
Scaling the practical education experience

Joel Sommers
Colgate University

jsommers@colgate.edu ∗

Andrew W. Moore
University of Cambridge

andrew.moore@cl.cam.ac.uk

ABSTRACT
In the past decade, a number of environments to support
hands-on exercises for undergraduate- and graduate-levelnet-
working courses have been developed. In this position pa-
per, we consider the successful model of a graduate-level
laboratory-based course, and how similarly compelling hands-
on experiences may be brought to a wider audience at the un-
dergraduate level. While there are significant challenges to
adapting the advanced content to an undergraduate audience,
there also exist great opportunities for compelling hands-on
activities. We discuss the promising aspects and potential
perils of this approach, suggesting some possible ways for-
ward.

1. INTRODUCTION
Teaching and learning are best approached using a spec-

trum of methods. There can be little argument that a range
of pedagogical practices generally leads to the best educa-
tional outcomes. Considerable discussion has taken place
in the networking community regarding how best to engage
students in practical, hands-on experiences [10], and indeed
many compelling approaches have been developed over the
years. In this position paper, we revisit the perennial ques-
tion: how do we get studentstrainedas well aseducated?

We acknowledge the considerable work in the Computer
Networking community invested in delivering practical ma-
terial to students, and will discuss several examples of it
through the course of this paper. Yet, we recognise issues
that remain as roadblocks between where we currently are,
and where we might wish to be. Moreover, we recognise
the need for greater sharing and dissemination of success-
ful approaches, and adaptation of those approaches to wider
audiences.

Integration of practical, hands-on, and experimental work
into an undergraduate or graduate-level networking courseis
challenging. We do not claim to offer a panacea, or even a
particularly novel approach. Rather, we are like “dwarfs on
the shoulders of giants”, or more coarsely put, educational
opportunists who seek to build-on and adapt the work of the
community at large. In this paper, we outline a successful
∗This work was done in part while Joel Sommers was visiting the
University of Cambridge, Computer Laboratory.

graduate module not as the ideal and definitive goal but as an
example of a graduate programme that any institution might
wish to host. Alongside an outline of this module, we dis-
cuss the number of forms this module has taken as it has been
adapted between various institution and education-settings.
However, we treat this module as a destination example and
then focus on how thehead-pressureof background mate-
rial and experience necessary for a typical candidate student
may be provided within the Computer Network context.

We argue that students at both the undergraduate and grad-
uate levels should engage in practical exercises that enable
them to grapple with important and realistic scientific/engineering
issues in networking. Moreover, we view the “Building an
internet router” (BIR) course described in § 3 as one success-
ful example of a set of coherent practical exercises, though
geared presently toward advanced/graduate students. We ad-
vocate broadening this approach to include other best prac-
tices (i.e., develop and extend an body of practicals). In
this paper we focus on the challenges and opportunities of
scaling/adapting the BIR approach to a broader audience.
We first discuss existing approaches to hands-on activities
in undergraduate-level courses. We then describe the BIR
course in some detail. Lastly, we discuss challenges and op-
portunities in adapting and broadening the approach of BIR
to include undergraduate institutions.

2. CURRENT UNDERGRADUATE
APPROACHES

In this section we briefly describe and characterize various
approaches that have been taken in undergraduate network-
ing courses to provide “hands-on”-type experiences for stu-
dents. We divide the approaches into two categories: those
primarily employing simulation and/or trace-based exercises,
and those involving experiment in a laboratory setting, using
either entirely “real” components, or some emulated compo-
nents. Note that we do not claim to be comprehensive in this
section; the references are merely illustrative of approaches
that have been taken and described in the literature.

We will not enter a description of other (relevant) aspects
of computer science education such as the teaching of pro-
gramming languages or execution or assessment of group
projects. Such aspects have been well studied elsewhere, for

1

example Fincheret al.provide an excellent study of the ped-
agogy of computer science group projects in [8].

2.1 Simulation and trace-based approaches
Simulation and trace-based exercises generally involve stu-

dents using software such as ns2 [16] to construct simulated
network topologies and to conduct traffic, routing, or other
kinds of experiments. Indeed, a repository of ns2 scripts has
existed for many years for educators to post and share simu-
lation scripts for examining different networking scenarios1.

Simulations remain a popular choice for creating highly
constrained experiments for students to examine particular
network behaviors by modifying parameter settings. For ex-
ample, the approach described in [9] uses the Opnet simula-
tor in experiments to examine the effect of turning Nagle’s
algorithm on or off, or the TCP receiver’s window size.

Simulation experiments can be valuable for demonstrating
and investigating particular network behaviors. The ability
to quickly rerun a simulation with different parameter set-
tings make this technique appealing. Moreover, some pa-
rameters can be difficult to modify and/or control in a more
realistic environment. However, using a simulator such as
ns2 in a more general way is problematic, since it is a highly
complex piece of software with a steep learning curve. A
number of efforts have attempted to create simplified simu-
lation settings specifically for educational purposes,e.g., the
Netwire system [3]. This system enables students to more
easily write network simulation programs that go beyond
simple parameter modification.

Because no “real” network traffic is generated and no live
networking components are invoked during experiments, we
classify activities that involve analysis of previously cap-
tured packet traces with a tool like Wireshark along with
simulation-based activities. Exercises involving packettrace
analysis can provide students a flavor of realism without the
overhead of developing and maintaining laboratory infras-
tructure, and without the risks involved in having students
generate traffic in a live setting [9, 15]. Trace analysis ex-
ercises are often found in networking textbooks, since it can
be generally assured that all readers can easily download and
run the necessary software to perform the trace analysis.

2.2 Laboratory and emulation-based
approaches

In the last several years, a number of hands-on experi-
ences based on dedicated laboratory equipment that use ei-
ther real or emulated network components have been ex-
plored.

At one end of the spectrum, [6] describes a set of hands-
on experiences for students using commodity PCs running
Linux, and other free and open source software such as Wire-
shark, Snort, and the Zebra router. [19] also describes the use
of an environment that relies on the Zebra router and a set
of scripts to configure hosts in particular logical topologies
1http://www.isi.edu/nsnam/repository/.

for use in experiments. Similar to these approaches is the
one described by Pan [18] that centers on using the Linksys
WRT54GL and the OpenWRT firmware to provide students
with a realistic platform for experiments.

Hands-on settings that make use of the Emulab2 software
have seen fairly wide use in networking education. These
settings allow students to create virtual topologies usinga
set of commodity hosts, and to emulate different link char-
acteristics such as delay and loss. These settings enable a fair
amount of realism, while allowing lab resources to be mul-
tiplexed among students. Laverellet al. [11] describe their
experiences setting up and using the Emulab software in net-
working courses. The Tinkernet system described in [12]
contains functionality similar to that in Emulab. The authors
of that paper describe a set of laboratory experiences that
focus on building a networking protocol stack.

While Emulab-type systems virtualize links, other sys-
tems present entire virtual network topologies to students,
enabling different levels of interaction with the virtual net-
work. For example, the GINI system [14] creates virtual net-
works using tunnels and Linux virtual machines, enabling
students to use standard tools and APIs to interact with the
virtual network. Similarly, the Virtual Distributed Ethernet
system [13] emulates an Ethernet switch and allows virtual
and real machines to be stitched together into topologies that
students can interact with using standard tools. The Virtual
Network System (VNS) [4] also allows students to construct
virtual network topologies, and allows students to safely in-
teract with their virtual network as well as the rest of the In-
ternet to send and receive raw packets. As a result, students
can design and develop a simplified Internet router that runs
in user space. The Clack Graphical Router [5] can be used in
conjunction with VNS to construct topologies and visualize
different network behaviors. Finally, the Open Networking
Laboratory [20, 21] enables students to remotely access and
control real networking hardware in a laboratory setting. It
provides many knobs for controlling router and system be-
havior, and for visualizing and experimenting with different
network scenarios. Students can create plugins to modify
packet processing behavior in a router.

2.3 Discussion
The form and scope of practical experiences for under-

graduate networking courses has evolved since the most re-
cent SIGCOMM education workshop. In particular, it was
noted in the workshop report [10] that many laboratory-based
courses had only recently been introduced. Since that time,
quite a number of laboratory-style hands-on approaches have
been advocated and developed, some of which are described
above. Indeed, the trend in recent years seems to be toward
developing more realistic hands-on exercises for students.

While the trend toward more compelling practical exer-
cises is a development that has likely led to higher student
engagement and satisfaction, these improvements have not

2http://www.emulab.net

2

software
hardware

Switching
Forwarding

Table

Interoperability Build basic router Routing Protocol
(PWOSPF)

Integrate with H/W

Emulated
h/w in VNS

Routing
 Table

Routing
Protocols

Management
& CLI

Exception
Processing

Command Line
Interface

1 2 3 4 5 6

Wow us!

4-port non-learning
switch

4-port learning
switch

IPv4 router
forwarding path

Integrate with S/W Interoperability Wow us!

Switching
Forwarding

Table

 Learning Environment
 Modular design

 Testing

Emulated
h/w in VNS

Routing
 Table

Routing
Protocols

Management
& CLI

Exception
Processing

Emulated
h/w in VNS

Routing
 Table

Routing
Protocols

Management
& CLI

Exception
Processing

Routing
 Table

Routing
Protocols

Management
& CLI

Exception
Processing

Figure 1: Building an Internet Router: an outline (based
upon Nick McKeown’s CS344 introduction slides)

come without tensions or difficulties. In particular, more re-
alistic laboratory-type exercises can be difficult to scaleto a
large number of users, both in terms of the underlying emu-
lation or laboratory management infrastructure [11], and in
terms of assessment of student projects. The development
of purpose-built virtualized environments can be seen as a
perhaps inevitable response to the problems of scalability,
yet operating any medium–large scale experimental environ-
ment is likely to continue to be challenging.

With respect to assessment, the scalability problem tends
to tip the balance in favor of more narrowly constrained ex-
ercises in order to make grading easier. Unfortunately, if
exercises are “too” constrained, they can devolve into activ-
ities in which students simply go through the motions. An-
other problem with scalability may be that there are simply
not enough tutoring resources to support even modest class
sizes at smaller undergraduate institutions. This problem
can be particularly acute when students enter the networking
course with a weak systems or programming background,
which can frequently happen at smaller institutions. For
these reasons (among others), simulation and trace-based ex-
ercises remain compelling for certain types of investigations.
On the other hand, relying too much on more easily con-
strained (and graded) simulation or trace-based exercisesis
often seen by students as less exciting, and less directly tied
to developing and improving marketable job skills.

3. BUILDING AN INTERNET ROUTER
TheBuilding an Internet Router(BIR) module: the CS3443

course at Stanford University, and it’s progeny including the
P33 module at Cambridge University4 is a graduate-level
subject. Offered as part of Master’s programme but also
available to advanced undergraduate and Ph.D. students, the
BIR module is delivered as a project-based subject executed
by a small team of students (commonly two). There is con-

3http://yuba.stanford.edu/cs344/
4http://www.cl.cam.ac.uk/teaching/1011/P33/

siderable flexibility in the operation of the module as well
as additional differences between each Universities’ offering
(some of these are detailed in § 3.1).

Educational intent
From the outset BIR sets out to achieve a number of ed-
ucation goals: as a piece of group work it is not practical
for one group-member to perform macho-programming and
write all the code for all group members. In this way BIR is
a great example of what might be achieved when a project is
sufficiently modular. Alongside any large software project,
BIR provides a natural environment for wider-ranging skills
such as version repository and continuous design documen-
tation to be executed. Alongside these skills, BIR has a num-
ber of computer networking specific outcomes. Hardware
work covers issues of good algorithm and data-structure de-
sign (particularly if the team seeks a router capable of the
highest throughput), as well as a principled approach to de-
signing a significant amount of hardware (Verilog). Both the
hardware and software sides of the project need to employ
unit testing and the provision of a suitable test framework
enables such consistent hardware testing throughout devel-
opment. The software side to this work faces a range of
problems common in any real-time system, issues of con-
currency, the optimum implementation of timers and multi-
ple threads of execution are the starting point. Understand-
ing the issues of implementation both routing protocols and
more common-place mechanisms such as ARP become criti-
cal to Alongside these, the software team-member must con-
sider his approach to verification/test-suites as well as how
testing with other groups will take place. All of this is along-
side the practical application of material learnt in subjects
with titles such as “Digital Communication” or “Computer
Networks” where details of protocol abstraction and packet
format may first be presented.

BIR has another aspect that is critical: it is extremely re-
warding. For example, an early stage in development achieves
functional connectivity and students find the experience of
connecting a regular browser to the web-server-instance (hosted
within VNS) — using their software router to pass packets
— particularly gratifying. Working IPv4 routers can be con-
nected to the Internet and students often exclaim how much
pleasure they are given seeing their work (hardware and soft-
ware) working as it should. In this way, the philosophy be-
hind BIR also embraces a crtical aspect of Computer Net-
working. From the outset it is emphasised that for routers to
be useful in the Internet they must interact with other routers;
this leads to the groups also needing to communicate.

BIR in detail
BIR is run as a group project; the high-level outcome is that
each group build a working Internet IPv4 routeranddesign
and implement advanced functionality that extends the ba-
sic IPv4 system. Because the project is done as a combina-
tion of hardware and software, each team can create a fully

3

IPv4 router capable of 8Gb/s. The module is designed for
student teams of two: one student takes on the hardware as-
pects while the second student dedicates themselves to the
software.

The design of CS344 enables the project to proceed (for
some weeks) independently of setbacks for either of the team
members. In no small part this occurs because of a huge
investment in infrastructure isolateing development of hard-
ware and software work and permitting simultaneous progress:
this is a sophisticated test and verification framework that
encourages focused hardware development and, through the
VNS infrastructure[4], completely independent software de-
velopment and testing. VNS permits students to develop and
run software from any suitable Internet-connected computer
in a simulacrum of the eventual router environment. This
permits all members of each team to operate unencumbered
by each other.

The students start the project with sufficient hardware and
software to make a system that is not-quite-functional. The
hardware itself is based about the NetFPGA card5, program-
mable in an HDL such as Verilog while being capable of
full line-rate performance. Starting with the Verilog HDL
code for a simple two port switch the hardware designer will
extend/modify/discard this code to provide the functionality
of a four-port IP router. A set of tools and test harnesses are
provided to assist the student with design, verification and
synthesis.

Alongside the hardware development, the software team-
member works with VNS, a click-based[7] environment, that
permits students to create, develop and debug the code needed
to control and manage the router. The software system as de-
signed and implemented must participate in a dynamic rout-
ing protocol and respond to ARP and ICMP messages — a
fundamental part of the specification for any Internet router.

The two team-members must then combine the software
and hardware systems to create a single complete artifact.
The progression is shown in Figure 1 and the integration of
hardware and software progresses smoothly by encouraging
all groups to use a number of common standards such as
the access procedures and layout for the registers by which
hardware and software communicate. Use of a common set
of standards also permits teams to test against each other and
against prebuilt software and hardwarebinarysolutions.

The software team-member implements a complete rout-
ing protocol. PW-OSPF, based upon OSPF is cut-down to
reduce complexity. The students are provided a mock RFC-
like document and expected to implement a complete and
operational system. Like many RFCs, crucial decisions are
left to the implementer or simply omitted. Significant en-
couragement is given to demonstrating inter-operability among
team-members and thus during the course of implementation
teams are encouraged to talk through potential incompatibil-
ities in their protocol implementations. It is reasonable (al-
though uncommon) that all the teams of a particular module

5http://www.netfpga.org

may converge to their own interpretation of the PW-OSPF
specification — one that may not be at all compatible with
the pre-canned binaries.

Once teams have unified hardware and software subsys-
tems an officialInteroperabilityevent is held to permit test-
ing of and between each teams implementation. Once inter-
operability is demonstrated, each team is considered to have
delivered a working IPv4 router; at this point the teams focus
upon their advanced feature.

An advanced feature will extend the basic functionality
of the IPv4 router. There is a considerable range in com-
plexity and this permits groups to match their skills (and
available time) to the size of the task. While a base assess-
ment is made of the advanced functionality, the majority of
marks are awarded on the basis of a demonstration and pre-
sentation of the advanced functionality. Past features have
included a proper firewall, implementations of configuration
web-server for configuration, load-balancer, multi-path rout-
ing with fast-recovery, and the implementation of VPN end-
point appliances.

Coping strategies
Administration of any group-project-based subject is fraught
with issues of differing student ability as well as the need
to provide a fair allocation of reward for investment of ef-
fort. Considerable effort is invested to ensure balance be-
tween software and hardware components. Alongside these
the use of extensive weekly check pointing to ensure smooth
progress irrespective of the varying skill-levels among stu-
dents. With teaching assistants and the module facilitators’
observations of groups for individual participation and con-
tribution along with a jointly written document submitted
to describe the relative contributions of each group-member,
addresses issues of fair recognition of contribution among
group-members.

One further way we assist students who may not quite
match the ideal background for this subject is to provide
them access to a computer-assisted ECAD/Verilog learning
tutorial. While not a universal panacea the on-line tutorial
provides an insight into ways this module might be made
more-widely available, particularly to those students that don’t
posses an optimum background.

3.1 Viva le différence
The Stanford BIR and the Cambridge version have devel-

oped in different evironments; we describe how the Stanford
module was adapted for Cambridge.

From the outset BIR seemed an ideal module to adapt and
run at Cambridge; the coursework Masters programme at
Cambridge is targeted students at the same level and stu-
dents entering this programme might be considered compa-
rable. However, one problem arose quickly: the term-period
in Cambridge is shorter than in Stanford: eight taught weeks
with six official days of lectures and an average contact load-
ing about 50% higher at Cambridge. For example it is com-

4

mon for a Stanford student to limit themselves to only one
project module, such as CS344, per-term. While in Cam-
bridge the degree takes place over a single academic year
so most students will take multiple project-based modules to
accrue sufficient credits.

It is tempting to slice parts of the project from the end,
removing the work associated with building advanced router
extensions, but this has been considered the most valuable
part of the offering at Stanford. Additionally, from an as-
sessment perspective, student-teams differentiate themselves
and their work most clearly in these team-specific contribu-
tions.

A second solution could be to create bigger teams in the
hope that more work will be done in parallel and thus the
course material is still possible in it’s entirety. Unfortunately
it is clear a project might fall-victum to Brooks-law [2] and
while groups of different sizes have been tried, this idea was
quickly abandoned.

A further approach became the key solution:do lessby
starting with more. For example, inspecting the milestones
it is clear that a number of modules such as the CLI are easy
to isolate, may be considered superfluous to the core objects
of the module so these can be provided from the outset.

A more challenging problem occurs with the base hard-
ware language. At Stanford, as is common through the US,
many undergraduate students may be taught Verilog, this is
also true in Cambridge. However, elsewhere in the world in-
cluding most of the Universities in Europe, VHDL is more
common. Despite these two hardware description languages
being considered nearly equivalent (with a number of trans-
lation scripts are available), intellectually the equivalent of
how learning Pascal instead of Haskell or C instead of For-
tran can impose a road-block.

Smooth running of this module has relied on expert teaching-
assistant support, a bit of judicious recruiting becomes crit-
ical, and pastgraduatesof the module provide an important
(automatic) renewal process.

Translating the Stanford offering to Cambridge highlighted
several significant similarities and a number of differences
in the postgraduate offerings. We hope others that may con-
sider adopting this module and teaching methodology will
find these insights helpful.

The Cambridge interpretation of Stanford’s BIR is neither
unique nor the first; COMP5196 at Rice University had the
overt intention of providing practical experience to students
of a Network Systems Architecture subject to compliment
the taught (lectured) material. The offering is made to stu-
dents at an earlier stage in their education and some success
has been achieved by significantly curtailing the quantity of
material in the course, notably the removal of the Advanced
feature, and the use of pair-programming for both hardware
and software: leading to teams of four students.

3.2 Future of BIR

6http://comp519.cs.rice.edu

At Cambridge and Stanford the future of BIR is to migrate
to the next generation NetFPGA hardware. The challenges
associated with building a high-speed router adds to the ex-
citement and interest in this subject. As well as providing
closer integration with the standard FPGA build tools, the
new NetFPGA hardware improves all the specifications of
the previous platform: providing 4×10Gb/s ports as well as
a larger FPGA fabric. A larger fabric will permit a wider-
range of projects and, in time, an IPv6 reference router de-
sign.

However, this is only part of the BIR outcome; students
gain from their exposure to a complete array of network and
systems issues alongside the challenge of group working and
ensuring compatible systems.

4. OPPORTUNITIES
Considering the current state of practical experiences for

undergraduates, and the advanced, yet highly compelling
and successful BIR, we now discuss several challenges and
opportunities. We do not uncritically accept the BIR model
as the end-all-and-be-all of laboratory-style education expe-
riences. Yet, we do view it as a successful example of a co-
herent set of practical exercises pitched at the highest levels
of thinking skills and educational objectives.

Indeed one of the key challenges with adapting the BIR
model to undergraduates is the gap in educational objec-
tives between typical undergraduate- and graduate-level net-
working courses. Building an Internet Routeris primar-
ily geared toward higher levels of Bloom’s taxonomy [1],
assumes that students enter with foundational comprehen-
sion of networking concepts, and further assumes some level
of prior applied skill development in networking. Also as-
sumed is some level of exposure to hardware design with
Verilog (or VHDL). Institutions that are primarily geared to-
ward undergraduates, including liberal arts institutionsgen-
erally do not have the resources to support a hardware de-
sign course. Furthermore, considering that the majority of
primarily undergraduate institutions can only offer a single
upper-level course in networking, most undergraduates would
simply be unable to handle the workload (cognitive and oth-
erwise) required in the BIR course in a single semester.

Nevertheless, we see windows of opportunity. First, one
can consider the range of activities employed at the under-
graduate level within a taxonomy of(1) passive learning
(lecture),(2) observation or demonstration, (3) constrained
experience(hands-on demonstration, with the ability to mod-
ify parameters, for example), and(4) unconstrained experi-
ence(hands-on project with a large degree of autonomy).
These categories align well with Bloom’s taxonomy, and we
believe that there is great potential to develop and adapt a
coherent set of activities modeled on the BIR and NetFPGA
systems that enables students to engage in serious engineer-
ing and scientific issues.

For example, the BIR course as conceived can be seen
as an example of anunconstrained(or loosely constrained)

5

practical experience. Yet even for undergraduates, one could
imagine incorporating more open-ended exercises such as
development of an innovative addition to the basic router,
e.g., firewall functionality, QoS-aware flow processing, or
novel built-in support for traffic measurement.

The majority of undergraduate-style projects are pitched
at theconstrained experiencelevel. For example, one can
consider the simulation and visualization of a congested queue,
with the ability to modify parameters such as the buffer size
as one example of a constrained experience. This exam-
ple is easily supported on the NetFPGA platform, and other
components of the BIR course (e.g., ARP processing, or
IP longest prefix match lookup) could be suitably modified
to be appropriately limited for smaller-scale undergraduate
projects. Indeed, we intend to develop and make available
a set of modules for undergraduates modeled on BIR in the
near future. We also note that depending whether an instruc-
tor chose to use a software-only approach or a combined
hardware-software approach, some aspects of BIR could omit-
ted. On the other hand, there are opportunities to incorpo-
rate educational technologies and tutors developed by oth-
ers. For example, the Verilog tutor7 discussed in [17] could
be employed to introduce and include basic hardware design
modules into an adaptation of BIR. Clearly, a key to making
such an approach successful at the undergraduate level will
be to provide appropriate scaffolding and support for stu-
dents who may have weaker programming or systems skills.

Practical problems related to adapting and deploying the
BIR model to undergraduates involve purchasing, setting up,
and maintaining some level of laboratory infrastructure for
students to use. We note here simply that open access labora-
tories can help address the lack of access to equipment, that
management software/infrastructure such as Emulab can be
usefully employed to mitigate these challenges, and that such
laboratories and software have improved significantly over
the past decade. Still, as noted in [11], laboratory environ-
ments continue to be costly and challenging to run and sup-
port, and increase instructor overhead.

Lastly, a formidable challenge is that of developing ef-
fective assessments. While assessment and the dark art of
grading pose challenges in many contexts, they are particu-
larly difficult in loosely constrained settings and in settings
with significant technical complexity. While we do not yet
have concrete proposals to offer, we intend to offer a set of
loosely constrained projects for undergraduates modeled on
BIR in the near future, along with a set of clear rubrics to aid
in grading.

5. CONCLUSION
In common with most any technology-based discipline,

education in computer networking is marked by the need to
evolve continuously. In the past decade we have witnessed
significant changes in the scope and nature of hands-on ex-
periences for networking students. This continuous change
7https://www-ecad.cl.cam.ac.uk/

in turn forces academics to maintain constantly changing
material and we acknowledge our suggestions only add to
the burden. It is through shared material and the courage
of colleagues who are willing lower the bar to entry for us
by their sharing, that we all can strengthen the enterprise of
teaching and learning.

5.1 Thanks
Thanks to Nick McKeown, Adam Covington, David Un-

derhill, Glen Gibb, Jeff Shafer, David Erickson, John Lock-
wood, David Miller, Malcolm Scott, Gordon Brebner, Patrick
Lysaght, and the generous support of Xilinx.

This work is supported in part by NSF CAREER award
CNS-1054985 and Colgate University.

6. REFERENCES
[1] B. Bloom.The Taxonomy of Educational Objectives: The

Classification of the Educational Goals. Longman Group Ltd., 1956.
[2] F. P. Brooks, Jr.The mythical man-month (anniversary ed.).

Addison-Wesley Longman Publishing Co., Inc., 1995.
[3] E. Carniani and R. Davoli. The netwire emulator: a tool forteaching

and understanding networks.SIGCSE Bull., 33:153–156, June 2001.
[4] M. Casado and N. McKeown. The virtual network system.SIGCSE

Bull., 37:76–80, February 2005.
[5] D. Wendlandtet al,. The clack graphical router: visualizing network

software. InProceedings of the 2006 ACM SoftVis ’06, 2006.
[6] D. Yuanet al.An instructional design of open source networking

laboratory and curriculum. InProceedings of the 10th ACM SIGITE,
2009.

[7] E. Kohler,et al.The click modular router.ACM Trans. Comput. Syst.,
18:263–297, August 2000.

[8] S. Fincher, M. Petre, and M. Clark.Computer Science Project Work:
Principles and Pragmatics. Springer-Verlag, January 2001.

[9] V. Y. Hnatyshin and A. F. Lobo. Undergraduate data communications
and networking projects using opnet and wireshark software.
SIGCSE Bull., 40:241–245, March 2008.

[10] J. Kuroseet al.Workshop Report: ACM SIGCOMM Workshop on
Computer Networking: Curriculum Designs and Educational
Challenges.ACM SIGCOMM CCR, 32(5), November 2002.

[11] W. D. Laverell, Z. Fei, and J. N. Griffioen. Isn’t it time you had an
emulab?SIGCSE Bull., 40:246–250, March 2008.

[12] M. Erlingeret al.Tinkernet: a low-cost networking laboratory. In
Proceedings of the sixth ACE, 2004.

[13] M. Goldweber,et al.Vde: an emulation environment for supporting
computer networking courses. InProceedings of the 13th ITiCSE,
2008.

[14] M. Maheswaran,et al.Gini: a user-level toolkit for creating micro
internets for teaching & learning computer networking. In
Proceedings of the 40th ACM SIGCSE, 2009.

[15] J. N. Matthews. Hands-on approach to teaching computer networking
using packet traces. InProceedings of the 6th ACM SIGITE, 2005.

[16] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al. Network
Simulator ns-2, 1997.

[17] S. W. Moore and K. Taylor. An intelligent interactive online tutor for
computer languages. In25th BCS SGAI, Nov. 2005.

[18] J. Pan. Teaching computer networks in a real network: thetechnical
perspectives. InProceedings of the 41st ACM SIGCSE, 2010.

[19] S. Yooet al.Remote access internetworking laboratory. In
Proceedings of the 35th ACM SIGCSE, 2004.

[20] C. Wiseman, K. Wong, T. Wolf, and S. Gorinsky. Operational
experience with a virtual networking laboratory.SIGCSE Bull.,
40:427–431, March 2008.

[21] K. Wong, T. Wolf, S. Gorinsky, and J. Turner. Teaching experiences
with a virtual network laboratory.SIGCSE Bull., 39:481–485, March
2007.

6

