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The problem

» Aim to improve classification performance of a multimodal
recognition system

» Learn from multiple representations (images, speech, ...) of the
same symbols (0-9, A-Z)
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Previous approaches

Srivastava et al. (2012) — multimodal Deep Boltzmann Machine
fusing images and text
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Previous approaches

Ngiam et al. (2011) — bimodal deep autoencoders fusing audio
and video
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Cross-modality

» Only previously done after feature extraction

» ...but likely to increase classification performance if done
during this step — exploit correlations

» Non-trivial between incompatible (both spatially and
semantically) data types (audio/video)
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Contributions

1. Three deep learning architectures with cross-modal feature
extractors, each processing two modalities

2. A new high-quality audiovisual dataset

3. Interpretability of cross-modal exchanges — conclusions on
mutual influence between feature extractors and data types
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Models

1. CNN x MLP: take as input video frames and MFCCs for the
entire sequence;

2. CNN x CNN: video frames and spectrograms for the entire
sequence;

3. {CNN x MLP}-LSTM: video frames and corresponding
MFCCs, frame by frame.

The first 2 models process fixed-length sequences; had to average
examples across suitable windows, resulting in loss of information.
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{CNN x MLP}-LSTM baseline
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Cross-connections

» Introduced by Velickovi¢ et al. (2016)

» Exchange feature maps between streams that process
compatible data (e.g. YUV channels)
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Non-trivial cross-connections

» 2D ~» 1D: pass 2D features through a convolutional layer,
flatten the result and send it to a fully-connected layer which
produces 1D output

» 1D ~~ 2D: pass 1D features through a fully-connected layer,
reshape the result and deconvolve it to obtain data in a
matching shape for the other stream

» 2D ~ 2D: carefully deconvolve to account for the differences in
aspect ratio
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Cross-connections for CNN x MLP
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Residual connections

“Shortcut” connections introduced by He et al. (2016) to facilitate
designing deep architectures

identity

My work allows to shortcut inputs between incompatible streams in
a straightforward manner.
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Cross-connection regularisation

» Merging a stream with a cross-connection output increases the
number of parameters in the next layer—need increased
regularisation after the merging point (dropout from 0.25 to 0.5)

» RelU activation used in all intermediate layers, but
cross-connections use PReLU (parametric ReLU) to maintain
information integrity:

ax, x <0,

PReLU(x) = { o

where « is learnable (and always 0 for ReLU).
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Digits dataset

» Existing datasets (AVletters, CUAVE) were either inaccessible
or over-processed

» Collected data consisting of 750 high-quality examples of 15
people, each saying the digits 0—9 in 5 different tones

» Processed three modalities: video frames (2D), MFCCs (1D),
spectrograms (2D)
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Digits dataset
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Resulis for AVletters

Baseline Cross-connected p-value

CNN x MLP 73.1% 74.0% 0.65
{CNN x MLP}-LSTM  78.1% 85.6% 0.02

AVletters was over-processed, which resulted in a poor modality
alignment exacerbated by window averaging—the only situation
where the fixed-length model was not significantly better.
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Results for CUAVE

Baseline Cross-connected p-value

CNN x MLP 90.3% 93.5% 0.05
{CNN x MLP}-LSTM  96.9% 98.8% 0.01
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Results for Digits

Baseline Cross-connected  p-value

CNN x MLP 78.3% 86.7% 2 x10°3
CNN x CNN 66.7% 70.4% 5x10~*
{CNN x MLP}-LSTM  88.7% 93.0% 1.2 x1073
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Interpretability

» Adding cross-connections enables the modalities to interact
more usefully towards building a stronger joint representation

» Investigated the discriminative properties of cross-connections
(2D ~~ 1D) and their ability to pass features between streams
in a structurally interpretable manner (1D ~~ 2D)

_I_ UNIVERSITY OF

AMBRIDGE



» A dimensionality reduction method that preserves the notion of
distance between the points in a high-dimensional feature
space, allowing for detecting interpretable 2D clustering.

» Investigated outputs from a 2D ~~ 1D connection from the CNN
x MLP model
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t-SNE visualisation

Visible clustering observed across the different classes (0-9).
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Structural interpretability

» Analysed a 1D ~~ 2D residual cross-connection from the {CNN
x MLP}-LSTM model

» Plotted Euclidean distances (L2 norms) between consecutive
input sequences and the corresponding outputs of the residual
connection

» Visualised activations of the cross-connection for several
examples, across all timesteps
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Activations
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Conclusions

» Devised a novel way of exchanging information between
fundamentally incompatible data types in the feature extraction
stage, obtaining highly significant improvements in
classification performance

» Created a new high-quality dataset that can be used for future
multimodal research

» Made steps towards higher interpretability of multimodal
learning

» Work presented in a poster at the ARM Research Summit 2017
and during a presentation at the Workshop on Computational
Models for Crossmodal Learning (CMCML), IEEE
ICDL-EPIROB 2017.
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Thank you!

Questions?
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