
An experimental on�guration for the evaluation of CAC algorithmsAndrew Moore and Simon CrosbyUniversity of Cambridge Computer Laboratory,New Museum Site, Pembroke StreetCambridge, CB2 3QG, UKfandrew.moore,simon.rosbyg�l.am.a.ukAbstratInterest in Connetion Admission Control (CAC) algorithms stems from the need for a networkuser and a network provider to forge an agreement on the Quality of Servie (QoS) for a new networkonnetion. Traditional evaluation of CAC algorithms has been through simulation studies. We present analternative approah: an evaluation environment for CAC algorithms that is based around an experimentaltest-rig. This paper presents the arhiteture of the test-rig and an evaluation of its performane.1 IntrodutionConnetion Admission Control (CAC) denotes the set of ations taken by the network during theonnetion set-up in order to aept or rejet an ATM onnetion. A onnetion request is only aepted ifsuÆient resoures are available to arry the new onnetion through the network at its requested Qualityof Servie (QoS) while maintaining the agreed QoS of existing onnetions. It an be seen that whileattempting to balane the requirements of the \user" (ahieve the desired QoS,) and the requirements ofthe \network" (do not violate the QoS guarantees made to existing onnetions,) the algorithm ontrollingthe deision made during the CAC will ontrol the poliy of the network.During the development of CAC algorithms, substantial e�ort has been invested in modelling andexperimenting using simulators suh as ns [1℄. In these simulators, models are made of all aspets ofthe situation inluding traÆ and network behaviour. However, modelling alone does not satisfatorilyassess the behaviour of real CAC algorithms implemented in real situations. Most ommon simulators,suh as ns, are disrete event simulators not onstrained by CPU or memory usage in the same way anatual swith implementation would be. Additionally, ommon modelling tehniques involve the use ofsimulated soures of traÆ { both well understood and easily generated. However, due to the variety ofsoures and the ontinual development of new network users, suh simulated soures of traÆ are notadequately representative. In a test environment that uses real rather than simulated traÆ soures,testing CAC algorithms against the latest traÆ and network behaviour is simpli�ed. While we do notadvoate the wholesale replaement of simulators with evaluation systems based upon implementation,both have an important role to play.Setion 2 gives a brief summary of how existing test implementations have either not been suited foruse in the evaluation of CAC algorithms, or that their limited availability has restrited their usefulness.The arhiteture of the test environment is disussed in Setion 4. Additionally, the omponents and theoperation of the test-rig are also overed. Finally, an evaluation of the test-rig is given in Setion 5; thisevaluation overs the test-rig's per-onnetion and repeatability performane.2 Previous workTest environments that are able to assess a CAC algorithm require the ability to dynamially generatetraÆ as the onnetion load varies, the ability to extrat information to be used by the CAC algorithm(as required) and to extrat information on the urrent traÆ allowing us to assess the behaviour of theCAC algorithm.Assessment of network behaviour is a ommon requirement of network management, as a resultsystems suh as Chen et al. [2℄ and Lazar et al. [3℄ are designed to allow only the dynami olletionof measurements. In ontrast, several systems [4, 5℄ were built to ontrol and assess the behaviour ofomplete networks and from these systems, CAC evaluation environments are more plausible. Aner-oussis et al. [4℄ doument the implementation of a novel CAC approah and so it seems a reasonableonlusion that the system ould be used to assess di�erent CAC algorithms.



More reently from this same researh group, Lazar & Nandikesan [6℄ desribe a test environmentbuilt around the Hewlett-Pakard Broadband Series Test System (HPBSTS). While it seems likely thatthis system ould be used to evaluate CAC algorithms the parts of the system are based around a limitedrelease of proprietary information; that, ombined with the high ost of the HPBSTS itself, makes itdiÆult to rereate this test environment.From this brief review, it an be seen that a system to allow the assessment of a wide range of CACalgorithms and one that is able to use a wide variety of network traÆ and network onditions is notreadily available. Firstly we will disuss the CAC algorithm used in this evaluation.3 Simple Threshold CAC algorithmA threshold based CAC mehanism is one that allows a new onnetion to be admitted into thenetwork if the measured traÆ level is equal to or below a prede�ned level or threshold, the atualproess for alulating the threshold is unimportant at this stage.The threshold based CAC algorithm in operation is shown in Figure 4(a). Connetion A requests aonnetion into the network. The CAC makes a urrent bandwidth sample; the value is below the pre-alulated threshold. The CAC an admit the new onnetion A into the network. Now new onnetionB attempts to onnet to the network. The CAC makes another sample of the urrent bandwidth; thevalue now is above the pre-alulated threshold. Beause the value is above the pre-alulated thresholdthe CAC rejets the new onnetion B, not allowing it into the network. The following Setion desribesthe arhiteture of the test-rig we built.4 CAC Evaluation EnvironmentThe CAC test-rig onsists of a ombination of hardware of the ATM swith and ATM interfae ards,as well as software to generate new onnetions, perform CAC operations, obtain measurements from theATM swith, generate traÆ soures and ontrol the generation of traÆ soures. Figure 1 shows theimplementation arhiteture adopted to evaluate CAC algorithms. Also spei� omponents of the CACtest-rig are disussed along with an outline of the test-rig's operation.4.1 ATM swithThe ATM swith omponent must ontrol where ell loss will our and allow variables suh as bu�ersize and bu�er servie rate to be ontrolled. In addition to being a ontrollable bu�er, the ATM swithalso makes measurements of line utilisation, ell arrivals and ells departures. Using these measurements,the CLR of the line and indeed the utilisation and CLR per onnetion an be determined.Our implementation, based around a ommerially available ATM swith, a Fore ASX-200WG, isshown in Figure 2. To ensure ell loss ours in the ontrolled bu�er, the servie rate is redued by 1=D,where D is a hosen integer. In Figure 2 eah link is labelled with its transmission-rate relative to the fullline rate of 1. The transmission rate of eah traÆ soure is saled by a fator of 1=D. The rate of theinterfae between the input port A and the bu�er for output port B is at the full apaity of the swith.The speed of the output port, B, is saled by the same quantity as the traÆ soures, 1=D.TraÆ arriving at the bu�er will queue in the output bu�er of port B. The swith has a swithingapaity of D times the input and output transmission rates, and is therefore e�etively non-bloking. Inthis way we ahieve a ontrollable bu�er the parameters for whih we an set (queue length) and aboutwhih measurements an be taken (ell loss, ell delay). We are able to use the swith bu�er on�guration,suh as traÆ lasses, intelligent disard poliies and sheduling systems to be onstruted, however atthis stage our work has been with a single FIFO ell bu�er aggregating the traÆ of all onnetionspresent.The ATM swith also makes measurements, ounting the ells moving into and out of the bu�er ina given period of time. From these measurements the line utilisation and ell loss an be alulated; thusthe utilisation and ell loss an be alulated on a per-onnetion basis. These ounts of ells traversingthe system are transmitted to an external measurement ontroller, so as to redue the work-load on theATM swith itself.
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Figure 1: Arhiteture for the implementation of a test environment to evaluate CAC mehanisms.
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A BFigure 2: Topology of ATM swith.4.2 Measurement ontrollerThe measurement ontroller, a proess running under Unix, obtains from the swith the measure-ments that may be required as input into a CAC algorithm. Additionally, the measurement ontrollerollets not only input for the CAC algorithm, but also measures QoS experiened by the traÆ suhas CLR, queue length distributions, inter-ell loss times and other omparative measurements. Themeasurement ontroller tasks are to math the asynhronous measurement requests (from the CAC algo-rithm) to the synhronous methods in whih measurements must be taken and to interfae between thesimple inter-mahine protool used by the swith with a standard RPC interfae that is used betweenthe measurement server and the CAC system.4.3 TraÆ GeneratorThe generator illustrated in Figure 3 an be used to transmit a multiplexed stream of ells fromtheoretial generators reating ells in real-time and from generators reading from pre-generated ATMell lists. Traes of real ATM traÆ, suh as video streams or IP on ATM, are a useful set of test traÆto be arried by onnetions. In addition to being able to deliver ell streams onsisting of all requiredtraÆ types, this physial generator an be dynamially ontrolled, able to stop and start individualtraÆ soures using a purpose built RPC mehanism.
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Figure 3: Hybrid physial generator able to generate ells from theoretial traÆ soures operating inreal-time and from ATM ell traes loaded into memory.The whole physial generator runs on a PC that is running the Nemesis operating system [7℄ whihallows the onstrution of omplex, time-ritial tasks (the real-time reation of traÆ traes) and thetimely operations of devie-drivers. In addition to allowing a purpose built devie driver for the ATMinterfae, using Nemesis means that guarantees of timeliness an be made to the RPC based ontrolmehanism to ensure time-bounded ations and replies.With an individual traÆ generator representing eah onnetion in progress, the physial generatoris apable of saturating the ATM transmission link should this be required and the ability to ombine avirtually unlimited number of traÆ types of both the theoretial generator or those based upon ATMell traes gives us unrivalled exibility in experimentation.4.4 TraÆ Generator ontrollerThe traÆ generator ontroller, a proess running under Unix, will instrut the traÆ generator tostart and stop individual traÆ soures representing eah onnetion as these onnetions are set-up andpulled-down. The traÆ generator ontroller, like the measurement ontroller, gives an interfae betweenthe standard RPC based interfae that is used by the CAC system and the purpose-built inter-mahineprotool used by the traÆ ontroller. In later revisions of the physial traÆ generator it is expeted tobe able to dispense with the traÆ generator ontroller altogether.4.5 Connetion GenerationThe onnetion generator, a proess running under Unix, will initiate new onnetion attemptsinto the CAC test-rig. Connetions entering the system an be desribed by the arrival rate of new



onnetions, the onnetion holding time and the traÆ eah new onnetion will arry. The parametersof onnetion inter-arrival rate and onnetion holding time an have spei�ed values or have a rangeof values based on a distribution { for example the period over whih a onnetion will be in progressould have an exponential distribution with a given mean. The value for traÆ type would typially bespei�ed for a set of onnetions. The three parameters an also be spei�ed in a �le; in this way logsof onnetion events an be proessed to produe a set of onnetion arrival-rates, durations and traÆtypes. Finally, the onnetion generator is able to generate new onnetions of more than one traÆ typesimultaneously.4.6 CAC and admission poliyThe CAC omponent forms the ore of the CAC test-rig. The CAC omponent has the apability tohange the CAC admission poliy as required. Only one poliy is in plae during any experiment howeveronseutive experiments an operate with only the admission poliy itself or the ontrol parameters ofany partiular poliy being hanged.During the generation of new onnetions, the traÆ type and the parameters that desribe traÆthat the onnetion will arry are delared to the CAC algorithm. The parameters of eah new onnetionan be spei�ed in any of the TM 4.0 parameter formats [8℄. Eah new onnetion presents its parametersto the CAC system and requests a onnetion to be set up aross the swith.Eah admission poliy obtains the required measurements from the measurement ontroller as part ofthat partiular CAC's deision proess. Eah admission poliy an obtain the measurements of the typeand format it requires, in the ase of a simple threshold CAC algorithm measurements are of instantaneousline utilisation while for Peak Rate alloation no measurements are required for the CAC algorithm.4.7 Cell time-frame salingSetion 4.1 disusses, the ATM swith used in the CAC test-rig. In that setion it is noted that therates of traÆ soures are saled by a fator D, this fator is a multiplier on the time between ells. As aresult, the passage of time on the network, and hene the passage of time in the experiment as a whole,has been slowed down by the fator D. Throughout this doument all times stated for kit performane,onnetion setup, onnetion holdings periods, measurement period, and any other time frame in theexperiment are given in unsaled time; that is time that has not been multiplied by D whih makes ourexperimental results diretly omparable with measurements made on other systems.4.8 Test-rig operationThe CAC system works as follows: a onnetion generator is responsible for `generating' aordingto some distribution or from a previously olleted trae of measured arrivals. New onnetions may beof multiple types, and eah onnetion may, aording to a random distribution, determine its onnetiontype and any set of parameters suh as: Sustained Cell Rate (SCR) or Peak Cell Rate (PCR), whihit is required to present. New onnetions, one generated, present to the CAC deision system theirparameters following being generated. The urrently loaded CAC algorithm, using measurements fromthe swith, makes a deision as to whether or not to admit the onnetion. Only one CAC algorithmoperates in any one experiment.If a onnetion is admitted, the CAC algorithm will reply to the onnetion generator aepting theonnetion. The onnetion generator then instruts the traÆ generator ontroller to `set-up' a newtraÆ soure with the appropriate parameters for a onnetion of this type. The traÆ arried by thisonnetion might be on-o�, some other analytial model, or trae driven. The traÆ generator ontrollerthen starts the new onnetion by instruting the physial generator to reate and start a traÆ sourewith the orret parameters. The ells of this new onnetion will then enter the multiplex of streams ofells that the physial generator is transmitting into the swith. When eah new onnetion is reated,apart from its traÆ type and arrival time, a new onnetion will have assoiated with it a lifetime, oronnetion holding time. This onnetion lifetime, like the arrival time, an be drawn from a theoretialdistribution or a trae driven set of values. One the onnetion holding time is reahed the onnetions'traÆ soure is stopped and that onnetion is `leared down'.



It is important to emphasise that in this set-up there is no real ATM signalling, all VP/VC pathwaysthat will be required have been setup as permanent iruits prior to an experiment. The proesses runningo�-swith assume the full load of the `signalling' and therefore it is possible to emulate the arrival ofonnetions at rates far higher than ould be sustained by any real ATM signalling implementation.
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rejetions our, the number of onnetions in progress stabilises but displays the expeted variationdue to statistial utuations. In this experiment onnetions arried a theoretial traÆ type with a10Mbps PCR and a 1Mbps SCR. A thresholding value of 42.6 Mbps was used and the Mean ConnetionAdmission Rate (MCAR) was 10 onnetions per seond with an Mean Connetion Hold Time (MCHT)of 10 seonds. These output graphs are regularly used to hek that the environment is operatingorretly and to allow simple omparisons of onseutive experiments; in addition to generi parametersof utilisation and onnetion behaviour, algorithm spei� information, suh as threshold values, an alsobe output.5 Test-rig evaluationDuring the onstrution of the CAC test-rig, e�ort was made to ensure the goals of performane andrepeatability. The test-rig was required to ahieve high rates of new-onnetion setup: the rate at whihnew onnetions ould be attempted and started when the onnetion was admitted into the system.Setion 5.2 overs the onnetion setup performane of the test-rig. The test-rig must also allow highrepeatability of experiments; ideally, onseutive experiments with no parameter hanges should yieldidential results. Setion 5.3 reports results onduted to assess the repeatability of experiments on theCAC test-rig.Aside from repeatability and high speed performane the test-rig needs to be exible supporting awide variety of onnetion methods, traÆ soures, CAC algorithms and measurement methods. Whilethese are not listed here, the modular design of the test-rig has allowed extensions for eah of theseaspets of its operation. However, �rstly there are issues of stability and auray, partiularly whendealing with a system that may possess start-up transients suh as the test-rig. Setion 5.1 disusses theissues of experiment run times, experiment stability and start-up transient detetion.5.1 Run length and initial stabilityFor experiments made using our CAC evaluation rig, there is an initial, \start-up," transient beforethe system stabilises and returns onsistent results. Figure 4(b) shows learly how an experiment hasan initial transition period before its operation has settled, in this ase there is a slow ramp-up to avalue of onnetions in progress that is then held relatively onstant. Suh start up transients are quiteommon to steady-state simulation work and as a result we are able to draw from work in that �eld.Pawlikowski [9℄ gives a number of methods for determining at what point an experiment has beomestable. A ombination of several of these algorithms were used: waiting for the longest yle in thesystem to have been exeuted 3 or 4 times and alulations based upon stabilisation of the variane ofseveral key experiment measures (ommonly the number of onnetions in progress, the global ell lossratio and the mean line utilisation). At this time we determine the point of stability in o�-line proessing;one deteted, data olleted up until this point is disarded. Work is in progress to inorporate thiso�-line proessing into the running system; in this way a running system an determine how muh longerit needs to run for before it has passed the initial start-up transient and an ollet data from the stableexperiment. The ontribution of the transient period to the the length of an experiment is small, themain fator in the length of experiments is the need to ollet a representative samples of loss-events forthe CLR.For most experiments onduted, we have algorithms with a target CLR of 1 � 10�3. In order toensure a large sample of \loss-events" we run the experiments for a minimum of 1 � 108 ells: 1 � 105loss events. The seletion of this �gure has been based upon our experiene with CLR measurementsfor previous experiments [10℄ and pratial limits on the run time for eah experiment. Currently, for atypial experiment transferring 1� 108 ells, the run period of this experiment is approximately 2 hours.The length of the experiment is due to ombination of the number of ells required and the saling fatorD (disussed in Setion 4.1) in use. To inrease the number of loss-events reorded, and still use thesame saling fator D, we would need to run the experiment for longer periods of time { a magnitudeinrease in the number of loss events, would require experiments running for 20 hours. It was onludedthat experiments of 1 � 108 ells (typially a 2 hour duration) was a satisfatory trade-o� between thenumber of loss events and the running time of a typial experiment.



5.2 PerformaneWhen a onnetion is entered into the system an assumption is that there is a negligible amountof time between when the new onnetion has been generated and, assuming aeptane, when ellstransmitted by the orresponding traÆ generator will start entering the data stream. This assumptionis not valid in anything other than a theoretial test struture. However, it is important to quantifyand where possible overome suh a delay between a new onnetion entering the system and ells beingprodued by the system so as to minimise the impat of experimental e�ets being introdued into theevaluation experiments. In this way theoretial results and experimental results an be ompared morelosely.The performane goal in the onstrution of the CAC test-rig was to redue the new onnetiongeneration, new onnetion test and new onnetion start-up delays to a minimum; the smaller thedelay ahieved the loser to the values used in a na��ve simulation. When ompared to the real-worldimplementation, aiming for a minimal delay ould be seen as unneessary { several authors [11, 12℄ notethat in ommerial ATM swith systems the onnetion setup proess for a new onnetion an take20{200ms. Suh a quoted value for the delay does not inlude the additional time required for the end-system to beome ative. In our work to redue the delay in the CAC test-rig, this delay period runsfrom the generation of the new onnetion request through to the moment ells are emitted from theATM interfae of the traÆ generator.The delays in the pathway between the generation of a new onnetion request and the emission ofells into the ATM swith take several forms: �rstly there is time taken in the exeution of ode on thevarious mahines that the CAC test-rig runs, seondly there are delays related to the ommuniationsbetween omponents of the CAC test-rig and �nally there are delays in the physial generator that willause a delay between the starting of traÆ generators and the emission of ells from the ATM interfaeand into the ATM swith.While we have not given a breakdown of the typial delays, plaes in whih time was spent inluded:the exeution of ode on the various systems that make up the CAC test-rig, a ompound of the manyinstanes of inter-mahine ommuniations and the �nally the network interfae transmission system ofthe traÆ generator.Following improvement and optimisation, experiments on the �nal test-rig established that delaysbetween a new onnetion arrival and the start of transmission of its ells from the orresponding generatorhas an upper bound of 8.38 milliseonds. The statistis and distribution of this delay are shown in Table 1and Figure 5 respetively.
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Mean Var Std. Dev. 95 % Conf. Int.8.8048E-03 1.6678E-6 1.2914E-3 3.7556E-05Table 1: Statistial properties of a set of start-up delay values.has an exponentially distributed onnetion arrival rate with a mean of 10 onnetions per seond, wean predit, with 95% on�dene, that 0.27% of onnetions may be a�eted. However, the atual impatis less than this beause this full delay impat is inurred only on new onnetions that are aepted intothe system.For new onnetions that are rejeted from the system, the delay is substantially smaller. Whenompared with the earlier stated values for ommerial onnetion setup of 20{200ms [11, 12℄ { a on-netion setup period of less than 9ms is quite aeptable. In real terms this means that, in the worst{ hypothetial ase, for an experiment of 6000 onnetions, less than 18 of those onnetions will bea�eted by system delays where the delaying of one onnetion will delay the next onnetion enteringthe system.5.3 RepeatabilityIn order to reliably ompare and ontrast di�erent CAC algorithms under a range of onnetion loadsrepeated experiments need to give high repeatability of results. Running onseutive experiments withno hanges in parameters should reveal as near to idential results as is possible. This setion reports onresults appraising the repeatability of the CAC test-rig. Firstly, several sets of repeated experiments areontrasted with experiments run with a variety of random seeds. These random seeds form the inputs tothe onnetion arrival and onnetion holding time distributions; both distributions are random with anegative exponential distribution and eah is independent of the other. These seed values are also usedin the reation of traÆ generators on the physial generator. Eah traÆ generator uses these randomseeds to seed the random number generators that will give distributions of ell burst length and interburst time.The objetive was to establish that variations in results for experiments repeated with identialparameters and variations in results for experiments repeated with di�erent random number seeds givea similar degree of variation in the results. The seond round of repeatability experiments were run withidential sets of parameters. 100 experiment runs were performed and a statistial evaluation of theauray of the repeated results is given.The �rst repeatability tests were made using with onnetions arrying a theoretial traÆ soure.The MCAR of these onnetions was 10 onnetions per seond and the MCHT was 10 seonds peronnetion. The CAC algorithm was the Simple Threshold algorithm. Using a threshold of 42.6 Mbps,new onnetion attempts were rejeted if the link utilisation was above 42.6 Mbps. The results obtainedfor mean line utilisation (MLU) and for the CLR from a bu�er of 100 ells in length were ompared foreah experiment.The statistial properties of the two sets of experiments, ten experiments using the same seed andten experiments with di�erent seeds for the random number generator, are doumented in Table 2. Thevariation between experiment runs ourring in experiments without any hange in parameters is slightlysmaller but of the same order of magnitude as the variation between experiment runs where the seed ofthe random number generators has been altered for eah experiment run. This implies that the variationin an individual experiment aused by the di�erenes between onseutive runs is almost as large asthe `random' variation of hanging the seeding of the random number generators. In addition, theseexperiments show that, for mean line utilisation at least, the seletion of one partiular set of randomseeds for the generators does not arti�ially onstrain the range results obtainable. The next set of resultsto ompare were the CLR values obtained.Statistial properties of the CLR experiments (for a bu�er length of 100 ells) are doumented inTable 2. One again, similar to the results for mean line utilisation, the results indiate that variationof results for CLR are slightly smaller for experiments repeated with the same set of random seed values



Mean Var Std. Dev. 95 % Conf. Int.Mean line utilisation resultsvaried seed 4.278841E-01 1.935880E-06 1.391359E-03 1.938881E-03same seeds 4.268741E-01 8.443734E-07 9.188979E-04 1.280499E-03CLR resultsvaried seed 5.347374E-04 4.618412E-09 6.795890E-05 9.470178E-05same seed 5.712818E-04 5.356902E-10 2.314498E-05 3.225289E-05Table 2: Statistis for the values of mean line utilisation and CLR of a 100 ell bu�er for experimentsrepeated with and without variations in the set of seed values.Mean Var Std. Dev. 95 % Conf. Int.5.477709E-01 3.384366E-05 5.817530E-03 1.160403E-03Table 3: Statistial information on the 100 mean line utilisation results shown in Figure 6(a).than those repeated with di�erent random seed values although having a similar magnitude. Additionally,like the mean line utilisation results, this implies that using one partiular set of random numbers willnot arti�ially onstrain the variation in results and that the variation is almost as large in onseutiveruns for the ase where the set of random numbers is kept the same as it is for the ase where the set ofrandom numbers is varied.One the variation between experiments runs without varying any parameters was shown to auseas muh variation in the results from experiments as those experiments where the set of random numberseeds was hanged, the exat variation needed to be established with a larger set of repeat experimentsof idential parameters.In order to establish a more representative and omprehensive sample, 100 experiments, involving amixture of di�erent types of traÆ streams, were run. In all possible ways input parameters were heldas onstants throughout suessive experiments on the test-rig.The experiments themselves involved a mixture of onnetions of two di�erent traÆ types. Twodi�erent traÆ soures arrying video data were used, one video soure, with a PCR of 10Mbps and anSCR of 1Mbps was arried on onnetions that had an MCAR of 5 onnetions per seond and an MCHTof 10 seonds per onnetion; the other traÆ type, with a PCR of 5Mbps and an SCR of 2Mbps, wasbeing arried on onnetions that had an MCAR of 5 onnetions per seond and an MCHT of 5 seondsper onnetion. The threshold value used in the CAC algorithm was 61Mbps.During evaluation of CAC algorithms, the overall CLR and mean line utilisation of an experimentare signi�ant omparison riteria, as a result it was these results that were ommonly ompared betweenexperiment runs. Figure 6(a) shows the mean line utilisation values for the bath of 100 idential experi-ments. A statistial summary of this olletion of results is in Table 3 and the distribution of the resultsis shown in Figure 6(b). In omparison, Figure 7(a) shows the CLR values for the bath of 100 identialexperiments. The statistis of this olletion of results is in Table 4 and the distribution of the results isshown in Figure 7(b).It is lear that even for experiments with a narrow distribution of mean line utilisation, the valuesfor ell loss ratio have a muh wider distribution. This will mean that with a 95% on�dene thelink utilisation value will have an error of �0:21%. With a 95% on�dene, the CLR results will giveMean Var Std. Dev. 95 % Conf. Int.1.238580E-03 9.047702E-08 3.007940E-04 5.969022E-05Table 4: Statistial information on the 100 CLR results shown in Figure 7(a).
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(b) Distribution of CLR valuesFigure 7: Repeatability test results.experimental results with an error of �4:6%.We repeated a number of idential experiments to appraise the auray of the test-rig. It is diÆultto know if the the results we obtained are aurate enough as test-rigs are not ommon and those that doexist are not easily omparable. Additionally, there are few avenues for improving these results withoutsubstantial hanges to the experiment parameters or the arhiteture in use. We are on�dent that ourCAC test-rig o�ers a unique insight into MBAC behaviour that annot easily be explored with theoretialabstration or simulation; previous work [10℄ found signi�ant divergene ommon among theoretialmodels. Our test-rig displays an exellent faithfulness to real implementation and it is preisely this�delity that makes omparison with simulations so diÆult.6 ConlusionsInterest in CAC algorithms stems from the need for a network user and a network provider to establishan agreement on the QoS for a onnetion the user wishes to have admitted into the network. Interestin an evaluation environment for CAC algorithms has grown from the failure of simulators to enompassall aspets of evaluation. In addition to an introdutory disussion on how simulators are unable to
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