
Architecture of a Network Monitor
Andrew Moore, James Hall, Christian Kreibich, Euan Harris, and Ian Pratt

University of Cambridge Computer Laboratory
JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

{firstname.lastname}@cl.cam.ac.uk

Abstract— This paper describes a system for simultane-
ously monitoring multiple protocols. It performs full line-
rate capture and implements on-line analysis and compres-
sion to record interesting data without loss of information.
We accept that the balance must be maintained in such a
system between disk-bandwidth, CPU-capacity and data-
reduction in order to perform monitoring at full line-rate.
We present the architecture in detail and measure the
performance of our sample implementation, Nprobe.

Index Terms— Passive network monitoring, full line-rate
capture, multi-protocol analysis

I. INTRODUCTION

CURRENT technologies for the passive monitor-
ing of networks make limited use of the state-

information present as part of each TCP/IP flow. While
Intrusion Detection Systems (IDSs) often perform pat-
tern matching from reconstructed data-flows, the pro-
cessing (and modeling) of state in real-time has been
rare. By using the state information of TCP/IP and
higher-level applications it becomes possible to infer
network properties, such as loss [1] and round-trip time
[2], thereby disentangling the characteristics of network
and transport layer from the end-system applications.

We present a network monitoring architecture cur-
rently able to interface with 1 Gbps full-duplex networks.
Our approach is to perform multi-protocol analysis; this
requires capture of all data from the line. The integrated
analysis of application, transport and network protocols
allows their interactions to be studied. Additionally, the
association of transport and network state allows for
data-reduction, transforming a capture-to-disk problem
into a tractable trade-off between on-line processing
and disk-bandwidth. This system has been successfully
operated on carrier-grade networks and, using only com-
modity hardware, has the potential for economical mass
deployment.

A. Related Work

Passive network monitoring has seen a number of
previous approaches. An evolution of approaches has

been spawned by the growth in network speeds. Ex-
amples of monitoring include those based upon kernel-
implementations of packet capture, such as packetfil-
ter [3] and tcpdump/libpcap [4]. Specialist hardware has
seen important application in work such as OC3MON [5]
as well as more recently with DAG [6] – with demon-
strated part-packet capture rates of up to 10 Gbps.
Additionally, new projects in this area are getting un-
derway: the European SCAMPI [7], an architectural
design for data capture; and MAGNeT [8]. MAGNeT
is a monitoring mechanism for exporting kernel events
to user space. That project uses instrumentation of the
kernel/transport stack to provide an insight into network
characteristics and application behavior. However, we
expect that systems such as MAGNeT will be limited in
deployment through the need to instrument an operating
system.

Aside from our approach, other monitor systems that
allow multi-protocol analysis are Windmill [9] and
BLT [10]. Windmill is a probe architecture designed to
reconstruct application level protocols and relate them to
the underlying network protocols. BLT [10] extracts full
TCP and partial HTTP level packet traces. In contrast
to our design, BLT uses tape storage while Windmill
exports data during collection. Such approaches have
trade-offs (complexity and limited capture rates) but
do allow continuous collection of trace information. A
design constraint of our architecture from the outset
is disk capacity (although this is alleviated by high
data reduction rates). The provision of disk capacity
sufficient to record twenty-four hour traces (hence any
diurnal traffic cycles) is likely to cater adequately for
the majority of studies, and longer periodic variations in
traffic can be handled by repeated traces. Additionally,
it is common carrier practice to operate transmission
capacity at substantially lower than maximum rate [11],
this means that while our system must handle full-rate
traffic bursts, over the course of long capture runs, full-
rate capture does not mean total line-rate capture.

Along with Windmill and BLT, our approach in-
corporates a packet filter scheme. Both Windmill
and BLT implement coarse-grained data discard through

kernel/application-based packet filtering, but in contrast,
our filter architecture is relatively simple and serves a
different purpose – to support scalability as described in
Section II-D.

IDSs such as SNORT [12] can also perform on-
line capture and analysis. Modules in SNORT (e.g.
stream4) allow the inspection of packet state and
subsequent reassembly of the TCP streams; the re-
assembly module has a theoretical capability to handle
up to 64,000 simultaneous streams. However, an IDS
based upon signature/pattern matching is a very differ-
ent problem to that of a multi-protocol analyzer. Our
approach is a tool that performs analysis of TCP/IP
and application protocols, this includes providing timing
relationships between events; SNORT and other IDS
have the objective of performing fast string-matching
against all packets – capturing only those few packets
of interest.

The work we present here is drawn upon a prototype
presented in [2], called Nprobe. This monitor has been
used in a number of studies, the most recent being a
study of web traffic [13].

The remainder of this paper is structured as follows:
Section II presents our probe architecture in detail.
Section III describes our testing methodology, traffic
preparation and hardware setup, followed by our per-
formance evaluation. Finally, Section IV discusses our
results, and Section V summarizes the paper.

II. ARCHITECTURE

A. Motivation

A constraint upon our design from the outset has
been a desire to capture as much data, from as many
different levels of the network stack: network, transport
and application, as practical. For a low-speed network,
our solution could have been a capture-to-disk, con-
sisting of a tcpdump-type program combined with
a significant quantity of off-line processing. However,
limits of bandwidth to disk and a need for improved
time-stamping combined with substantial scope for data-
reduction and the increasing speed of the general-
purpose CPU prompted an alternative approach.

In order to capture all data at network, transport
and application level, our approach incorporates sev-
eral components. First is the recognition that there is
considerable redundancy in network data: both within
any network packet and between network-packets. Ap-
plication of simple, loss-less compression systems have
long been used to improve the performance of link-
layer mechanisms such as high-speed modems – ample
scope exists for compressing captured data in the same

manner. A clear trading relationship exists between the
amount of CPU required (proportional to the degree of
compression) and the bandwidth to disk. It is possible
to consume all available disk and CPU resources with
a sufficiently large quantity of data, although for more
modest requirements the limiting factor tends toward the
PCI bus bandwidth.

Given that discard is the best form of compression,
considerably more compression can be achieved by
performing an extraction that captures only significant
or interesting information. In this way the capture of
web traffic would only involve recording the minimum of
TCP or IP header information for each HTTP transaction
along with the HTTP transaction itself. Even the data
of a retrieved object is not relevant and discarded, as
it is the protocol operations that are of interest. A
significant margin of compression can be wrought using
this technique.

Clearly, in exchange for raw bandwidth to disk our
architecture must be able to recognize packets that
belong to each flow of interest (in order to perform
compression upon them). An architecture that performs
real-time protocol-feature extraction from reassembled
TCP flows, on a carrier scale, is considered to be the
central contribution of this work.

In addition to such application-specific compression,
our approach includes a method of bandwidth splitting
between multiple machines in order to share workload.

For a single monitor, the bandwidth to disk and
available CPU will ultimately prove to be a bottleneck.
For the load-splitting approach we propose there is a
hard upper-limit on the amount of network traffic any
particular IP host-host pair is responsible for – this will
be the bandwidth able to be managed by a single monitor.
For the wider public Internet as well as common research
and academic networks we consider this an acceptable
design decision. This imposition does mean our system
is not suited to the more unusual situations such as the
10 Gbps networks carrying only a single traffic flow [14].

In the worst-case splitting approach, traffic from a sin-
gle IP host-host pair may be striped among a number of
monitor machines. This approach reduces to a capture-
to-disk problem as only off-line analysis is possible of
the network, transport and application flows. For our
approach we use an XOR’d product of the two addresses
of the IP host-host pair as the input to the filter of
traffic for each monitor. The filtering is performed by
the network interface thus the discarded packets never
cause load on the monitor’s CPU or the PCI or disk
buses.

This approach means that each monitor will see all
traffic in any particular flow and thus can subject them

to the network, transport and application compression
mentioned above. Although rare, several deployments
we have made required some load balancing among
monitoring machines when unusual quantities of traffic
are detected between particularly well-connected hosts.
This process is easily detected as resource-overrun on a
monitor and the solution is to compute a more appropri-
ate filter-table for the monitors. Although IP addresses
are reallocated, making this process iterative, we have
noted that such iteration is on a very long time-scale
(months-years) that matches the commissioning time-
scale of new servers and routers.

B. Architectural Overview

Figure 1 illustrates the principal components and ar-
rangement of our architecture.

Our implementation is built upon the GNU/Linux
operating system, modified to improve the behavior of
the asynchronous msync() system call used in writing
data log files to disk. We also modify the firmware of
the network interface card (NIC) to provide the high-
resolution time stamps described in Section II-C.1 and
packet filtering ability described in Section II-D.

Other

ICP

Other

Log Buffer

State

Data

Method and
State

Attachment
ICMP

UDP

MAC

IP

TCP

HTML

Rx Buffer Pool

FTPRTSPHTTP NFSDNS

Filter

Network Interface

Time Stamp

User

Kernel

State Pool

Packets Extracted Data Reference to State

Raid
File System

Network

Control
Thread

Fig. 1. The principal components of the architecture

Our approach includes three stages: packet capture,
packet processing and data storage. Buffering between
the stages accommodates burstiness in packet arrivals
and variations in packet processing and data storage
rates.

Packets arriving from the network are presented to
a simple filter we place in the NIC’s firmware; those
passing the filter are time-stamped and transferred into
a kernel memory receive buffer pool without any further
processing.

A monitoring machine has one or more receive buffer
pools, each associated with one user-level process and
mapped into its address space. Each process presents
packets held in the receive buffer pool to a series of
protocol-based modules which extract the required data
from each packet in-situ. Once all modules have finished
with a packet, the buffer is returned for re-use by the
network interface driver. Modules are generally designed
such that they process and return buffers in FIFO order,
but sometimes it is useful to hold on to a buffer, for
example when the HTTP module is parsing a flow that
has been re-ordered due to loss. Such ‘held buffers’ can
be quickly reclaimed by the system in an least-recently-
allocated fashion if the number of available network
buffers drops below a threshold.

Data extraction is normally dependent on the context
provided by the processing of preceding packets. This
context is held as state which is attached to each packet
as it is processed. Extracted data is temporarily stored
as part of the attached state.

When the last packet of an associated series has been
processed, all of the extracted data held in state is copied
into an output log buffer from where, once sufficient data
has been accumulated, it is written to a large RAID disk.

The architecture employs protocol-specific modules
which in turn define which data should be stored and
which data ought to be discarded. Thus for the HTTP
module, the principle data-compression is achieved by
the discard of the data objects. The module fingerprints
each object using a CRC64 hash while the packets are in
memory; however the objects themselves are not saved.
The hashes allow us to recognise references to the same
data object even if they use different URLs.

C. Capture

There are two approaches to providing data for the
processing system. The first is to capture the data on-line:
the data is provided directly to the processing system
from the wire. This is the standard mode of operation.
The second approach is to provide the processing system
with a trace captured off-line.

1) On-line capture: In this mode, the modified NIC
firmware prepends each accepted packet with an arrival
time stamp generated by a clock on the card. In this
way inaccuracy due to latency between packet arrival
and processing is eliminated.

The clock provided by the NIC currently used by
our implementation provides timing with an accuracy
and precision of approximately 1 millisecond although
this is vulnerable to temperature drift. As packets are
processed, the NIC-generated time stamps are periodi-
cally compared with the system clock; the current NIC
clock frequency is calculated from the elapsed time of
both, and its current offset from real-time noted. As
packets are drawn from the receive buffer pool these two
parameters are used to calculate an accurate real-time
arrival stamp for each. The periodic comparison between
NIC-generated time stamps and the system clock is based
upon a small number of repeated readings of both in
order to identify and eliminate inaccuracies which may
arise as a result of intervening interrupt handling.

Time stamps generated in this way have a relative
accuracy of one or two microseconds, and an absolute
accuracy determined by the system clock’s accuracy –
typically within a few milliseconds, using the Network
Time Protocol [15]. While such precision is not sufficient
to accurately measure the serialization times of back-
to-back packets at network bandwidths of 1 Gbps and
above, it is of the same order as the serialization times
of minimum-size packets at bandwidths of 100 Mbps or
small (512 octet) packets at bandwidths of 1 Gbps.

2) Off-line file input: In this mode of operation, the
processing system can, as an alternative to drawing
packets from the receive buffer pool, read them from
a tcpdump-format trace file. This facility was provided
for development purposes, but it is also useful to have
the ability to apply data extraction and analysis to
traces collected using tcpdump (although, of course,
the limitations of tcpdump will still apply).

The ability to read packets from tcpdump trace files
is also used in investigating data processing failures in
which case offending packets are dumped to an error log.
The value of such a system is that any anomalies seen in-
situ may be analyzed at leisure; the exceptions having
caused automatic generation of packet-traces that then
may be used as input in a development feedback loop to
program code to cope with the observed exceptions.

The tcpdump format was chosen as it allows ex-
amination of the error log files using tcpdump, and
in particular because the packet filter can then be used
to select packets for display or extraction by error type
(possibly in combination with other criteria).

D. Scalability

It must be recognized that the ability of a monitoring
system to keep pace with packet arrivals will be insuf-
ficient at some point due to increasing traffic volumes.

CPU 1

Process

CPU

Process

Log Buffer Log Buffer

Rx Buffer Rx Buffer

RAID File System

NIC
Filter

NIC
Filter

N

Monitor 1

CPU 1

Process

CPU

Process

Log Buffer Log Buffer

Rx Buffer Rx Buffer

RAID File System

NIC
Filter

NIC
Filter

N

Monitor M

Fig. 2. System scalability

This applies equally to the available processor cycles,
memory access times as well as bus and I/O bandwidth.

The scalability of our implementation is based upon
the striping of packets across multiple processes, possi-
bly running on multiple monitors; although the capacity
of individual PC-based monitors may be less than that
of purpose-designed hardware, their relatively low cost
makes the employment of monitoring clusters an attrac-
tive proposition. Striping may alternatively be used as a
form of coarse-grained data discard in order to collect a
sample of the total network traffic by discarding a sub-set
of the total stripes.

The filter employs an n-valued hash based upon
packets’ XOR’d source and destination IP addresses
– hence distributing traffic amongst n processes, each
dealing with a specific aggregated bi-directional sub-set
of the total. This filter is implemented in the firmware
of each of the monitor’s NICs: accepted packets are
transferred into the receive buffer pool associated with an
individual process; rejected packets are dropped, hence
not placing load on the monitor’s PCI bus. Where multi-
processor monitor machines are employed, one process
is run per processor, thereby exploiting affinity of flows
to processors. If the throughput required exceeds that
possible on a single machine, multiple monitors may be
deployed, forming a monitoring cluster.

A cluster using multiple CPUs per monitor and mul-
tiple monitors is illustrated in Figure 2. To achieve full
analysis of the relationship between flows, additional off-
line processing is required to merge the data captured by
the multiple monitoring systems.

A limitation imposed by our approach is that the
monitor cannot deal with traffic of any single host-host
flow that exceeds its capacity. In justification of such
a limitation our public-carrier deployment experience
has involved a major UK ISP which provides dial-up
and cable-modem access (e.g. 56kbps – 2Mbps). Due to

such a limit on the last-hop link capacity, an architecture
that limits host-host data rates to being below that which
any single monitor system can comfortably process was
a quite reasonable design decision. Such a limit will
preclude the monitor from more unusual situations, such
as 10 Gbps networks carrying only a single traffic
flow [14].

E. State and Data Management and Format

In our design, control is as far as possible data driven
(e.g., packets are passed from one protocol processing
module to another according to their content): the packet
processing loop is driven by the presence of packets
in the receive buffer pool, data copy from state to log
buffer is triggered by the processing of the final packet
of an associated sequence. No control processes are
introduced (with one exception – the infrequently called
file management thread), hence adding only a minimal
overhead.

Our implementation avoids memory-copy penalties by
using the kernel’s memory-mapping facility to map the
receive buffer pool directly into the user-level packet
processing process(es)’ address space and by memory
mapping the output files. All data extraction and other
processing is carried out on the packets in-situ.

We will now describe a number of the data struc-
tures used to implement our approach to convey how a
carefully architected system is capable of simultaneously
processing carrier-grade numbers of concurrent TCP/IP
flows.

A data association unit (DAU) is a sequence of
packets having semantic or functional continuity at one
or more levels of the protocol stack, and from which
data is extracted, aggregated and associated. Each current
DAU has a corresponding state storage unit (SSU) for
holding state information.

In this way state and data are identified, initialized and
managed as a single unit, and data can be transferred
efficiently as a single continuous block of memory.

The continual birth and death of DAUs gives rise
to a very high turnover of associated SSUs. So we
create a pool of the various SSU structures when the
monitor is activated, and draw from it as required.
The pool is organized as a stack so as to maximize
locality of reference. As new DAUs (packet sequences)
are encountered a new SSU is drawn from the pool and
entered into a hash list based upon IP addresses and port
numbers1; this provides efficient co-location of the SSU.

1The hashing strategy used is actually two-stage, based first upon
IP addresses and then port numbers. The option to associate multiple
connections as a single flow is thereby provided.

Flexibility in the degree and type of data collected
from packets is reflected in the SSU. State and data vary
with a studies’ requirements within a specific protocol.
Additionally, appropriate chaining of DAU and SSU
allows the associations of data to be established, for
example allowing speedy processing for multiple HTTP
transactions over one TCP connection.

The size of data fields within an SSU may be statically
or dynamically determined. Numeric or abstracted data
will be stored in numerical data types of known size, but
a mechanism for the storage of variable sized data (e.g.,
the alphanumeric URL field of an HTTP request header)
is also required. The demands of efficient packet process-
ing preclude an exact memory allocation for each data
instance and a trade-off must be made between allocating
sufficient space to accommodate large requirements and
making heavy demands upon the available memory. A
count of length is kept and used to ensure that only
the data (as opposed to the size of statically allocated
buffers) is logged.

Timing data is central to many studies and, as de-
scribed in Section II-C.1, packet time stamps are pro-
vided with a precision of 1 µs. Time stamps recorded in
a thirty two bit unsigned integer would overflow/wrap-
round in a period of a little over one hour. While such
wrap-rounds may be inferred, significant time stamps
(e.g., TCP connection open times) are recorded as sixty
four bit quantities in epoch time.

F. Off-line Processing

The data produced by our implementation is collected
into a pre-defined format; the format varies depending
upon the data captured. In order that the output data
can be easily manipulated, the storage formats are main-
tained using SWIG [16]. This creates interfaces that off-
line processing systems may use to access the logged
data structures.

The automatic compile-time creation of interfaces to
the log files enables the rapid prototyping of programs
able to retrieve data from the log files. The majority
of our off-line processing is done using Python, a
language suited to rapid prototyping. While Python is
an interpreted language, any impact upon processing
performance is minimal as its use is restricted to the
off-line processing phase.

G. Protocol Modules

As part of the overview of the architecture, Figure 1
illustrated the principal components and arrangement.
Notably, each protocol – at network, transport and ap-
plication layers – makes up a separate module. In our

current implementation the majority of work has been in
the IP, TCP, HTTP and HTML modules. Modules may be
shared in their interconnection, for example, the IP and
TCP modules are held in common across a large number
of applications. We also have initial implementations of
protocol modules for FTP and DNS; additionally an early
version of an NFS module was described in a previous
publication [17].

The addition of new protocol modules to the archi-
tecture centers upon the construction of a number of
methods activated upon packet-arrival. The existing ar-
chitecture’s hierarchy allows easy additions to be made,
a simple protocol module may cause matching packets
to be logged, the bytes or packets counted, or the packets
to be discarded outright. In contrast, more complex
methods may elect to provide packet data to higher-level
protocols (e.g., TCP flows providing data to HTTP) after
processing (TCP performing data reassembly). A direct
result of the logging data-structures being central to each
design is that construction of a module will, through the
SWIG interfaces, simultaneously construct the off-line
data interfaces.

The result is that adding modules to the overall archi-
tecture is an incremental process, adding functionality
only as it is required. Combined with the iterative
debugging process described in Section II-C.2, the de-
velopment of new module is quite straight-forward.

III. TESTING AND RESULTS

In order to test our system reliably, we set up a
network environment that allowed us to expose the probe
to varying traffic patterns in a controlled manner, while
at the same time enabling us to recreate realistic traffic
characteristics.

A. Architectural Aspects

In order to get a clear idea of our implementation’s
performance, we created several test cases that specifi-
cally exercised the potential bottlenecks of Nprobe. Our
evaluation covered the following aspects:

1) System Components: These tests evaluated the
capacity of systems involved in moving the data from the
network onto disk: the NIC hardware, the hardware and
software involved in moving the data from the NIC to
the Nprobe process, and the mechanisms for moving data
onto the local disk. We had to make certain assumptions
about the hierarchy of bottlenecks in our architecture
– these assumptions were also imposed on us by the
hardware we used.

2) Module Performance: Our evaluation of Nprobe’s
protocol modules has focused on the TCP/IP, HTTP and
HTML modules. The work these modules perform can
have significant impact on the system’s performance.
In addition to the TCP/IP checksumming, the HTTP
interpreter computes a “fingerprint” in form of an MD5
hash for each HTML object – this allows individual
objects to be identified regardless of the URL they are
accessed by. Such operations are significant overheads on
the total system and can be selectively tested by using
purpose-built input traffic.

3) Total-system Performance: Finally, we investigated
the overall system performance of our implementation
by observing its behavior when exposing it to increasing
volumes of a typical traffic mixture as observed on our
laboratory’s network. We measured the performance of
the system with both IP and HTTP-only traffic.

B. Test Traffic Preparation

The basic input traffic we used for our experiments
consisted of a full-packet capture of our laboratory’s off-
site traffic collected across several weekdays. Using this
packet data, we generated sets of traffic to allow testing
of specific bottlenecks in our implementation:

1 2 n-1 n

1 2 n-1 n 1 2 n-1 n 1 2 n-1 n

Fig. 3. Generating a sequence of individual HTTP transactions

• Sequence of HTTP transactions, no overlap
We selected a small but complete HTTP transaction
consisting of seven packets from the captured traffic
and concatenated this transaction massively until the
resulting trace reached a pre-determined size. Every
instance of the connection was assigned different
IP addresses, to make the requests appear to be
individual instances. Figure 3 illustrates the process.

1 2 n-1 n

1 2 n-1 n1 2 n-1 n1 2 n-1 n

Fig. 4. Generating overlayed HTTP transactions

• Sequence of HTTP transactions, overlayed
To test the probe’s behavior when it has to keep
state, we selected a large HTTP transaction that
occurred in our traffic. To build up state, multiple
instances of this connection were overlayed packet

by packet, each with unique IP addresses, resulting
in up to 10,000 overlays. Figure 4 illustrates the
process.

• Repeatable IP traffic
To test the probe’s general performance on a “nor-
mal” mixture of IP traffic, we also generated input
traces that preserve realistic traffic characteristics,
while eliminating unwanted side-effects when being
replayed repeatedly. To do this, we demultiplexed
the captured traffic on a per-host basis, looking only
at traffic entering or leaving our lab. While doing
this, we removed any incompletely captured TCP
connections to avoid unrealistic state building up
inside the probe (the probe is designed to time-out
flow records when memory is low, but this rarely
happens in normal operation, except when major
network re-routing occurs). We then again created
trace files out of this host-based traffic, sampling
through the full range of available per-host traffic
volumes.

Since our test setup required considerably more traf-
fic than directly obtained using the methods described
above, we duplicated the traces as often as necessary,
moving the range of IP addresses in each clone to an
individual range. While replaying, we thus avoided any
artificial traffic duplication.

Most of the tools necessary for the traffic manipu-
lations were written as plugins for our netdude [18]
traffic editor, as it provides a higher-level API for these
kinds of operations compared to handwritten libpcap
applications.

C. Test Environment

The probe was tested against a traffic load gener-
ated by a cluster of PCs attached to a pair of high-
performance Ethernet switches. This testbed could replay
previously recorded real network traffic at a controllable
rate from a few kilobits to several thousand megabits
per second. Initial experience with the tcpreplay [19]
utility indicated poor performance due to per-packet
overheads; our solution was to create a replacement,
tcpfire [20], that enabled line and near-line perfor-
mance. Once prepared, the traffic files were distributed to
machines that replayed this traffic to our testbed. While
the hardware of each cluster machine is modest — each
node generating 25–100 Mbps of sustained traffic — this
traffic is multiplexed onto a fiber link, and using up to
40 source machines, data-rates of up to 1 Gbps can be
achieved in both directions.

The probe was inserted into the fiber link between the
two switches and, using an optical splitter, diverted a

small percentage of the light of each fiber to a pair of
NICs in the probe. Coarse-grained control of the traffic
volume was obtained by adding and removing source
nodes from the cluster; finer-grained control was possible
through controls offered by the replay program running
on each node.

Several traces were used to evaluate the performance
of the network interface (SysKonnect SK-9843-SX) and
our monitor system (Intel Xeon 2.4 GHz with 512 KB
L2 in an Intel e7500-based motherboard, using 2 GB
of DDR-SDRAM, 64 bit/66 MHz PCI bus, with 3ware
7850-series ATA-RAID card providing a hardware RAID
5 on top of 8 IBM Deskstar 120 GB 7200 RPM drives).

D. Results

As illustrated in Section III-A, each of our tests was
designed to evaluate one particular aspect of the system’s
performance. The following sections describe the tests in
detail and present the results of our measurements.

1) Component Performance: Several traces were used
to evaluate the performance of the system hardware. Per-
formance is determined by maximum data rates observed
just prior to packet loss by the monitor. The results of
Table I clearly illustrates that very small packets have
a disastrous impact upon the system-performance. We
noted that for a network interface we had used earlier
(3Com 3c985B) not only was performance lower, but the
card was a clear bottleneck for small packets. In contrast,
for the SK-9843-SX, the bottleneck became the (large)
number of interrupts generated on the PCI bus. While
some interrupt coalescing is performed by our driver for
this card, this is clearly an area for future work.

Although it is not a directly comparable system,
we compared our implementation’s performance to that
of tcpdump, a system commonly used for capturing
network traffic. Packets captured using tcpdump have
to cross the kernel-user space boundary, using network
code optimized for day-to-day operations of transmit and
receive.

2) Module Performance: To test the CPU usage of
the modules, we used the traces containing overlays of
large HTTP transactions, as described in Section III-B.
A number of these trace files were multiplexed together,
increasing the quantity of work the CPU had to perform.
Packet-loss based on CPU exhaustion occurred when
the traffic load exceeded 790 Mbps (97.3 kpps) for a
single monitor. By using a large transaction as input, the
system bottleneck was moved from the network interface
card and PCI bus into the CPU, since the transfer of a
large data item is dominated by large packets. While this
particular limit is solved with ever-faster CPUs as well

64 byte 1520 byte live mix
Mbps (kpps)

tcpdump– examine and discard 19.4 (36) 1151 (95) 209 (121)
tcpdump– capture to disk 16.6 (42) 339 (28) 192 (119)
Nprobe– examine and discard 95.9 (187) 1579 (130) 340 (217)
Nprobe– capture to disk 64.8 (127) 496 (41) 240 (154)

TABLE I
MAXIMUM TRAFFIC RATES FOR FIXED-SIZE PACKET TRACES AND A LIVE MIX REPRESENTING TYPICAL TRAFFIC. A SMALL VARIATION

OF THE MEAN-PACKET-SIZE IS PRESENT IN THE LIVE TRAFFIC MIX.

as the use of multiple CPUs, single CPU performance
provides an important base result.

Section II-E details the state and data management
performed by our architecture. A clear restriction on
the total amount of traffic processable is the number of
TCP/IP and HTML/HTTP state engines required to exist
simultaneously. This limits the number of concurrent
TCP flows that may be reconstructed, and thus the
number of HTML/HTTP flows that may be concurrently
processed.

The limitation ought to be imposed as a hard-limit
based upon the size of the state/data records and the total
quantity of memory available in the monitor to create
these state/data records. This is a test of our architec-
ture’s implementation and we can achieve 44000 flows
at 304 Mbps (117 kpps). We anticipate this performance
barrier may be imposed by the CPU-memory interface
as it became clear that the system was not bound by disk
or PCI bus speeds. Such conjecture may be proved by
the use of a dual-processor system as improved L2 cache
use would be anticipated to improve performance.

The second test of our architecture’s implementation
was the rate at which such state/data records can be re-
leased and reused: such functions are clearly important in
carrier-grade monitoring that may observe hundreds of
thousands of new flows per second. We tested this aspect
using traces containing sequences of non-overlapping
small HTTP transactions as described in Section III-B.
Like the previous case each individual flow is between
two unique hosts and as a result each trace file (of which
up to 80 are used) represents near 2 million individual
transactions among unique host pairs.

Our system was able to manage about 23500 transac-
tions per second (at 54 Mbps (165 kpps)). Investigating
our results, this value is due to other aspects of system
performance (CPU-starvation) being the limit on perfor-
mance and impacting the systems ability to manage and
manipulate the large number of state/data records.

3) Total-system Performance: The final results we
present describe the total-system performance when

Nprobe is monitoring variable quantities of typical net-
work traffic as well as just the flows carrying HTTP data.
As mentioned above, the sample of typical traffic we
used was recorded from the 1 Gbps link between a large
academic/research organization and the Internet. While
it is very difficult to compare performance for different
traffic types, we have had extended experience with this
system deployed in the national backbone of a major
public UK ISP. That experience combined with other
deployment experience at the department, institution and
national-research network levels has provided us with
sufficient confidence in the operation of our system.

The test trace used consisted of 88% TCP by packet
(95% by byte volume). The TCP/IP traffic, in-turn con-
sisted of 10% HTTP by packet, (54% by byte). At less
than ten percent, this traffic is clearly not dominated by
HTTP on a packet basis, however HTTP accounts for
over half the total number of bytes transmitted.

Using the multiplexed traces of access traffic for a
single research/academic department we find the probe
is able to keep up with traffic intensities bursting at up to
500 Mbps measured over a 1 second interval. However,
we note that the probe’s sustainable link-rate is a slightly
disappointing 280 Mbps.

The most significant cause of this performance limit
is the trace’s mean packet size, which is just 190 octets.
Leading to a packet rate of 184 kpps, the per-packet
overhead in both the analysis code and the network in-
terface is detrimental to performance. On-going profiling
and tuning work is attempting to address this bottleneck.

Experiments were also made using superficially simi-
lar traffic: the laboratory trace as used above was used as
input, however a level of pre-processing removed all non-
HTTP traffic. Thus, the difference now was that all traffic
seen by the monitor consisted of 100% TCP/IP packets
carrying HTTP transactions. The results: 189 Mbps
(101 kpps) for a mean of 234 bytes/packet indicated
that other parts of the implementation (aside from small-
packet limitations) had come into play. Further investi-

gation indicated that the object fingerprint function was
consuming most CPU. It would, however, be an error
to indicate that the fingerprint function was dominating
CPU, rather we consider that the combination of events
— file system activity, stream-assembly and its data
structure overheads, as well as the hashing functions —
each made a contribution.

While we believe there is scope for more thorough op-
timization of our prototype implementation, these results
are encouraging and validate the approach.

IV. DISCUSSION

Section III-D.1 described experiments to illustrate
limitations imposed by hardware or limitations that are
fundamental to the current implementation. It is clear
that one important area for future work is to optimize
hardware and software behavior when faced with large
numbers of small packets.

Another area of note was the limitation imposed by
disk bandwidth and scope exists for testing of more
exotic disk sub-system solutions.

The upper value we achieved using Nprobe for the
largest packets (lowest per-packet overhead) without
writing that data to disk indicates another issue to focus
upon. We noted that the PCI bus was a common point of
congestion in these tests. While the PCI bus bandwidth
at 64 bit/66 MHz ought to have sufficient raw capacity a
limit is imposed due to device contention (two network
interfaces: one monitoring each direction) and due to
bus transaction overheads. Scope exists to investigate
still-faster PCI bus implementations, but also to explore
unusual network-interface-card designs (e.g., multiple
transceivers sharing the same PCI interface).

The tests of Section III-D.2 have illustrated the bounds
imposed by our use of non-custom, commodity hard-
ware. We do not suggest that the only solution is to
use faster hardware; scope for code-optimization is also
present. Furthermore, multiple-CPU motherboards are
common-place and, while not presented here, the use of
multiple CPUs (as described in Section II-D) is another
avenue for investigation. However, our tests indicate that
our current implementation is sound.

An interesting comparison may be made between
the Nprobe performance when capturing all traffic to
disk, and when performing as an analysis-compression
system. Section III-D.3 describes system performance
when analyzing and recording a typical traffic mixture.
In comparison with the raw-throughput tests presented in
Section III-D.1, 280 Mbps is a somewhat disappointing
performance figure, but further tuning, and use of a clus-
ter of machines would enable us to achieve our 2 Gbps

target. While Nprobe in full-operation only provided a
small gain (about 20 Mbps) over Nprobe operating in
capture-to-disk, a substantial quantity of on-line pro-
cessing was performed on the captured traffic, reducing
both storage requirements and the off-line workload. One
approach may be to reconsider the precise split in work-
load between on-line and off-line processing.

It has been a fundamental principle of this project to
use only commodity hardware. Whereas in the short term
this may have added to the difficulties inherent in mon-
itoring high-speed networks, in the long term Nprobe
is well-placed to reap the rewards of the continuous
innovation and performance improvements which are the
hallmarks of the commodity hardware industry. Particu-
lar examples are increases in CPU power, still governed
by Moore’s Law, and improvements in commodity NICs,
which appear to follow a similar trend. However, even
if these advances should prove inadequate, the Nprobe
modular architecture is sufficiently flexible as to allow
the incorporation of more exotic technologies, such as
network processors. Offloading TCP reassembly and
fingerprinting into these devices is particularly attractive.

Finally, while the ambition of this paper was to discuss
the software and hardware architecture of a network
monitor, the use of such systems encompass many real-
world issues, among them: management and security.
The architecture we outlined in this paper has the poten-
tial to make a full and complete record of a users network
utilization, clearly there are both privacy issues for the
user and security issues for data and monitor access.
To this end, we have a monitor module that is able
to provide crude anonymity through prefix-preserving
re-mapping of IP addresses. We consider schemes of
data management that offer accommodation of privacy,
security and legal constraints an important aspect of
future work.

V. SUMMARY

We have presented an architecture developed to per-
form traffic capture and processing at full line-rate
without packet loss. Performing on-line capture allows
application-specific processing and application-specific
compression. Combined with a powerful off-line pro-
cessing interface, this approach can perform full capture
to disk of interesting traffic features, yet remains ca-
pable of monitoring high-speed networks. Additionally,
we demonstrated how this architecture achieves higher-
speed monitoring through traffic separation and filtering.

Alongside the presentation of a network monitoring
architecture, we documented a performance evaluation
of our current implementation: Nprobe. Our implemen-

tation was shown to perform well, although several areas
for future enhancements were also identified.

Future Work

Aside from studies of network traffic, future work for
this project will concentrate on improving the implemen-
tation of our monitoring architecture. Particular emphasis
will be on enhancing the application-processing systems
— this will allow processing of other common network
applications and thus allow the interaction of such ap-
plications with the network and transport protocols to
be studied. Additionally, we are extending our system
for 10 Gbps operation, and are currently planning test
environments for its development and evaluation.

Acknowledgments

Specific thanks to Tim Granger, Ian Leslie, Derek
McAuley, Martyn Johnson, Piete Brooks and Phil Cross.
Thanks also to Intel Research Cambridge for providing
access to network test facilities.

Finally, we acknowledge the valuable feedback pro-
vided by the anonymous reviewers and our colleagues
at the University of Cambridge Computer Laboratory.

REFERENCES

[1] J. Liu and M. Crovella, “Using Loss Pairs to Discover Network
Properties,” in ACM Internet Measurement Workshop 2001
(IMW 2001), Nov. 2001.

[2] J. Hall, I. Pratt, and I. Leslie, “Non-intrusive estimation of web
server delays,” in LCN 2001 The 26th Annual IEEE Conference
on Local Computer Networks (LCN), Tampa, FL, March 2001.

[3] J. C. Mogul, “Efficient use of workstations for passive mon-
itoring of local area networks,” in Proceedings of ACM SIG-
COMM’90, Philidelphia, PA, Sept. 1990.

[4] “tcpdump/libpcap,” 2001, http://www.tcpdump.org/.
[5] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder., “Oc3mon:

flexible, affordable, high performance statistics collection.”
[6] I. D. Graham, S. Donnelly, J. M. S. Martin, and J. Cleary,

“Nonintrusive and accurate measurement of unidirectional delay
and delay variation on the internet,” in Proceedings of the
INET’98 Conference, July 1998.

[7] SCAMPI, a Scalable Monitoring Platform for the Internet,
Lieden University (in collaboration), Mar. 2002, http://www.ist-
scampi.org.

[8] M. K. Gardner, W. Feng, and J. R. Hay, “Monitoring Protocol
Traffic with a MAGNeT,” in Passive & Active Measurement
Workshop, Fort Collins, Colorado, 3 2002.

[9] G. R. Malan and F. Jahanian, “An extensible probe architecture
for network protocol performance meas urement,” in Proceed-
ings of the ACM SIGCOMM ’98 conference on Applications,
tec hnologies, architectures, and protocols for computer com-
munication. ACM Press, 1998, pp. 215–227.

[10] A. Feldmann, “BLT: Bi-layer tracing of HTTP and TCP/IP,”
WWW9 / Computer Networks, vol. 33, no. 1-6, pp. 321–335,
2000.

[11] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi,
and C. Diot, “Analysis of Measured Single-Hop Delay from
an Operational Backbone Network,” in Proceedings of IEEE
INFOCOM 2002, New York, NY, June 2002.

[12] Martin Roesch and Chris Green, “SNORT: The Open Source
Network Intrusion Detection System 1.9.1,” Nov. 2002,
http://www.snort.org/.

[13] J. Hall, I. L. Ian Pratt, and A. Moore, “The Effect of Early
Packet Loss on Web Page Download Times,” in Passive &
Active Measurement Workshop 2003 (PAM2003), Apr. 2003.

[14] L. Cottrell, “TCP Stack Measurements,” 2003, http://www-
iepm.slac.stanford.edu/monitoring/bulk/fast/.

[15] D. L. Mills, “RFC 1305: Network time protocol version 3),”
Mar. 1992.

[16] “Simplified Wrapper and Interface Generator,” Jan. 2003,
http://www.swig.org/.

[17] J. Hall, R. Sabatino, S. Crosby, I. Leslie, and R. Black, “A
Comparative Study of High Speed Networks,” in proceedings
of the 12th UK Computer and Telecommunications Performance
Engineering Workshop, September 1996, pp. 1–16.

[18] “Netdude, the NETwork DUmp Data Editor,” 2003,
http://netdude.sf.net/.

[19] “tcpreplay,” 2003, http://tcpreplay.sf.net.
[20] “tcpfire,” 2003, http://www.nprobe.org/tools/.

