Scaling the Practical Education Experience

Joel Sommers Colgate University jsommers@colgate.edu

Andrew Moore University of Cambridge <u>andrew.moore@cl.cam.ac.uk</u>

Motivation

- Many tools, environments, and approaches developed for practical, hands-on experiences
 - Provide realistic, applied setting for teaching, learning and research
 - Many focus on relatively small graduate-level courses
- How to adapt and scale to larger classes and to undergraduate settings?

Position

- Practical exercises are essential for students at both undergraduate and graduate levels
 - Directly grapple with important scientific & engineering issues in networking
 - Realism counts a lot!
- We treat "Building an internet router" as a successful example with a coherent and compelling set of exercises
 - How to adapt to undergraduate institutions? Scale up? Scale out?

Building an internet router

- Goal: in one semester/term, build a functional IPv4 router and design and implement some advanced router functionality
 - Project-based course with groups of students (2)
 - Hardware (Verilog) and software components
 - Based around NetFPGA and VNS
- Many networking and software development skills addressed
 - Algorithms, data structures, concurrency, version control, testing
 - Routing, forwarding, ICMP and ARP processing, interoperability
- Highly compelling and rewarding

Undergraduate approaches and constraints

- Two basic approaches
 - Simulation and trace-based approaches
 - Laboratory and emulation-based approaches
- Constraints
 - Instructor overhead, laboratory setup and maintenance
 - Depth of student background
 - Larger course sizes
 - Assessment and grading
 - Open-ended versus more constrained exercises

Challenges in scaling

- Laboratory setup and maintenance
 - Cost, space, instructor overhead
 - Shared and openly available testbeds can help
- Assessment and grading
- Need appropriate scaffolding and support for undergraduates
 - Smaller departments can only offer a limited range of systems courses
 - Requires a variety of exercises to address different levels of understanding

Looking ahead

- Goal: develop a range of activities based on BIR that address multiple levels Bloom's taxonomy
 - Current BIR activities are somewhat open-ended
 - Address highest levels of learning
- Examples of possible projects that could be developed
 - Observation: simulation and visualization of a congested queue
 - Constrained: develop and test IP longest prefix match lookup
 - Loosely constrained: develop novel built-in router support for traffic measurement