
An experimental 
on�guration for the evaluation of CAC algorithmsAndrew Moore and Simon CrosbyUniversity of Cambridge Computer Laboratory,New Museum Site, Pembroke StreetCambridge, CB2 3QG, UKfandrew.moore,simon.
rosbyg�
l.
am.a
.ukAbstra
tInterest in Conne
tion Admission Control (CAC) algorithms stems from the need for a networkuser and a network provider to forge an agreement on the Quality of Servi
e (QoS) for a new network
onne
tion. Traditional evaluation of CAC algorithms has been through simulation studies. We present analternative approa
h: an evaluation environment for CAC algorithms that is based around an experimentaltest-rig. This paper presents the ar
hite
ture of the test-rig and an evaluation of its performan
e.1 Introdu
tionConne
tion Admission Control (CAC) denotes the set of a
tions taken by the network during the
onne
tion set-up in order to a

ept or reje
t an ATM 
onne
tion. A 
onne
tion request is only a

epted ifsuÆ
ient resour
es are available to 
arry the new 
onne
tion through the network at its requested Qualityof Servi
e (QoS) while maintaining the agreed QoS of existing 
onne
tions. It 
an be seen that whileattempting to balan
e the requirements of the \user" (a
hieve the desired QoS,) and the requirements ofthe \network" (do not violate the QoS guarantees made to existing 
onne
tions,) the algorithm 
ontrollingthe de
ision made during the CAC will 
ontrol the poli
y of the network.During the development of CAC algorithms, substantial e�ort has been invested in modelling andexperimenting using simulators su
h as ns [1℄. In these simulators, models are made of all aspe
ts ofthe situation in
luding traÆ
 and network behaviour. However, modelling alone does not satisfa
torilyassess the behaviour of real CAC algorithms implemented in real situations. Most 
ommon simulators,su
h as ns, are dis
rete event simulators not 
onstrained by CPU or memory usage in the same way ana
tual swit
h implementation would be. Additionally, 
ommon modelling te
hniques involve the use ofsimulated sour
es of traÆ
 { both well understood and easily generated. However, due to the variety ofsour
es and the 
ontinual development of new network users, su
h simulated sour
es of traÆ
 are notadequately representative. In a test environment that uses real rather than simulated traÆ
 sour
es,testing CAC algorithms against the latest traÆ
 and network behaviour is simpli�ed. While we do notadvo
ate the wholesale repla
ement of simulators with evaluation systems based upon implementation,both have an important role to play.Se
tion 2 gives a brief summary of how existing test implementations have either not been suited foruse in the evaluation of CAC algorithms, or that their limited availability has restri
ted their usefulness.The ar
hite
ture of the test environment is dis
ussed in Se
tion 4. Additionally, the 
omponents and theoperation of the test-rig are also 
overed. Finally, an evaluation of the test-rig is given in Se
tion 5; thisevaluation 
overs the test-rig's per-
onne
tion and repeatability performan
e.2 Previous workTest environments that are able to assess a CAC algorithm require the ability to dynami
ally generatetraÆ
 as the 
onne
tion load varies, the ability to extra
t information to be used by the CAC algorithm(as required) and to extra
t information on the 
urrent traÆ
 allowing us to assess the behaviour of theCAC algorithm.Assessment of network behaviour is a 
ommon requirement of network management, as a resultsystems su
h as Chen et al. [2℄ and Lazar et al. [3℄ are designed to allow only the dynami
 
olle
tionof measurements. In 
ontrast, several systems [4, 5℄ were built to 
ontrol and assess the behaviour of
omplete networks and from these systems, CAC evaluation environments are more plausible. Aner-oussis et al. [4℄ do
ument the implementation of a novel CAC approa
h and so it seems a reasonable
on
lusion that the system 
ould be used to assess di�erent CAC algorithms.



More re
ently from this same resear
h group, Lazar & Nandikesan [6℄ des
ribe a test environmentbuilt around the Hewlett-Pa
kard Broadband Series Test System (HPBSTS). While it seems likely thatthis system 
ould be used to evaluate CAC algorithms the parts of the system are based around a limitedrelease of proprietary information; that, 
ombined with the high 
ost of the HPBSTS itself, makes itdiÆ
ult to re
reate this test environment.From this brief review, it 
an be seen that a system to allow the assessment of a wide range of CACalgorithms and one that is able to use a wide variety of network traÆ
 and network 
onditions is notreadily available. Firstly we will dis
uss the CAC algorithm used in this evaluation.3 Simple Threshold CAC algorithmA threshold based CAC me
hanism is one that allows a new 
onne
tion to be admitted into thenetwork if the measured traÆ
 level is equal to or below a prede�ned level or threshold, the a
tualpro
ess for 
al
ulating the threshold is unimportant at this stage.The threshold based CAC algorithm in operation is shown in Figure 4(a). Conne
tion A requests a
onne
tion into the network. The CAC makes a 
urrent bandwidth sample; the value is below the pre-
al
ulated threshold. The CAC 
an admit the new 
onne
tion A into the network. Now new 
onne
tionB attempts to 
onne
t to the network. The CAC makes another sample of the 
urrent bandwidth; thevalue now is above the pre-
al
ulated threshold. Be
ause the value is above the pre-
al
ulated thresholdthe CAC reje
ts the new 
onne
tion B, not allowing it into the network. The following Se
tion des
ribesthe ar
hite
ture of the test-rig we built.4 CAC Evaluation EnvironmentThe CAC test-rig 
onsists of a 
ombination of hardware of the ATM swit
h and ATM interfa
e 
ards,as well as software to generate new 
onne
tions, perform CAC operations, obtain measurements from theATM swit
h, generate traÆ
 sour
es and 
ontrol the generation of traÆ
 sour
es. Figure 1 shows theimplementation ar
hite
ture adopted to evaluate CAC algorithms. Also spe
i�
 
omponents of the CACtest-rig are dis
ussed along with an outline of the test-rig's operation.4.1 ATM swit
hThe ATM swit
h 
omponent must 
ontrol where 
ell loss will o

ur and allow variables su
h as bu�ersize and bu�er servi
e rate to be 
ontrolled. In addition to being a 
ontrollable bu�er, the ATM swit
halso makes measurements of line utilisation, 
ell arrivals and 
ells departures. Using these measurements,the CLR of the line and indeed the utilisation and CLR per 
onne
tion 
an be determined.Our implementation, based around a 
ommer
ially available ATM swit
h, a Fore ASX-200WG, isshown in Figure 2. To ensure 
ell loss o

urs in the 
ontrolled bu�er, the servi
e rate is redu
ed by 1=D,where D is a 
hosen integer. In Figure 2 ea
h link is labelled with its transmission-rate relative to the fullline rate of 1. The transmission rate of ea
h traÆ
 sour
e is s
aled by a fa
tor of 1=D. The rate of theinterfa
e between the input port A and the bu�er for output port B is at the full 
apa
ity of the swit
h.The speed of the output port, B, is s
aled by the same quantity as the traÆ
 sour
es, 1=D.TraÆ
 arriving at the bu�er will queue in the output bu�er of port B. The swit
h has a swit
hing
apa
ity of D times the input and output transmission rates, and is therefore e�e
tively non-blo
king. Inthis way we a
hieve a 
ontrollable bu�er the parameters for whi
h we 
an set (queue length) and aboutwhi
h measurements 
an be taken (
ell loss, 
ell delay). We are able to use the swit
h bu�er 
on�guration,su
h as traÆ
 
lasses, intelligent dis
ard poli
ies and s
heduling systems to be 
onstru
ted, however atthis stage our work has been with a single FIFO 
ell bu�er aggregating the traÆ
 of all 
onne
tionspresent.The ATM swit
h also makes measurements, 
ounting the 
ells moving into and out of the bu�er ina given period of time. From these measurements the line utilisation and 
ell loss 
an be 
al
ulated; thusthe utilisation and 
ell loss 
an be 
al
ulated on a per-
onne
tion basis. These 
ounts of 
ells traversingthe system are transmitted to an external measurement 
ontroller, so as to redu
e the work-load on theATM swit
h itself.



Traffic Generator

Traffic Generator

Traffic Generator

CAC

Measurement

Controller

Data Flow from source(s) to sink(s)

1.
2.

(2)

3.

3.

4.

5.

6

based on

based on

based on

Peak Rate Allocation

Admission

Admission

Admission

Generator

Connection

Measure algorithm

Hoeffding Bounds

Collected statistics:

Queue length,

Cell rates,

etc, typically collected continuously,

switch/measurement equipment permitting

Traffic Generator

Controller

1. Connection generator sends parameters of new call to CAC
2. A particular admission policy, using measurements as needed
3. will return a result
4. the connection generator will activate a traffic generator with the
corect connection characteristics
5. the traffic generator controller starts a traffic generator which in turn
6. generates a flow of traffic as appropriate

(Alternative paths of CAC requests)

(Alternative paths of measurements)

Figure 1: Ar
hite
ture for the implementation of a test environment to evaluate CAC me
hanisms.
cells discarded

ATM switchTraffic
Aggregate

Per-connection
Sources

(each at rate 1/D) (link at rate 1) (link at rate 1/D)

A BFigure 2: Topology of ATM swit
h.4.2 Measurement 
ontrollerThe measurement 
ontroller, a pro
ess running under Unix, obtains from the swit
h the measure-ments that may be required as input into a CAC algorithm. Additionally, the measurement 
ontroller
olle
ts not only input for the CAC algorithm, but also measures QoS experien
ed by the traÆ
 su
has CLR, queue length distributions, inter-
ell loss times and other 
omparative measurements. Themeasurement 
ontroller tasks are to mat
h the asyn
hronous measurement requests (from the CAC algo-rithm) to the syn
hronous methods in whi
h measurements must be taken and to interfa
e between thesimple inter-ma
hine proto
ol used by the swit
h with a standard RPC interfa
e that is used betweenthe measurement server and the CAC system.4.3 TraÆ
 GeneratorThe generator illustrated in Figure 3 
an be used to transmit a multiplexed stream of 
ells fromtheoreti
al generators 
reating 
ells in real-time and from generators reading from pre-generated ATM
ell lists. Tra
es of real ATM traÆ
, su
h as video streams or IP on ATM, are a useful set of test traÆ
to be 
arried by 
onne
tions. In addition to being able to deliver 
ell streams 
onsisting of all requiredtraÆ
 types, this physi
al generator 
an be dynami
ally 
ontrolled, able to stop and start individualtraÆ
 sour
es using a purpose built RPC me
hanism.



Cells from all generator types are multiplexed
into a single stream of cells;  these cells are
emmitted from the ATM interface of the 

traffic generator.

Generators output cell streams based on the ATM cell trace.
The same ATM cell race list can be shared among multiple callers.

Each connection starts and stops at a random point in the list;
as a result the resulting mix can ensure the traffic of one call has

no long range dependence on the traffic of another call.

In this hybrid generator, an output stream of cells can be created as the multiplex of the output of
independent theoretical generators and/or the output of trace based generators.

1

0

Theoretical generators such as
exponentially distributed ON
and OFF or ON-OFF with a

Pareto distribution 
1

0

Figure 3: Hybrid physi
al generator able to generate 
ells from theoreti
al traÆ
 sour
es operating inreal-time and from ATM 
ell tra
es loaded into memory.The whole physi
al generator runs on a PC that is running the Nemesis operating system [7℄ whi
hallows the 
onstru
tion of 
omplex, time-
riti
al tasks (the real-time 
reation of traÆ
 tra
es) and thetimely operations of devi
e-drivers. In addition to allowing a purpose built devi
e driver for the ATMinterfa
e, using Nemesis means that guarantees of timeliness 
an be made to the RPC based 
ontrolme
hanism to ensure time-bounded a
tions and replies.With an individual traÆ
 generator representing ea
h 
onne
tion in progress, the physi
al generatoris 
apable of saturating the ATM transmission link should this be required and the ability to 
ombine avirtually unlimited number of traÆ
 types of both the theoreti
al generator or those based upon ATM
ell tra
es gives us unrivalled 
exibility in experimentation.4.4 TraÆ
 Generator 
ontrollerThe traÆ
 generator 
ontroller, a pro
ess running under Unix, will instru
t the traÆ
 generator tostart and stop individual traÆ
 sour
es representing ea
h 
onne
tion as these 
onne
tions are set-up andpulled-down. The traÆ
 generator 
ontroller, like the measurement 
ontroller, gives an interfa
e betweenthe standard RPC based interfa
e that is used by the CAC system and the purpose-built inter-ma
hineproto
ol used by the traÆ
 
ontroller. In later revisions of the physi
al traÆ
 generator it is expe
ted tobe able to dispense with the traÆ
 generator 
ontroller altogether.4.5 Conne
tion GenerationThe 
onne
tion generator, a pro
ess running under Unix, will initiate new 
onne
tion attemptsinto the CAC test-rig. Conne
tions entering the system 
an be des
ribed by the arrival rate of new




onne
tions, the 
onne
tion holding time and the traÆ
 ea
h new 
onne
tion will 
arry. The parametersof 
onne
tion inter-arrival rate and 
onne
tion holding time 
an have spe
i�ed values or have a rangeof values based on a distribution { for example the period over whi
h a 
onne
tion will be in progress
ould have an exponential distribution with a given mean. The value for traÆ
 type would typi
ally bespe
i�ed for a set of 
onne
tions. The three parameters 
an also be spe
i�ed in a �le; in this way logsof 
onne
tion events 
an be pro
essed to produ
e a set of 
onne
tion arrival-rates, durations and traÆ
types. Finally, the 
onne
tion generator is able to generate new 
onne
tions of more than one traÆ
 typesimultaneously.4.6 CAC and admission poli
yThe CAC 
omponent forms the 
ore of the CAC test-rig. The CAC 
omponent has the 
apability to
hange the CAC admission poli
y as required. Only one poli
y is in pla
e during any experiment however
onse
utive experiments 
an operate with only the admission poli
y itself or the 
ontrol parameters ofany parti
ular poli
y being 
hanged.During the generation of new 
onne
tions, the traÆ
 type and the parameters that des
ribe traÆ
that the 
onne
tion will 
arry are de
lared to the CAC algorithm. The parameters of ea
h new 
onne
tion
an be spe
i�ed in any of the TM 4.0 parameter formats [8℄. Ea
h new 
onne
tion presents its parametersto the CAC system and requests a 
onne
tion to be set up a
ross the swit
h.Ea
h admission poli
y obtains the required measurements from the measurement 
ontroller as part ofthat parti
ular CAC's de
ision pro
ess. Ea
h admission poli
y 
an obtain the measurements of the typeand format it requires, in the 
ase of a simple threshold CAC algorithm measurements are of instantaneousline utilisation while for Peak Rate allo
ation no measurements are required for the CAC algorithm.4.7 Cell time-frame s
alingSe
tion 4.1 dis
usses, the ATM swit
h used in the CAC test-rig. In that se
tion it is noted that therates of traÆ
 sour
es are s
aled by a fa
tor D, this fa
tor is a multiplier on the time between 
ells. As aresult, the passage of time on the network, and hen
e the passage of time in the experiment as a whole,has been slowed down by the fa
tor D. Throughout this do
ument all times stated for kit performan
e,
onne
tion setup, 
onne
tion holdings periods, measurement period, and any other time frame in theexperiment are given in uns
aled time; that is time that has not been multiplied by D whi
h makes ourexperimental results dire
tly 
omparable with measurements made on other systems.4.8 Test-rig operationThe CAC system works as follows: a 
onne
tion generator is responsible for `generating' a

ordingto some distribution or from a previously 
olle
ted tra
e of measured arrivals. New 
onne
tions may beof multiple types, and ea
h 
onne
tion may, a

ording to a random distribution, determine its 
onne
tiontype and any set of parameters su
h as: Sustained Cell Rate (SCR) or Peak Cell Rate (PCR), whi
hit is required to present. New 
onne
tions, on
e generated, present to the CAC de
ision system theirparameters following being generated. The 
urrently loaded CAC algorithm, using measurements fromthe swit
h, makes a de
ision as to whether or not to admit the 
onne
tion. Only one CAC algorithmoperates in any one experiment.If a 
onne
tion is admitted, the CAC algorithm will reply to the 
onne
tion generator a

epting the
onne
tion. The 
onne
tion generator then instru
ts the traÆ
 generator 
ontroller to `set-up' a newtraÆ
 sour
e with the appropriate parameters for a 
onne
tion of this type. The traÆ
 
arried by this
onne
tion might be on-o�, some other analyti
al model, or tra
e driven. The traÆ
 generator 
ontrollerthen starts the new 
onne
tion by instru
ting the physi
al generator to 
reate and start a traÆ
 sour
ewith the 
orre
t parameters. The 
ells of this new 
onne
tion will then enter the multiplex of streams of
ells that the physi
al generator is transmitting into the swit
h. When ea
h new 
onne
tion is 
reated,apart from its traÆ
 type and arrival time, a new 
onne
tion will have asso
iated with it a lifetime, or
onne
tion holding time. This 
onne
tion lifetime, like the arrival time, 
an be drawn from a theoreti
aldistribution or a tra
e driven set of values. On
e the 
onne
tion holding time is rea
hed the 
onne
tions'traÆ
 sour
e is stopped and that 
onne
tion is `
leared down'.



It is important to emphasise that in this set-up there is no real ATM signalling, all VP/VC pathwaysthat will be required have been setup as permanent 
ir
uits prior to an experiment. The pro
esses runningo�-swit
h assume the full load of the `signalling' and therefore it is possible to emulate the arrival of
onne
tions at rates far higher than 
ould be sustained by any real ATM signalling implementation.

Threshold

5000 50 100 150 200 250 300 350 400 450

Time 

A
ct

iv
ity

 (
ce

lls
/u

ni
t t

im
e)

3000

3500

4000

4500

5000

5500

0

Connection B

Connect()

CAC

Reject()

Below Threshold

Above Threshold

Accept()

CAC

Connect()

Connection A

(a) Threshold CAC me
hanism in a
tion
0 Mbps

10M

20M

30M

40M

50M

60M

70M

80M

Network traffic

Current Utilization

accept

reject

New connection accept/reject

0

20

40

60

80

100
Total number of connections in progress

Threshold value

2

90M

100M
1

New Connections accepted by CAC

Measurements above Threshold value

New Connections rejected by CAC

Measurements below Threshold value

Time (seconds)

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100(b) The �rst 100 se
onds of operationFigure 4: Simple Threshold CAC Algorithm.The logging system in the CAC test-kit gives suÆ
ient information that real-time graphs 
an beprodu
ed displaying information: the 
urrent line utilisation, the 
urrent 
onne
tions in progress andinformation about new 
onne
tion a

eptan
e or reje
tion. Figure 4(b) shows the plot of 100 se
onds oftime from the start of an experiment. The x axis in all 
ases is time, shown in se
onds sin
e the startof the experiment. The top graph in ea
h set shows the 
onne
tion arrival pro
ess. For ea
h 
onne
tionwhi
h arrives a verti
al bar is drawn. In the event that an arriving 
onne
tion was a

epted by the CACalgorithm, a verti
al bar is drawn extending upwards. If the 
onne
tion is reje
ted, then the verti
al barextends downwards. In the leftmost part of Figure 4(b), where the time is less than 45 se
onds, no new
onne
tions have been reje
ted be
ause measurements of the instantaneous line utilisation are less thanor equal to the thresholding value. Whereas, after 45 se
onds, suÆ
ient traÆ
 is now in the system forthe instantaneous line utilisation to be above the thresholding value and as a result for 
onne
tions to bereje
ted.The se
ond graph from the top is a display of the traÆ
 dynami
s in the swit
h, measured in realtime. The thresholding value in use by the CAC algorithm is shown along-with the 
urrent measure ofinstantaneous line utilisation. The third graph of Figure 4(b) shows the number of 
onne
tions in progressin the system, over time. This rapidly 
limbs, as new 
onne
tions enter the system at a greater rate thanthey 
lear down. This is be
ause in the empty system (at time zero) no 
onne
tions are reje
ted. On
e



reje
tions o

ur, the number of 
onne
tions in progress stabilises but displays the expe
ted variationdue to statisti
al 
u
tuations. In this experiment 
onne
tions 
arried a theoreti
al traÆ
 type with a10Mbps PCR and a 1Mbps SCR. A thresholding value of 42.6 Mbps was used and the Mean Conne
tionAdmission Rate (MCAR) was 10 
onne
tions per se
ond with an Mean Conne
tion Hold Time (MCHT)of 10 se
onds. These output graphs are regularly used to 
he
k that the environment is operating
orre
tly and to allow simple 
omparisons of 
onse
utive experiments; in addition to generi
 parametersof utilisation and 
onne
tion behaviour, algorithm spe
i�
 information, su
h as threshold values, 
an alsobe output.5 Test-rig evaluationDuring the 
onstru
tion of the CAC test-rig, e�ort was made to ensure the goals of performan
e andrepeatability. The test-rig was required to a
hieve high rates of new-
onne
tion setup: the rate at whi
hnew 
onne
tions 
ould be attempted and started when the 
onne
tion was admitted into the system.Se
tion 5.2 
overs the 
onne
tion setup performan
e of the test-rig. The test-rig must also allow highrepeatability of experiments; ideally, 
onse
utive experiments with no parameter 
hanges should yieldidenti
al results. Se
tion 5.3 reports results 
ondu
ted to assess the repeatability of experiments on theCAC test-rig.Aside from repeatability and high speed performan
e the test-rig needs to be 
exible supporting awide variety of 
onne
tion methods, traÆ
 sour
es, CAC algorithms and measurement methods. Whilethese are not listed here, the modular design of the test-rig has allowed extensions for ea
h of theseaspe
ts of its operation. However, �rstly there are issues of stability and a

ura
y, parti
ularly whendealing with a system that may possess start-up transients su
h as the test-rig. Se
tion 5.1 dis
usses theissues of experiment run times, experiment stability and start-up transient dete
tion.5.1 Run length and initial stabilityFor experiments made using our CAC evaluation rig, there is an initial, \start-up," transient beforethe system stabilises and returns 
onsistent results. Figure 4(b) shows 
learly how an experiment hasan initial transition period before its operation has settled, in this 
ase there is a slow ramp-up to avalue of 
onne
tions in progress that is then held relatively 
onstant. Su
h start up transients are quite
ommon to steady-state simulation work and as a result we are able to draw from work in that �eld.Pawlikowski [9℄ gives a number of methods for determining at what point an experiment has be
omestable. A 
ombination of several of these algorithms were used: waiting for the longest 
y
le in thesystem to have been exe
uted 3 or 4 times and 
al
ulations based upon stabilisation of the varian
e ofseveral key experiment measures (
ommonly the number of 
onne
tions in progress, the global 
ell lossratio and the mean line utilisation). At this time we determine the point of stability in o�-line pro
essing;on
e dete
ted, data 
olle
ted up until this point is dis
arded. Work is in progress to in
orporate thiso�-line pro
essing into the running system; in this way a running system 
an determine how mu
h longerit needs to run for before it has passed the initial start-up transient and 
an 
olle
t data from the stableexperiment. The 
ontribution of the transient period to the the length of an experiment is small, themain fa
tor in the length of experiments is the need to 
olle
t a representative samples of loss-events forthe CLR.For most experiments 
ondu
ted, we have algorithms with a target CLR of 1 � 10�3. In order toensure a large sample of \loss-events" we run the experiments for a minimum of 1 � 108 
ells: 1 � 105loss events. The sele
tion of this �gure has been based upon our experien
e with CLR measurementsfor previous experiments [10℄ and pra
ti
al limits on the run time for ea
h experiment. Currently, for atypi
al experiment transferring 1� 108 
ells, the run period of this experiment is approximately 2 hours.The length of the experiment is due to 
ombination of the number of 
ells required and the s
aling fa
torD (dis
ussed in Se
tion 4.1) in use. To in
rease the number of loss-events re
orded, and still use thesame s
aling fa
tor D, we would need to run the experiment for longer periods of time { a magnitudein
rease in the number of loss events, would require experiments running for 20 hours. It was 
on
ludedthat experiments of 1 � 108 
ells (typi
ally a 2 hour duration) was a satisfa
tory trade-o� between thenumber of loss events and the running time of a typi
al experiment.



5.2 Performan
eWhen a 
onne
tion is entered into the system an assumption is that there is a negligible amountof time between when the new 
onne
tion has been generated and, assuming a

eptan
e, when 
ellstransmitted by the 
orresponding traÆ
 generator will start entering the data stream. This assumptionis not valid in anything other than a theoreti
al test stru
ture. However, it is important to quantifyand where possible over
ome su
h a delay between a new 
onne
tion entering the system and 
ells beingprodu
ed by the system so as to minimise the impa
t of experimental e�e
ts being introdu
ed into theevaluation experiments. In this way theoreti
al results and experimental results 
an be 
ompared more
losely.The performan
e goal in the 
onstru
tion of the CAC test-rig was to redu
e the new 
onne
tiongeneration, new 
onne
tion test and new 
onne
tion start-up delays to a minimum; the smaller thedelay a
hieved the 
loser to the values used in a na��ve simulation. When 
ompared to the real-worldimplementation, aiming for a minimal delay 
ould be seen as unne
essary { several authors [11, 12℄ notethat in 
ommer
ial ATM swit
h systems the 
onne
tion setup pro
ess for a new 
onne
tion 
an take20{200ms. Su
h a quoted value for the delay does not in
lude the additional time required for the end-system to be
ome a
tive. In our work to redu
e the delay in the CAC test-rig, this delay period runsfrom the generation of the new 
onne
tion request through to the moment 
ells are emitted from theATM interfa
e of the traÆ
 generator.The delays in the pathway between the generation of a new 
onne
tion request and the emission of
ells into the ATM swit
h take several forms: �rstly there is time taken in the exe
ution of 
ode on thevarious ma
hines that the CAC test-rig runs, se
ondly there are delays related to the 
ommuni
ationsbetween 
omponents of the CAC test-rig and �nally there are delays in the physi
al generator that will
ause a delay between the starting of traÆ
 generators and the emission of 
ells from the ATM interfa
eand into the ATM swit
h.While we have not given a breakdown of the typi
al delays, pla
es in whi
h time was spent in
luded:the exe
ution of 
ode on the various systems that make up the CAC test-rig, a 
ompound of the manyinstan
es of inter-ma
hine 
ommuni
ations and the �nally the network interfa
e transmission system ofthe traÆ
 generator.Following improvement and optimisation, experiments on the �nal test-rig established that delaysbetween a new 
onne
tion arrival and the start of transmission of its 
ells from the 
orresponding generatorhas an upper bound of 8.38 millise
onds. The statisti
s and distribution of this delay are shown in Table 1and Figure 5 respe
tively.

0.0001

0.001

0.01

0.1

1

0.005 0.01 0.015 0.02 0.025

F
re

qu
en

cy
 (

lo
g 1

0 
sc

al
e)

Start-up delay (ms)

Distribution of start-up delay values

Figure 5: Distribution of start-up delay values.The immediate e�e
t is on 
onse
utive 
onne
tion attempts, 
onne
tions may be delayed if attemptedwithin less than 8.38 millise
onds of ea
h other. This implies that, for the worst 
ase, 
onne
tions 
annotbe attempted and started at a rate any faster than � 119:3 
onne
tions per se
ond. As the experiment



Mean Var Std. Dev. 95 % Conf. Int.8.8048E-03 1.6678E-6 1.2914E-3 3.7556E-05Table 1: Statisti
al properties of a set of start-up delay values.has an exponentially distributed 
onne
tion arrival rate with a mean of 10 
onne
tions per se
ond, we
an predi
t, with 95% 
on�den
e, that 0.27% of 
onne
tions may be a�e
ted. However, the a
tual impa
tis less than this be
ause this full delay impa
t is in
urred only on new 
onne
tions that are a

epted intothe system.For new 
onne
tions that are reje
ted from the system, the delay is substantially smaller. When
ompared with the earlier stated values for 
ommer
ial 
onne
tion setup of 20{200ms [11, 12℄ { a 
on-ne
tion setup period of less than 9ms is quite a

eptable. In real terms this means that, in the worst{ hypotheti
al 
ase, for an experiment of 6000 
onne
tions, less than 18 of those 
onne
tions will bea�e
ted by system delays where the delaying of one 
onne
tion will delay the next 
onne
tion enteringthe system.5.3 RepeatabilityIn order to reliably 
ompare and 
ontrast di�erent CAC algorithms under a range of 
onne
tion loadsrepeated experiments need to give high repeatability of results. Running 
onse
utive experiments withno 
hanges in parameters should reveal as near to identi
al results as is possible. This se
tion reports onresults appraising the repeatability of the CAC test-rig. Firstly, several sets of repeated experiments are
ontrasted with experiments run with a variety of random seeds. These random seeds form the inputs tothe 
onne
tion arrival and 
onne
tion holding time distributions; both distributions are random with anegative exponential distribution and ea
h is independent of the other. These seed values are also usedin the 
reation of traÆ
 generators on the physi
al generator. Ea
h traÆ
 generator uses these randomseeds to seed the random number generators that will give distributions of 
ell burst length and interburst time.The obje
tive was to establish that variations in results for experiments repeated with identi
alparameters and variations in results for experiments repeated with di�erent random number seeds givea similar degree of variation in the results. The se
ond round of repeatability experiments were run withidenti
al sets of parameters. 100 experiment runs were performed and a statisti
al evaluation of thea

ura
y of the repeated results is given.The �rst repeatability tests were made using with 
onne
tions 
arrying a theoreti
al traÆ
 sour
e.The MCAR of these 
onne
tions was 10 
onne
tions per se
ond and the MCHT was 10 se
onds per
onne
tion. The CAC algorithm was the Simple Threshold algorithm. Using a threshold of 42.6 Mbps,new 
onne
tion attempts were reje
ted if the link utilisation was above 42.6 Mbps. The results obtainedfor mean line utilisation (MLU) and for the CLR from a bu�er of 100 
ells in length were 
ompared forea
h experiment.The statisti
al properties of the two sets of experiments, ten experiments using the same seed andten experiments with di�erent seeds for the random number generator, are do
umented in Table 2. Thevariation between experiment runs o

urring in experiments without any 
hange in parameters is slightlysmaller but of the same order of magnitude as the variation between experiment runs where the seed ofthe random number generators has been altered for ea
h experiment run. This implies that the variationin an individual experiment 
aused by the di�eren
es between 
onse
utive runs is almost as large asthe `random' variation of 
hanging the seeding of the random number generators. In addition, theseexperiments show that, for mean line utilisation at least, the sele
tion of one parti
ular set of randomseeds for the generators does not arti�
ially 
onstrain the range results obtainable. The next set of resultsto 
ompare were the CLR values obtained.Statisti
al properties of the CLR experiments (for a bu�er length of 100 
ells) are do
umented inTable 2. On
e again, similar to the results for mean line utilisation, the results indi
ate that variationof results for CLR are slightly smaller for experiments repeated with the same set of random seed values



Mean Var Std. Dev. 95 % Conf. Int.Mean line utilisation resultsvaried seed 4.278841E-01 1.935880E-06 1.391359E-03 1.938881E-03same seeds 4.268741E-01 8.443734E-07 9.188979E-04 1.280499E-03CLR resultsvaried seed 5.347374E-04 4.618412E-09 6.795890E-05 9.470178E-05same seed 5.712818E-04 5.356902E-10 2.314498E-05 3.225289E-05Table 2: Statisti
s for the values of mean line utilisation and CLR of a 100 
ell bu�er for experimentsrepeated with and without variations in the set of seed values.Mean Var Std. Dev. 95 % Conf. Int.5.477709E-01 3.384366E-05 5.817530E-03 1.160403E-03Table 3: Statisti
al information on the 100 mean line utilisation results shown in Figure 6(a).than those repeated with di�erent random seed values although having a similar magnitude. Additionally,like the mean line utilisation results, this implies that using one parti
ular set of random numbers willnot arti�
ially 
onstrain the variation in results and that the variation is almost as large in 
onse
utiveruns for the 
ase where the set of random numbers is kept the same as it is for the 
ase where the set ofrandom numbers is varied.On
e the variation between experiments runs without varying any parameters was shown to 
auseas mu
h variation in the results from experiments as those experiments where the set of random numberseeds was 
hanged, the exa
t variation needed to be established with a larger set of repeat experimentsof identi
al parameters.In order to establish a more representative and 
omprehensive sample, 100 experiments, involving amixture of di�erent types of traÆ
 streams, were run. In all possible ways input parameters were heldas 
onstants throughout su

essive experiments on the test-rig.The experiments themselves involved a mixture of 
onne
tions of two di�erent traÆ
 types. Twodi�erent traÆ
 sour
es 
arrying video data were used, one video sour
e, with a PCR of 10Mbps and anSCR of 1Mbps was 
arried on 
onne
tions that had an MCAR of 5 
onne
tions per se
ond and an MCHTof 10 se
onds per 
onne
tion; the other traÆ
 type, with a PCR of 5Mbps and an SCR of 2Mbps, wasbeing 
arried on 
onne
tions that had an MCAR of 5 
onne
tions per se
ond and an MCHT of 5 se
ondsper 
onne
tion. The threshold value used in the CAC algorithm was 61Mbps.During evaluation of CAC algorithms, the overall CLR and mean line utilisation of an experimentare signi�
ant 
omparison 
riteria, as a result it was these results that were 
ommonly 
ompared betweenexperiment runs. Figure 6(a) shows the mean line utilisation values for the bat
h of 100 identi
al experi-ments. A statisti
al summary of this 
olle
tion of results is in Table 3 and the distribution of the resultsis shown in Figure 6(b). In 
omparison, Figure 7(a) shows the CLR values for the bat
h of 100 identi
alexperiments. The statisti
s of this 
olle
tion of results is in Table 4 and the distribution of the results isshown in Figure 7(b).It is 
lear that even for experiments with a narrow distribution of mean line utilisation, the valuesfor 
ell loss ratio have a mu
h wider distribution. This will mean that with a 95% 
on�den
e thelink utilisation value will have an error of �0:21%. With a 95% 
on�den
e, the CLR results will giveMean Var Std. Dev. 95 % Conf. Int.1.238580E-03 9.047702E-08 3.007940E-04 5.969022E-05Table 4: Statisti
al information on the 100 CLR results shown in Figure 7(a).



0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0 20 40 60 80 100

M
ea

n 
lin

e 
ut

ili
sa

tio
n

Experiment Number

Repeatability tests of mean line utilisation (100 experiments)

(a) MLU values 0

0.05

0.1

0.15

0.20

0.25

0.30

0.35

0.40

0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55 0.555 0.56

F
re

qu
en

cy

Mean Line Utilisation

Distribution of results for a repeated run of ‘identical’ experiments

(b) Distribution of MLU valuesFigure 6: Repeatability test results.

0.0001

0.001

0.01

0 20 40 60 80 100

C
el

l L
os

s 
R

at
io

 fo
r 

a 
bu

ffe
r 

of
 le

ng
th

 1
00

Experiment Number

Initial repeatability tests of CLR (5 experiments)

(a) CLR values 0

0.05

0.1

0.15

0.20

0.25

0.30

0.35

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

F
re

qu
en

cy

CLR for buffer of length 100 (scaled by 0.0001) 

Distribution of results for a repeated run of ‘identical’ experiments

(b) Distribution of CLR valuesFigure 7: Repeatability test results.experimental results with an error of �4:6%.We repeated a number of identi
al experiments to appraise the a

ura
y of the test-rig. It is diÆ
ultto know if the the results we obtained are a

urate enough as test-rigs are not 
ommon and those that doexist are not easily 
omparable. Additionally, there are few avenues for improving these results withoutsubstantial 
hanges to the experiment parameters or the ar
hite
ture in use. We are 
on�dent that ourCAC test-rig o�ers a unique insight into MBAC behaviour that 
annot easily be explored with theoreti
alabstra
tion or simulation; previous work [10℄ found signi�
ant divergen
e 
ommon among theoreti
almodels. Our test-rig displays an ex
ellent faithfulness to real implementation and it is pre
isely this�delity that makes 
omparison with simulations so diÆ
ult.6 Con
lusionsInterest in CAC algorithms stems from the need for a network user and a network provider to establishan agreement on the QoS for a 
onne
tion the user wishes to have admitted into the network. Interestin an evaluation environment for CAC algorithms has grown from the failure of simulators to en
ompassall aspe
ts of evaluation. In addition to an introdu
tory dis
ussion on how simulators are unable to



emulate all aspe
ts of a real swit
h implementation, nor the traÆ
 or networks 
onditions that the CACmay be pla
ed under, we have outlined in Se
tion 2 how existing test environments have either not beensuited for use in the evaluation of CAC algorithms, or that their limited availability has restri
ted theirusefulness thereby o�ering a pla
e for a suitable CAC evaluation environment. Se
tion 4 then outlinesthe ar
hite
ture of our test environment, its 
omponents and its operation. Finally, Se
tion 5 reports anevaluation of the test-rig, parti
ularly the 
onne
tion setup performan
e and repeatability performan
e.This paper has presented an evaluation environment 
apable of evaluating a CAC algorithm in
luding
omparing that algorithm with several other CAC algorithms. In this way we have shown that test-rigevaluations have an important role to play in the assessment of CAC algorithms, not ne
essarily asa repla
ement for simulators but as an equally important method of approa
h. Whereas the use ofsimulators o�ers a widely available te
hnique for the testing of CACs, the environment we have des
ribedhere allows 
omparison of CAC implementations 
onstrained in the same manner that real rather thansimulated implementations are 
onstrained.ThanksThanks to Tim Granger, Neil Stratford and Ian Leslie for their valuable input over the 
ourse ofdesign and 
onstru
tion of the test-rig.A debt is owed to developers of the Nemesis operating system, and Austin Donnelly in parti
ular, formaking possible the 
onstru
tion of robust and highly adaptable traÆ
 generators, my thanks to them.Our thanks to Neil Stratford, Ri
hard Mortier and Ralphe Neill for their helpful 
omments on draftsof this paper and to the anonymous reviewers for their valuable feedba
k.Referen
es[1℄ Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy, JohnHeidemann, Polly Huang, Satish Kumar, Steven M
Canne, Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu, Haobo Yu,and Daniel Zappala. Improving simulation for network resear
h. Te
hni
al Report 99-702, University of Southern California,Mar
h 1999.[2℄ T.M. Chen, S.S. Liu, M.J. Pro
anik, D.C. Wang, and D.D. Casey. INQUIRE: A software approa
h to monitoring QoS in ATMnetworks. IEEE Network, pages 32{37, Mar
h/April 1998.[3℄ A.A. Lazar, G. Pa
i�
i, and J.S. White. Real-time traÆ
 measurements on MAGNET II. IEEE Journal on Sele
ted Areasin Communi
ations, April 1990.[4℄ N.G. Anerousis, A.A. Lazar, and D.E. Pendarakis. Taming Xunet III. Te
hni
al Report 481-97-15, Center for Tele
ommuni
ations Resear
h, Columbia University, 1995. ftp://ftp.
tr.
olumbia.edu/CTR-Resear
h/
omet/publi
/papers/95/ANE95b.ps.gz.[5℄ S. Mazumdar and A.A. Lazar. Obje
tive-driven monitoring for broadband networks. IEEE Transa
tions on Data andKnowledge Engineering, 8(3):391{402, June 1996.[6℄ A.A. Lazar and M. Nandikesan. A Real-Time TraÆ
 Generation and QOS Monitoring System. Te
hni
al Report 481-97-15, Center for Tele
ommuni
ations Resear
h, Columbia University, August 1997. ftp://ftp.
tr.
olumbia.edu/CTR-Resear
h/
omet/publi
/papers/97/tg.ps.gz.[7℄ Ian Leslie, Derek M
Auley, Ri
hard Bla
k, Timothy Ros
oe, Paul Barham, David Evers, Robin Fairbairns, and Eoin Hyden.The design and implementation of an operating system to support distributed multimedia appli
ations. IEEE Journal onSele
ted Areas in Communi
ation, 1996.[8℄ ATM Forum. TraÆ
 Management Spe
i�
ation, Version 4. ATM Forum/95-0013R8, O
tober 1995.[9℄ Krzysztof Pawlikowski. Steady-state simulation of queueing pro
esses: A survey of problems and solutions. ACM ComputerSurveys, 22(2):123{170, June 1990.[10℄ Andrew Moore and Simon Crosby. Experimental results from a pra
ti
al implementation of a Measurement Based CACalgorithm. BTL Final Report { Contra
t ML704589, May 1998.[11℄ Abdella Battou. Conne
tions Establishment Laten
y: Measured Results. ATM-Forum T1A1.3/96-071, O
tober 1996.[12℄ Douglas Niehaus, Abdella Battou, Andrew M
Farland, Basil De
ina, Henry Dardy, Vinai Sirkay, and Bill Edwards. Perfor-man
e Ben
hmarking of ATM Networks. IEEE Communi
ations, 35(8):134{143, August 1997.


