bundles and evaluated when a routing decision has
to be made. For example, hosts may not be selected even
if they have the highest delivery probability for economic
or security reasons according to the sender requirements.
Haggle provides a natural support for the implementation
of this mechanism by means of the Resource Manager that
evaluates the associated cost and benefit of taking a certain
forwarding action. However, we also believe that a more ex-
pressive set of primitives are necessary to implement more

complex policies. A possible deployment scenario is the
support of emergencies, for example in case of terrorist at-
tack: in these situations, the framework should be able to
select automatically epidemic routing algorithms (the stan-
dard one proposed by Vahdat and Becker [14] or more opti-
mised ones such as [7]) instead of probabilistic algorithms
without any trade-offs in terms of transmission costs, secu-
rity, etc. We are currently investigating these aspects, also
considering a possible declarative routing approach [10] to
define the rules of the selection of the forwarding strategies.

6 Summary
In this paper we have presented the Gently, a routing pro-

tocol for Pocket Switched Networks based on the combina-
tion of the CAR and LABEL, implemented on top of the
Haggle framework. We have discussed the lessons learnt
from the development and integration of the routing com-
ponents, outlining the open issues and research challenges.

Acknowledgements
The authors would like to acknowledge James Scott

for his comments and acknowledge the support of EPSRC
through project CREAM.

References
[1] D. Adams. Dirk Gently’s Holistic Detective Agency. Pan Macmillan, 1998.

[2] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco. Socially-aware routing
for publish-subscribe in delay-tolerant mobile ad hoc networks. Journal on
Selected Areas in Communications, 26(5), June 2008.

[3] E. M. Daly and M. Haahr. Social network analysis for routing in disconnected
delay-tolerant MANETs. In Proceedings of MobiHoc’07, pages 32–40, New
York, NY, USA, 2007. ACM.

[4] DTN-2 Reference Implementation Version 2.5, October 2007.
http://www.dtnrg.org/wiki/Code.

[5] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of SIGCOMM’03, August 2003.

[6] J. Ghosh, S. J. Philip, and C. Qiao. Sociological Orbit aware Location Approxi-
mation and Routing (SOLAR) in MANET. Elsevier Ad Hoc Networks Journal,
5(2):189–209, March 2007.

[7] Z. J. Haas and T. Small. A new networking model for biological applications of
ad hoc sensor networks. IEEE/ACM Transactions on Networking, 14(1):27–40,
2006.

[8] P. Hui and J. Crowcroft. How small lables create big improvements. In Proc.
IEEE ICMAN, March 2007.

[9] A. Lindgren, A. Doria, and O. Schelén. Probabilistic routing in intermittently
connected networks. In Proceedings of SAPIR 2004, August 2004.

[10] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative rout-
ing: Extensible routing with declarative queries. In Proceedings of ACM SIG-
COMM’05, August 2005.

[11] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive Routing for Intermittently
Connected Mobile Ad Hoc Networks. In Proceedings of WoWMoM’05. IEEE
press, June 2005.

[12] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile networks. In Proceedings
of WDTN’05, pages 252–259, New York, NY, USA, 2005. ACM.

[13] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim, and
E. Upton. Haggle: Seamless networking for mobile applications. In Proceed-
ings of Ubicomp’07, pages 391–408, September 2007.

[14] A. Vahdat and D. Becker. Epidemic Routing for Partially Connected Ad Hoc
Networks. Technical Report CS-2000-06, Department of Computer Science,
Duke University, 2000.

