Model-comparison Games with Algebraic Rules

Bjarki Holm

University of Cambridge Computer Laboratory

> Newton Institute 1 March 2012

Logic	Corresponding game
First-order logic	Ehrenfeucht-Fraïssé game

Logic	Corresponding game
First-order logic	Ehrenfeucht-Fraïssé game
Fixed-point logic	Pebble game

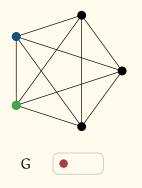
Logic	Corresponding game
First-order logic	Ehrenfeucht-Fraïssé game
Fixed-point logic	Pebble game
Fixed-point logic with counting	Counting game, bijection game

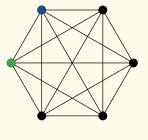
Logic	Corresponding game
First-order logic	Ehrenfeucht-Fraïssé game
Fixed-point logic	Pebble game
Fixed-point logic with counting	Counting game, bijection game
Fixed-point logic with matrix rank	Matrix-rank game

Logic	Corresponding game
First-order logic	Ehrenfeucht-Fraïssé game
Fixed-point logic	Pebble game
Fixed-point logic with counting	Counting game, bijection game
Fixed-point logic with matrix rank	Matrix-rank game
??	Invertible-map game

 L^k - first order logic with variables $x_1,\ldots,x_k.$

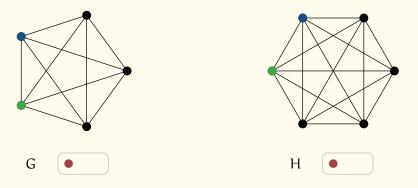
 L^k - first order logic with variables x_1, \ldots, x_k .





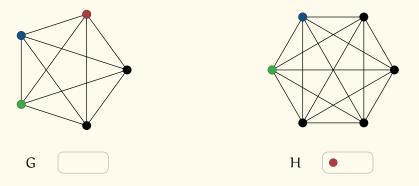
Spoiler Duplicator

 L^k - first order logic with variables x_1, \ldots, x_k .



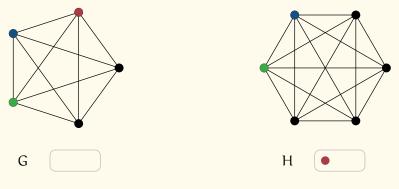
Spoiler chooses red pebble in G, say, and places it on a vertex Duplicator

 L^k - first order logic with variables x_1, \ldots, x_k .



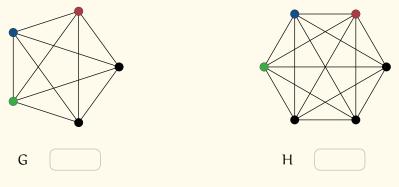
Spoiler chooses red pebble in G, say, and places it on a vertex Duplicator

 L^k - first order logic with variables x_1, \ldots, x_k .



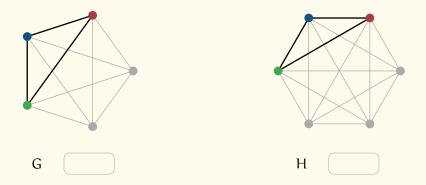
Spoiler Duplicator places the red pebble in H on some vertex

 L^k - first order logic with variables x_1, \ldots, x_k .



Spoiler Duplicator places the red pebble in H on some vertex

 L^k - first order logic with variables x_1, \ldots, x_k .



Pebble mapping: partial isomorphism?

Duplicator has a strategy to play forever in the k-pebble game on G and H

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

Every formula of IFP is invariant under L^k-equivalence, for some k

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

Every formula of IFP is invariant under L^k-equivalence, for some k

To show that a property \mathcal{P} is not definable in fixed-point logic:

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

Every formula of IFP is invariant under L^k-equivalence, for some k

To show that a property \mathcal{P} is not definable in fixed-point logic: For each k, exhibit a pair of graphs G_k and H_k for which

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

Every formula of IFP is invariant under L^k-equivalence, for some k

To show that a property \mathcal{P} is not definable in fixed-point logic: For each k, exhibit a pair of graphs G_k and H_k for which

• G_k has property \mathcal{P} but H_k does not; and

Duplicator has a strategy to play forever in the k-pebble game on G and H

iff

G and H agree on all sentences of L^k

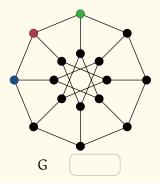
Every formula of IFP is invariant under L^k-equivalence, for some k

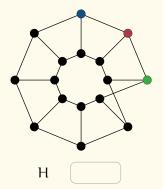
To show that a property \mathcal{P} is not definable in fixed-point logic: For each k, exhibit a pair of graphs G_k and H_k for which

- G_k has property \mathcal{P} but H_k does not; and
- ▶ Duplicator wins the k-pebble game on G_k and H_k.

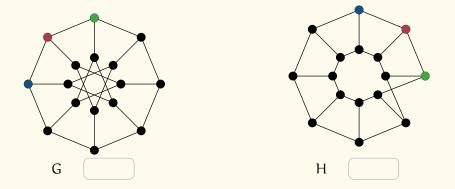
Pebble games for finite-variable counting logics

 C^k - extension of L^k with counting quantifiers: $\exists^{\geq i} x \, . \, \phi(x)$.

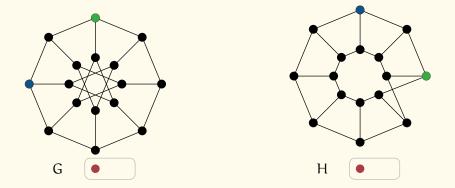




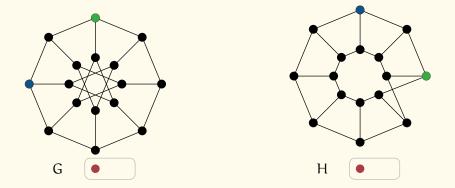
Spoiler Duplicator



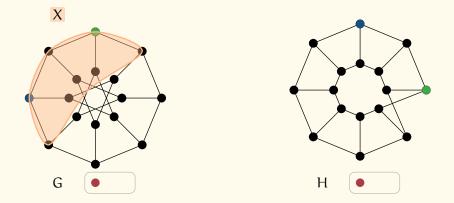
Spoiler chooses pebbles to remove from the two graphs Duplicator



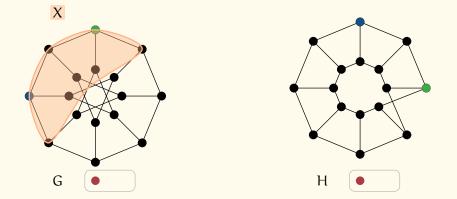
Spoiler chooses pebbles to remove from the two graphs Duplicator



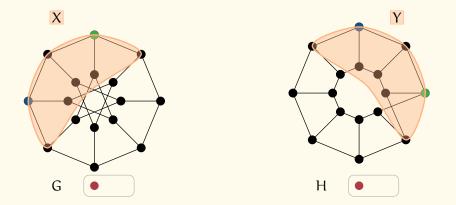
Spoiler chooses a set X of vertices in one of the structures Duplicator



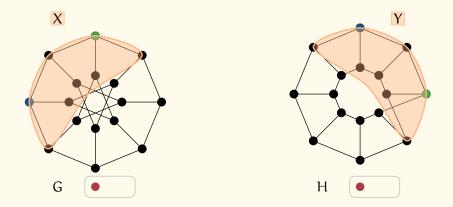
Spoiler chooses a set X of vertices in one of the structures Duplicator



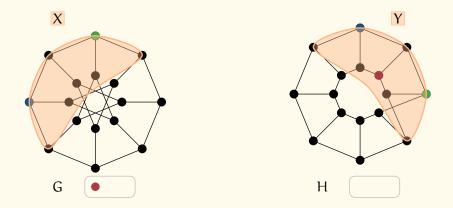
Spoiler Duplicator responds with a subset Y of H of the same cardinality



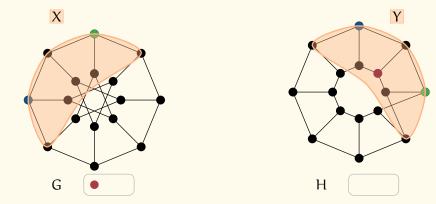
Spoiler Duplicator responds with a subset Y of H of the same cardinality



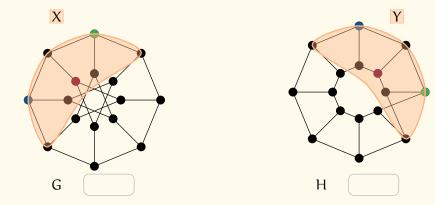
Spoiler places the red pebble in H on an element in Y Duplicator



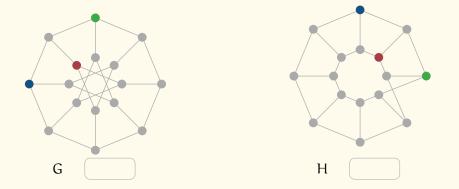
Spoiler places the red pebble in H on an element in Y Duplicator



Spoiler Duplicator places the red pebble in G on an element in X



Spoiler Duplicator places the red pebble in G on an element in X



Counting game characterises $C^k \rightsquigarrow$ game method for IFPC

Stronger logics for polynomial time

Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Stronger logics for polynomial time

Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Rank logics

Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR

Basic problem not expressible in IFPC Solvability of linear equations over a finite field → Gaussian elimination

Rank logics

Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR

 $\begin{array}{ll} \mbox{formula} & \phi(x,y) \\ \mbox{graph} & G = (V\!, E^G) \end{array}$

Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Rank logics

Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR

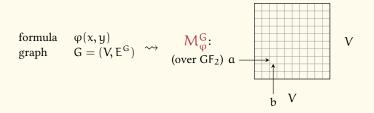
 $\begin{array}{lll} \mbox{formula} & \phi(x,y) \\ \mbox{graph} & G = (V, E^G) & \leadsto & \begin{tabular}{c} M^G_\phi \\ \mbox{(over GF_2)} \end{array}$

V

Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Rank logics

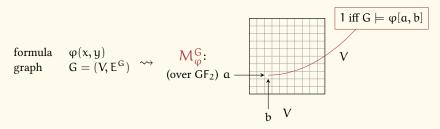
Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR



Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Rank logics

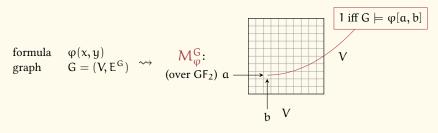
Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR



Basic problem not expressible in IFPC Solvability of linear equations over a finite field \rightsquigarrow Gaussian elimination

Rank logics

Extend fixed-point logic with operators for expressing matrix rank over finite fields \rightsquigarrow IFPR



Example

 $\phi(x,y):=Exy \ \rightsquigarrow \ M^G_\phi=adjacency\ matrix\ of\ G$

 R^k - extension of L^k with rank quantifiers: $rk^{\geq i}(x, y) \cdot \phi(x, y)$

 R^k - extension of L^k with rank quantifiers: $rk^{\geq i}(x, y) \cdot \phi(x, y)$

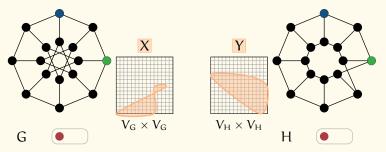
 $\rightsquigarrow \ rank \ of \ M^G_{\phi} \ over \ GF_2$

 R^k - extension of L^k with rank quantifiers: $rk^{\geq i}(x, y) \cdot \phi(x, y)$

First attempt: Extend the Immerman-Lander cardinality game

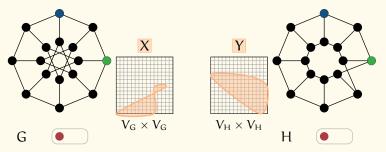
 R^k - extension of L^k with rank quantifiers: $rk^{\geq i}(x,y)$. $\phi(x,y)$

First attempt: Extend the Immerman-Lander cardinality game



 R^k - extension of L^k with rank quantifiers: $rk^{\geq i}(x, y) \cdot \phi(x, y)$

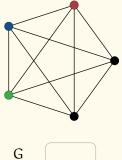
First attempt: Extend the Immerman-Lander cardinality game

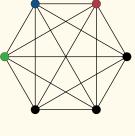


Problem: rank is not monotone!

Partition game for L^k - illustrates main idea

Partition game for L^k - illustrates main idea

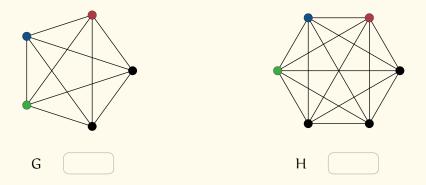




Н

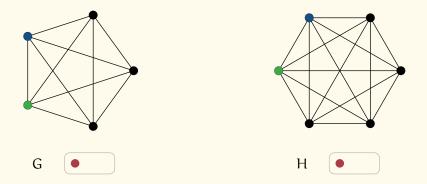
Spoiler Duplicator

Partition game for L^k - illustrates main idea



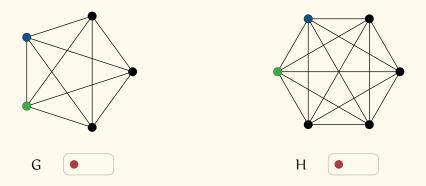
Spoiler chooses pebbles to remove from the two graphs Duplicator

Partition game for L^k - illustrates main idea



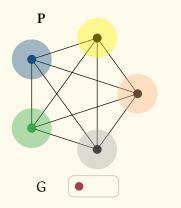
Spoiler chooses pebbles to remove from the two graphs Duplicator

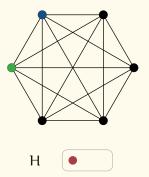
Partition game for L^k - illustrates main idea



Spoiler Duplicator gives a partition P of V_G, \ldots

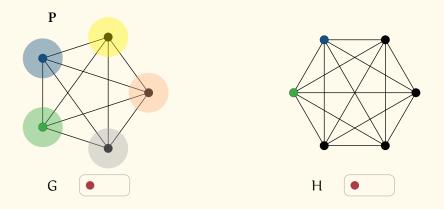
Partition game for L^k - illustrates main idea

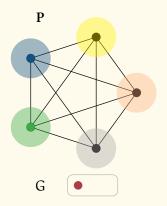


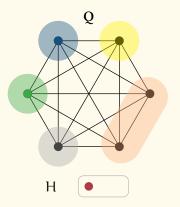


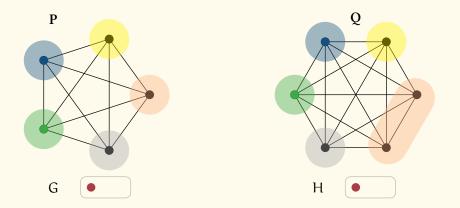
Spoiler Duplicator gives a partition P of V_G, \ldots

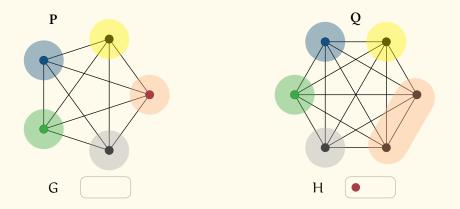
Partition game for L^k - illustrates main idea

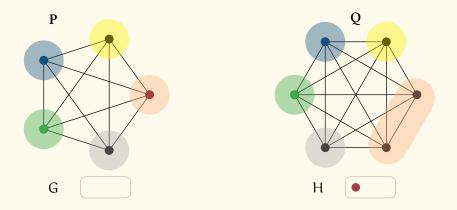


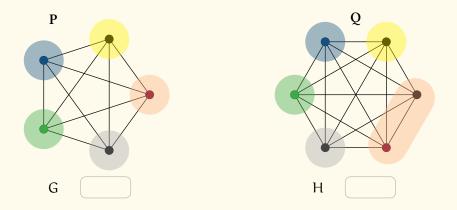




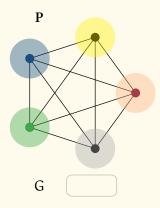


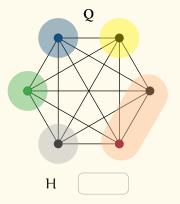




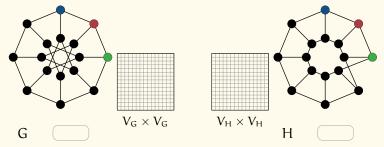


A new pebble-game protocol: partition games To get a partition game for $C^k \rightsquigarrow$ for all $X \in P$, ||X|| = ||f(X)||

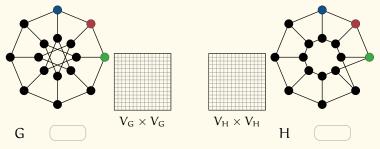




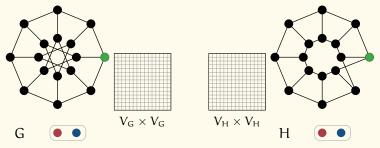
Spoiler Duplicator



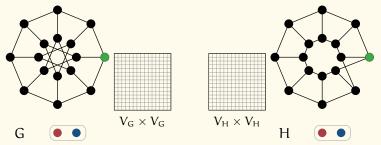
Spoiler Duplicator



Spoiler removes two pairs of corresponding pebbles Duplicator

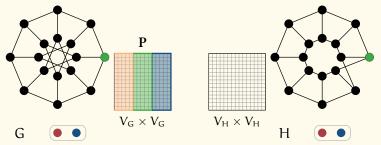


Spoiler removes two pairs of corresponding pebbles Duplicator



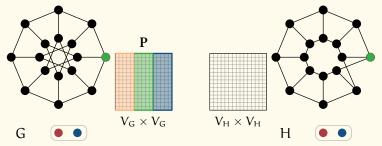
Spoiler

Duplicator gives a partition **P** of $V_G \times V_G$, ...

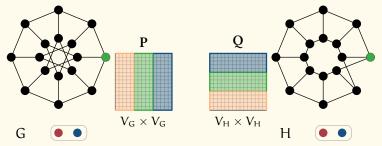


Spoiler

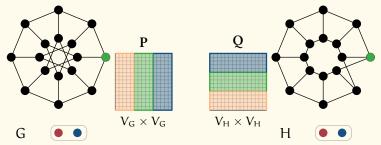
Duplicator gives a partition **P** of $V_G \times V_G, \ldots$



Spoiler



Spoiler

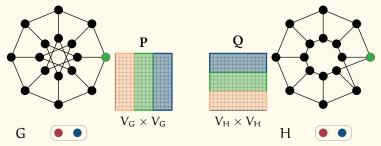


Spoiler

Duplicator

a partition Q of $V_H \times V_H$, and $f : P \rightarrow Q$, such that for all $X \subseteq P$:

$$\operatorname{rk}\left(\sum_{M\in X} P\right) = \operatorname{rk}\left(\sum_{M\in X} f(M)\right)$$



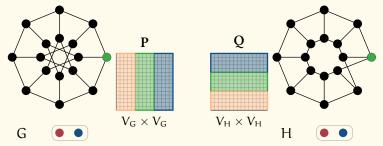
Spoiler

Duplicator

a partition Q of $V_H \times V_H$, and $f : P \rightarrow Q$, such that for all $X \subseteq P$:

$$\text{rk}\big(\sum_{M\in X} P\big) = \text{rk}\big(\sum_{M\in X} f(M)\big)$$

Can we decide in polynomial time who wins the game? ~ "yes" for standard pebble and cardinality games

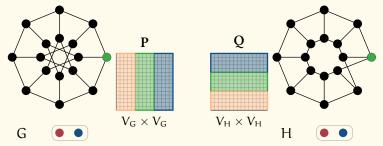


Spoiler

Duplicator

a partition Q of $V_H \times V_H$, and $f : P \rightarrow Q$, such that for all $X \subseteq P$:

$$\operatorname{rk}\left(\sum_{M\in X} P\right) = \operatorname{rk}\left(\sum_{M\in X} f(M)\right)$$

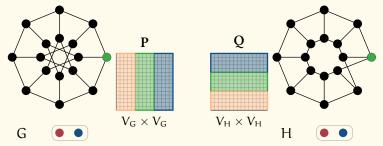


Spoiler

Duplicator

a partition Q of $V_H \times V_H$, and $f : P \rightarrow Q$, such that for all $X \subseteq P$:

 $\sum_{M \in X} P$ and $\sum_{M \in X} f(M)$ are equivalent

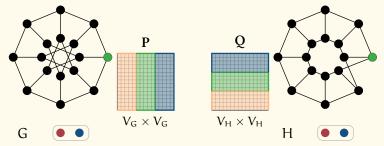


Spoiler

Duplicator

a partition Q of $V_H \times V_H$, and $f : P \rightarrow Q$, such that for all $X \subseteq P$:

$$\sum_{M \in X} P$$
 and $\sum_{M \in X} f(M)$ are similar

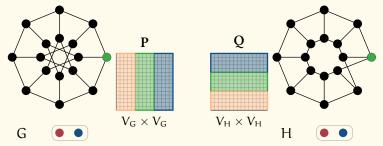


Spoiler

Duplicator

a partition Q of $V_{\mathsf{H}} \times V_{\mathsf{H}},$ and $\mathsf{f}: P \to Q,$ such that:

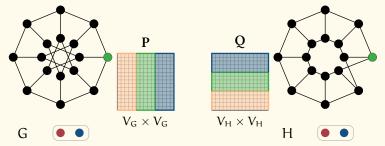
 $(M)_{M \in \mathbf{P}}$ and $(f(M))_{M \in \mathbf{P}}$ are simultaneously similar



Spoiler

> $(M)_{M \in \mathbf{P}}$ and $(f(M))_{M \in \mathbf{P}}$ are simultaneously similar

 \leadsto we can decide who wins this game in polynomial time



Spoiler

> $(M)_{M \in \mathbf{P}}$ and $(f(M))_{M \in \mathbf{P}}$ are simultaneously similar

→ we can decide who wins this game in polynomial time
→ Application: family of algorithms for testing graph isomorphism

From logics to games – and back again?

- Does the "simultaneous-similarity game" correspond to a natural logic?
- ► Duplicator wins the simultaneous-similarity game ⇒ Duplicator wins the matrix-rank game. Converse?