
Mechanising and Verifying the WebAssembly
Specification

Conrad Watt
University of Cambridge

United Kingdom
caw77@cam.ac.uk

Abstract
WebAssembly is a new low-level language currently being
implemented in all major web browsers. It is designed to
become the universal compilation target for the web, obsolet-
ing existing solutions in this area, such as asm.js and Native
Client. The WebAssembly working group has incorporated
formal techniques into the development of the language, but
their efforts so far have focussed on pen and paper formal
specification.
We present a mechanised Isabelle specification for the

WebAssembly language, together with a verified executable
interpreter and type checker. Moreover, we present a fully
mechanised proof of the soundness of theWebAssembly type
system, and detail how our work on this proof has exposed
several issues with the official WebAssembly specification,
influencing its development. Finally, we give a brief account
of our efforts in performing differential fuzzing of our inter-
preter against industry implementations.
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mantics;
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1 Introduction
JavaScript’s continued monopoly on the modern web has
caused the ecosystem to develop in unintuitive ways. De-
spite its original design as a high-level scripting language,
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a significant proportion of JavaScript currently running on
the web is generated by compilation from C/C++, target-
ting the asm.js subset [Herman et al. 2014]. JavaScript was
never designed to be a low-level compilation target, and
even the severe restrictions of asm.js, disallowing nearly all
of its dynamic behaviour, are not enough to save asm.js code
from significant performance penalties compared to native
compilation [Zakai and Nyman 2013].

Furthermore, the ubiquity of asm.js has placed unexpected
and arguably inappropriate pressures on the evolution of the
JavaScript specification. For example, a proposal to expose na-
tive SIMD vector instructions and types has recently reached
the final candidate stage for inclusion into the JavaScript
specification [TC39 2017b]. SIMD instructions are normally
only explicitly utilised at the level of native assembly, or
in the lowest-level C/C++ programs to eke out a final few
percent of performance in arithmetic-heavy algorithms. The
proposed feature is motivated by a desire to increase the
efficiency of C/C++ code compiled to JavaScript, but it also
bloats the specification, complicates JavaScript engine opti-
misations, and is practically unusable in hand-coded scripts.
Attempts to offer a more appropriate language in the

browser as a compilation target, most notably Google’s Na-
tive Client [Google 2017], have until now met with low adop-
tion rates and patchwork support across different browsers.
WebAssembly [WebAssembly Community Group 2017c] is
the first true cross-party offering in this area. It is just as
much the result of a political process as it is a technical one:
the WebAssembly working group contains representatives
from Google, Microsoft, Apple, and Mozilla, and each of
these companies have committed to fully supporting Web-
Assembly in their respective browsers.

WebAssembly is designed to be embedded within a host
environment. The canonical example is a WebAssembly im-
plementation running inside a web browser’s JavaScript en-
gine. When a host program invokes a WebAssembly func-
tion, the function executes in a sandbox that cannot access
the host’s wider state. The host program can either simply
be a thin wrapper around a self-contained WebAssembly
function, or can choose to call out to WebAssembly only at
certain points where efficiency is desired. It is anticipated
that the majority of WebAssembly code will be produced
through compilation from C/C++, using the official Binaryen
toolchain [WebAssembly Community Group 2017a].
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i32.const 4
i32.const 2
i32.const 1
i32.add
i32.add

{ i32.const 4
i32.const 3
i32.add

{

i32.const 7

Figure 1. A trivial WebAssembly stack, reduced according to
the language’s small-step semantics.

i32.const n 7→ EConst (ConstInt32 n)

i32.add 7→ Unop_i T_i32 Add

loop
e1
e2
...

end

7→ Loop ([] → [])
[e1, e2, ...]

Figure 2. A selection of mappings from concrete opcodes (tex-
tual representation) to abstract operations (specification repre-
sentation, in Isabelle).

loop
i32.const 4
i32.const 2
i32.const 1
i32.add
i32.add
br 0

end

{

label <c>
i32.const 4
i32.const 2
i32.const 1
i32.add
i32.add
br 0

end

{
label <c>

i32.const 4
i32.const 3
i32.add
br 0

end

{
label <c>

i32.const 7
br 0

end

{

loop
i32.const 4
i32.const 2
i32.const 1
i32.add
i32.add
br 0

end

Figure 3. A WebAssembly stack illustrating the behaviour of the loop opcode.

The designers of WebAssembly have made it an explicit
goal to specify the language in a way that makes it amenable
to formal analysis and verification. The draft specifica-
tion [WebAssembly Community Group 2017f] explains all
semantic behaviour both in English prose, and with an ac-
companying natural deduction style formal rule. Moreover,
members of the working group have recently produced a
paper that details a non-mechanised formal semantics for a
large core of the language [Haas et al. 2017a]. This paper, and
the official specification, both state that the WebAssembly
type system enjoys several soundness properties.

We have produced a full Isabelle mechanisation of the core
execution semantics and type system of the WebAssembly
language (§3). In addition, we have created a mechanised
proof for the type soundness properties stated in the working
group’s paper. In order to complete this proof, several defi-
ciencies in the officialWebAssembly specification, uncovered
by our proof and modelling work, needed to be corrected
by the specification authors (§4). In some cases, these meant
that the type system was originally unsound.

We havemaintained a constructive dialoguewith elements
of the working group, mechanising and verifying new fea-
tures as they are added to the specification. In particular, the
mechanism by which a WebAssembly implementation inter-
faces with its host environment was not formally specified
in the working group’s original paper. Extending our mech-
anisation to model this feature revealed a deficiency in the
WebAssembly specification that sabotaged the soundness of
the type system.

We have also defined a separate verified executable inter-
preter (§6) and type checker (§5). Like many verified lan-
guage implementations, these artefacts require integration
with an external parser and linker to run as standalone pro-
grams, which introduces an untrusted interface. We use the
official reference WebAssembly interpreter [WebAssembly
Community Group 2017d], implemented in Ocaml, for this
purpose. Our core proofs of correctness allow us to exper-
imentally validate our mechanised specification using our
executable interpreter, both by leveraging the official Web-
Assembly conformance test suite, and by conducting fuzzing
experiments. These initial validation efforts are detailed to-
wards the end of the paper (§7).

All Isabelle and OCaml code discussed in this paper is
released publicly under a BSD-style license [Watt 2017a]. At
a rough count, our work contains ~11,000 non-whitespace,
non-comment lines of Isabelle code, with the mechanisation
of the specification itself coming to ~700 lines of code.

2 The Structure of WebAssembly
WebAssembly is a stack-based, bytecode language. Its exe-
cution semantics are naturally specified using a small-step
reduction relation. Figure 1 is an illustration of the execution
of a simple WebAssembly program according to this relation.
This example is given in (slightly simplified) WebAssembly
text format, an officially supported textual representation
designed to present WebAssembly bytecode in a human-
readable way.
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— values
datatype (’a,’b,’c,’d)
v =

ConstInt32 ’a
| ConstInt64 ’b
| ConstFloat32 ’c
| ConstFloat64 ’d

— basic expressions
datatype (’a,’b,’c,’d)
b_e =

Unreachable
| Nop
| Drop
| Select
| Block tf "((’a,’b,’c,’d) b_e) list"
| Loop tf "((’a,’b,’c,’d) b_e) list"
| If tf

"((’a,’b,’c,’d) b_e) list"
"((’a,’b,’c,’d) b_e) list"

| Br i
| Br_if i
| Br_table "i ne_list"
| Return
| Call i
| Call_indirect i
| Get_local i
| Set_local i
| Tee_local i
| Get_global i
| Set_global i
| Load t "(tp × sx) option" a off
| Store t "tp option" a off
| Current_memory
| Grow_memory
| EConst "(’a,’b,’c,’d) v" ("C _" 60)
| Unop_i t unop_i
| Unop_f t unop_f
| Binop_i t binop_i
| Binop_f t binop_f
| Testop t testop
| Relop_i t relop_i
| Relop_f t relop_f
| Cvtop t cvtop t "sx option"

— value and function types
datatype

t = T_i32 | T_i64 | T_f32 | T_f64
datatype

tf = Tf "t list" "t list" ("_ ’→ _" 60)

— global variables (with mutability flag)
datatype

mut = T_immut | T_mut
record (’a,’b,’c,’d) global =

g_mut :: mut
g_val :: "(’a,’b,’c,’d) v"

— packed types and signedness bit (for memory accesses)
datatype

tp = Tp_i8 | Tp_i16 | Tp_i32
datatype

sx = S | U

— function closures
datatype (’a,’b,’c,’d,’host)

cl =
Func_native i tf "t list" "((’a,’b,’c,’d) b_e) list"

| Func_host tf ’host

— instances
record (’a,’b,’c,’d,’host) inst =

types :: "tf list"
funcs :: "i list"
tab :: "i option"
mem :: "i option"
globs :: "i list"

— function tables
type_synonym (’a,’b,’c,’d,’host) tabinst =

"(((’a,’b,’c,’d,’host) cl) option) list"

— the program store
record (’a,’b,’c,’d,’meminst,’host) s =

inst :: "((’a,’b,’c,’d,’host) inst) list"
funcs :: "((’a,’b,’c,’d,’host) cl) list"
tab :: "((’a,’b,’c,’d,’host) tabinst) list"
mem :: "’meminst list"
globs :: "((’a,’b,’c,’d) global) list"

type_synonym i = nat
datatype unop_i = Clz | Ctz | Popcnt
datatype unop_f = Neg | Abs | Ceil | Floor | Trunc | Nearest | Sqrt
datatype binop_i = Add | Sub | Mul | Div sx | Rem sx | And | Or | Xor | Shl | Shr sx | Rotl | Rotr
datatype binop_f = Addf | Subf | Mulf | Divf | Min | Max | Copysign
datatype testop = Eqz
datatype relop_i = Eq | Ne | Lt sx | Gt sx | Le sx | Ge sx
datatype relop_f = Eqf | Nef | Ltf | Gtf | Lef | Gef
datatype cvtop = Convert | Reinterpret

Figure 4. Core WebAssembly AST and supporting definitions, as they appear in our Isabelle model. Values, expressions,
and components of the program store are parameterised by type variables so as to abstract the underlying representation of
WebAssembly types, the heap, and the host environment.
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— administrative instructions
datatype (’a,’b,’c,’d,’host)
e =

Basic "(’a,’b,’c,’d) b_e" ("$_" 60)
| Trap
| Callcl "(’a,’b,’c,’d,’host) cl"
| Label nat "((’a,’b,’c,’d,’host) e) list" "((’a,’b,’c,’d,’host) e) list"
| Local nat i "((’a,’b,’c,’d) v) list" "((’a,’b,’c,’d,’host) e) list"

— Definitions (type variables elided)
inductive reduce_simple :: "[e list, e list] ⇒ bool" and
reduce :: "[s, v list, e list, nat, s, v list, e list] ⇒ bool"
— Abbreviations
(|es|) { (|es’|) ≡ reduce_simple es es’
(|s;vs;es|) {_i (|s’;vs’;es’|) ≡ reduce s vs es i s’ vs’ es’
C ≡ EConst
$ ≡ Basic

(|es|) { (|es’|)
Reduce_Simple

(|s;vs;es|) {_i (|s;vs;es’|)

(|s;vs;es|) {_i (|s’;vs’;es’|)

Lfilled k lholed es les

Lfilled k lholed es’ les’ Label_Context
(|s;vs;les|) {_i (|s’;vs’;les’|)

app_binop_i iop c1 c2 = None
Binop_i32_None

(|[$i32.const c1, $i32.const c2, $(Binop_i T_i32 iop)]|) { (|[Trap]|)

Call
(|s;vs;[$(Call j)]|) {_i (|s;vs;[Callcl (sfunc s i j)]|)

cl = Func_native j (t1s _> t2s) ts es ves = ($$* vcs)

length vcs = length t1s length t2s = m zeros ts = zs
Callcl

(|s;vs;ves @ [Callcl cl]|) {_i (|s;vs;[Local m j (vcs@zs) [$(Block ([] _> t2s) es)]]|)

Figure 5. A small selection of reduction rules as they appear in our Isabelle model, re-formatted in a natural deduction style.

WebAssembly is not a large language. Its official specifi-
cation defines 171 individual opcodes [WebAssembly Com-
munity Group 2017b], but each of these can be viewed as
different specialisations of the 28 abstract operations spec-
ified in the working group’s paper [Haas et al. 2017a]. All
WebAssembly behaviour is specified at the level of abstract
operations, not concrete opcodes.
WebAssembly makes it an explicit goal to eliminate un-

defined behaviour from the specification [Haas et al. 2017a].
Its heap is a linear array of bytes and all accesses are bounds-
checked, and there is no integer-pointer distinction when
addressing into it. In addition, WebAssembly value types
have no trap representations; every sequence of 32 or 64
bits can be deserialised into a valid value of any type of the
appropriate length. WebAssembly requires all programs to
undergo validation (type checking) before they can be ex-
ecuted. This allows a number of properties to be statically
checked. For example, it is a type error if an operation stati-
cally accesses a local variable index that is out of bounds.

The design of the language also attempts to minimise non-
determinism. There are only two sources of non-determinism
in “pure"WebAssembly. Firstly, the bit representation of NaN
floating point values is not precisely specified, and implemen-
tations are free to have multiple NaN representations which
they may choose to use non-deterministically. Secondly, the

grow_memory instruction, which allocates additional memory
to the heap, is allowed to fail non-deterministically.
The other source of non-determinism is interaction with

the host environment. A WebAssembly implementation may
invoke host functions, effectively API calls which transfer
control to the host environment. The behaviour of these host
functions is specified as entirely non-deterministic, subject
to certain restrictions designed to preserve the integrity of
the WebAssembly state, which will be discussed in more
detail in our section on the soundness proof (§4).

2.1 The Semantics of WebAssembly
Throughout this section, we will use extracts from our Is-
abelle mechanisation of the specification to illustrate funda-
mental components of the language. Unless otherwise stated,
these definitions correspond exactly to those of the official
specification [WebAssembly Community Group 2017f], aside
from the minor syntactic differences inherent in mechanisa-
tion. Our Isabelle representation of the language’s core AST
can be found in Figure 4, and a mapping of some pertinent
concrete opcodes to abstract operations of the AST is given
in Figure 2.
As the inclusion of a “loop" opcode in this mapping may

have hinted, WebAssembly’s approach to control flow is un-
usual. Unlike most other bytecode languages, WebAssembly
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— the paper definitions
L(0) = e* [<hole>] e*
L(i+1) = e* (label n e* L(i)) e*

L(i)[(vs @ [$(Br i)] = lfilled
length vs = n const_list vs

Br
(|[Label n es lfilled]|) { (|vs @ es|)

— our mechanisation’s definitions
— (type variables elided for brevity)
datatype (snip)

Lholed =
LBase "e list" "e list"

| LRec "e list" nat "e list" Lholed "e list"

lholed = (LBase vs es’) const_list vs
L0

Lfilled 0 lholed es (vs @ es @ es’)

Lfilled k lk es lfilledk lholed = (LRec vs n es’ lk es’’) const_list vs
LN

Lfilled (k+1) lholed es (vs @ [Label n es’ lfilledk] @ es’’)

Lfilled i lholed (vs @ [$(Br i)]) lfilled length vs = n const_list vs
Br

(|[Label n es lfilled]|) { (|vs @ es|)

Figure 6. Comparing the paper definitions of nested execution contexts and the Br rule (top left) to those of our mechanisation.

does not contain any mechanism for unstructured control
flow, such as branch or goto. Instead its binary format explic-
itly includes the loop, if, and block instructions, which cre-
ate a form of structured control flow by bookending sections
of the stack. This behaviour is illustrated in Figure 3. Notice
how the original “linear" program of Figure 1 is bookended
with the loop and end opcodes, which form an evaluation
context. The first step of reducing the loop is to convert
it to the “administrative instruction" label. Administrative
instructions (hereafter, “administrative operations") are not
part of the binary format. They are purely specification con-
trivances, extensions to the core abstract operations designed
to keep track of intermediate state during a reduction. The
conversion from loop to label effectively unrolls the loop
once, with the (abbreviated) continuation element of the la-
bel, <c>, keeping track of the operations which make up the
continuation of the loop. This becomes relevant when paired
with the br instruction.

The br instruction is officially named “branch" in the spec-
ification, but it functions more like a combination of the
JavaScript break and continue statements: br n transfers
execution to end of the nth innermost evaluation context
(zero indexed), effectively popping all intervening instruc-
tions from the stack. When a label is targetted in this way, its
continuation element is then pushed onto the stack. This has
the effect of bringing the loop to its next iteration. If control
falls off the end of the label without executing a br instruc-
tion, the continuation is discarded and the loop therefore
terminates. WebAssembly’s unique approach to control flow
is a significant component of the challenge in proving type
soundness and correctness properties of implementations,
especially since a single br instruction can break multiple
loops at once (although only the outermost, “targetted" loop
will have its continuation pushed).

When relating the loop instruction to the Loop abstract
operation (Figure 2), notice how a function type annotation
([] → []) is introduced. In the current WebAssembly
specification, control flow opcodes are not allowed to ma-
nipulate values which occur outside their own inner con-
text [Haas et al. 2017a]. Therefore, the type of the arguments
to the abstract operation will always be the empty list. How-
ever, allowing these constructs to accept arguments is a
planned future feature, and therefore the abstract operation
supports this.

The original paper formalisation defines 46 reduction rules
for the language. Our mechanisation defines 65; we type-
specialise some arithmetic and bitwise operations in order to
provide a cleaner interface for code extraction, and we imple-
ment host function behaviours that the paper formalisation
did not support. A small selection of reduction rules and an
AST extension for administrative operations can be found in
Figure 5. The administrative operations are Trap, which rep-
resents an unrecoverable error, Callcl (also named Invoke

in some versions of the specification) which represents the
invocation of a function closure, Label, which represents a
section of code that can be broken out of by Br, and Local,
which represents the local context of an invoked function.

The full reduction relation for WebAssembly is defined
between configurations, which consist of a stack of abstract
operations, together with a program store and a list of local
variables, and an instance index which indicates which parts
of the global store are “owned" by the currently running pro-
gram. For example, the Call rule pushes a closure object onto
the stack selected using the sfunc operation, which looks up
the appropriate closure based on the current instance index
together with the call index. Parts of the reduction relation
may be elided where they are not involved in a particular
rule. As an example, the Binop_i32_None rule describes the
execution of a binary arithmetic operation which results in a
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record t_context =
types_t :: "tf list"
func_t :: "tf list"
global :: "tg list"
table :: "nat option"
memory :: "nat option"
local :: "t list"
label :: "(t list) list"
return :: "(t list) option"

— definition
inductive b_e_typing :: "[t_context, ((’a,’b,’c,’d) b_e) list, tf] ⇒ bool"
— abbreviation
(C ⊢ es : tf) ≡ b_e_typing C es tf

is_int_t t
Binop_i

C ⊢ [Binop_i t _] : ([t,t] → [t])

tf = (tn → tm) C (|label := ([tn] @ (label C))|) ⊢ es : (tn → tm)
Loop

C ⊢ [Loop tf es] : (tn → tm)

i < length(label C) (label C)!i = ts
Br

C ⊢ [Br i] : (t1s @ ts → t2s)

C ⊢ es : (t1s → t2s)
Weakening

C ⊢ es : (ts @ t1s → ts @ t2s)

C ⊢ es : (t1s → t2s) C ⊢ [e] : (t2s → t3s)
Composition

C ⊢ es @ [e] : (t1s → t3s)

Figure 7. A selection of typing rules and definitions as they appear in our Isabelle model.

runtime error (e.g. division by zero), and does not depend on
the current instance, the store, or local variables. The Callcl
rule describes the behaviour of invoking a function closure:
a new local context is created for execution, containing the
body of the function and its local variables.
Our mechanisation differs from the official specification

in one minor way. The specification’s reduction semantics
define an execution/evaluation context structure of a single
hole surrounded by nested labels. This structure is depen-
dently typed; one of the structure’s elements is a number
which must be equal to the number of labels recursively
nested within itself. This number is used in defining the re-
duction rule for a Br i instruction, which must break out
of exactly i nested labels. Expressing this directly requires
type-level arithmetic. Since Isabelle does not support this, we
implement the dependent restrictions on the structure using
a “well-formed" predicate, Lfilled. These two approaches
are contrasted in Figure 6. Notice how the ultimate definition
of the Br reduction rule in our mechanisation differs in its re-
placement of the L(n) execution context with an equivalent
Lfilled. Intuitively, Lfilled k lholed es les can be read as
"les is the result of filling in the k-nested execution context
lholed with es". In practice, all semantic rules and proofs
can be expressed in terms of Lfilled, and the underlying
structure of the execution context is only inspected during
our proofs.

2.2 The Type System of WebAssembly
A small selection of WebAssembly’s typing rules can be
found in Figure 7. WebAssembly has four concrete value
types, corresponding to 32- and 64-bit floats and integers.
Every value in WebAssembly has one of these four types.
Opcodes have a type of the form (t* → t*) , effectively a

function from list of values to list of values. These opcode
types compose as expected, and the type of a stack of in-
structions is therefore also (t* → t*), the composition of
its constituent operations. All typing derivations are with
respect to a type context which represents the typing infor-
mation of the instance the program is running in.
Configurations are typed with respect to one of the in-

stances contained in their store. A configuration containing
a stack of type ([] → t*) under instance i can be said to
have type t* in i. The type of a WebAssembly program is the
type of its initial configuration.
Some WebAssembly typing rules are highly non-

deterministic. Figure 7 gives the typing rule for Br. The “in-
put" type of the Br operation is partially determined by the
label element of the typing context, which is extended while
typing the inner part of a “breakable" operation (see the
typing rule for loop). However, the type of the result, t2s,
is completely arbitrary. This is because the Br instruction
guarantees that all subsequent operations in the same ex-
ecution context will never be executed. However, it is still
possible for this dead code to be ill-typed. Consider the stack
of Figure 8. The left-hand stack is well-typed, since the type
of Br can “fill in" the missing integer argument. However,
no matter what type is picked when typing Br in the right-
hand stack, the mismatching integer and float types of the
subsequent operations cause the stack to be ill-typed. The
implications of this design are relevant to our verified type
checker.
The type system is claimed in the official specification

to be sound with respect to the stack reduction relation,
in the sense that well-typed programs enjoy progress and
preservation properties during execution.
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Lemma (Preservation). Given a configuration (|s;vs;es|)

with type t* in i, if (|s;vs;es|) {_i (|s’;vs’;es’|) then
(|s’;vs’;es’|) also has type t* in i.

Lemma (Progress). If a configuration (|s;vs;es|) has type t*
in i, then either es is a bare Trap representing an exception, or
a list of constant values, or there exists (|s’;vs’;es’|) such that
(|s;vs;es|) {_i (|s’;vs’;es’|)

WebAssembly’s type system is very similar (most likely
unwittingly) to the “stack effect calculus" [Poial 1990], a
decades-old type system initially proposed as part of an effort
to formalise the Forth language. This is mostly a historical
curiosity, as despite Forth’s similarity to WebAssembly as
another stack-based language with structured control flow,
most existing formal work on Forth is not applicable to Web-
Assembly due to the decision to model control flow using
a separate control stack [Power and Sinclair 2004] [Knaggs
1993] , whereas in WebAssembly all values, operations and
control instructions are held (at least abstractly) in the same
stack. However, recent discussions about the typing ramifica-
tions of adding a hypothetical “dup" opcode to WebAssembly
dovetail neatly with existing theory on more polymorphic
variants of the stack effect calculus [Poial 2002].

3 The Model
We have built a full mechanisation of the core WebAssembly
specification as it appears in the working group’s original pa-
per [Haas et al. 2017a], extended with features and behaviour
added to the official draft specification [WebAssembly Com-
munity Group 2017f] after its publication. This mechanisa-
tion adheres as strictly as possible to the ideals of “eyeball
closeness", first explicitly advocated for by JSCert [Bodin
et al. 2014], a mechanisation of the ES5 JavaScript specifi-
cation. Eyeball closeness is a design principle of the formal
model such that there is a line to line textual correspondence
between the official specification and the mechanisation. In
the ideal case, someone familiar with the official specifica-
tion should be able to read an eyeball close mechanisation
as though it is re-stating the specification in an unfamiliar
pseudocode. Compared to JSCert, our model enjoys a signif-
icant advantage in preserving eyeball closeness in that all
WebAssembly reduction and typing rules in the specification
already include a definition in formal notation. This means
that our definitions can be eyeball close at the level of speci-
fication logical sentence to mechanisation logical sentence,
not merely specification English sentence to mechanisation
logical sentence.
The core of the mechanisation is our definition of two

inductive relations, which correspond to the WebAssembly
specification’s reduction and typing rules. These relations
are not directly executable, but we define separate executable
functions for an interpreter and type checker, and prove them
correct with respect to their corresponding relation.

block
br 0
i32.const 1
i32.add
drop

end

block
br 0
i32.const 1
f32.const 0
i32.add
drop

end

Figure 8. Two WebAssembly stacks illustrating the typing
behaviour of Br. Only the left-hand stack is well-typed.

Our work does not formalise the mapping of concrete op-
codes to abstract operations, as we consider this to be part of
work of the parser, which we do not model. This is consistent
with the way the official specification specifies the structure
of the binary format. Because of this, our model already
has full support for loops with non-empty arguments, even
though this feature is not available yet due to the restrictions
in place on the binary format.
Similarly, as previously mentioned, we do not model the

instantiation process of a WebAssembly module. This is a
linking and allocation phase that must be carried out before
a WebAssembly program can be executed. Instead, our mech-
anisation deals purely with the WebAssembly execution en-
vironment in its post-instantiation form, often referred to as
an instance. Within the official specification, both instantia-
tion and parsing are self-contained sections and therefore
our decision not to support them had no negative effect on
the rest of our mechanisation.

There are a small number of situations where the original
WebAssembly paper and the draft specification document
differ in their representation of certain specification artefacts.
We try to primarily follow the paper’s representation, since
it is more directly designed as a formal specification. In some
cases, however we must adopt the draft specification’s rep-
resentation in order to model a feature which the paper did
not support, or to improve compatibility with the untrusted
parser/linker that we use to make our verified interpreter
executable as a standalone program, since its internal state
is more heavily based on the draft specification.

In particular, the paper formalisation stores functions de-
clared within WebAssembly programs within each instance
itself. This is possible because the formalisation gives only
a sketch description of the instantiation process. In the full
draft specification, multiple instances may share the same
store, and one may export a function that is imported by
another. Instances cannot directly access each other, and
therefore a single copy of the function can be held directly
in the store, with each instance maintaining a reference to
it. Using this arrangement instead of the paper’s (which ef-
fectively makes a copy of an imported function every time
a new instance is created) more accurately represents the
instantiated state in real implementations, and allows our
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verified interpreter to interface with the official reference in-
terpreter’s instantiation mechanism, since we do not model
it ourselves.

A perennial concern when defining a mechanised specifi-
cation is accurately handling arithmetic, especially floating
point calculations. We use Isabelle’s locale mechanism to
abstract the implementation of arithmetic and the heap as
parameters. Any proofs completed within the locale give
results that are implicitly quantified over all possible imple-
mentations, so long as they satisfy the locale assumptions,
which encode the properties of the heap that we rely on.

We also use locales to abstract the behaviour of the host
environment, allowing our proofs to range over all possible
hosts. We slightly restrict the behaviour of host functions
compared to the full behaviour allowed by the latest official
specification. We allow host functions to arbitrarily mutate
the heap, but not the function table or the list of declared
global variables. We have found that this behaviour is suffi-
cient to pass all available WebAssembly conformance tests,
and execute all WebAssembly programs encountered “in the
wild" so far.

Another advantage of locales is that they force us to be
explicit in the assumptions we make about the behaviour of
untrusted code interfacing with our verified interpreter. For
example, when carrying out code extraction for integration
with the official reference interpreter, we must explicitly
axiomatise our assumption that the native OCaml code we
interface with has well-behaved host functions.

4 Soundness
We have produced a fully mechanised proof of both sound-
ness properties (Figure 9) as they are stated in the work-
ing group’s original paper. Prior to our work, no proof of
soundness for the type system, mechanised or otherwise,
was available. Each property was proven by induction, over
either the reduction or the typing relation.

To prove each of these properties, a large number of auxil-
iary lemmas needed to be established. This was most notable
when dealing with the inductive cases that involved recur-
sive execution contexts mixed with control flow. Figure 10
shows one of these lemmas, which must be proven by induc-
tion over the definition of the Lfilled predicate. The lemma
is a generalised version of a property that is required to prove
the progress property; a Br n instruction is only well-typed
if it is surrounded by at least n+1 breakable labels.
In the course of conducting this proof, we identified sev-

eral errors in the official specification which were acknowl-
edged and fixed by members of the working group. In some
cases, these errors meant that the type system was originally
unsound. We detail the most significant examples here.

theorem preservation:
assumes "⊢_i s;vs;es : ts"

"(|s;vs;es|) {_i (|s’;vs’;es’|)"
shows "⊢_i s’;vs’;es’ : ts"

theorem progress:
assumes "⊢_i s;vs;es : ts"
shows "const_list es ∨

es = [Trap] ∨
(∃ s’ vs’ es’. (|s;vs;es|) {_i (|s’;vs’;es’|))"

Figure 9. The preservation and progress properties, as they
appear in our Isabelle proof.

lemma progress_LN1:
assumes "(Lfilled j lholed [$Br (j+k)] es)"

"S·C ⊢ es : (ts → ts’)"
shows "length (label C) > k"

Figure 10. An auxiliary lemma in the progress property
proof.

4.1 Exception Propagation
As previously mentioned, the WebAssembly semantics has
a Trap administrative operation which is used to model an
unrecoverable exception. A Trap value is generated by run-
time errors such as division by 0 or out-of-bounds memory
accesses. Once it is generated, all other execution ceases,
and the Trap value propagates through all function calls and
nested control structures, terminating the program when
it reaches the top of the stack. However, the original draft
specification we based our model on did not allow the Trap

value to propagate as intended, and the reduction could in-
correctly become stuck before Trap reached the top of the
stack, violating the progress property.
We discovered this issue while attempting to prove the

progress property, and were able to communicate a coun-
terexample to the specification authors, as well as a suggested
solution, which was ultimately adopted into the specifica-
tion.

4.2 Return
Originally, the Return operation was simply specified as a
“maximal" break. That is, it would reduce to Br n, where n

was the number of nested labels within the current function
call. However, we discovered that the typing rule given was
incorrect, with the effect that a Return operation could occur
outside a function call and still be well typed. The infor-
mal intention of the specification was that such a program
should be rejected by validation. Determining the correct fix
was an extended process, and we assisted a member of the
working group by modelling several possible solutions. The
final solution involved changing the structure of the Label

and Local operations to keep track of the arity of the value
to be returned from their inner context, as well as altering
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the semantics of Return so that it now breaks directly to the
outside of the function call instead of being defined in terms
of Br.
A former draft of the semantics where these two issues

are still present can be found on the official GitHub reposi-
tory [Haas et al. 2017b].

4.3 Host Functions
Since host functions may behave in arbitrary, non-
deterministic ways that fall outside the space of possible
WebAssembly behaviours, they are required to preserve cer-
tain invariants on the runtime state, so that they do not
dynamically invalidate an assumption that would otherwise
always hold throughout “normal" execution. For example, a
host function may deallocate portions of memory, or change
the type of an immutable global variable. We discovered
that the invariants as they were stated in the specification
were too weak, so that a host function could obey them yet
still cause a well-typed program to crash [Rossberg 2017a],
in violation of the progress property. Ultimately, this sec-
tion of the specification was entirely re-written to fix this
problem [Rossberg 2017b].

5 An Executable Type Checker
We have defined, separate from our model, an executable
type checker in Isabelle, and proven it sound and complete
with respect to the inductive typing relation of our mechani-
sation. We did not use Isabelle’s tools to extract executable
code from the original typing relation (a process known as
animation), because we desired our type checker to match
the behaviour of industry implementations by running in a
single pass.
As previously mentioned, one quirk of WebAssembly’s

type system is that it requires the full stack to be typed, even
if a control instruction guarantees that a certain portion of
the stack is dead code. This is accomplished by giving the
section of stack terminated by the control instruction an
arbitrary type, but it is still possible for the remainder of the
stack to be ill-typed. This has implications for a concrete
type checking algorithm. WebAssembly’s type system is in-
tended to be checkable in one pass over the stack. However,
this requires a richer representation of the types of interme-
diate sections of the stack than is possible using the normal
WebAssembly syntax. Upon scanning to, for example, a br

instruction, a type checker with no polymorphic symbols
does not have the information it needs to pick the arbitrary
concrete type that will allow the rest of the stack to be well-
typed. If, instead, the type checker is allowed access to some
symbol representing an unconstrained type, it can progress,
constraining the type of the stack as it encounters further
instructions.

datatype ct =
TAny

| TSome t

datatype checker_type =
TopType "ct list"

| Type "t list"
| Bot

Figure 11. An extended type syntax, for use with the exe-
cutable type checker.

theorem b_e_typing_equiv_b_e_type_checker:
shows "(C ⊢ es : (tn → tm)) =

(b_e_type_checker C es (tn → tm))"

Figure 12. Equivalence of our type checker with our induc-
tive typing relation.

We implement a single-pass type checker which inter-
nally types the stack using an extended version of the Web-
Assembly type syntax which includes polymorphic symbols.
We introduce no more polymorphism than is necessary to
facilitate single-pass typing, so as to simplify the proofs.
The definition of our extended type syntax can be found in
Figure 11.
Polymorphism occurs at two levels. First, an individual

value type on the stack can be polymorphic. This is repre-
sented by the TAny type. Second, the stack itself can be poly-
morphic in its contents, including length. The only way the
stack itself can become polymorphic is by executing an un-
conditional control flow instruction, which makes the whole
stack unconstrained for the purposes of typing. TopType rep-
resents this unconstrained stack, which may include certain
constrained types appended to its head, including polymor-
phic value types, by subsequent instructions. Currently, the
only way to generate a single polymorphic value type is to
inspect an unconstrained stack with the Select operation.
Therefore, a stack that does not have an unconstrained base
cannot include polymorphic value types, and therefore the
Type stack type, representing the type of an exact stack, is a
list of t rather than ct. Finally, Bot represents a stack with
no valid type.

The type checking algorithm walks the stack from top to
bottom, operation by operation. Each operation produces
and consumes a certain number of (potentially polymorphic)
type symbols, or makes the entire stack type TopType [], the
entirely unconstrained stack. Bot is produced if the correct
type cannot be consumed, or if some other condition is not
satisfied, such as a Br operation attempting to break out of
more labels than are present.
This extended type syntax can be viewed as a constraint

system with the solutions being types in the form of the
original syntax. We prove that, for all WebAssembly pro-
grams, the types that satisfy our model’s typing relation are
exactly the solutions to the constraints our type checker
generates. Finally, we define a top level function which takes
a type-annotated WebAssembly program, and runs our type
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checker, checking that the type annotations satisfy the re-
sulting constraints. This function therefore returns true if
and only if the program is well-typed, and can be automati-
cally used by Isabelle’s code generation tools as an efficient,
executable version of our model’s typing relation.
Our type checker does not perform full type inference,

since we are allowed to assume during implementation that
the “initial" stack type, at the start the typing pass, is an exact
type. However, this could be an interesting future extension.

6 An Executable Interpreter
Wehave implemented an executable interpreter as an Isabelle
function, and proven it sound with respect to the mechanised
specification. Again, we decided against attempting to di-
rectly animate the reduction relation for several reasons.
Firstly, the definition of reduction given in the specification
makes use of inductively defined evaluation contexts. Our
mechanisation stays faithful to this in order to maximise eye-
ball closeness. However, this arrangement does not lend itself
to direct animation, since there is no syntax-directed way
of determining which part of a given WebAssembly stack
is the evaluation context and which part takes the place of
the “hole". Secondly, the semantics for exception propaga-
tion contain a significant amount of trivial, confluent non-
determinism. A direct animation would require handling
this; for example, by representing the possible reductions
in a choice monad, despite the different choices having no
effect on the final result. Finally, our relational definition of
reduction makes use of a number of highly inefficient list
manipulations, which even a "naive" interpreter would not
carry out.
Instead, we chose to define a separate executable inter-

preter as a function from WebAssembly configuration to
result, and prove it sound with respect to the reduction rela-
tion. In doing this, we enjoy the dual advantages of having a
specification in a form conducive to proofs, and a potentially
optimising interpreter which avoids the performance pitfalls
of a direct animation of the reduction relation. Indeed, our
interpreter implements a more efficient representation of
constant values on the stack, which reduces the frequency
with which the stack (as a list of operations) needs to be split
and concatenated during execution.

The core of the executable interpreter is a one step evalu-
ation function which mirrors the one step reduction relation
of the specification. For most operations, the function pro-
ceeds exactly as in the reduction relation. The reduction rules
focussing on execution contexts (see the Label_Context rule
of Figure 5) translate naturally into a simple recursive defini-
tion. The main complications in this strategy are the control
flow instructions Br and Return. For example, the Br instruc-
tion is defined as breaking out of all enclosing labels in a
single step. We therefore extend the evaluation function to
return a res_step (Figure 13) , which can either be a stack

datatype res_crash =
CError

| CExhaustion

datatype (’a,’b,’c,’d) res =
RCrash res_crash

| RTrap
| RValue "(((’a,’b,’c,’d) v) list)"

datatype (’a,’b,’c,’d,’e) res_step =
RSCrash res_crash

| RSBreak nat "(((’a,’b,’c,’d) v) list)"
| RSReturn "(((’a,’b,’c,’d) v) list)"
| RSNormal "(((’a,’b,’c,’d,’e) e) list)"

Figure 13. Interpreter result types.

after one step of reduction, or a special “control result" which
signals either that an outer call of the evaluation function
is for a label which is being broken to, or that an error has
occured.
Invocations of the evaluation function which result in a

new stack can be directly proven to be sound with respect
to the reduction relation. In order to prove the behaviour
of the evaluation function sound for control flow instruc-
tions which involve one of these control results as a return
value, certain auxiliary lemmasmust be established. Figure 14
shows one of these lemmas. This lemma relates an RSBreak

control result to the underlying structure of the evaluated
code. In particular, it encodes that an RSBreak n res control
result must have originated from a Br n’ operation nested
(n’-n) labels deep, with exactly the constant values res di-
rectly preceding it on the stack. Lfilled_exact is a tweaked
definition of Lfilled used exclusively during the soundness
proof. Unlike Lfilled, Lfilled_exact exposes all constant
values existing on the stack at the same level as the “hole",
in this case, res, allowing them to be explicitly referred to
during the proof.
At the top level, our interpreter repeatedly calls the one

step evaluation function until either a result or error is
reached. We turn “getting stuck" (having no reduction ac-
cording to the semantics) into an explicitly signalled error.
Because all functions in Isabelle require a termination proof,
we augment this interpreter with a standard fuel value which
decreases each iteration. The WebAssembly specification re-
quires all implementations to gracefully implement a limit
on the level of nested function calls, so we separately keep
track of a depth parameter which decreases every time a
function context is entered. A function executed with a re-
maining depth of 0 results in a simulated stack exhaustion
error.
Our executable interpreter cannot run as a stand-alone

function, since, as previously explained, we do not model
instantiation, or decoding of the binary format. Therefore,
to obtain a complete WebAssembly engine, we use Isabelle’s
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lemma run_step_break_imp_lfilled:
assumes "run_step d i (s,vs,es) = (s’, vs’, RSBreak n res)"
shows "s = s’ ∧

vs = vs’ ∧
(∃ n’ lfilled es_c. n’ ≥ n ∧

Lfilled_exact (n’-n) lfilled ((vs_to_es res) @ [$Br n’] @ es_c) es)"

Figure 14. Relating the RSBreak control result to an evaluation context of nested labels.

extraction mechanism to extract our interpreter function to
OCaml, and integrate it with the working group’s reference
WebAssembly implementation, also written in OCaml. This
requires that we implement an untrusted interface with the
reference implementation’s AST. For convenience, we also
make use of the reference interpreter’s internal implementa-
tion/representation of integers, floating point, and the heap.
In principle, these could be replaced with Isabelle defined
and extracted definitions, but the correctness of these defini-
tions is entirely orthogonal to our soundness results, and the
reference implementation makes use of Ocaml-native types
that are more efficient.

7 Validation and Fuzzing
Our executable interpreter, suitably augmented with the ref-
erence parser and linker, successfully passes all core language
conformance tests available in the WebAssembly reposi-
tory [WebAssembly Community Group 2017e]. Due to the
soundness result we have with respect to our mechanised
specification, these tests also serve to validate our model.

In addition to this, we have conducted differential testing
of our executable interpreter against several major Web-
Assembly engines. This was done both with the purpose of
validating our interpreter, and potentially discovering seman-
tic bugs in commercial WebAssembly engines. Tests were
generated using the CSmith tool [Yang et al. 2011], combined
with the official Binaryen toolchain [WebAssembly Commu-
nity Group 2017a] to convert the generated C tests into Web-
Assembly. This mimics how most WebAssembly programs
will be produced “in the wild". No errors were found either
in our implementation or any commercial engine, although
a crash bug was discovered within the Binaryen toolchain
itself, which was reported and fixed by the developers [Watt
2017b].

8 Related Work
Our mechanisation draws heavily from the original formal-
isation by the WebAssembly working group [Haas et al.
2017a]. However, this formalisation is purely handwritten,
contains no support for interaction with the host environ-
ment, and offers no proof of the two soundness properties it
claims the type system enjoys. To the best of our knowledge,
our work represents the first mechanised formalisation of
the complete WebAssembly core language, as well as the

first full proof, mechanised or otherwise, of the soundness
of the WebAssembly type system.
The structure and organisation of our proofs and exe-

cutable artefacts owe a great debt to the JSCert project [Bodin
et al. 2014], which mechanised the ES5 JavaScript specifica-
tion. JSCert separated its specification and executable imple-
mentation in order to offer a specification which could be
used to build proofs about language properties without sac-
rificing eyeball closeness, which its contributors argued was
necessary to relate proven properties back to the original tex-
tual specification. We consider our project to have benefited
significantly from following JSCert’s lead in this arrange-
ment: our work in proving WebAssembly’s type soundness
properties identified several important issues with the official
specification which we could not have discovered without
embarking on such a “deep" proof of a language property,
and might not have been so immediately actionable by the
official specification authors had we not maintained eyeball
closeness. Furthermore, we can now guarantee, through our
proofs, that the type system is sound in a way that would
not be possible for a “light-weight" specification.
The CakeML project [Kumar et al. 2014] includes formal

models of several intermediate, assembly-like languages.
Due to WebAssembly’s positioning as a web-compatible,
platform-independant compilation target, it may be fruitful
to investigate a WebAssembly backend for the CakeML com-
piler. Indeed, its maintainers acknowledge this as a possible
direction for the project [CakeML project 2017].
The Java Virtual Machine and bytecode have been ex-

tensively formalised, with a mechanisation existing in Is-
abelle [Klein and Nipkow 2006]. As previously discussed, the
Java bytecode does not share WebAssembly’s approach to
control flow, and therefore the comparisons we can make to
their model are limited. An extension to this work [Lochbih-
ler and Bulwahn 2011] uses locales to abstract over memory
consistency models, similar to the way we use the same
feature to abstract over different implementations of the
WebAssembly heap.

As previously discussed, some formal work has been done
on the Forth language [Knaggs 1993]. To the best of our
knowledge, no mechanisation work exists.

9 Future Work
To reduce our reliance on the official reference interpreter
in making our verified interpreter executable, it would be



CPP’18, January 8–9, 2018, Los Angeles, CA, USA Conrad Watt

valuable to model the instantiation phase of WebAssembly
program execution. This is an area of the specification un-
dergoing active re-writing [Rossberg 2017c], so it would be
challenging to keep the model abreast of ongoing changes.

A major incoming feature for WebAssembly is integration
with the SharedArrayBuffer proposal [TC39 2017a], which
adds a weak memory semantics to both WebAssembly and
JavaScript. Correct specification of weak memory models
is a major open problem. The models of many languages
have been shown to have fundamental deficiencies [Batty
et al. 2015], including the C++11 memory model, which Web-
Assembly must be “compatible" with in some sense, if it is
intended to be a compilation target. This is an area where
timely input from the formal verification community could
have a tangible impact on the health of the language. In
particular, it is important to work out to what extent the
memory model of the SharedArrayBuffer proposal falls foul
of known problems in the field, such as the issue of "thin air"
executions.
Finally, Ethereum developers have announced eWASM

[Ethereum Group 2017], a proposal to use WebAssembly
as the bytecode representation of programs running on the
Ethereum virtual machine. Our existingmodel needs almonst
no extension to be a faithful model of this new virtual ma-
chine, and there is scope for useful verification work, partic-
ularly in verifying translations from the old bytecode rep-
resentation, which has also been recently modelled [Hirai
2017], to WebAssembly.

10 Summary
We have presented a full mechanisation of the core Web-
Assembly language, together with several proofs of sound-
ness, and verified implementations of a type checker and
interpreter. In the course of conducting these proofs, we have
identified and assisted in fixing several errors in the official
WebAssembly specification.
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