Descriptive complexity of linear algebra

Bjarki Holm

圈漛 UNIVERSITY OF

Logical Approaches to Barriers in Computing \mathcal{E} Complexity II

Isaac Newton Institute

Overview

Study definability of natural problems in linear algebra and expressiveness of logics with algebraic operators.

- Background \mathcal{E} motivation
- Descriptive complexity of problems in linear algebra
- Logics with matrix-rank operators
- Pebble games for rank logics \mathcal{E} the Weisfeiler-Lehman method

Overview

Study definability of natural problems in linear algebra and expressiveness of logics with algebraic operators.

- Background \mathcal{E} motivation
- Descriptive complexity of problems in linear algebra
- Logics with matrix-rank operators
- Pebble games for rank logics \mathcal{E} the Weisfeiler-Lehman method

A logic for NP

ESO - Existential second-order logic
Second-order variables existentially quantified, followed by a first-order formula:

$$
\exists R_{1}, \ldots, R_{k} \cdot \varphi\left(R_{1}, \ldots, R_{k}\right)
$$

A logic for NP

A decision problem is in NP if and only if it can be defined in ESO.

ESO - Existential second-order logic
Second-order variables existentially quantified, followed by a first-order formula:

$$
\exists R_{1}, \ldots, R_{k} \cdot \varphi\left(R_{1}, \ldots, R_{k}\right)
$$

A logic for NP

A decision problem is in NP if and only if it can be defined in ESO.

ESO - Existential second-order logic
Second-order variables existentially quantified, followed by a first-order formula:

$$
\exists R_{1}, \ldots, R_{k} \cdot \varphi\left(R_{1}, \ldots, R_{k}\right)
$$

> "guess"

A logic for NP

A decision problem is in NP if and only if it can be defined in ESO.

ESO - Existential second-order logic
Second-order variables existentially quantified, followed by a first-order formula:

$$
\underbrace{\exists R_{1}, \ldots, R_{k}}_{\text {"guess" }} \cdot \underbrace{\varphi\left(R_{1}, \ldots, R_{k}\right)}_{\text {"verify" }}
$$

A logic for NP

A decision problem is in NP if and only if it can be defined in ESO.

ESO - Existential second-order logic Second-order variables existentially quantified, followed by a first-order formula:

$$
\underbrace{\exists R_{1}, \ldots, R_{k}}_{\text {"guess" }} \cdot \underbrace{\varphi\left(R_{1}, \ldots, R_{k}\right)}_{\text {"verify" }}
$$

A logic for PTIME?

Fixed-point logic captures PTIME on ordered structures

FP is first-order logic with an inflationary fixed-point operator.

A property P of ordered structures can be decided in PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Fixed-point logic captures PTIME on ordered structures

FP is first-order logic with an inflationary fixed-point operator.

A property P of ordered structures can be decided in PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Ordered structure: Vocabulary contains a binary symbol " \leqslant " interpreted as a total ordering of the vertices.

Fixed-point logic captures PTIME on ordered structures

FP is first-order logic with an inflationary fixed-point operator.

A property P of ordered structures can be decided in PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Fixed-point logic captures PTIME on ordered structures

FP is first-order logic with an inflationary fixed-point operator.

A property P of ordered structures can be decided in PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

- On unordered structures, FP cannot even express if a graph has an even or odd number of vertices.

Fixed-point logic captures PTIME on ordered structures

FP is first-order logic with an inflationary fixed-point operator.

A property P of ordered structures can be decided in PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

- On unordered structures, FP cannot even express if a graph has an even or odd number of vertices.
- Fixed-point logic with counting (FPC) is FP together with terms that count the number of solutions to formulas.

FPC captures PTIME on...

FPC captures PTIME on... all graphs?

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k_{-}}$ equivalence, for some k.

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k_{-}}$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k}-$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)
G and H agree on all sentences of C^{k}

Duplicator has a winning
iff strategy in the k-pebble bijection game on G and H

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

To show that a property \mathbf{P} is not definable in FPC:

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

To show that a property \mathbf{P} is not definable in FPC:
For each k, exhibit a pair of graphs G_{k} and H_{k} for which

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

To show that a property \mathbf{P} is not definable in FPC:
For each k, exhibit a pair of graphs G_{k} and H_{k} for which

- G_{k} has property \mathbf{P} but H_{k} does not; and

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

To show that a property \mathbf{P} is not definable in FPC:
For each k, exhibit a pair of graphs G_{k} and H_{k} for which

- G_{k} has property \mathbf{P} but H_{k} does not; and
- Duplicator wins the k-pebble game on G_{k} and H_{k}.

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k}-$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k}-$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)
Facts

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k}-$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)
Facts

- For each k, we can decide the winner of the k-pebble game in polynomial time.

Proving non-definability in FPC

C^{k} - first-order logic with variables x_{1}, \ldots, x_{k} and counting quantifiers of the form $\quad \exists \geq i x . \varphi$

1. Every formula of FPC is invariant under $C^{k}-$ equivalence, for some k.
2. C^{k}-equivalence can be characterised by a k-pebble bijection game
(a variant of Ehrenfeucht-Fraïsse)

Facts

- For each k, we can decide the winner of the k-pebble game in polynomial time.
- Close connection with a family of algorithms for graph isomorphism: Weisfeiler-Lehman method.

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.

Cai, Fürer and Immerman (1992)

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree
- graphs of bounded colour-class size

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree
- graphs of bounded colour-class size

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree
- graphs of bounded colour-class size

Still, the CFI query is hardly a natural graph property...

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.
"CFI property"
Cai, Fürer and Immerman (1992)
Corollary
FPC does not capture PTIME on

- graphs of bounded degree
- graphs of bounded colour-class size

Still, the CFI query is hardly a natural graph property...
More recently: See which problems in linear algebra can be expressed in FPC

Descriptive complexity of problems in linear algebra

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP
(and hence FPC) can define all polynomial-time properties.

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP (and hence FPC) can define all polynomial-time properties.

rows and columns ordered

all PTIME matrix properties can be defined in FP

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP (and hence FPC) can define all polynomial-time properties.
rows and
columns

ordered \longrightarrow| all PTIME matrix |
| :---: |
| properties can be |
| defined in FP |

Many natural matrix properties invariant under permutation of rows and columns

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP (and hence FPC) can define all polynomial-time properties.
rows and
columns

ordered \longrightarrow| all PTIME matrix |
| :---: |
| properties can be |
| defined in FP |

Many natural matrix properties invariant under permutation of rows and columns

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP (and hence FPC) can define all polynomial-time properties.
rows and
columns

ordered \longrightarrow| all PTIME matrix |
| :---: |
| properties can be |
| defined in FP |

Many natural matrix properties invariant under permutation of rows and columns

The usual notion of a matrix

$$
A=\left(a_{i j}\right)-\text { an } m \text {-by- } n \text { rectangular array of elements }
$$

Recall: Over ordered structures FP (and hence FPC) can define all polynomial-time properties.
rows and

ordered \longrightarrow| all PTIME matrix |
| :---: |
| properties can be |
| defined in FP |

Many natural matrix properties invariant under permutation of rows and columns
(rank, determinant, etc.)

Unordered matrices

I, J - finite and non-empty sets
D - a group, a ring or a field

Unordered matrices

I, J - finite and non-empty sets
D - a group, a ring or a field

$$
A: I \times J \rightarrow D
$$

Unordered matrices

I, J - finite and non-empty sets
D - a group, a ring or a field

$$
A: I \times J \rightarrow D \quad \text { "an } I \text {-by- } J \text { matrix over } D^{\prime}
$$

Unordered systems of linear equations

I, J - finite and non-empty sets
D - a group, a ring or a field

Unordered systems of linear equations

I, J - finite and non-empty sets
D - a group, a ring or a field

Unordered systems of linear equations

Unordered systems of linear equations

As a relational structure over a fixed domain D :

Unordered systems of linear equations

As a relational structure over a fixed domain D :

$$
\mathfrak{S}=\left(I, J ;\left(A_{d}\right)_{d \in D},\left(b_{d}\right)_{d \in D}\right) \quad \text { where } \quad A_{d} \subseteq I \times J \text { and } b_{d} \subseteq I
$$

Unordered systems of linear equations

As a relational structure over a fixed domain D :

Unordered systems of linear equations

As a relational structure over a fixed domain D :

Unordered systems of linear equations

As a relational structure over a fixed domain D :

Unordered systems of linear equations

As a relational structure over a fixed domain D :

Unordered systems of linear equations

As a relational structure over a fixed domain D :

In this talk: Focus on $I=J$

FPC - more non-definability results

Solvability of systems of linear equations over any fixed finite Abelian group is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

FPC - more non-definability results

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

FPC - more non-definability results

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)
Recall: A linear system $A \mathbf{x}=\mathbf{b}$ over a field k is solvable if and only if the matrices A and $(A \mid \mathbf{b})$ have the same rank over k

FPC - more non-definability results

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)
Recall: A linear system $A \mathbf{x}=\mathbf{b}$ over a field k is solvable if and only if the matrices A and $(A \mid \mathbf{b})$ have the same rank over k

Corollary

Matrix rank over finite fields is not definable in FPC.

Which matrix properties can be defined in FPC?

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
2. The inverse to any invertible square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
2. The inverse to any invertible square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
3. Rank of a matrix over \mathbf{Q}.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
2. The inverse to any invertible square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
3. Rank of a matrix over \mathbf{Q}.

Dawar, H., Grohe, Laubner (2009)
4. Minimal polynomial of a square matrix over \mathbf{Q} and any finite field.

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
2. The inverse to any invertible square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
3. Rank of a matrix over \mathbf{Q}.

Dawar, H., Grohe, Laubner (2009)
4. Minimal polynomial of a square matrix over \mathbf{Q} and any finite field.
H.-Pakusa (2010)

Fundamental linear-algebraic property over fields that separates FPC from PTIME: rank over finite fields

Which matrix properties can be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
2. The inverse to any invertible square matrix over \mathbf{Z}, \mathbf{Q} and any finite field.
3. Rank of a matrix over \mathbf{Q}.

Dawar, H., Grohe, Laubner (2009)
4. Minimal polynomial of a square matrix over \mathbf{Q} and any finite field.
H.-Pakusa (2010)

Fundamental linear-algebraic property over fields that separates FPC from PTIME: rank over finite fields
(Next talk: solvability problems over groups and rings)

Next step: extend fixed-point logic with ability to define matrix rank

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

formula $\varphi(x, y)$
graph $G=(V, E)$

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

$$
\begin{array}{ll}
\text { formula } & \varphi(x, y) \\
\text { graph } & G=(V, E)
\end{array} \quad \rightarrow \quad \begin{gathered}
M_{\varphi}^{G}: \\
\text { (over GF(2)) }
\end{gathered}
$$

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

$$
\begin{array}{ll}
\text { formula } & \varphi(x, y) \\
\text { graph } & G=(V, E)
\end{array} \longrightarrow \quad \begin{gathered}
M_{\varphi}^{G}: \\
\text { (over GF(2)) }
\end{gathered}
$$

V

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over $\mathrm{GF}(2)$.
formula $\varphi(x, y)$
graph $G=(V, E)$

(over GF(2))

Example: $\varphi(x, y):=E(x, y) \longrightarrow M_{\varphi}^{G}=$ adjacency matrix of G

Definable matrix relations

Recall: View any $A \subseteq I \times I$ as a matrix over $\mathrm{GF}(2)$.
formula $\varphi(x, y)$
graph $\quad G=(V, E)$

(over GF(2))

Example: $\varphi(x, y):=E(x, y) \longrightarrow M_{\varphi}^{G}=$ adjacency matrix of G
More generally: formalise matrices over $\mathrm{GF}(p), p$ prime

Fixed-point logic with rank operators

Variables are typed:

Fixed-point logic with rank operators

Variables are typed:

$$
G=(V, E)
$$

vertex variables: range over the vertices V

Fixed-point logic with rank operators

Variables are typed:

number variables:
range over \mathbb{N}

$$
G=(V, E)
$$

vertex variables: range over the vertices V

Fixed-point logic with rank operators

Variables are typed:

number variables:
range over \mathbb{N}

$$
G=(V, E)
$$

vertex variables: range over the vertices V

- Bounded quantification over number sort

Fixed-point logic with rank operators

Variables are typed:

number variables:
range over \mathbb{N}

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{r k}_{p}(x, y) . \varphi$

Fixed-point logic with rank operators

Variables are typed:

number variables:
range over \mathbb{N}

$$
G=(V, E)
$$

vertex variables: range over the vertices V

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{r k}_{p}(x, y) . \varphi$

Semantics: $\quad\left(\mathbf{r k}_{p}(x, y) \cdot \varphi\right)^{G}:=\operatorname{rank}\left(M_{\varphi}^{G}\right)$ over GF(p)

Fixed-point logic with rank operators

Variables are typed:

number variables: range over \mathbb{N}

$$
G=(V, E)
$$

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{r k}_{p}(x, y) . \varphi$

Semantics: $\quad\left(\mathbf{r k}_{p}(x, y) \cdot \varphi\right)^{G}:=\operatorname{rank}\left(M_{\varphi}^{G}\right)$ over GF(p)
\longrightarrow Logics $\mathrm{FPR}_{p}, \mathrm{FPR}$ and similarly $\mathrm{FOR}_{p}, \mathrm{FOR}$

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over $\operatorname{GF}(p)$.

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

$$
\text { over GF }\left(p^{m}\right)
$$

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

$$
\text { over GF(} \left.p^{m}\right)
$$

Represent each element of GF $\left(p^{m}\right)$ as an m-by- m matrix over GF(p)

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

Represent each element of GF $\left(p^{m}\right)$ as an m-by- m matrix over GF(p)

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

Represent each element of $\mathrm{GF}\left(p^{m}\right)$
as an m-by- m matrix over GF(p)

Corollary

For any prime $p, \mathrm{FPC} \subseteq \mathrm{FPR}_{p} \subseteq \mathrm{PTIME}$.

Expressive power of rank logics

For any prime p, FPR_{p} can express solvability of linear equations over GF(p^{m}) for any m.

Represent each element of $\mathrm{GF}\left(p^{m}\right)$
as an m-by- m matrix over GF(p)
(we can simulate counting by
Corollary expressing rank of diagonal matrices)

For any prime $p, \mathrm{FPC} \subseteq \mathrm{FPR}_{p} \subseteq \mathrm{PTIME}$.

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR_{2}.

Dawar, Grohe, H., Laubner (2009)

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR_{2}.

Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of bounded colour-class size
\longrightarrow not even size 4

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR_{2}.

Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of bounded colour-class size \longrightarrow not even size 4

Isomorphism of graphs of colour class size 4 can be expressed in FOR_{2}.

Pebble games for rank logics \mathcal{E} the Weisfeiler-Lehman method

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:
A pebble game for finite-variable rank logics for which...

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:
A pebble game for finite-variable rank logics for which...

1. we can decide who wins the game in polynomial time, and

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:
A pebble game for finite-variable rank logics for which...

1. we can decide who wins the game in polynomial time, and
2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:
A pebble game for finite-variable rank logics for which...
matrix-rank game

1. we can decide who wins the game in polynomial time, and
2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Proving non-definability in FPR_{p}

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:
A pebble game for finite-variable rank logics for which...
matrix-rank game

1. we can decide who wins the game in polynomial time, and
2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Proving non-definability in FPR_{p}

R_{p}^{k} — first-order logic with variables x_{1}, \ldots, x_{k} and rank quantifiers of the form $\mathrm{rk}_{p}^{\geq i}(x, y) \cdot(\varphi)$

Proving non-definability in FPR_{p}

R_{p}^{k} — first-order logic with variables x_{1}, \ldots, x_{k} and rank quantifiers of the form $\mathrm{rk}_{\bar{p}}{ }^{i}(x, y) \cdot(\varphi)$

1. Every formula of FPR_{p} is invariant under R_{p}^{k} equivalence, for some k.

Proving non-definability in FPR_{p}

R_{p}^{k} — first-order logic with variables x_{1}, \ldots, x_{k} and rank quantifiers of the form $\mathrm{rk}_{\bar{p}}{ }^{i}(x, y) \cdot(\varphi)$

1. Every formula of FPR_{p} is invariant under R_{p}^{k} equivalence, for some k.
2. R_{p}^{k}-equivalence can be characterised by a k-pebble matrix-rank game (over GF(p))

Proving non-definability in FPR_{p}

R_{p}^{k} — first-order logic with variables x_{1}, \ldots, x_{k} and rank quantifiers of the form $\mathrm{rk}_{\bar{p}}{ }^{i}(x, y) \cdot(\varphi)$

1. Every formula of FPR_{p} is invariant under R_{p}^{k} equivalence, for some k.
2. R_{p}^{k}-equivalence can be characterised by a k-pebble matrix-rank game (over GF(p))
G and H agree on all
sentences of k-variable
rank logic over GF (p)

Duplicator has a winning
iff strategy in the k-pebble matrixrank game on G and H

Matrix-rank game over GF(p)

Matrix-rank game over GF(p)

Game played on finite graphs G and H

Matrix-rank game over GF(p)

Game played on finite graphs G and H

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").

Matrix-rank game over GF(p)

Game played on finite graphs G and H

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- Algebraic game rules: At each round, Duplicator has to ensure that every linear combination of partition matrices over G has the same $\mathrm{GF}(p)$-rank as the corresponding linear combination over H.

Matrix-rank game over GF(p)

Problem: Not known if we can decide in polynomial time which player wins the game.

Game played on finite graphs G and H

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- Algebraic game rules: At each round, Duplicator has to ensure that every linear combination of partition matrices over G has the same GF(p)-rank as the corresponding linear combination over H .

Matrix-rank game over GF(p)

Problem: Not known if we can decide in polynomial time which player wins the game.

Game played on finite graphs G ar d H

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("part tion matrices").
- Algebraic game rules: At each rowd, Duplicator has to ensure that every linear combination of partition matrices over G has the same $G F(p)$-rank as the corresponding linear combination over H.

Strengthening the game rules

Two tuples $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ of n-by- n matrices over a field k are simultaneously similar if there is an invertible S such that $S A_{i} S^{-1}=B_{i}$ for all i.

Strengthening the game rules

Two tuples $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ of n-by- n matrices over a field k are simultaneously similar if there is an invertible S such that $S A_{i} S^{-1}=B_{i}$ for all i.

There is a deterministic algorithm that, given two m tuples A and B of n-by- n matrices over a finite field GF (q), determines in time poly (n, m, q) whether \mathbf{A} and \mathbf{B} are simultaneously similar.

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").

Game based on invertible linear maps

Invertible-map game on G and H over $G F(p)$:

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over G and H) are simultaneously similar over $\mathrm{GF}(p)$.

Game based on invertible linear maps

Invertible-map game on G and H over $G F(p)$:

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over G and H) are simultaneously similar over GF(p).

Facts:

Game based on invertible linear maps

Invertible-map game on G and H over $\operatorname{GF}(p)$:

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over G and H) are simultaneously similar over $\mathrm{GF}(p)$.

Facts:

- We can decide who wins this game in PTIME.

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint $\{0,1\}$-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over G and H) are simultaneously similar over $\mathrm{GF}(p)$.

Facts:

- We can decide who wins this game in PTIME.
- Refines R_{p}^{k}-equivalence: If Duplicator wins the k pebble invertible-map game on G and H then she also wins the k-pebble matrix rank game on G and H.

Connection with stable colouring

Recall:

Our wish list:
A pebble game for finite-variable rank logics for which...

1. we can decide who wins the game in polynomial time, and
invertible-
2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Weisfeiler-Lehman refinement

Input: \quad Graph $G=(V, E)$

Output: Equivalence relation \approx on V.

Weisfeiler-Lehman refinement

"colour refinement" or "stable colouring"

Input: \quad Graph $G=(V, E)$

Output: Equivalence relation \approx on V.

Weisfeiler-Lehman refinement

"colour refinement" or "stable colouring"

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \cong$

Weisfeiler-Lehman refinement

"colour refinement" or "stable colouring"

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \approx$

Initial: $u \sim_{0} v \quad$ iff $\quad \operatorname{deg}(u)=\operatorname{deg}(v)$

Weisfeiler-Lehman refinement

"colour refinement" or "stable colouring"

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \approx$
Initial: $u \sim_{0} v \quad$ iff $\quad \operatorname{deg}(u)=\operatorname{deg}(v)$

Weisfeiler-Lehman refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \approx$

Initial: $\quad u \sim_{0} v \quad$ iff $\quad \operatorname{deg}(u)=\operatorname{deg}(v)$
Refine: $u \sim_{i+1} v$ iff $u \sim_{i} v$ and for all $\alpha \in V / \sim_{i}$:

$$
\|N(u) \cap \alpha\|=\|N(v) \cap \alpha\|
$$

Weisfeiler-Lehman refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \approx$

Initial: $u \sim_{0} v \quad$ iff $\quad \operatorname{deg}(u)=\operatorname{deg}(v)$
Refine: $u \sim_{i+1} v$ iff $u \sim_{i} v$ and for all $\alpha \in V / \sim_{i}$:

$$
\|N(u) \cap \alpha\|=\|N(v) \cap \alpha\|
$$

Weisfeiler-Lehman refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V.

Inductively define: $\sim_{0} \supseteq \sim_{1} \supseteq \ldots \supseteq \sim_{m}=\sim_{m+1}=: \approx$

Initial: $u \sim_{0} v \quad$ iff $\quad \operatorname{deg}(u)=\operatorname{deg}(v)$
Refine: $u \sim_{i+1} v$ iff $u \sim_{i} v$ and for all $\alpha \in V / \sim_{i}$:

$$
\|N(u) \cap \alpha\|=\|N(v) \cap \alpha\|
$$

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

1. Compute the WL refinement \approx on $G \dot{\cup} H$
2. Output "not isomorphic" if there is some $\alpha \in G \dot{\cup} H / \approx$ such that $\left\|\alpha \cap V_{G}\right\| \neq\left\|\alpha \cap V_{H}\right\| ;$ else "isomorphic".

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

1. Compute the WL refinement \approx on $G \dot{\cup} H$
2. Output "not isomorphic" if there is some $\alpha \in G \dot{\cup} H / \approx$ such that $\left\|\alpha \cap V_{G}\right\| \neq\left\|\alpha \cap V_{H}\right\| ;$ else "isomorphic".

Some facts:

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

1. Compute the WL refinement \approx on $G \dot{\cup} H$
2. Output "not isomorphic" if there is some $\alpha \in G \dot{\cup} H / \approx$ such that $\left\|\alpha \cap V_{G}\right\| \neq\left\|\alpha \cap V_{H}\right\| ;$ else "isomorphic".

Some facts:

1. WL runs in time $O\left(n^{2} \log (n)\right)$

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

1. Compute the WL refinement \approx on $G \dot{\cup} H$
2. Output "not isomorphic" if there is some $\alpha \in G \dot{\cup} H / \approx$ such that $\left\|\alpha \cap V_{G}\right\| \neq\left\|\alpha \cap V_{H}\right\| ;$ else "isomorphic".

Some facts:

1. WL runs in time $O\left(n^{2} \log (n)\right)$
2. WL is correct almost surely

Weisfeiler-Lehman algorithm for GI

Input: Graphs $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$
Output: "isomorphic" or "not isomorphic"

1. Compute the WL refinement \approx on $G \dot{\cup} H$
2. Output "not isomorphic" if there is some $\alpha \in G \dot{\cup} H / \approx$ such that $\left\|\alpha \cap V_{G}\right\| \neq\left\|\alpha \cap V_{H}\right\| ;$ else "isomorphic".

Some facts:

1. WL runs in time $O\left(n^{2} \log (n)\right)$
2. WL is correct almost surely
3. WL fails on non-isomorphic regular graphs

k-dimensional WL* refinement

One-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i<k$, let:

$$
\Gamma_{i}(\vec{u}, \alpha):=\left\{w \in V \left\lvert\, \vec{u} \frac{w}{i} \in \alpha\right.\right\}
$$

k-dimensional WL^{*} refinement

One-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i<k$, let:

$$
\Gamma_{i}(\vec{u}, \alpha):=\left\{w \in V \left\lvert\, \vec{u} \frac{w}{i} \in \alpha\right.\right\}
$$

Example: Let $k=3$ and $\alpha:=\left\{(x, y, z) \in V^{3} \mid(x, y, z)=\curvearrowleft\right\}$

k-dimensional WL^{*} refinement

One-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i<k$, let:

$$
\Gamma_{i}(\vec{u}, \alpha):=\left\{w \in V \left\lvert\, \vec{u} \frac{w}{i} \in \alpha\right.\right\}
$$

Example: Let $k=3$ and $\alpha:=\left\{(x, y, z) \in V^{3} \mid(x, y, z)=\curvearrowleft\right\}$

$$
\begin{aligned}
& \Gamma_{0}(u v w, \alpha)=\{a, b\} \\
& \Gamma_{1}(u v w, \alpha)=\emptyset
\end{aligned}
$$

k-dimensional WL^{*} refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

k-dimensional WL^{*} refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$

k-dimensional WL^{*} refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$
Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_{m} \vec{v}$ and for all $0 \leq i<k$ there is a bijection $f: V \rightarrow V$ s.t.

$$
f: \Gamma_{i}(\vec{u}, \alpha) \mapsto \Gamma_{i}(\vec{v}, \alpha)
$$

for all $\alpha \in V^{k} / \sim_{m}$

k-dimensional WL" refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$
Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_{m} \vec{v}$ and for all $0 \leq i<k$ there is a bijection $f: V \rightarrow V$ s.t.

$$
\left.\begin{array}{rl}
\Gamma_{i}(\vec{u}, \alpha):=\left\{w \in V \left\lvert\, \vec{u} \frac{w}{i} \in \alpha\right.\right\}
\end{array} \quad f: \Gamma_{i}(\vec{u}, \alpha) \mapsto \Gamma_{i}(\vec{v}, \alpha)\right)
$$

k-dimensional WL^{*} refinement

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$
Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_{m} \vec{v}$ and for all $0 \leq i<k$ there is a bijection $f: V \rightarrow V$ s.t.

$$
\begin{aligned}
\Gamma_{i}(\vec{u}, \alpha):=\left\{w \in V \left\lvert\, \vec{u} \frac{w}{i} \in \alpha\right.\right\}
\end{aligned} \quad \rightarrow \quad f: \Gamma_{i}(\vec{u}, \alpha) \mapsto \Gamma_{i}(\vec{v}, \alpha)
$$

Theorem: $\vec{u} \approx \vec{v}$ iff they agree on all C^{k}-formulas in G.

k-dimensional WL^{*} algorithm for GI

As before: compute k-dimensional WL^{*} refinement and compare across the two graphs.

PTIME for fixed k : k-dim WL^{*} runs in time $O\left(n^{k+1} \log (n)\right)$.

k-dimensional WL^{*} algorithm for GI

As before: compute k-dimensional WL^{*} refinement and compare across the two graphs.

PTIME for fixed k : k-dim WL^{*} runs in time $O\left(n^{k+1} \log (n)\right)$.

There exists a sequence of pairs $\left\{\left(G_{n}, H_{n}\right)\right\}_{n}$ of nonisomorphic graphs for which it holds that:

- G_{n} and H_{n} have $\mathrm{O}(n)$ vertices but
- G_{n} and H_{n} are not distinguished by the n-dim WL* algorithm.

Refinement by invertible linear maps

Two-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i \neq j<k$, let:

$$
\Gamma_{i j}(\vec{u}, \alpha):=\left\{(a, b) \in V \times V \left\lvert\, \vec{u} \frac{a}{i} \frac{b}{j} \in \alpha\right.\right\} \subseteq V \times V
$$

Refinement by invertible linear maps

Two-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i \neq j<k$, let:

$$
\Gamma_{i j}(\vec{u}, \alpha):=\left\{(a, b) \in V \times V \left\lvert\, \vec{u} \frac{a}{i} \frac{b}{j} \in \alpha\right.\right\} \subseteq V \times V \longleftarrow\{0,1\} \text {-matrix }
$$

Refinement by invertible linear maps

Two-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i \neq j<k$, let:

$$
\Gamma_{i j}(\vec{u}, \alpha):=\left\{(a, b) \in V \times V \left\lvert\, \vec{u} \frac{a}{i} \frac{b}{j} \in \alpha\right.\right\} \subseteq V \times V \longleftarrow\{0,1\} \text {-matrix }
$$

Example: Let $k=3$ and $\alpha:=\left\{(x, y, z) \in V^{3} \mid(x, y, z)=\curvearrowleft\right\}$

Refinement by invertible linear maps

Two-element extensions in $G=(V, E)$
For $\alpha \subseteq V^{k}$, a k-tuple $\vec{u} \in V^{k}$ and $0 \leq i \neq j<k$, let:

$$
\Gamma_{i j}(\vec{u}, \alpha):=\left\{(a, b) \in V \times V \left\lvert\, \vec{u} \frac{a}{i} \frac{b}{j} \in \alpha\right.\right\} \subseteq V \times V \longleftarrow\{0,1\} \text {-matrix }
$$

Example: Let $k=3$ and $\alpha:=\left\{(x, y, z) \in V^{3} \mid(x, y, z)=\curvearrowleft.\right\}$

$\Gamma_{12}:$

k-dimensional IM refinement over $\mathrm{GF}(p)$

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

k-dimensional IM refinement over $\mathrm{GF}(p)$

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$

k-dimensional IM refinement over $\mathrm{GF}(p)$

Input: \quad Graph $G=(V, E)$
Output: Equivalence relation \approx on V^{k}.

Initial: $\quad \vec{u} \sim_{0} \vec{v} \quad$ iff $\quad \operatorname{atp}_{G}(\vec{u})=\operatorname{atp}_{G}(\vec{v})$
Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_{m} \vec{v}$ and for all $0 \leq i \neq j<k$ there is $S \in \operatorname{GL}_{V}(\mathrm{GF}(p))$ s.t.

$$
\begin{aligned}
& \quad S \cdot \Gamma_{i j}(\vec{u}, \alpha) \cdot S^{-1}=\Gamma_{i j}(\vec{v}, \alpha) \\
& \text { for all } \alpha \in V^{k} / \sim_{m}
\end{aligned}
$$

k-dimensional IM_{p} algorithm for GI

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

k-dimensional IM_{p} algorithm for GI

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

- For each k, k-dim IM_{p} runs in polynomial time for all p.
- Refinement: k-dim $\mathrm{WL}^{*} \supseteq(k+1)-\operatorname{dim} \mathrm{IM}_{p} \supseteq(k+2)-\operatorname{dim} \mathrm{IM}_{p}$

k-dimensional IM_{p} algorithm for GI

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over $\mathrm{GF}(p)$)

- For each k, k-dim IM_{p} runs in polynomial time for all p.
- Refinement: k-dim $\mathrm{WL}^{*} \supseteq(k+1)$-dim $\mathrm{IM}_{p} \supseteq(k+2)$-dim IM_{p}

For each k and prime p, there is a pair of non-isomorphic graphs that can be distinguished by 3 -dim IM_{p} but not by k-dim WL*.

Dawar and H. (2012)

k-dimensional IM_{p} algorithm for GI

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over $\mathrm{GF}(p)$)

- For each k, k-dim IM_{p} runs in polynomial time for all p.
- Refinement: k-dim $\mathrm{WL}^{*} \supseteq(k+1)$-dim $\mathrm{IM}_{p} \supseteq(k+2)$-dim IM_{p}

For each k and prime p, there is a pair of non-isomorphic graphs that can be distinguished by 3 -dim IM_{p} but not by k-dim WL*.

Dawar and H. (2012)
For each k and distinct primes p and q, there is a pair of non-isomorphic graphs that can be distinguished by 3$\operatorname{dim} \mathrm{IM}_{p}$ but not by k-dim IM_{q}.

k-dimensional IM_{p} more generally

Consider the invertible-map algorithm for larger matrices (higher arity) and finite sets of primes.

Can we give instances where the general algorithm fails to express graph isomorphism?

Some open problems

Problem 1: Separate FOR_{p} and FOR_{q} over empty signatures

For formula $\varphi(x, y)$, integer n and prime p, let $r_{\varphi}^{p}(n)$ denote the GF (p)-rank of the matrix defined by $\varphi(x, y)$ over an n-element set.

Problem 1: Separate FOR_{p} and FOR_{q} over empty signatures

For formula $\varphi(x, y)$, integer n and prime p, let $r_{\varphi}^{p}(n)$ denote the $\mathrm{GF}(p)$-rank of the matrix defined by $\varphi(x, y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_{0}, \ldots, f_{p-1} such that $r_{\varphi}^{p}(n)=f_{i}(n)$ for all (sufficiently large) n congruent to i modulo p.

Problem 1: Separate FOR_{p} and FOR_{q} over empty signatures

For formula $\varphi(x, y)$, integer n and prime p, let $r_{\varphi}^{p}(n)$ denote the $\mathrm{GF}(p)$-rank of the matrix defined by $\varphi(x, y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_{0}, \ldots, f_{p-1} such that $r_{\varphi}^{p}(n)=f_{i}(n)$ for all (sufficiently large) n congruent to i modulo p.

True for: $\quad\left(x_{1}, x_{2}\right) \quad \square$
H. and Laubner (2010)

Problem 1: Separate FOR_{p} and FOR_{q} over empty signatures

For formula $\varphi(x, y)$, integer n and prime p, let $r_{\varphi}^{p}(n)$ denote the $\mathrm{GF}(p)$-rank of the matrix defined by $\varphi(x, y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_{0}, \ldots, f_{p-1} such that $r_{\varphi}^{p}(n)=f_{i}(n)$ for all (sufficiently large) n congruent to i modulo p.

True for:

$$
\left(y_{1}, y_{2}, y_{2}, \ldots, y_{n}\right)
$$

Problem 1: Separate FOR_{p} and FOR_{q} over empty signatures

For formula $\varphi(x, y)$, integer n and prime p, let $r_{\varphi}^{p}(n)$ denote the $\mathrm{GF}(p)$-rank of the matrix defined by $\varphi(x, y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_{0}, \ldots, f_{p-1} such that $r_{\varphi}^{p}(n)=f_{i}(n)$ for all (sufficiently large) n congruent to i modulo p.
???

$$
\left(y_{1}, y_{2}, y_{2}, \ldots, y_{n}\right)
$$

Problem 2: Give capturing results for FPR on natural classes of graphs

Consider classes on which we know that FPC does not capture PTIME:

- graphs of bounded degree
- graphs of bounded colour-class size

Further questions

- Can FPR express matching in arbitrary graphs?
- Does the "simultaneous similarity game" correspond to a natural logic?

More open problems to come in the next talk!

