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Traffic classification

 Traffic classification is the problem of defining the application class of a
network flow by inspecting its packets.

« port-based - pattern match - statistical analysis.

« Usefulin order to perform other network functions:
« Security: Fine grain access control, valuable dimension for analysis
 Network Management: network planning, QoS

« Performance measurement: Performance dependence on traffic
class
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Problem Space

« So farresearch focuses on packet-level measurement with good
results.
« Butno systems implementations, because...
» Required measurements are difficult
v Focus on flow records.
v’ Existing research exhibit encouraging results.
> Inflexible and generic models
v use modern ML techniques (Bayesian Modeling, Probabilistic
graphical models)
v Develop a problem specific ML-model with well defined parameters
v' Since records are sensitive to minor network changes, use semi-
supervised learning
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Problem definition

N flows extracted from a router each having M feauture.

 Eachflow is represented by a vector x; that has set of features x;; with O
<jsMand0O<I=<N.

« Eachflow has an application class c..

« Assume that we have L flows labeled and U flow unlabeled with L+U =
N.

« Definef(.)suchas, If X,e U ,f(X;|C,, L) =c;

« Assume that flow records are generated without any sampling applied
and x; are independent.
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Probabilistic Graphical Models

« Diagrammatic representations of probability distributions
 Directed acyclic graphs represent conditional dependence among R.V.
- Easyto performinference p(z)=[] p(z. | 2pacw))

o el
b

P(a,b,c) =P(a) P(b | a) P(c | a,b)

c

« Simple graph manipulation can give us complex distributions.
- Advantages:

* Modularity

* Iterative design

« Unifying framework
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Generative model

p(Cx, X,Cy.Y|6,0) =

( |¢}HpmJIH e })

o
@ ®

¢ is the parameter of the class distribution and 6,;is the parameter of
the distribution of feature j for class k.

Graph model similar to supervised Naive Bayes Model.

Assume 6,; ~ Dir(ag) and ¢ ~ Dir(a,).

Use bayesian approach to calculate parameter distribution.
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Semi supervised learning

Hybrid approach of supervised and unsupervised learning

Train using a labeled dataset and extend model by integrating newly
labelled datapoints.

Advantages:
v' Reduced training dataset.
v’ Increased accuracy when the model is correct.

v Highly configurable when used with Bayesian modeling.

Disadvantages

v' Computationally complex .
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Semi supervised graphical model

e

i=1---I fom Ll L7

« Calculating parameter increases exponentially as new unlabled
datapoint are added. (¢ 81X.Y,Cx) =} p(Cx, X, Cy,Y|¢,0)p(6)p(6)

« Hard assignment: Add newly labelled datapoint to the Cx with the
highest posterior probability.

« Soft assignment: update the posterior for each parameter according to
the predicted weight of the datapoint.

« Define class using: f(z") = maz.(p(c|z™))
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« 2 day trace from research facility [Li09]. Appr. 6 million tcp flows.

« Ground-truth using GTVS tool.

* Netflow records exported using nProbe. Settings similarto a Tier-1 ISP.

« Model implemented in C#. Also used the Naive Bayes with kernel

estimation implementation from the Weka Platform.

* Feature set:
srclp/dstIP srcPort/dstPort ip tos start/end time
tcpFlags bytes # packets time length
avg. packet size | byte rate packet rate tcpF* (uniq. flag)

Em UNIVERSITY OF

CAMBRIDGE




Application statistics

database services 0.03
mail 2.5 Spam filter 0.48
ftp 6.25 streaming 0.31
im 0.6 VoIp 0.16
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Baseline comparison

baseline comparison
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Baseline comparison — Class accuracy

DB | MAIL FTP IM P2P | ACCESS

Hard 1 0.58 I 0.39 1 0.95
Hard-ss 1 0.59 1| 0.82 1 0.77
Soft 1 0.55 1| 0.42 1 0.96
Soft-ss 1 0.61 1| 0.42 1 0.81
NBK 0.84 0.26 042 | 0.76 | 0.91 0.11

SERV [ SPAM | STREAM | WEB | VPN VOIP
Hard 0 1 0.97 [ 0.99 | 0.82 0.24
Hard-ss 0 1 0.91 [ 0.99 0 0.44
Soft 0 1 0.96 | 0.99 1 0.77
Soft-ss 0 1 0.96 [ 0.99 | 0.03 0.21
NBK 0.24 0.95 0.1 1 0.89 ] 0.35 0.12
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Dataset size

training dataset size
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Model parameters
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Related work

 Lots of work on traffic classification using machine learning

= Survey paper [Ngyen et al, IEEE CST 2008] and method comparison
[Kim et al, Connext08]

= Semi-supervised learning used on packet-level measurementsin
[Erman et al, Sigmetrics07]

= Traffic classification using NetFlow data is quite recent

= First attempt using a Naive Bayes classifier introduced in [Jiang et al,
INMO7]

= Approachto the problem using C4.5 classifier in [Carela-Espanol et
al, Technical report 09]
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Further development

« Packet sampling

 Difficult problem — multi view points could simplify the problem
« Adapt model for host characterization problem

« Aggregate traffic on the host level and enrich data dimensions
 Incorporate graph level information in the model

« Computer networks bares similarities with social networks
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Conclusion

« Flow records may be a good data primitive for traffic classification.
* Modeling using probabilistic graphical model is not very difficult.

« Semisupervised learning is an effective concept, but is not a one-
solves-all solution.

« Our model achieves 5-10% better performance than generic classifier
and exhibits a good stability in short scale.

« Bayesian modeling and graphical models allow easy integration of
domain knowledge and adaptation to the requirements of the user. \\§§‘

O
Model can be extended to achieve better results. (\\(\ﬂ
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