Evaluating

Measurement-based

Admission Control

Andrew Moore

University of Cambridge Computer Laboratory

Call Admission Control

- Model based
 - great for understood traffic sources
 - not great for different traffic sources
- Measurement based
 - works for any traffic sources
 - but which MBAC to use ??

Objective: evaluate Measurement based admission control algorithms.

~ B	in.	T T · ··	. ~	1 . 1	~ .	T 1 .
11	1.1.1	L'mnnorentai	ot Ca	mhridae	Computer	Laboratory
- 8	1	O $m O C T S m Y$	$o_j \cup u$	moriuye	Comparer	Luoviuiviy

Example MBAC

Evaluating Admission Control

Traffic types:

- Traffic Models
- Real traffic

Connection patterns:

- Connection Models
- Real connection patterns

Measurements:

- Line Utilisation / Line loss
- Call use / Call loss

University of Cambridge Computer Laboratory

Evaluation Environment

Comparison of one MBAC with different parameters - I.

Target CLR is 1×10^{-3} for a 100 cell buffer

Traffic has 10Mbps PCR, 1Mbps SCR, 25 cell Mean burst length ON-OFF model Link capacity is 100Mbps.

🐈 University of Cambridge Computer Laboratory

Comparison of one MBAC with different parameters - II.

Comparison of one MBAC with different parameters - III.

Comparison of different MBACs under similar conditions

Target CLR is 1×10^{-3} for a 100 cell buffer

Traffic has 10Mbps PCR, 1Mbps SCR, 25 cell Mean burst length ON-OFF model

Link capacity is 100Mbps.

	% calls	Connection	Mean connections	Mean line				
Algorithm name	with	accept	in progress	utilisation				
	$CLR > 1 \times 10^{-3}$	ratio						
Peak Rate Allocation	0%	0.100	9.9	0.09				
Simple Threshold	72%	0.526	52.0	0.409				
Measure	58%	0.554	53.8	0.532				
Hoeffding bounds	60%	0.637	63.0	0.630				
Theoretical model estimations								
Guérin	—	—	36.92	_				
Elwalid	_		42.98					
Buffett & Dufield	_	_	45.20	—				

Universi	tu of	Cam	hridae	Compute	r Laboratoru
0 1000130	$vg v_j$	Oum	oriuge	Compare	, Luooratory

Conclusion

Evaluation Environment for Measurement Based Admission Control

Flexibility in

- Traffic sources
- Call types
- Admission Algorithm
- Measurement techniques

Leading to a rig for evaluation of measurement based admission control algorithms in ${\bf REAL}$ use, not just a simulation.

University of Cambridge Computer Laboratory

So what?

Well the world is largely IP so what is the relevance...

- MPLS
- MultiService-Forum

And perhaps...

Measurement Based Admission Control give an insight into calculating the amount of resource to manage as much as a method of management.

University of Cambridge Computer Laboratory