Pebble games with algebraic rules

Bjarki Holm (joint work with Anuj Dawar)

The 39th International Colloquium on Automata, Languages & Programming

University of Warwick

2012

Overview

- ▶ Logical equivalence relations between finite structures.
- Connection between equivalence relations and games.
- Stronger equivalence relations obtained by new types of game.

Logical equivalence of finite structures

Two relational structures are said to be elementarily equivalent if they agree on all sentences of first-order logic

Over finite structures: elementary equivalence = isomorphism

(here: focus only on finite graphs)

Motivation

Obtain polynomial-time decidable approximations of elementary equivalence that approach isomorphism in the limit.

Applications

- descriptive complexity theory (finding a logic for PTIME)
- families of polynomial-time algorithms for graph isomorphism

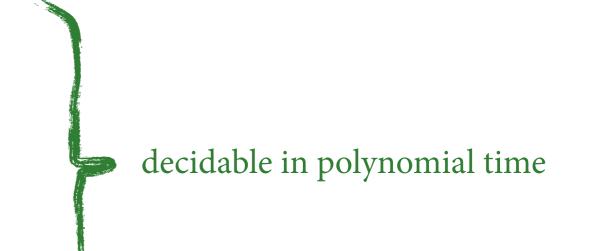
Relaxations of elementary equivalence

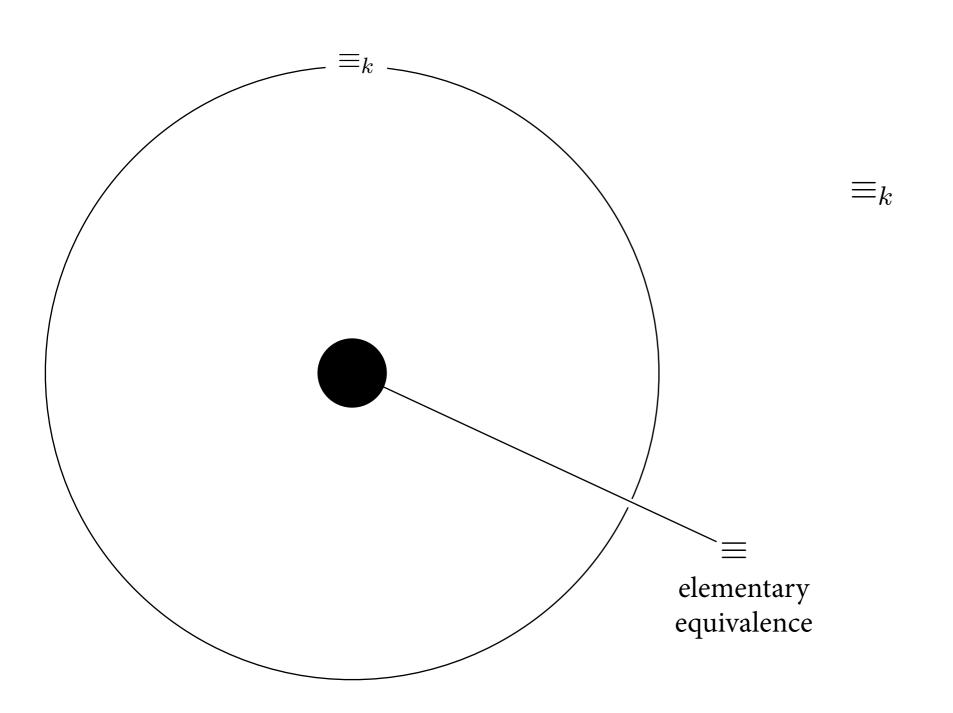
Common approach: study suitable restrictions of first-order logic

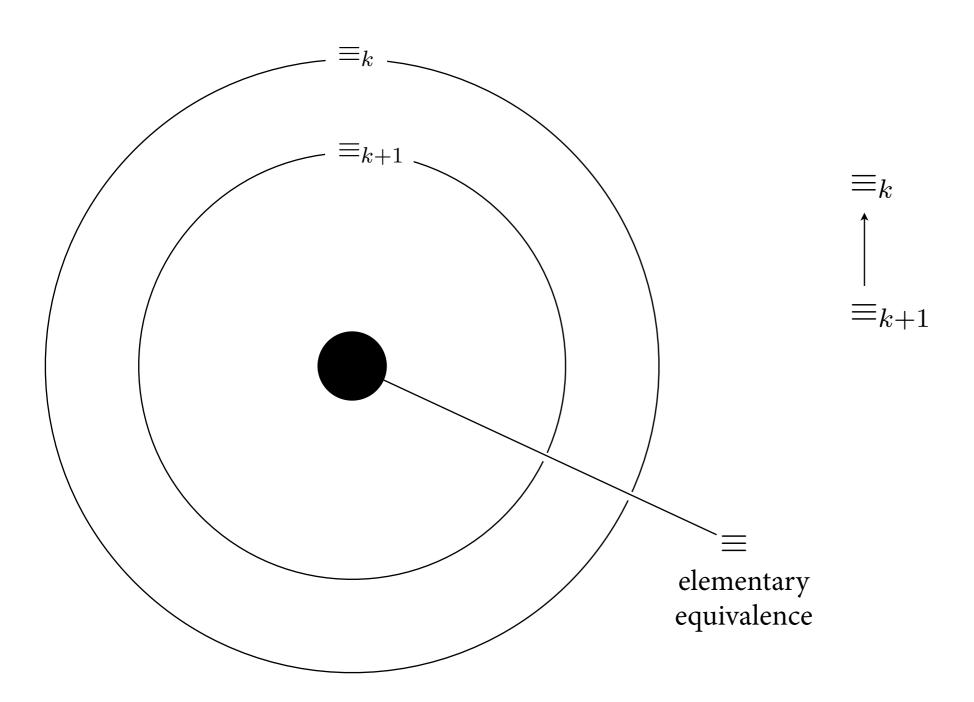
Equivalence

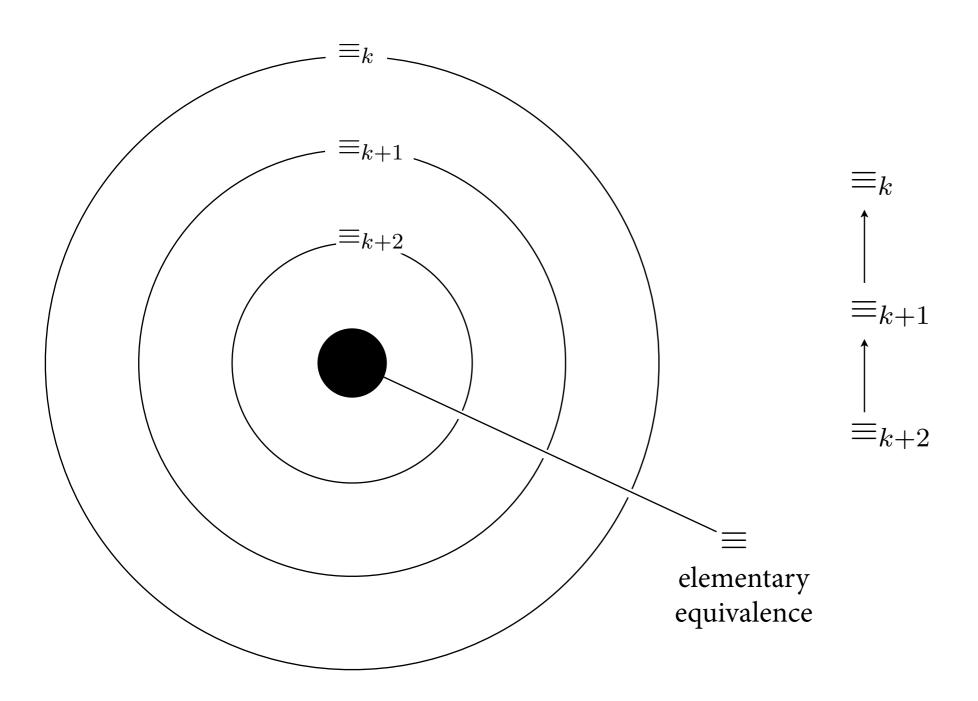
 \equiv Elementary equivalence

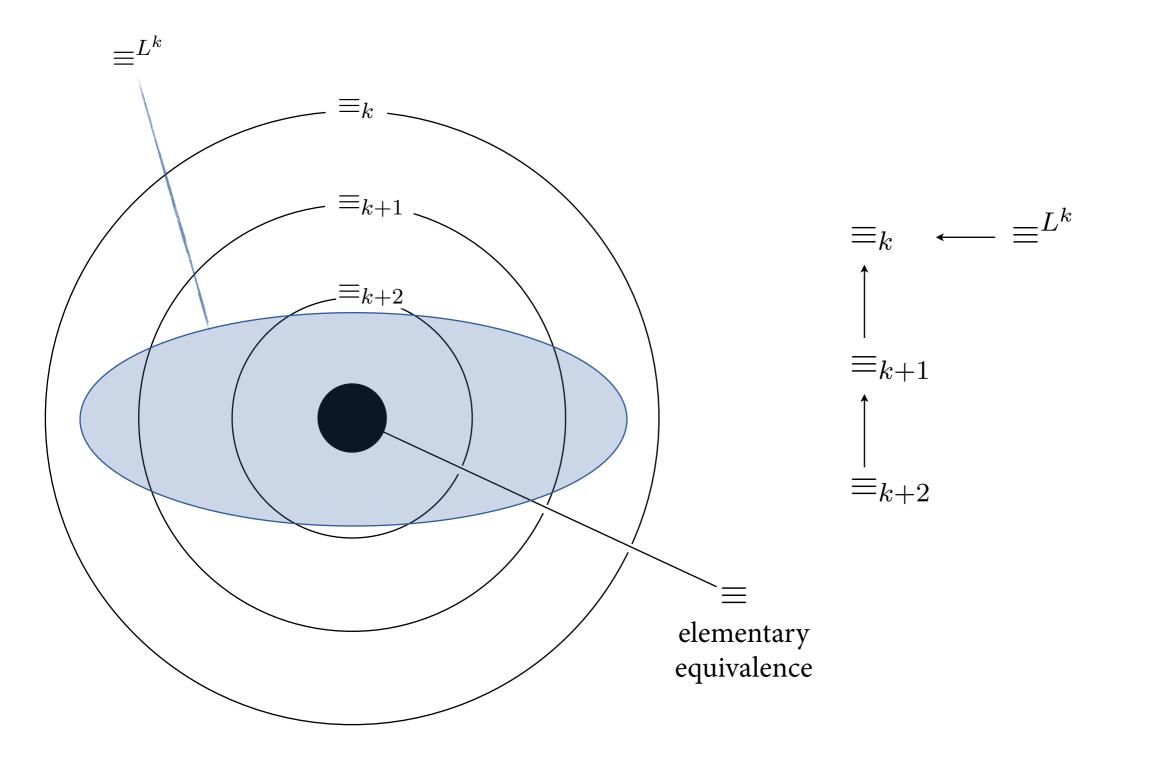
- $\equiv^{C^k} \frac{k va}{aua}$
- *k*-variable FO with counting quantifiers $\exists^{\geq i} x \, . \, \varphi(x)$
- $\equiv^{L^k} \quad \text{First-order logic with variables} \\ x_1, ..., x_k$
- $\equiv_r \qquad \begin{array}{l} \text{First-order logic up to} \\ \text{quantifier rank } r \end{array}$

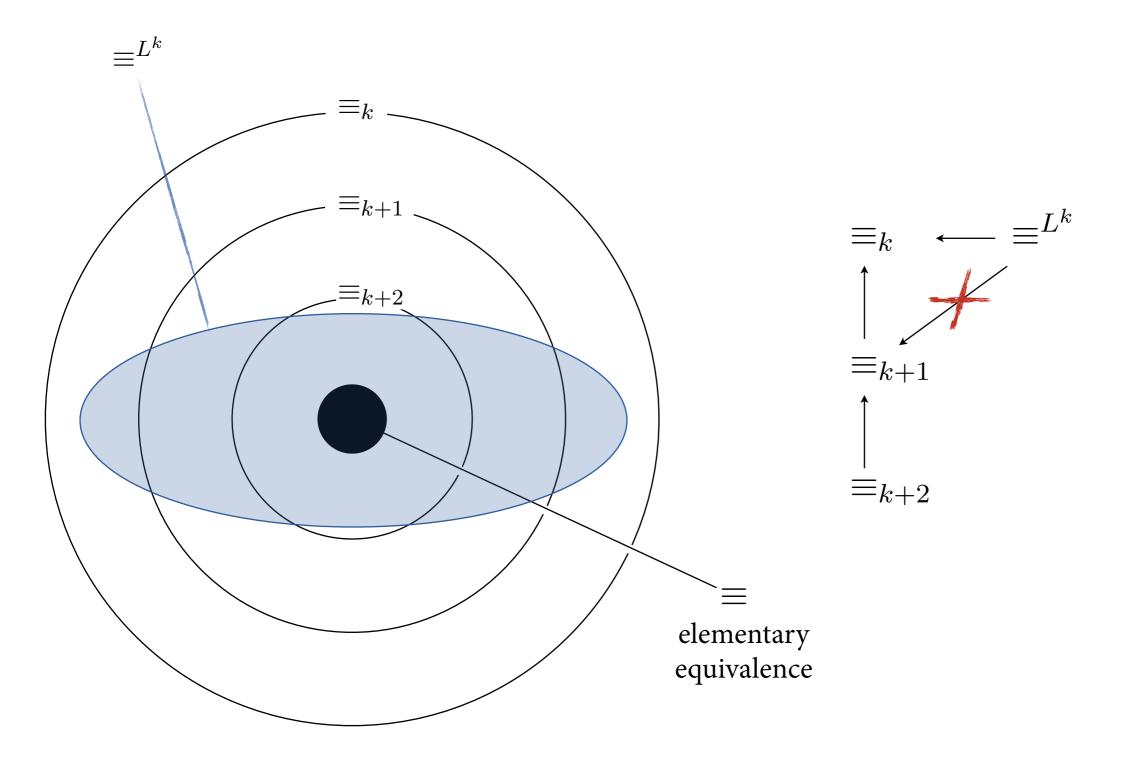


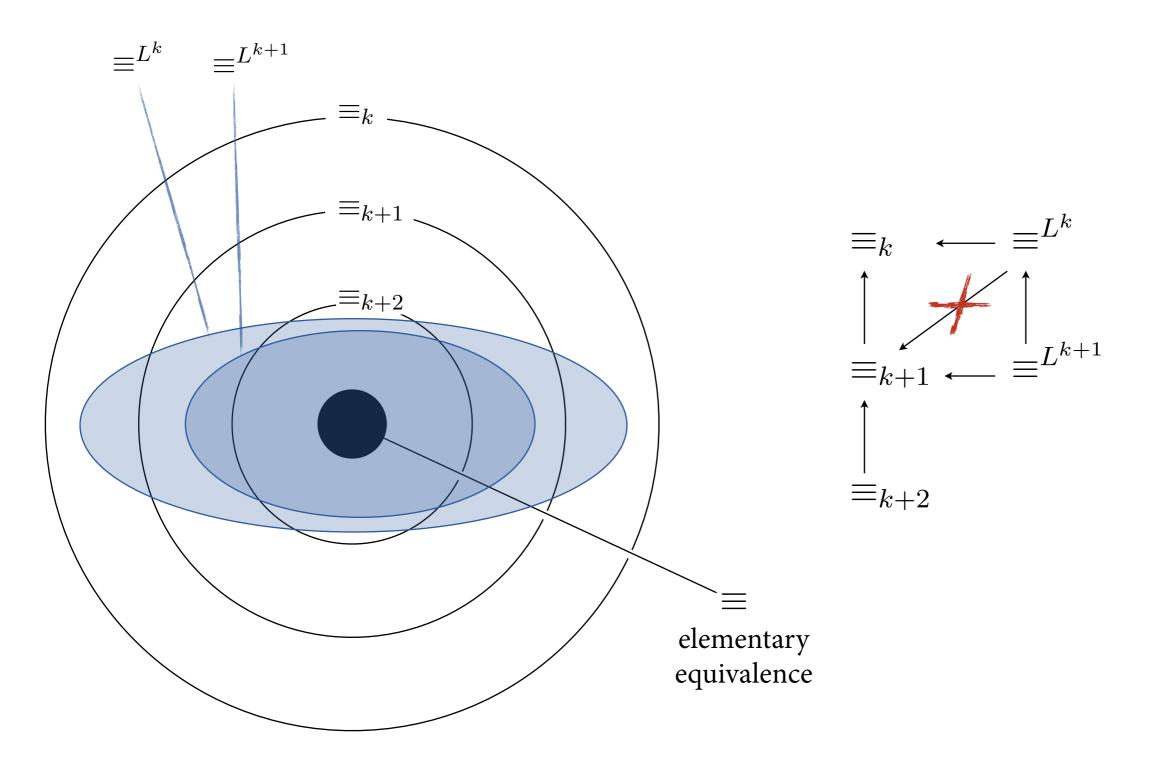


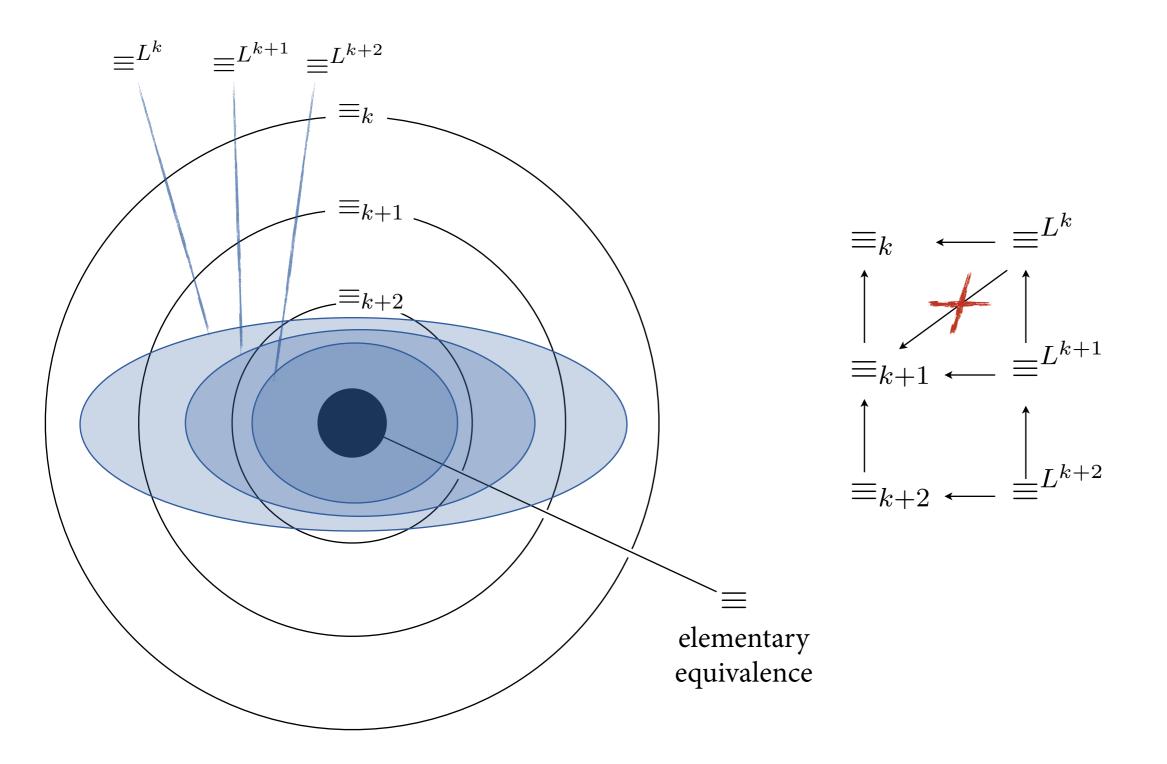


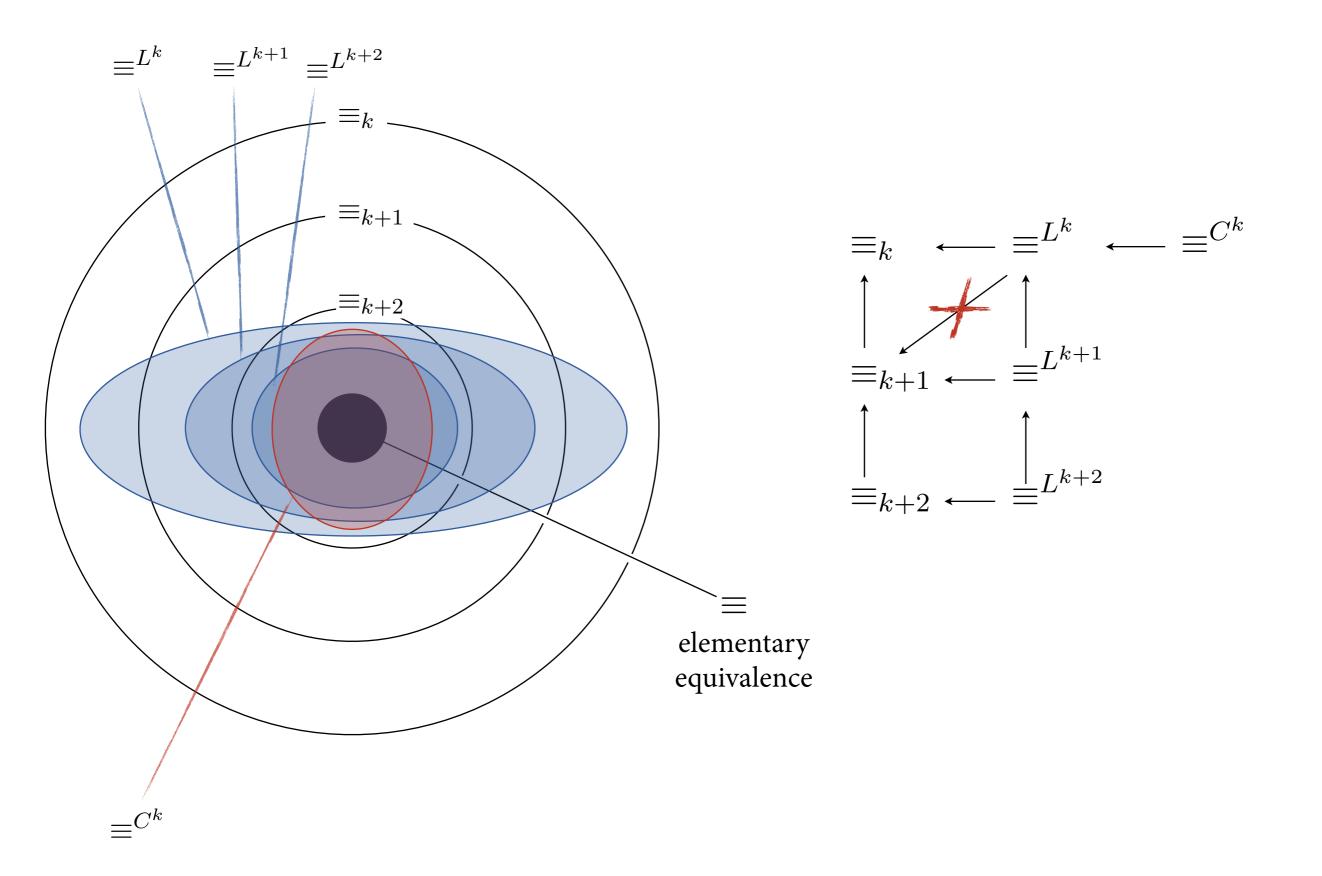


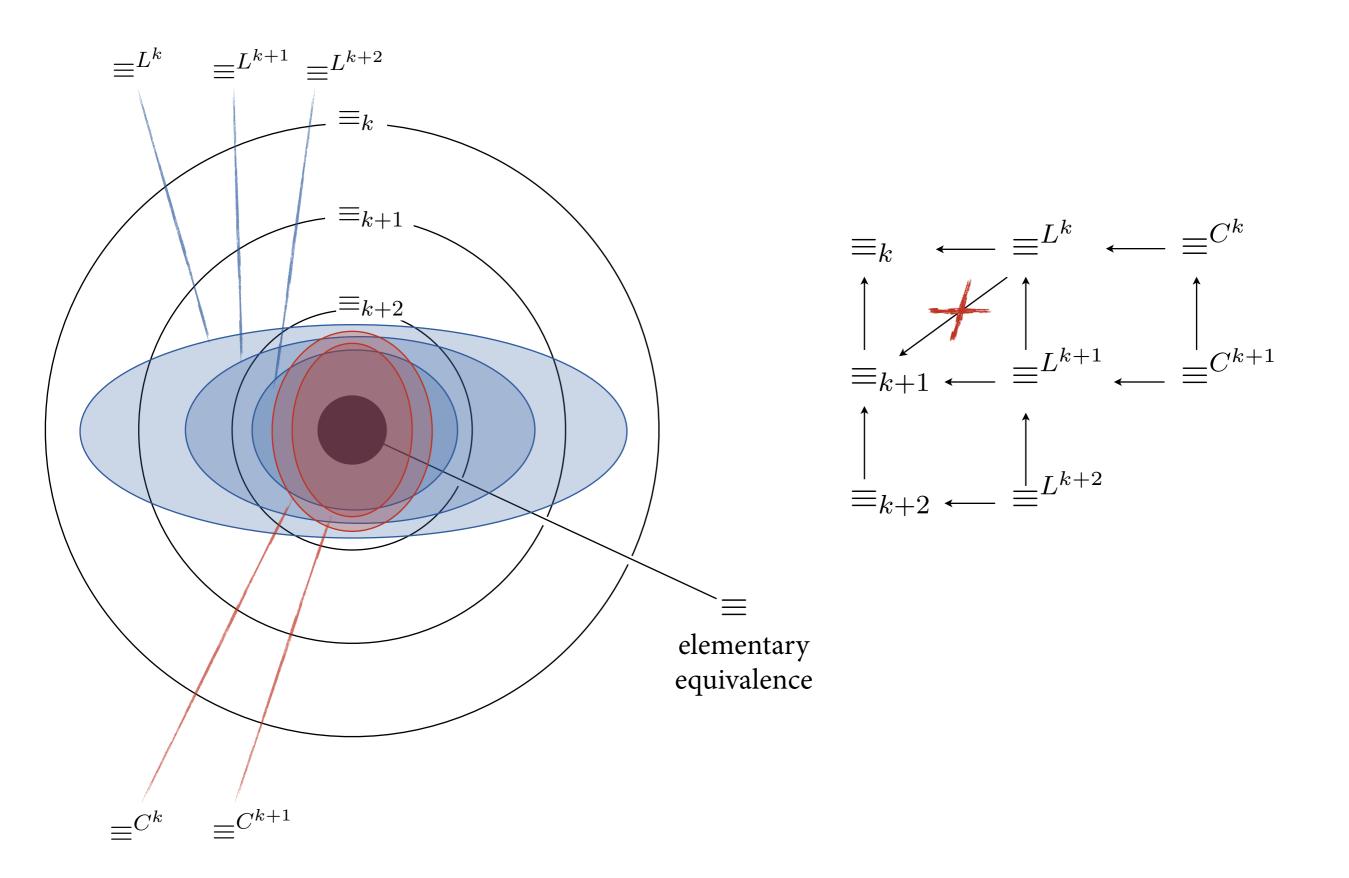


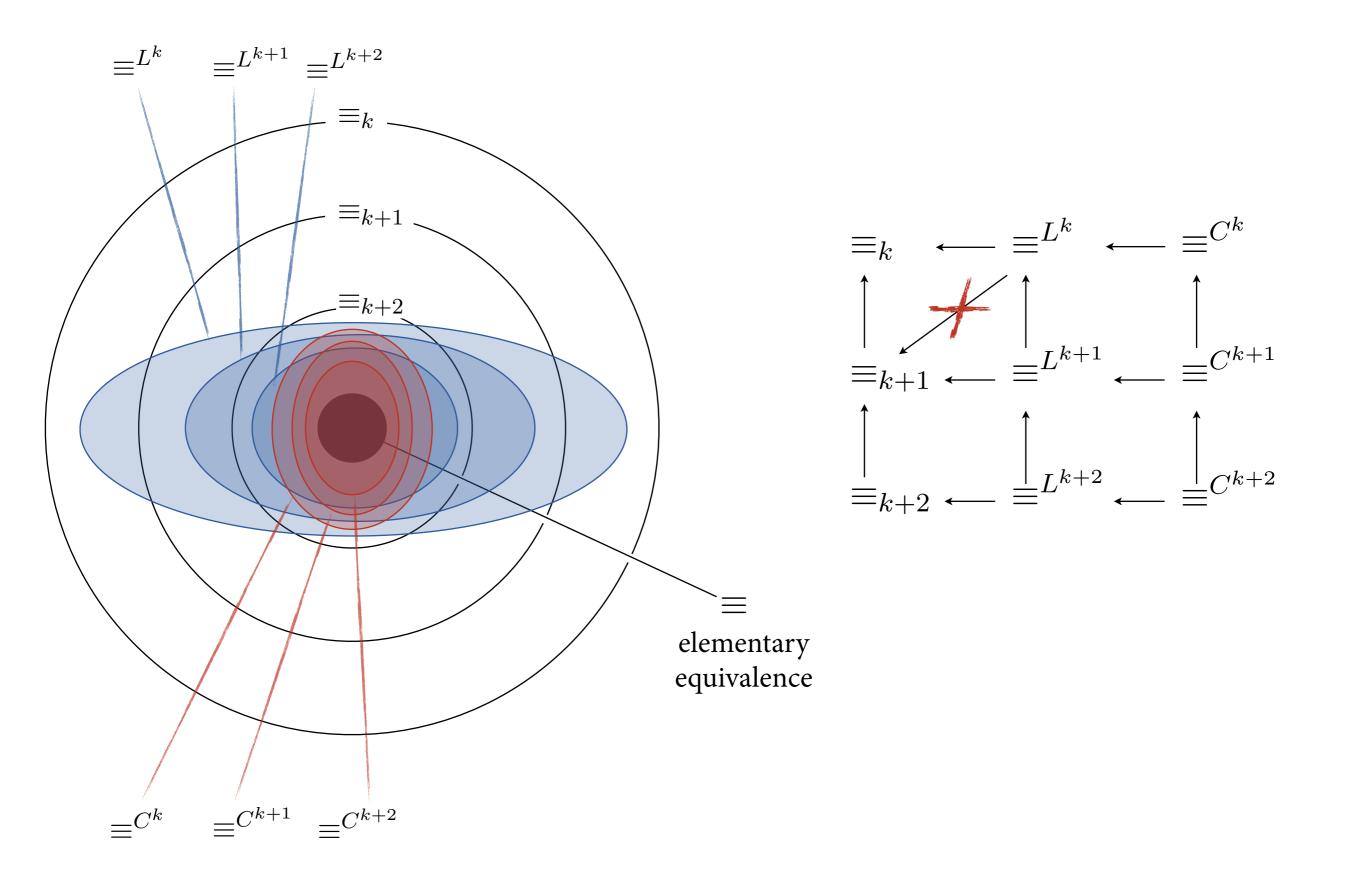


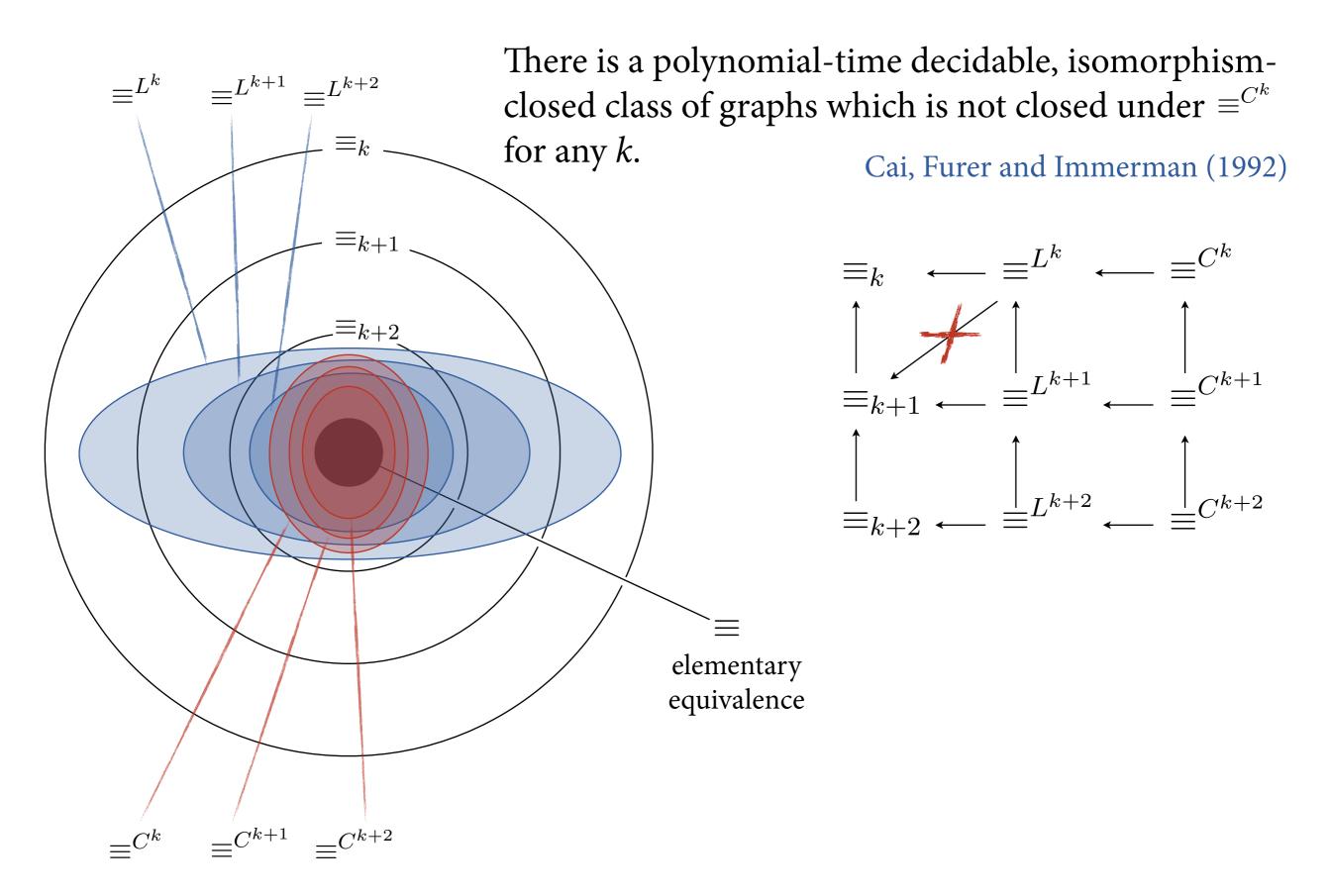












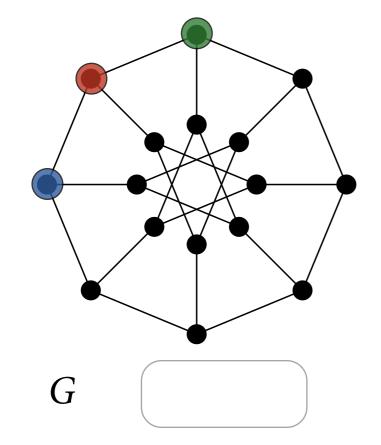
Characterising logical equivalence by games

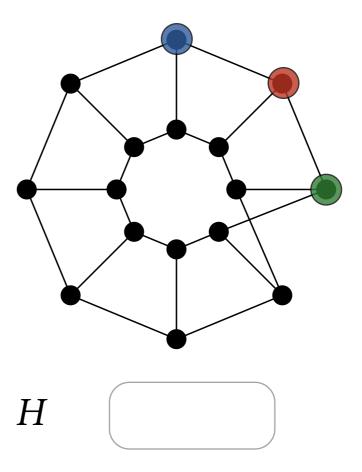
Our approach: variation of the EF game with algebraic game rules

	Equivalence	Model-comparison game
=	Elementary equivalence	Ehrenfeucht-Fraïsse (EF)
\approx	?	Invertible-map game
\equiv^{C^k}	<i>k</i> -variable FO with counting quantifiers $\exists^{\geq i} x . \varphi(x)$	<i>k</i> -pebble cardinality game
\equiv^{L^k}	First-order logic with variables $x_1,, x_k$	<i>k</i> -pebble game
\equiv_r	First-order logic up to quantifier rank <i>r</i>	<i>r</i> -round EF game

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$

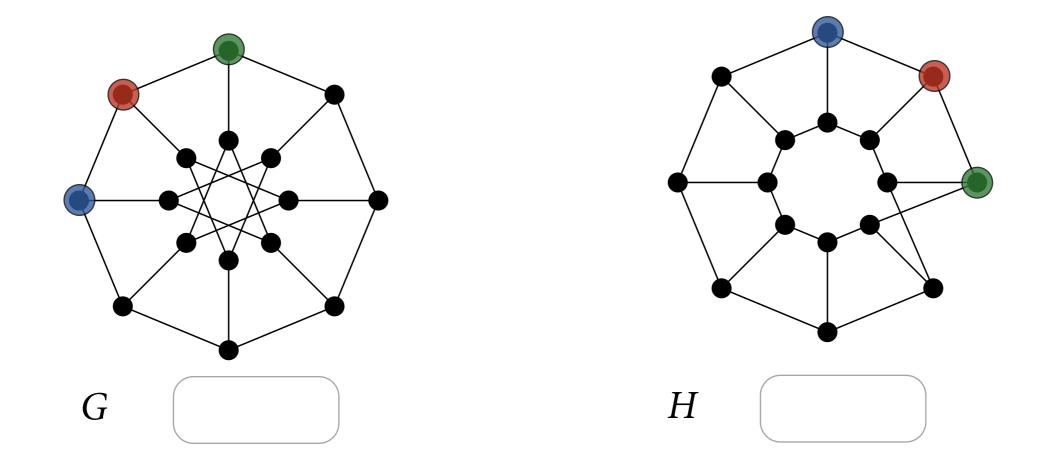
 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$





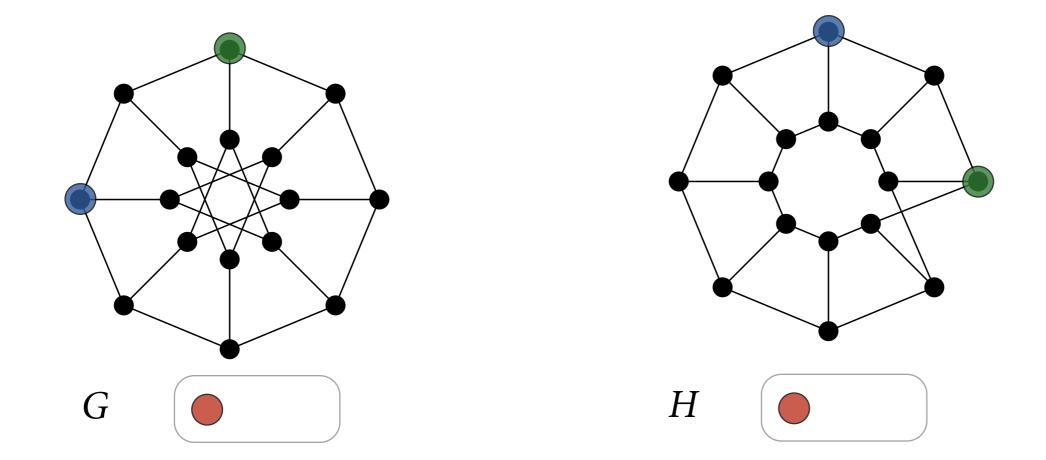
Spoiler Duplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x . \varphi(x)$



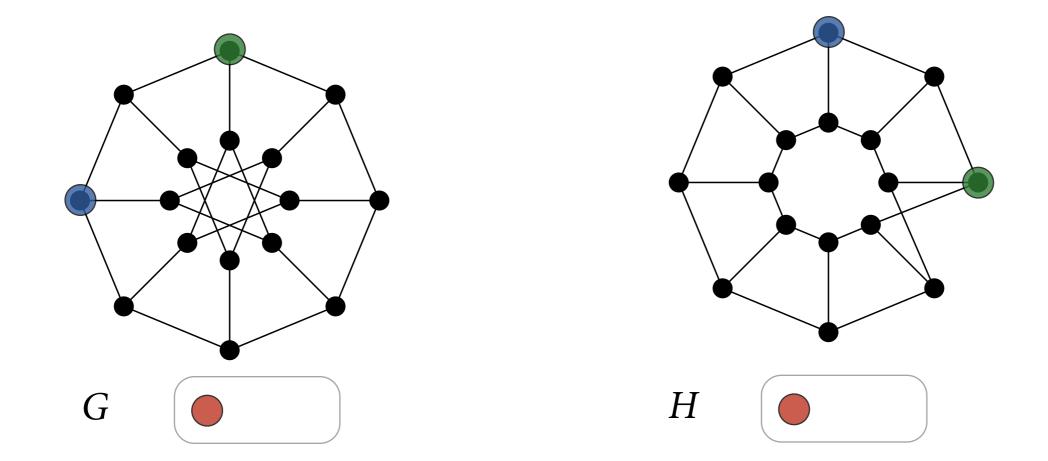
Spoilerchooses pebbles to move from the two graphsDuplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



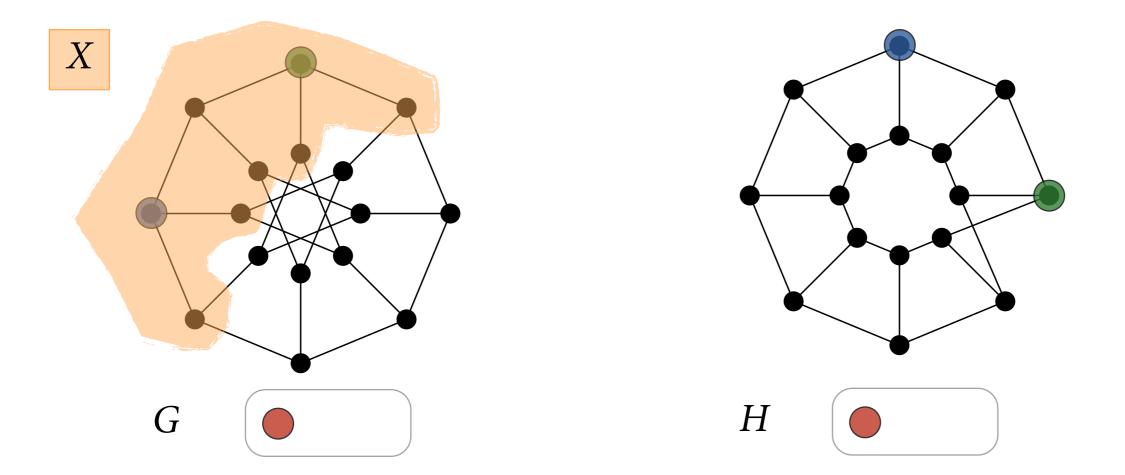
Spoilerchooses pebbles to move from the two graphsDuplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



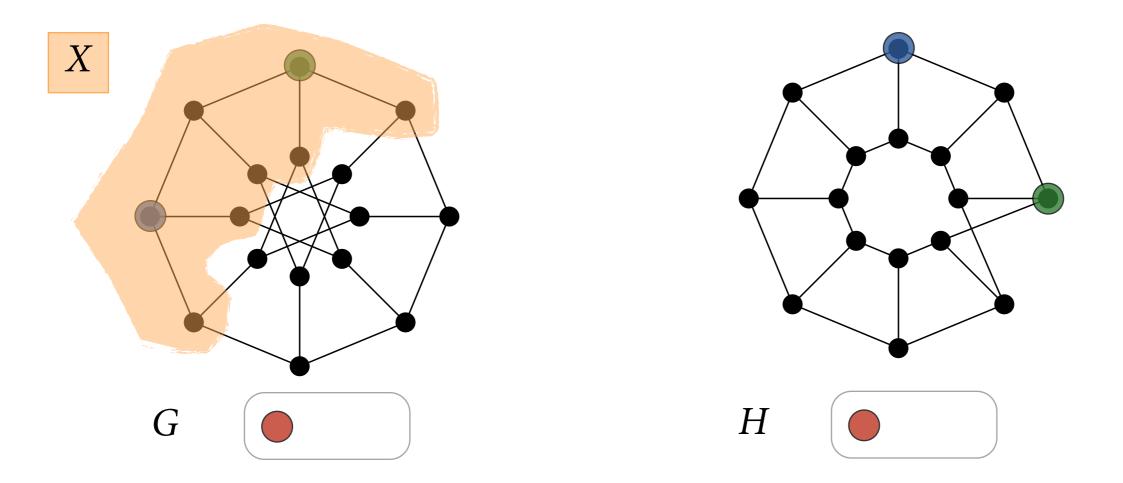
Spoilerchooses of set X of vertices in one of the graphsDuplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



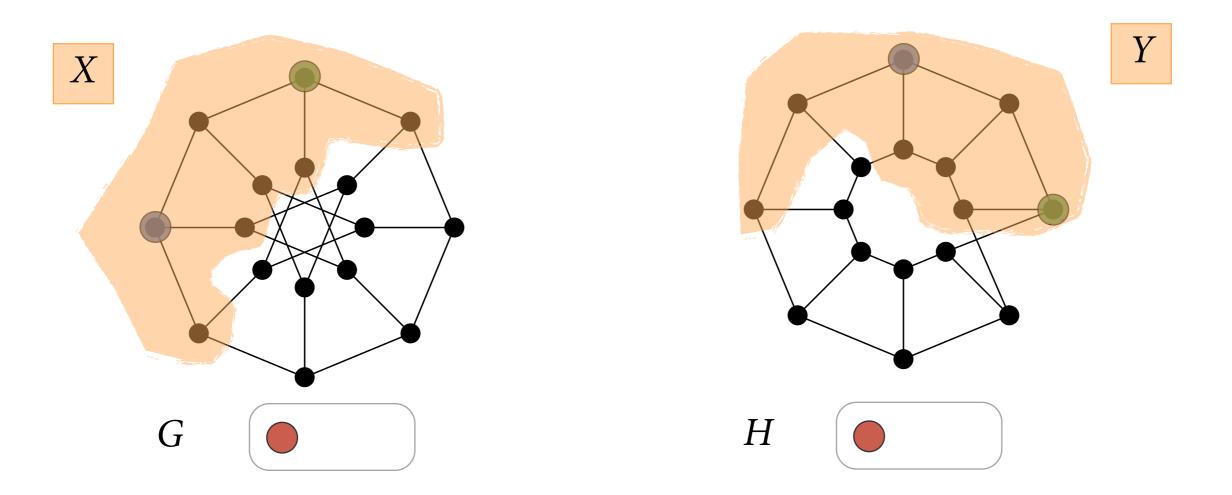
Spoilerchooses of set X of vertices in one of the graphsDuplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



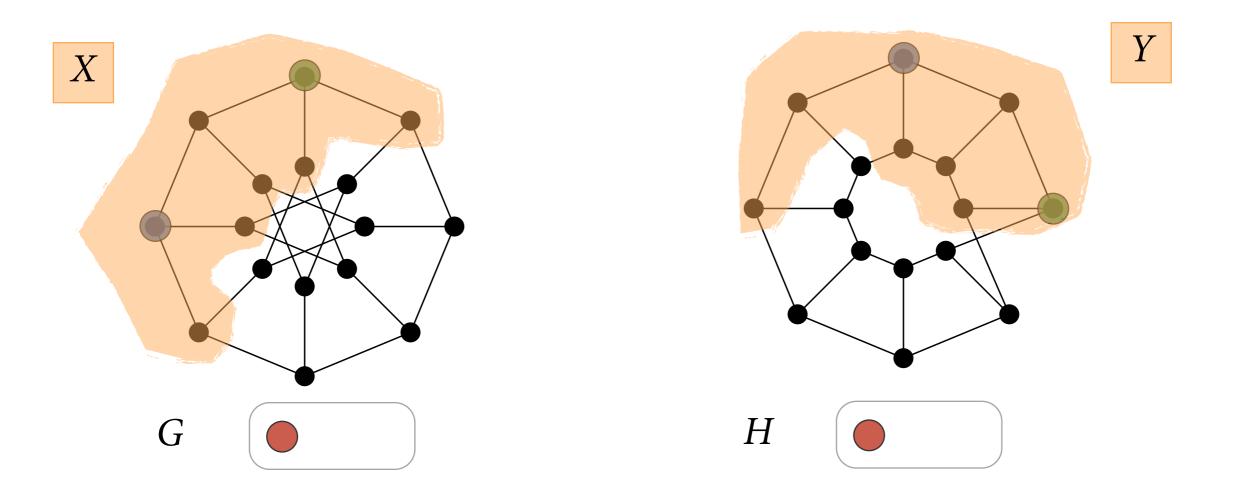
SpoilerDuplicatorresponds with a set Y of H of the same cardinality

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x . \varphi(x)$



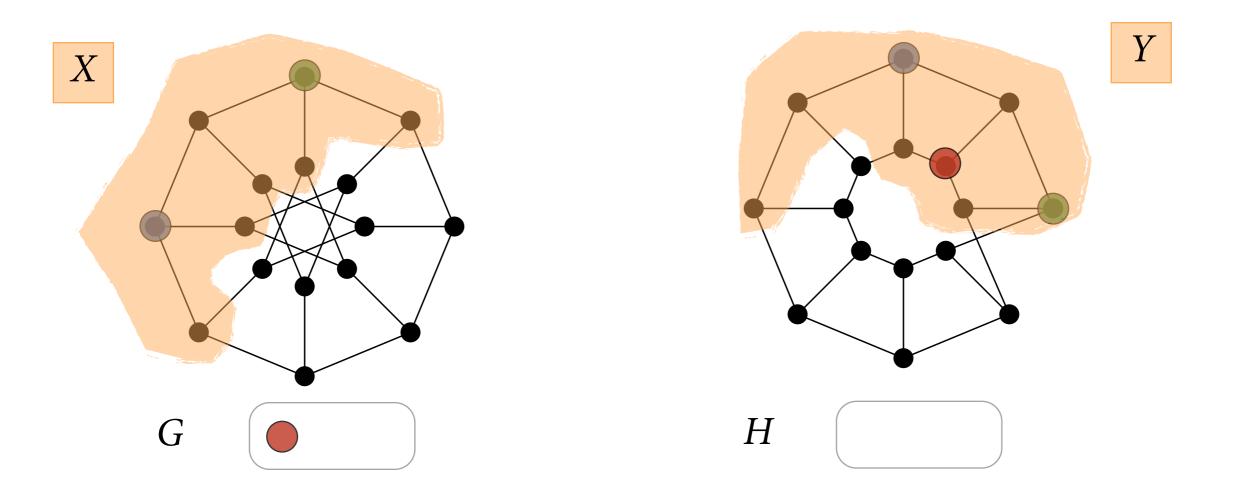
SpoilerDuplicatorresponds with a set Y of H of the same cardinality

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



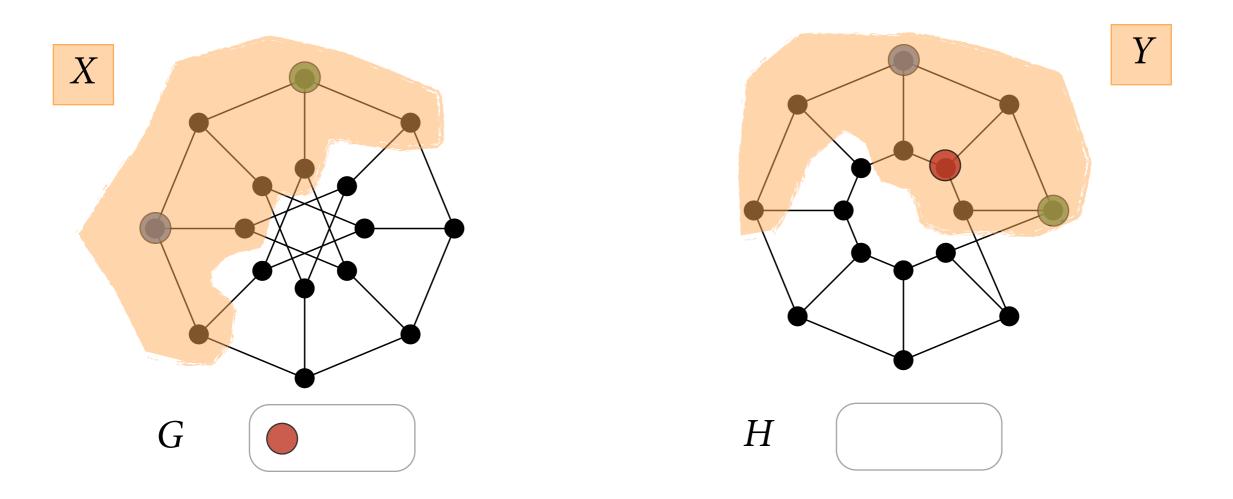
Spoilerplaces the red pebble in *H* on an element of *Y*Duplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



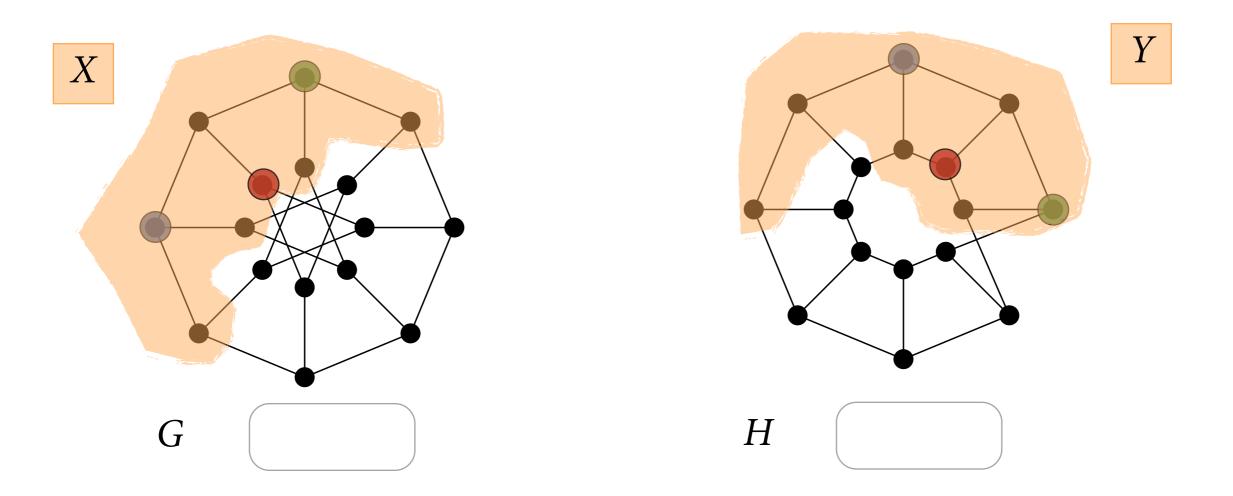
Spoilerplaces the red pebble in *H* on an element of *Y*Duplicator

 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



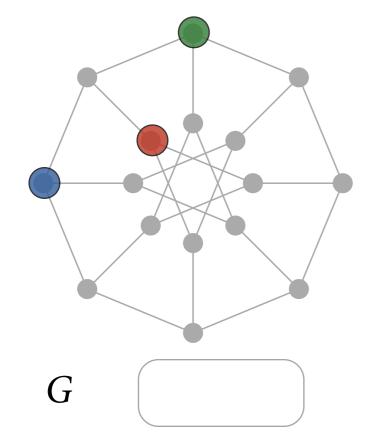
SpoilerDuplicatorplaces the red pebble in *G* on an element of *X*

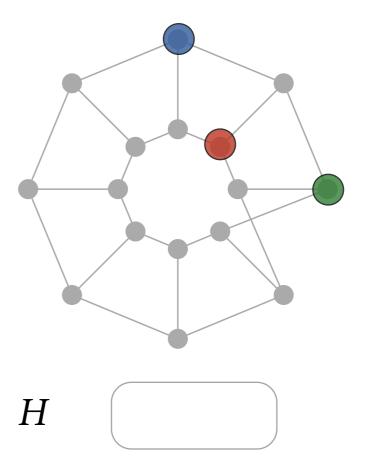
 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$



SpoilerDuplicatorplaces the red pebble in *G* on an element of *X*

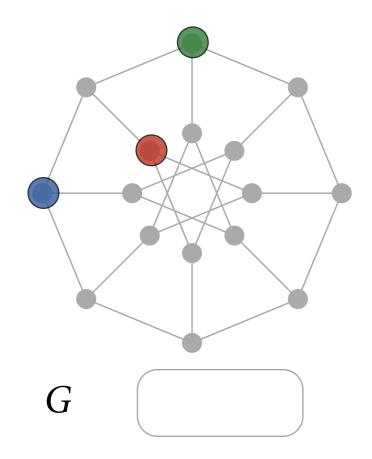
 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$

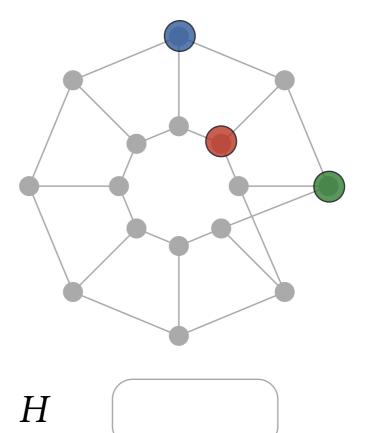




 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x \cdot \varphi(x)$

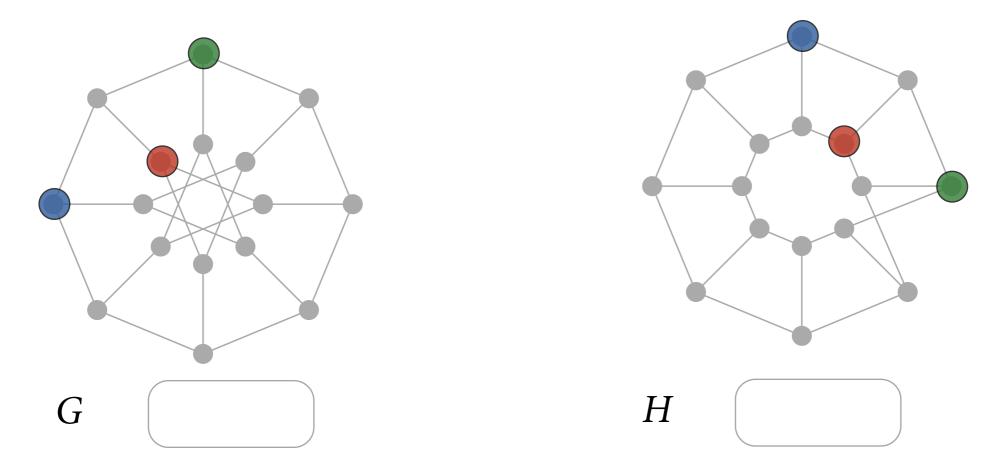
Is the pebble mapping a partial isomorphism?





 C^k — extension of L^k with counting quantifiers: $\exists^{\geq i} x . \varphi(x)$

Is the pebble mapping a partial isomorphism?



Duplicator has a strategy to play forever in the *k*-pebble cardinality game on *G* and *H* iff $G \equiv^{C^k} H$. Immerman and Lander (1990)

Where *C*^{*k*}-equivalence fails

Limitations of C^k can be largely explained by its inability to express basic problems in linear algebra over finite domains.

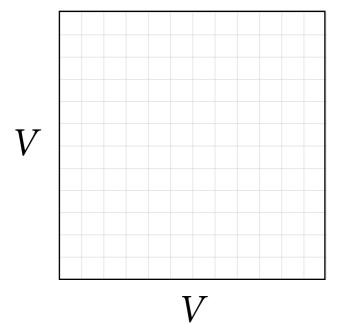
Atserias, Bulatov and Dawar (2008)

Dawar, Grohe, H., Laubner (2009)

→ Study pebble games with linear-algebraic game rules

Realising matrices over a finite graph

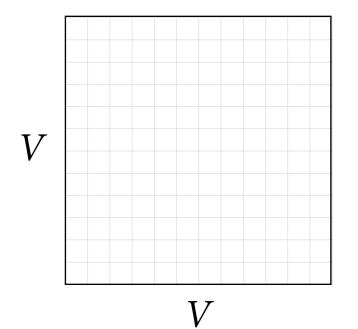
Let G = (V, E) be a graph



Realising matrices over a finite graph

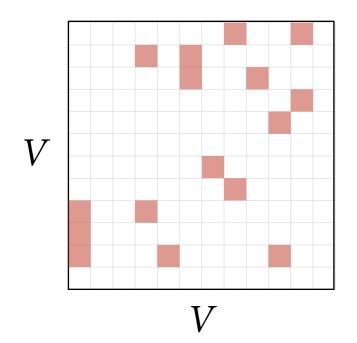
Let G = (V, E) be a graph

Subset of $V \times V$



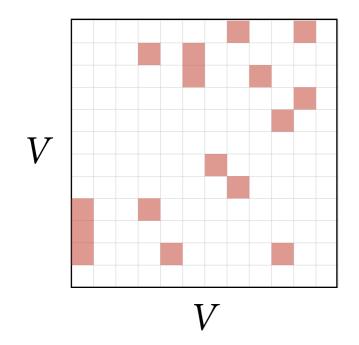
Let G = (V, E) be a graph

Subset of $V \times V$



Let G = (V, E) be a graph

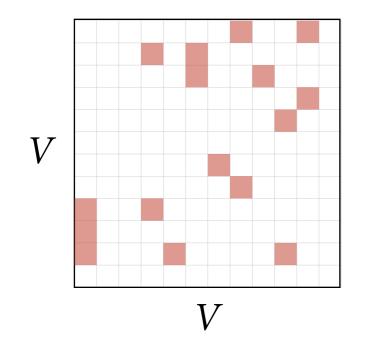
Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V



Let G = (V, E) be a graph

Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V

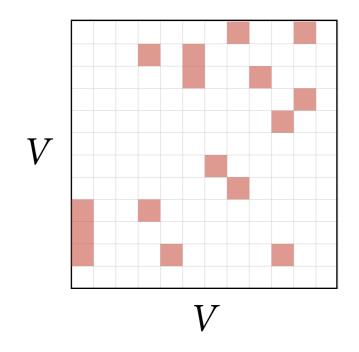
Example: Adjacency matrix of G — induced by $E \subseteq V \times V$



Let G = (V, E) be a graph

Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V

Example: Adjacency matrix of G — induced by $E \subseteq V \times V$

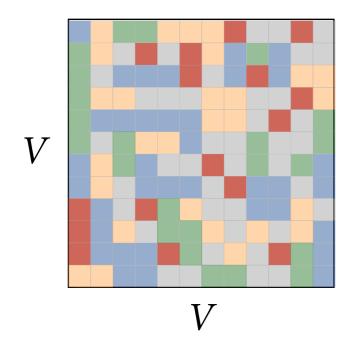


Partition of $V \times V$

Let G = (V, E) be a graph

Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V

Example: Adjacency matrix of G — induced by $E \subseteq V \times V$

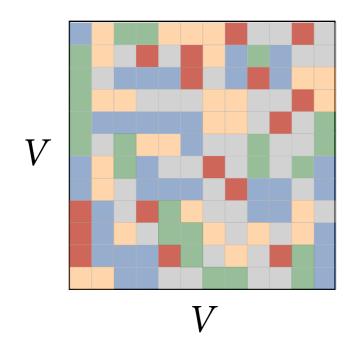


Partition of $V \times V$

Let G = (V, E) be a graph

Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V

Example: Adjacency matrix of G — induced by $E \subseteq V \times V$

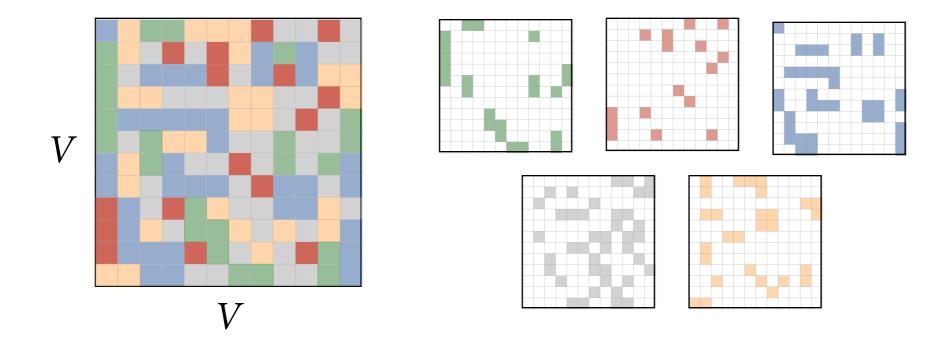


Partition of $V \times V \longrightarrow$ Family of pairwise disjoint {0,1}-matrices

Let G = (V, E) be a graph

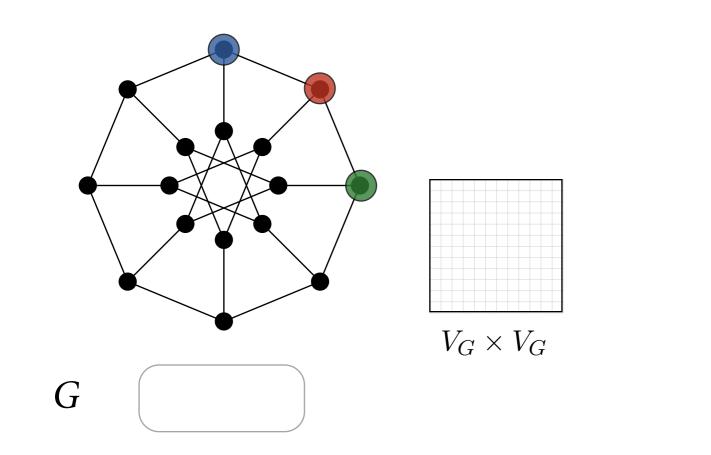
Subset of $V \times V \longrightarrow \{0,1\}$ -matrix, rows and columns indexed by V

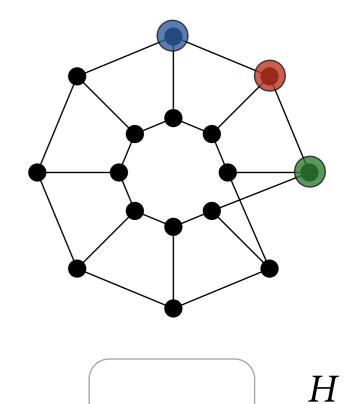
Example: Adjacency matrix of G — induced by $E \subseteq V \times V$



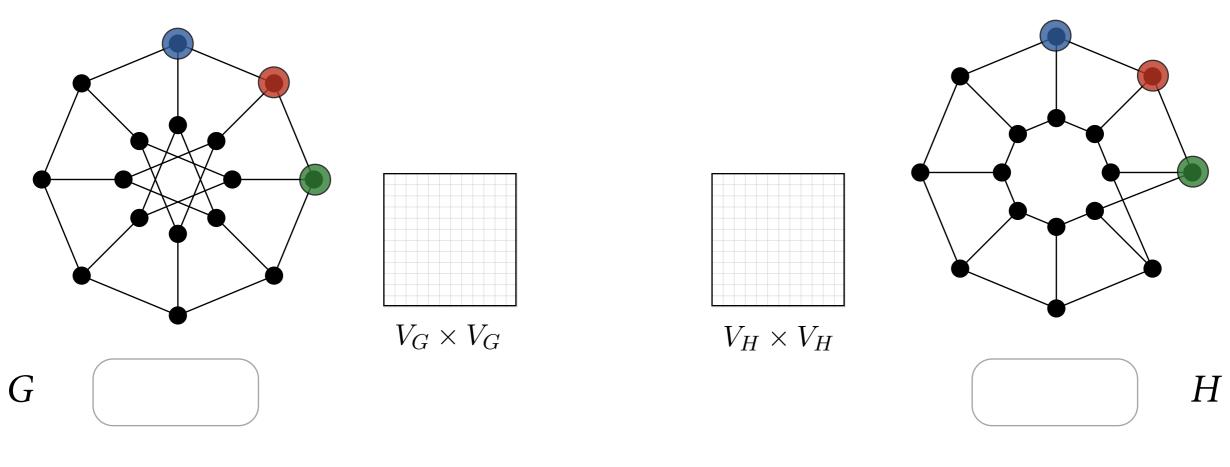
Partition of $V \times V \longrightarrow$ Family of pairwise disjoint {0,1}-matrices

 $V_H \times V_H$

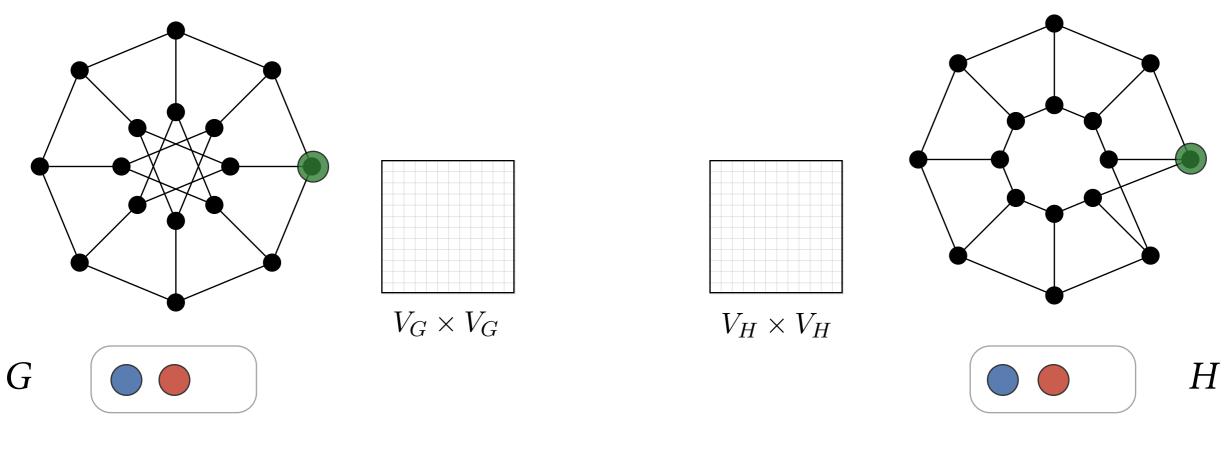




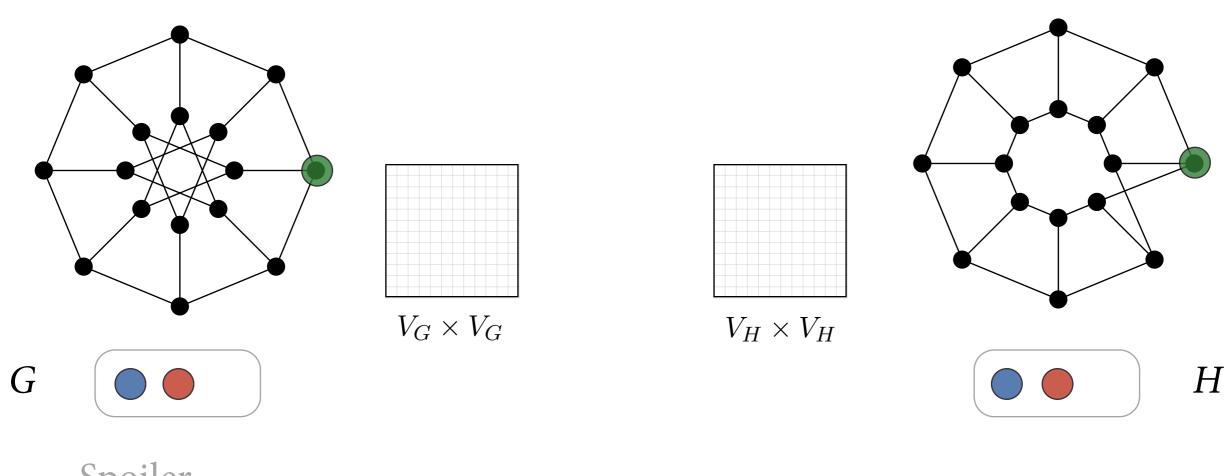
Spoiler Duplicator



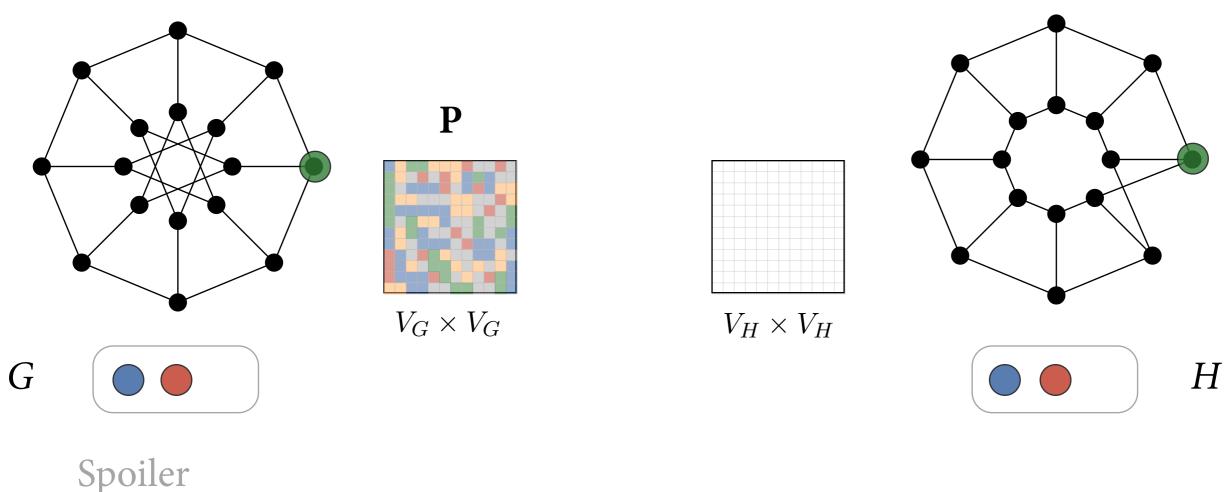
Spoilerremoves two pairs of corresponding pebblesDuplicator



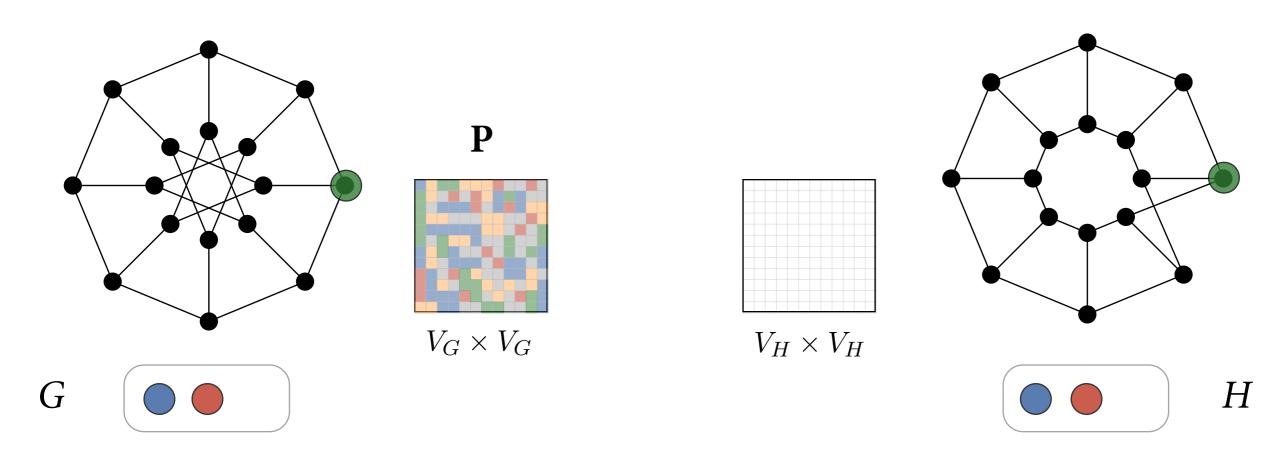
Spoilerremoves two pairs of corresponding pebblesDuplicator



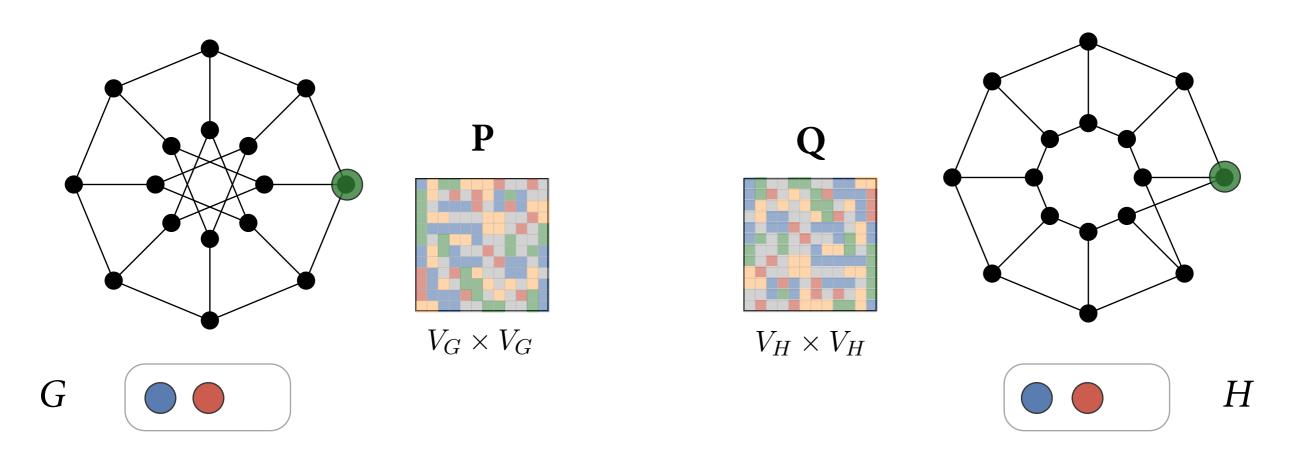
Spoiler Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,



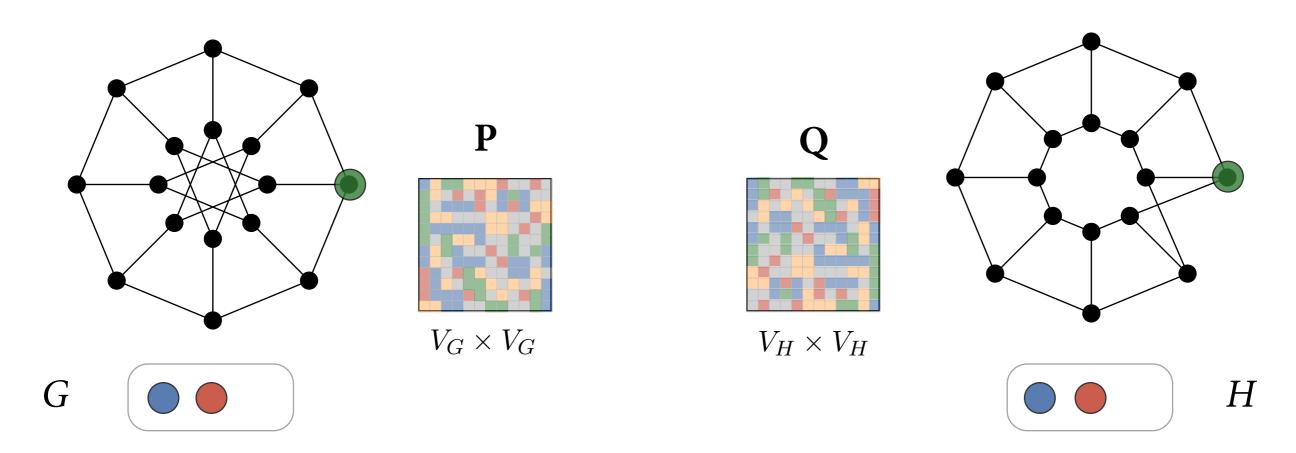
Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,



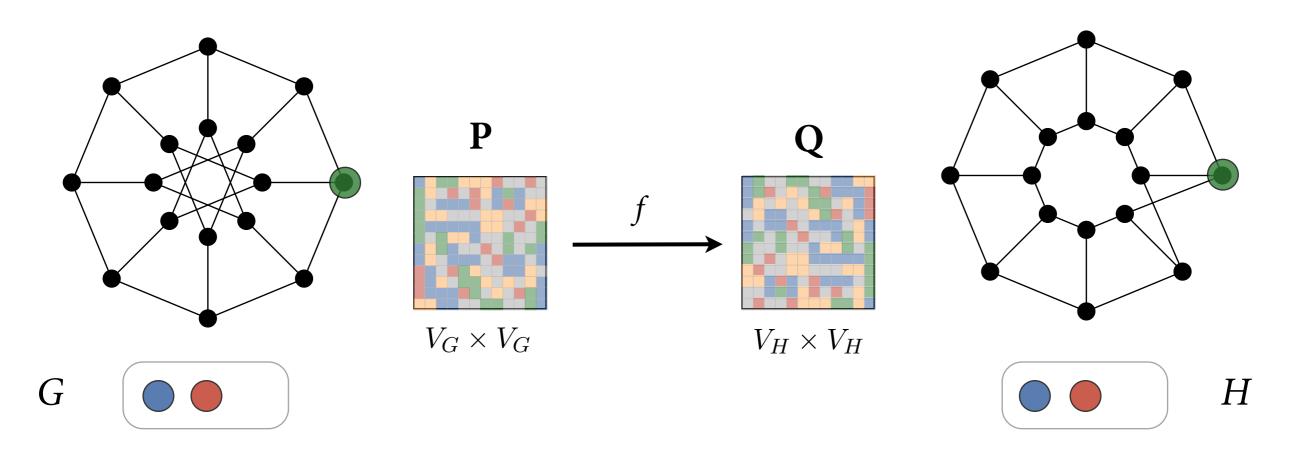
- Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,
 - ▶ a partition **Q** of $V_H \times V_H$



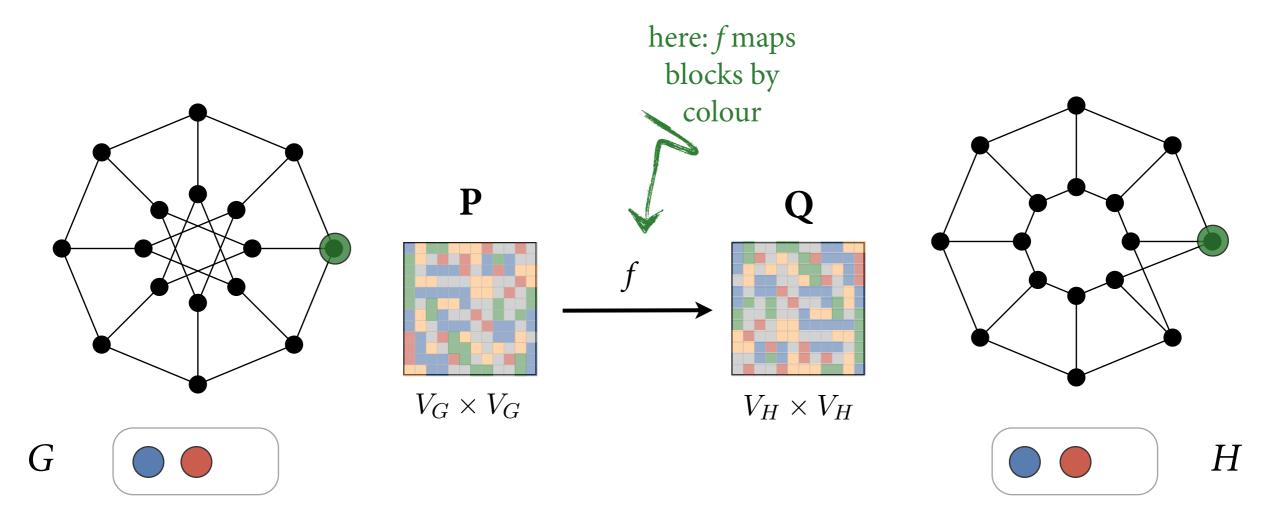
- Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,
 - ▶ a partition **Q** of $V_H \times V_H$



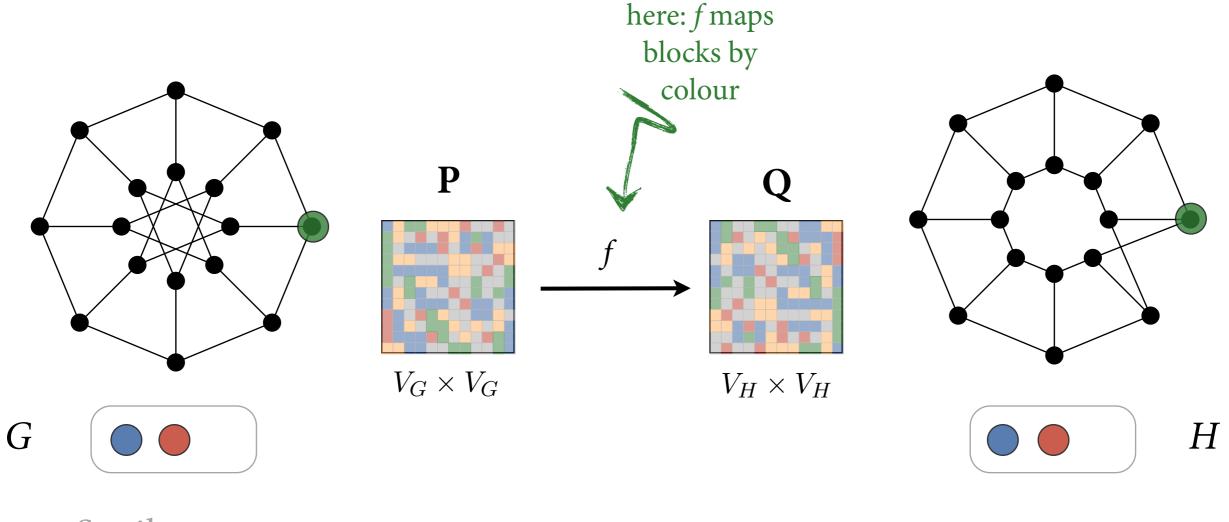
- Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,
 - ▶ a partition **Q** of $V_H \times V_H$
 - ▶ and a bijection $f: \mathbf{P} \rightarrow \mathbf{Q}$ such that...



- Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,
 - ▶ a partition **Q** of $V_H \times V_H$
 - ▶ and a bijection $f: \mathbf{P} \rightarrow \mathbf{Q}$ such that...

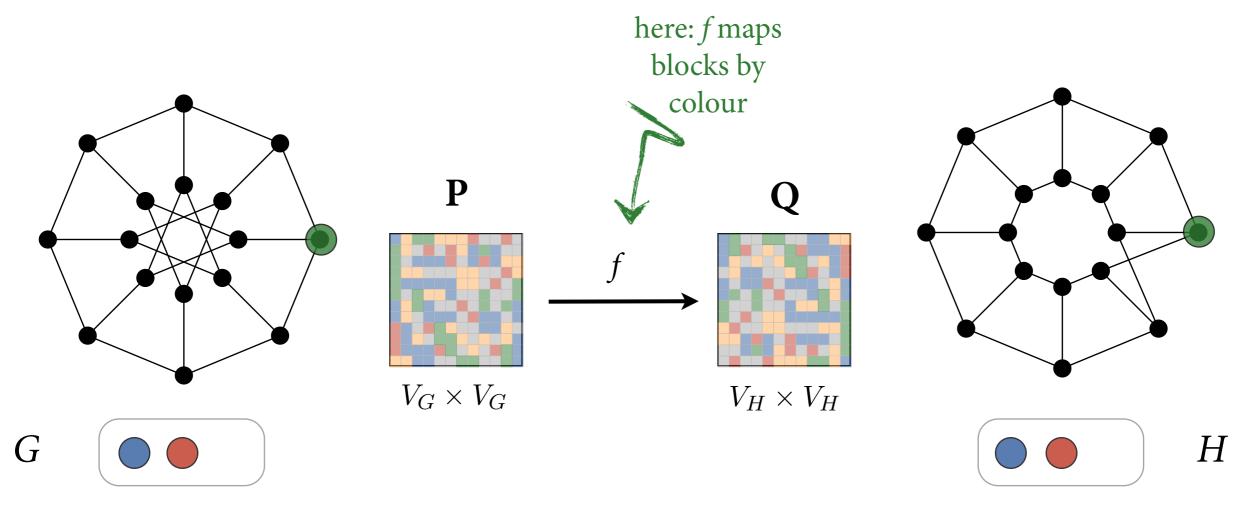


- Duplicator \triangleright gives a partition **P** of $V_G \times V_G$,
 - ▶ a partition **Q** of $V_H \times V_H$
 - ▶ and a bijection $f: \mathbf{P} \rightarrow \mathbf{Q}$ such that...



Spoiler Duplicator

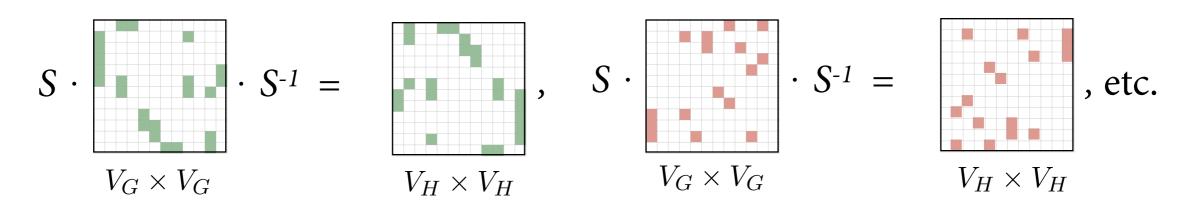
▶ ... there is an invertible linear map S over GF(2) for which it holds that

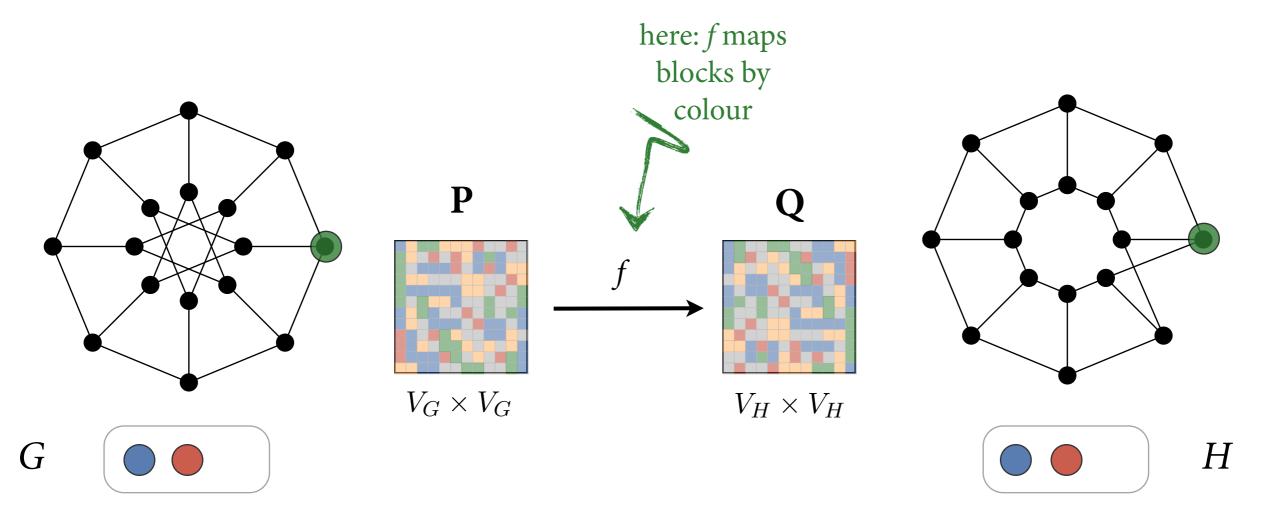


Spoiler

Duplicator

▶ ... there is an invertible linear map S over GF(2) for which it holds that



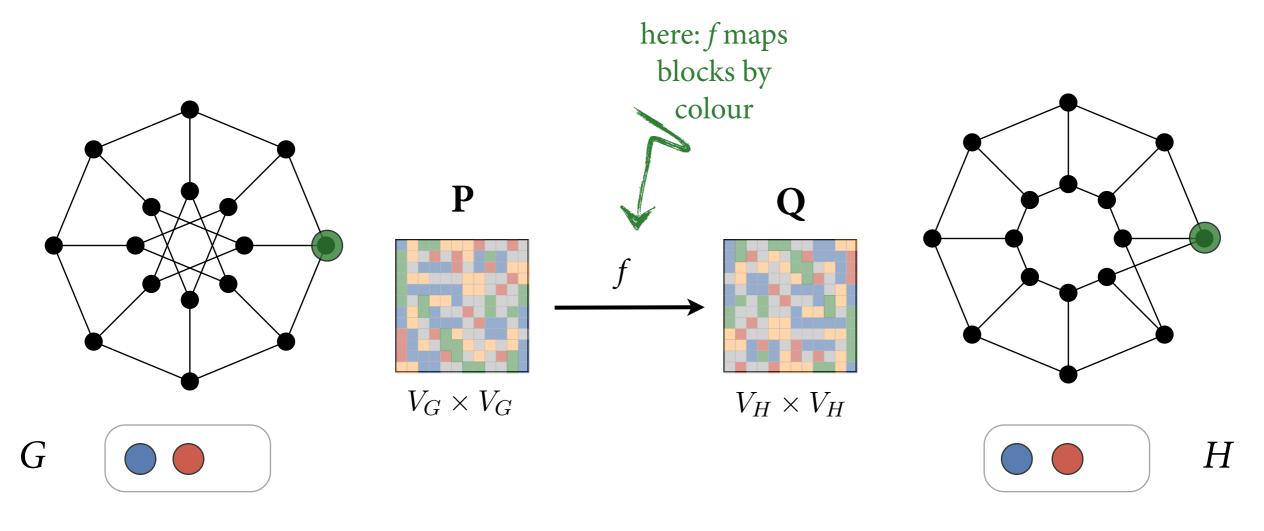


Spoiler

Duplicator

▶ ... there is an invertible linear map S over GF(2) for which it holds that

$$S \cdot M \cdot S^{-1} = f(M) \quad \forall M \in \mathbf{P}$$



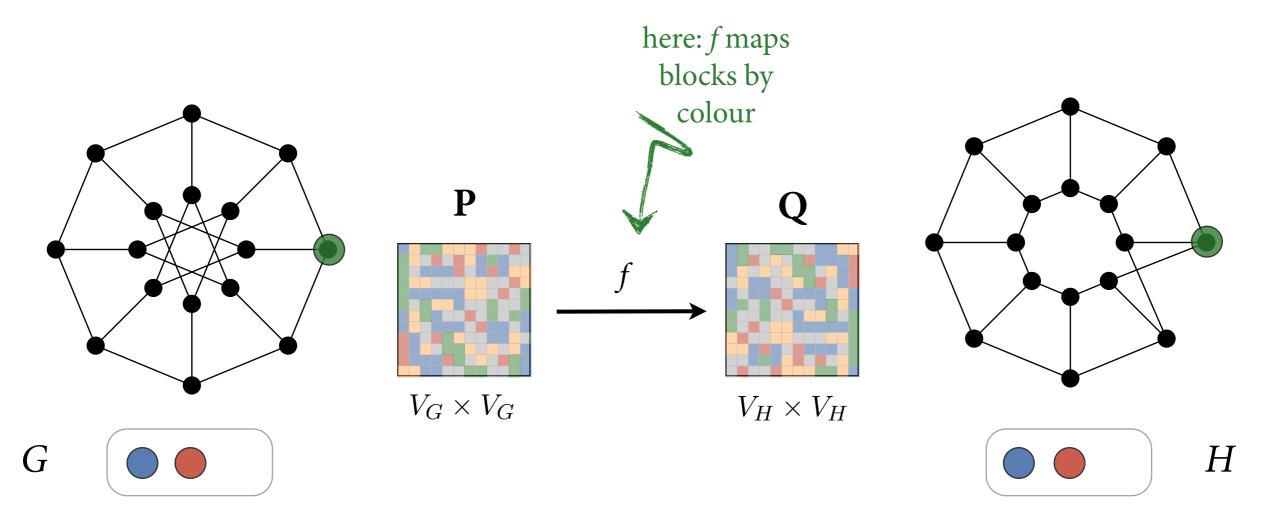
Spoiler

Duplicator

▶ ... there is an invertible linear map S over GF(2) for which it holds that

$$S \cdot M \cdot S^{-1} = f(M) \quad \forall M \in \mathbf{P}$$

(*S* is a similarity transformation for each *M* and f(M))



Spoiler Duplicator places the chosen pebbles over G on elements of some block M in \mathbf{P} and the corresponding pebbles over H on the elements of f(M) in \mathbf{Q}

Strengths of the invertible-map game

More generally: consider games played over finite fields GF(p) for any prime *p* in a finite set Ω .

 $G \approx_{\Omega}^{k} H$ Duplicator has a winning strategy in the *k*-pebble invertible-map game on *G* and *H* with primes Ω .

- For each k and all Ω , \approx_{Ω}^{k+1} is a refinement of \equiv^{C^k}
- For each k, there is a pair of non-isomorphic graphs that are equivalent under \equiv^{C^k} but distinguished by \approx^3_{Ω} for any Ω . H., Dawar (2012)

Application to graph isomorphism

There is an algorithm that, given graphs *G* and *H* of size *n*, decides whether $G \approx_{\Omega}^{k} H$ in time $n^{O(k)} \cdot p^{O(1)}$, where *p* is the largest prime in Ω . H., Dawar (2012)

We get a family of polynomial-time algorithms IM_k (here for a fixed Ω) for which

- ▶ if IM_k distinguishes between *G* and *H* then IM_{k+1} also distinguishes between *G* and *H* (refinement)
- ▶ for each pair of graphs G and H, there is some k such that IM_k correctly decided isomorphism (limit)

Optimistic: is there is a fixed *k* for which IM_{*k*} = isomorphism?

answer is "no" if only consider basic version of the game → need to allow matrices indexed by tuples of vertices

From logics to games — and back again?

- Does the invertible-map game equivalence correspond to a "natural" logic?
- ▷ Does it coincide with isomorphism on classes of graphs that have polynomial-time isomorphism tests and for which C^k-equivalence is too weak → e.g. graphs of bounded degree, graphs of bounded colour class size?
- ▶ The "partition game" protocol can be adapted for any finitevariable logic with Lindström quantifiers → which kind of quantifier gives us a tractable instance of the partition game?