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1.1 SUMMARY

We consider the problem of structural comparison of graphs with a focus on a par-
ticular dynamic graph, the Internet’s Autonomous System (AS) topology (§1.2). We
develop the weighted spectral distribution (WSD), a metric based on the distribution of
a particular decomposition of a graph’s structure (§1.3) with a worked example (§1.4).
We then turn to our particular application domain (§1.5), describing existing measures
used to characterize Internet topologies, common topology generators, and several
observed datasets used in our evaluation. We then compare the topology generators
to the observed datasets using both existing measures and the WSD (§1.6), use the
WSD to examine the impact of varying parameter selection for the different genera-
tors (§1.7), and optimize parameter values for the generators with respect to one of
the observed datasets and examine the results using both WSD and traditional mea-
sures (§1.8). Finally we look briefly, from a particular vantage point, at the structural
evolution of the Internet topology (§1.9), before concluding (§1.10).

(Machine Learning Approach for Network Analysis: Novel Graph Classes for Classification
Techniques, First Edition). By (M. Dehmer and S. Basak)
Copyright c© 2010 John Wiley & Sons, Inc.
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1.2 INTRODUCTION

Graph comparison is a problem that occurs in many branches of computing, from
vision to speech processing to systems. Many techniques exist for graph comparison,
e.g., the edit distance [6] (the number of link and node additions or deletions required
to turn one graph into another), or counting the number of common substructures in
two graphs [21]. Unfortunately, these methods are too computationally expensive for
large graphs such as the Internet topologies studied here. Moreover, they are inappro-
priate for dynamic graphs, resulting in varying edit distances or substructure counts.
Common currently used “metrics” include the clustering coefficient, the assortativity
coefficient, the node degree distribution and the k-core decomposition. However,
these are not metrics in the mathematical sense, but rather are measures. This dis-
tinction is important as a measure cannot be used to determine unique differences
between graphs: two graphs with the same measures may not in fact be the same. For
example, two graphs may have the same clustering coefficient but hugely different
structures.

In this chapter we present the weighted spectral distribution (WSD), a true metric
in the mathematical sense, which compares graphs based on the distribution of a
decomposition of their structure. Specifically, the WSD is based on the spectrum of
the normalized Laplacian matrix and is thus strongly associated with the distribution
of random walk cycles in a network. A random walk cycle occurs when we find we
have returned to a node having walked N steps away from it. The probability of a
random walk cycle originating at a node indicates the connectivity of that node: a low
probability indicates high connectivity (there are many routes, few of which return)
while a high probability indicates high clustering (many of the routes lead back to the
original node).

The WSD is computationally inexpensive and so can be applied to very large graphs
(more than 30,000 nodes and 200,000 edges). Also, it expresses the graph structure
as a simple plotted curve that can be related to two specific properties of graphs:
hierarchy and local connectivity. Given that the WSD is a metric in the mathematical
sense several applications become possible: assessment of synthetically generated
topologies based on real measurements, where the generated graphs should share
some common structure with the original measurements rather than exactly matching
them; parameter estimation for topology generators with respect to a target dataset;
direct comparison among topology generators using these optimal parameters; and
quantification of change in the underlying structure of an evolving topology.

1.3 WEIGHTED SPECTRAL DISTRIBUTION

We now derive our metric, the weighted spectral distribution, relating it to another
common structural metric, the clustering coefficient, before showing how it charac-
terizes networks with different mixing properties.

Denote an undirected graph as G = (V,E) where V is the set of vertices (nodes)
and E is the set of edges (links). The adjacency matrix of G, A(G), has an entry of
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one if two nodes, u and v, are connected and zero otherwise

A(G)(u, v) =

{
1, if u, v are connected
0, if u, v are not connected

(1.1)

Let dv be the degree of node v and D = diag(sum(A)) be the diagonal matrix hav-
ing the degrees along its diagonal. Denoting by I the identity matrix (I)i,j = 1 if i =
j, 0 otherwise, the Normalized Laplacian L associated with graph G is constructed
from A by normalizing the entries of A by the node degrees of A as

L(G) = I −D−1/2AD−1/2 (1.2)

or equivalently

L(G)(u, v) =


1, if u = v and dv 6= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(1.3)

As L is a real symmetric matrix there is an orthonormal basis of real eigenvectors
e0, . . . , en−1 (i.e., eie

T
j = 0, i 6= j and eie

T
i = 1) with associated eigenvalues

λ0, . . . , λn−1. It is convenient to label these so that λ0 ≤ . . . ≤ λn−1. The set of
pairs (eigenvectors and eigenvalues of L) is called the spectrum of the graph. It can
be seen that

L(G) =
∑

i

λieie
T
i (1.4)

The eigenvalues λ0, . . . , λn−1 represent the strength of projection of the matrix
onto the basis elements. This may be viewed from a statistical point of view [31]
where each λieie

T
i may be used to approximate A(G) with approximation error

inversely proportional to 1 − λi. However, for a graph, those nodes which are best
approximated by λieie

T
i in fact form a cluster of nodes. This is the basis for spectral

clustering, a technique which uses the eigenvectors of L to perform clustering of
a dataset or graph [26]. The first (smallest) non-zero eigenvalue and associated
eigenvector are associated with the main clusters of data. Subsequent eigenvalues
and eigenvectors can be associated with cluster splitting and also identification of
smaller clusters [29]. Typically, there exists what is called a spectral gap in which for
some k and j, λk � λk+1 ≈ 1 ≈ λj−1 � λj . That is, eigenvalues λk+1, . . . , λj−1

1

are approximately equal to one and are likely to represent links in a graph which do
not belong to any particular cluster. It is then usual to reduce the dimensionality of
the data using an approximation based on the spectral decomposition. However, in
this chapter we are interested in representing the global structure of a graph (e.g., we
are interested in the presence or absence of many small clusters), which is essentially
the spread of clustering across the graph. This information is contained in all the
eigenvalues of the spectral decomposition.

1i.e., the eigenvalues at the center of the spectrum.
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Let x = (x0, . . . , xn−1) be a vector. From (1.3) we see that

xLxT =
∑

uv∈E

(xu/
√

du − xv/
√

dv)2 (1.5)

Now, the eigenvalues cannot be large because from (1.5) we obtain

xLxT ≤
∑

uv∈E

(xu/
√

du − xv/
√

dv)2

+ (xu/
√

du + xv/
√

dv)2

= 2
∑

u

x2
u = 2xxT (1.6)

and so λi = eiLeT
i ≤ 2. What is more, the mean of the eigenvalues is 1 because∑

i

λi = tr(L) = n (1.7)

by (1.3), where tr(L) is the trace of L.
To summarize: the eigenvalues of L lie in the range 0 to 2 (the smallest being 0),

i.e., 0 = λ0 ≤ . . . ≤ λn−1 ≤ 2, and their mean is 1.
The distribution of the n numbers λ0, . . . , λn−1 contains useful information about

the network, as will be seen. In turn, information about this distribution is given by its
moments in the statistical sense, where the N th moment is 1/n

∑
i(1− λi)N . These

moments have a direct physical interpretation in terms of the network, as follows.
Writing B for the matrix D−1/2AD−1/2, so that L = I−B, then by (1.3) the entries
of B are given by

(D−1/2AD−1/2)i,j =
Ai,j√
di

√
dj

(1.8)

Now the numbers 1−λi are the eigenvalues of B = I−L, and so
∑

i(1−λi)N is just
tr(BN ). Writing bi,j for the (i, j)-th entry of B, the (i, j)-th entry of BN is the sum
of all products bi0,i1bi1,i2 . . . biN−1iN

where i0 = i and iN = j. But bi,j , as given by
(1.8), is zero unless nodes i and j are adjacent. So we define an N -cycle in G to be a
sequence of vertices u1u2 . . . uN with ui adjacent to ui+1 for i = 1, . . . , N − 1 and
with uN adjacent to u1. (Thus, for example, a triangle in G with vertices set {a, b, c}
gives rise to six 3-cycles abc, acb, bca, bac, cab and cba. Note that, in general, an
N -cycle might have repeated vertices.) We now have∑

i

(1− λi)N = tr(BN ) =
∑
C

1
du1du2 . . . duN

(1.9)

the sum being over all N -cycles C = u1u2 . . . uN in G. Therefore,
∑

i(1 − λi)N

counts the number of N -cycles, normalized by the degree of each node in the cycle.
The number of N-cycles is related to various graph properties. The number of

2-cycles is just (twice) the number of edges and the number of 3-cycles is (six times)
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the number of triangles. Hence
∑

i (1− λ)3 is related to the clustering coefficient,
as discussed below. An important graph property is the number of 4-cycles. A graph
which has the minimum number of 4-cycles, for a graph of its density, is quasi-random,
i.e., it shares many of the properties of random graphs, including, typically, high
connectivity, low diameter, having edges distributed uniformly through the graph,
and so on. This statement is made precise in [34] and [7]. For regular graphs, (1.9)
shows that the sum

∑
i (1− λ)4 is directly to the number of 4-cycles. In general,

the sum counts the 4-cycles with weights: for the relationship between the sum and
the quasi-randomness of the graph in the non-regular case, see the more detailed
discussion in [8, Chapter 5]. The right hand side of (1.9) can also be seen in terms of
random walks. A random walk starting at a vertex with degree du will choose an edge
with probability 1/du and at the next vertex, say v, choose an edge with probability
1/dv and so on. Thus the probability of starting and ending randomly at a vertex
after N steps is the sum of the probabilities of all N -cycles that start and end at that
vertex. In other words exactly the right hand side of (1.9). As pointed out in [35],
random walks are an integral part of the Internet AS structure.

The left hand side of Equation (1.9) provides an interesting insight into graph
structure. The right hand side is the sum of normalized N -cycles whereas the left
hand side involves the spectral decomposition. We note in particular that the spectral
gap is diminished because eigenvalues close to one are given a very low weighting
compared to eigenvalues far from one. This is important as the eigenvalues in the
spectral gap typically represent links in the network that do not belong to any specific
cluster and are not therefore important parts of the larger structure of the network.

Next, we consider the well-known clustering coefficient. It should be noted that
there is little connection between the clustering coefficient, and cluster identification,
referred to above. The clustering coefficient, γ(G), is defined as the average number
of triangles divided by the total number of possible triangles

γ(G) = 1/n
∑

i

Ti

di(di − 1)/2
, di ≥ 2 (1.10)

where Ti is the number of triangles for node i and di is the degree of node i. Now
consider a specific triangle between nodes a, b and c. For the clustering coefficient,
noting that the triangle will be considered three times, once from each node, the
contribution to the average is

1
da(da − 1)/2

+
1

db(db − 1)/2
+

1
dc(dc − 1)/2

(1.11)

However, for the weighted spectrum (with N = 3), this particular triangle gives rise
to six 3-cycles and contributes

6
dadbdc

(1.12)

So, it can be seen that the clustering coefficient normalizes each triangle according
to the total number of possible triangles while the weighted spectrum (with N = 3)
instead normalizes using a product of the degrees. Thus, the two metrics can be
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considered to be similar but not equal. Indeed, it should be noted that the clustering
coefficient is in fact not a metric in the strict sense. While two networks can have the
same clustering coefficient they may differ significantly in structure. In contrast, the
elements of

∑
i (1− λ)3 will only agree if two networks are isomorphic.

We now formally define the weighted spectrum as the normalized sum of N -cycles
as

W (G, N) =
∑

i

(1− λi)N (1.13)

However, calculating the eigenvalues of a large (even sparse) matrix is computation-
ally expensive. In addition, the aim here is to represent the global structure of a graph
and so precise estimates of all the eigenvalue values are not required. Thus, the dis-
tribution2 of eigenvalues is sufficient. In this chapter the distribution of eigenvalues
f(λ = k) is estimated using pivoting and Sylvester’s Law of Inertia to compute the
number of eigenvalues that fall in a given interval. To estimate the distribution we
use K equally spaced bins.3 A measure of the graph can then be constructed by
considering the distribution of the eigenvalues as

ω(G, N) =
∑
k∈K

(1− k)Nf(λ = k) (1.14)

where the elements of ω(G, N) form the weighted spectral distribution:

WSD : G → <|K|{k ∈ K : ((1− k)Nf(λ = k))} (1.15)

In addition, a metric can then be constructed from ω(G) for comparing two graphs,
G1 and G2, as

=(G1, G2, N) =
∑
k∈K

(1− k)N (f1(λ = k)− f2(λ = k))2 (1.16)

where f1 and f2 are the eigenvalue distributions of G1 and G2 and the distribution
of eigenvalues is estimated in the set K of bins ∈ [0, 2]. Equation (1.16) satisfies all
the properties of a metric [14].

We next wish to test if the WSD for graphs generated by the same underlying
process vary significantly (to show that the WSD is stable). To do this, we generate
a set of graphs that have very similar structure and test to see if their WSDs are
also similar. The results of an empirical test are shown in Figure 1.1. This plot
was created by generating 50 topologies using the AB [1] generator with the (fixed)
optimum parameters determined in §1.7, but with different initial conditions.4 For
each run the spectral and weighted spectral distributions are recorded yielding 50×50
bin values which are then used to estimate standard deviations. As the underlying
model (i.e. the AB generator) is the same for each run, the structure might be expected

2The eigenvalues of a given graph are deterministic and so distribution here is not meant in a statistical
sense.
3K can be increased depending on the granularity required.
4We found similar results for other parameters and topology generators.
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Figure 1.1 Mean and standard deviations for WSD and (unweighted) spectrum for the AB
model over 50 simulations.

to remain the same and so a “structural metric” should be insensitive to random initial
conditions. As can be seen the standard deviation5 of the (unweighted) spectrum,
σfλ

(λ), is significantly higher at the center of the spectrum. However, for the WSD,
the standard deviation, σwsd, peaks at the same point as the WSD; the noise in the
spectral gap has been suppressed. The evidence suggests that the WSD successfully
filters out the noise around1 in the middle region and highlights the important parts
of the signal.

1.4 A SIMPLE WORKED EXAMPLE

After the fairly theoretical previous section, we aim at giving the reader a better
intuition behind the WSD with a simple example. Figure 1.2 shows a small network,
called G1, with 7 nodes and 8 links. As can be seen there are 2 cycles of length
3 in this network and one of length 4. We will take N = 3 in this example for
convenience and without loss of generality. The random walk probabilities are labeled
in Figure 1.2. For example, node 3 has a degree of 5 resulting in a probability of 1/5th

5Multiplied by a factor of ten for clarity.



8 WEIGHTED SPECTRAL DISTRIBUTION: A METRIC FOR STRUCTURAL ANALYSIS OF NETWORKS

Figure 1.2 A simple example network G1.

Table 1.1 Eigenvalues, WSD and dominant nodes of example network.

e7 Eigenvector λ 1− λ (1− λ)3 Dominant nodes

0.2500 1 1.8615 -0.8615 -0.6394 3,1,2,6
0.2500 2 1.3942 -0.3942 -0.0612 7,4,5
0.5590 3 1.3333 -0.3333 -0.0370 4,5
0.4330 4 1.0000 0.0000 0.0000 6,2
0.4330 5 1.0000 0.0000 0.0000 1,2,6
0.2500 6 0.4110 0.5890 0.2043 7,3
0.3536 7 0.0000 1.0000 1.0000 3,4,5,7P7

i=1(1− λi)
3 0.4667

for each edge. The total probability of taking a random walk around each 3-cycle is:
6× 1/2× 1/3× 1/3 = 0.33, also shown.6

Figure 1.3 shows a 3-D plot of the absolute value (for clarity) of the eigenvectors
of the normalized Laplacian. The corresponding eigenvalues are shown in Table 1.1.

6The six comes from the fact that the random walk can start in one of three nodes and go in one of two
directions. It can be viewed in our case as really just a nuisance scaling factor.
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Figure 1.3 Eigenvectors of the simple example network.

As is well known, the eigenvectors of the normalised Laplacian perform a par-
titioning of the nodes in a graph. In this example nodes 4 and 5 are grouped into
eigenvector 3, nodes 1,2 and 6 into eigenvectors 4 and 5, node 7 into eigenvector 2
and node 3 into eigenvector 1 (Figure 1.3). Note that for each partition the nodes in
the partition are the same; i.e. we could swap the labels between nodes 4 and 5 and
the network would not change (i.e. an isomorphism). Eigenvector and eigenvalue 7,
e7 and λ7 = 0, are special and partitions all the nodes in the network with the most
central nodes having the highest coefficients (see Table 1.1, column 1). In general the
number of eigenvalues that are zero is equal to the number of components, arguably
the most important structural property in a graph. This graph contains 1 connected
component and so has a single zero eigenvalue (λ7). Note that the highest possible
weighting in the WSD is given at zero (i.e. 1 = 1-0); the number of components in
the graph.

Note that the sum of the eigenvalues taken to the power of N is indeed the same
as the sum of the probabilities of taking N random walk cycles in the graph. This is
shown in Table 1.1, last row,

∑7
i=1(1− λi)3 = 0.4667 which can be easily verified

by adding the cycle probabilities from Figure 1.3 (0.3333 + 0.1333 = 0.467). What
is interesting is how this sum is constructed. In Table 1.1 the main contributions to
the sum are from eigenvalues 1,2,3 and 6 (we ignore eigenvalue 7 as it merely reflects
that the graph is connected) which are dominated by the nodes which form the cycles;
3, 4, 5 and 7.
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Figure 1.4 WSD of the example network.

However, this does not mean that the information provided by the WSD is confined
to N -cycles in the graph. For example in Figure 1.5 we take the edge linking nodes 1
and 3 and rewire it so that 1 and 6 are now connected. Note that while the right cycle
is still in place its probabilities have now changed, as the degree of node 3 is now 4.
The corresponding eigenvalues have also changed as seen in Figure 1.4. 7

In conclusion, the WSD can roughly be seen as an amalgamation of local views
(i.e. walks of length N ) taken from all the nodes. As (1 − λi) ≤ 1 ∀i, (1 − λi)N

will suppress the smaller eigenvalues more and more as N increases 8. We consider
3 and 4 to be suitable values of N for the current application: N = 3 is related to the
well-known and understood clustering coefficient; and N = 4 as a 4-cycle represents
two routes (i.e., minimal redundancy) between two nodes. For other applications,
other values of N may be of interest. Also note that in section 1.3 we propose using
the distribution of the eigenvalues for large networks; unfortunatly it is not instructive
to talk about a distribution for a small number of eigenvalues (7 in this example).

7Note that if we had used the adjacency matrix instead of the normalised Laplacian the re-wiring would
have no effect on the sum of the eigenvalues.
8This is closely related to the settling times in Markov chains which are often expressed in terms of the
largest non-trivial eigenvalue. It differs in that the Walk Laplacian and not the normalised Laplacian is
used.
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Figure 1.5 The second example network, G2.

1.5 THE INTERNET AUTONOMOUS SYSTEM TOPOLOGY

The Internet’s AS topology is a widely studied representation of the Internet at a
particular scale. An AS represents a single network which can apply its own oper-
ational and peering policy. An Internet Service Provider (ISP) may use 1 or more
ASes. The Internet contains over 30,000 ASes, each in a set of relationships with its
neighbors, who are either its customers, providers or peers. In the Internet core there
is a full mesh formed between the ASes of the various tier-1 ISPs. However, at the
edge there are a huge number of smaller ISPs and customer networks which connect
through upstream providers and local public exchange points. These smaller ISPs
and customer networks may have only one upstream provider, or may have many for
resilience and performance reasons. In addition, the Internet constantly evolves: new
networks are added, old ones disappear and existing ones grow and merge.

Links between ASes depend on business relationships which can and do change,
sometimes rapidly, making any interpretation of the Internet as a static structure
inaccurate. This rich and dynamic structure makes it difficult to provide either a
single, representative topological model, or a single graph metric that captures all
characteristics of any topology. However, such a metric would make it possible
to generate realistic synthetic topologies improving the accuracy of Internet-wide
protocol simulations, and perhaps enabling the prediction of the future evolution of
the Internet’s topology.
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Many attempts to capture one or more characteristics have been made, resulting
in several topology generators which each synthesize Internet-like topologies using
different models and parameters. Unfortunately, validating these models is an ad
hoc matter that typically means matching several topological measures in the hope
that this will ensure a matching structure. Users often select default parameters for
these models based on specific datasets measured at particular times, which no longer
represent the current Internet. However, as noted previously, these measures cannot
be used to estimate the optimum parameters for a model given a target topology.

1.5.1 Characterization

Over the past several years many topological metrics have been proposed for quanti-
tatively characterizing topological properties of networks. In this section we present
a large set of topological metrics that will be used to measure a distance in graph
space,9 i.e., how topologically distant two graphs are from each other. These metrics
are computed for both synthetic and measured AS topologies. When choosing our
metrics we considered both those used by the topology generator designers and those
used more widely in the graph theory literature. Taken individually, these metrics
focus on different topological aspects, but when considered together they reveal a
more complete picture of the observed AS topologies.

We specifically chose not to use the three metrics of Tangmunarunkit et al. [33] for
two reasons. First, computation of resilience and distortion are both NP-complete,
requiring the use of heuristics. In contrast, all our metrics are straightforward to
compute directly. Second, although accurate reproduction of degree-based metrics
is well-supported by current topology generators, our hypothesis is that local inter-
connectivity has been poorly understood, and so we add several metrics that focus on
exactly this, e.g., assortativity, clustering, and centrality.

AS topologies are modeled as graphs G = (V,E) with a collection of nodes V
and a collection of links E that connect a pair of nodes. The number of nodes and
links in a graph is then equal to, respectively, N = |V | and M = |E|.

Degree. The degree k of a node is the number of links adjacent to it. The average
node degree k̄ is defined as k̄ = 2M/N . The node degree distribution P (k) is the
probability that a randomly selected node has a given degree k. The node degree
distribution is defined as P (k) = n(k)/N , where n(k) is the number of nodes
of degree k. The joint degree distribution (JDD) P (k, k′) is the probability that a
randomly selected pair of connected nodes have degreesk andk′. A summary measure
of the joint degree distribution is the average neighbor degree of nodes with a given
degree k, and is defined as follows knn(k) =

∑kmax

k′=1 k′P (k′|k). The maximum
possible knn(k) value is N − 1 for a maximally connected network, i.e. a complete
graph. Hence, we represent the JDD by the normalized value knn(k)/(N − 1) [23]
and refer to it as average neighbor connectivity.

9In [16] we present an even larger set of measures.
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Assortativity. Assortativity is a measure of the likelihood of connection of nodes of
similar degrees [28]. This is usually expressed by means of the assortativity coefficient
r: assortative networks have r > 0 (disassortative have r < 0 resp.) and tend to have
nodes that are connected to nodes with similar (dissimilar resp.) degree.

Clustering. Given node i with ki links, these links could be involved in at most
ki(ki − 1)/2 triangles (e.g., nodes a → b → c → a form a triangle). The greater the
number of triangles, the greater the clustering of this node. The clustering coefficient
γ(G) is defined as the average number of triangles divided by the total number of

possible triangles: γ(G) = 1/N
∑

i

Ti

ki(ki − 1)/2
, ki ≥ 2 where Ti is the number of

triangles of node i and ki is its degree. We use the distribution of clustering coefficients
C(k), which in fact is the distribution of the terms Ti

ki(ki−1)/2 in the overall summation.
This definition of the clustering coefficient gives the same weight to each triangle in
the network, irrespective of the distribution of the node degrees.

Rich-Club. The rich-club coefficient φ(ρ) is the ratio of the number of links in the
component induced by the ρ largest-degree nodes to the maximum possible links
ρ(ρ− 1)/2, where ρ = 1...N are the first ρ nodes ordered by their degree ranks in a
network of size N nodes and ρ is normalized by the total number of nodes N [9, 41].
In this way, the node rank ρ denotes the position of a node on this ordered list.

Shortest Path. The shortest path length distribution P (h) is the probability distri-
bution of two nodes being at minimum distance h hops from each other. From the
shortest path length distribution the average node distance in a connected network is
derived as h =

∑hmax
h=1 hP (h), where hmax is the longest shortest path between any

pair of nodes. hmax is also referred to as the diameter of a network.

Centrality. Betweenness centrality is a measure of the number of shortest paths
passing through a node or a link. The node betweenness for a node v is B(v) =∑

s 6=v 6=t∈V
σst(v)

σst
, where σst is the number of shortest paths from s to t and σst(v) is

the number of shortest paths from s to t that pass through a node v [19]. The average
node betweenness is the average value of the node betweenness over all nodes.

Closeness. Another measure of the centrality of a node within a network is its
closeness. The closeness of a node is the reciprocal of the sum of shortest paths from
this node to all other reachable nodes in a graph.

Coreness. The l-core of a network (sometimes known as the k-core) is the maximal
component in which each node has at least degree l. In other words, the l-core is the
component of a network obtained by recursively removing all nodes of degree less
than l. A node has coreness l if it belongs to the l-core but not to the (l + 1)-core.
Hence, the l-core is the collection of all nodes having coreness l. The core of a
network is the l-core such that the (l + 1)-core is empty [4].
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Clique. A clique in a network is a set of pairwise adjacent nodes, i.e., a component
which forms a complete graph. The top clique size, also known as the graph clique
number, is the number of nodes in the largest clique in a network [38].

Spectrum. It has recently been observed that eigenvalues are closely related to al-
most all critical network characteristics [8]. For example, Tangmunarunkit et al. [33]
classified network resilience as a measure of network robustness subject to link fail-
ures, resulting in a minimum balanced cut size of a network. Spectral graph theory
enables study of network partitioning using graph eigenvalues [8]. In this chapter we
focus on the spectrum of the normalized Laplacian matrix, where all eigenvalues lie
between 0 and 2, allowing easy comparison of networks of different sizes. We use
the normalized graph’s spectrum for tuning the parameters of topology generators.

1.5.2 Generation

In this section we present a number of topology generators, each having their own set
of parameters. We also present an example of an Internet AS topology dataset which
we use as a litmus test for the parameter tuning exercise.

There are many models available that claim to describe the Internet AS topology.
Several of these are embodied in tools built by the community for generating simulated
topologies. In this section we describe the particular models whose output we compare
in this chapter. The first are produced from the Waxman model [36], derived from the
Erdös-Rényi random graphs [12], where the probability of two nodes being connected
is proportional to the Euclidean distance between them. The second come from
the Barabasi and Albert (BA) [3] model, following measurements of various power
laws in degree distributions and rank exponents by Faloutsos et al. [13]. These
incorporate common beliefs about preferential attachment and incremental growth.
The third are from the Generalized Linear Preference model [5] which additionally
model clustering coefficients. Finally, Inet [37] and PFP [41] focus on alternative
characteristics of AS topology: the existence of a meshed core, and the phenomenon
of preferential attachment respectively. Each model focuses only on particular metrics
and parameters, and has only been compared with selected AS topology observations
[39, 33, 37].

Waxman. The Waxman model of random graphs is based on a probability model
for interconnecting nodes of the topology given by:

P (u, v) = αe−d/(βL) (1.17)
where 0 < α, β ≤ 1, d is the Euclidean distance between two nodes u and v, and L is
the network diameter, i.e., the largest distance between two nodes. Note that d and L
are not parameters for the Waxman model. The Internet is known not to be a random
network but we include the Waxman model as a baseline for comparison purposes.

BA. The BA [1] model was inspired by the idea of preferentially attaching new nodes
to existing well-connected nodes, leading to the incremental growth of nodes and the
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links between them. Starting with a network of m0 isolated nodes, m ≤ m0 new
links are added with probability p. One end of each link is attached to a random node,
while the other end is attached to a node selected by preferring the more popular,
i.e., well-connected, nodes with probability

Π(ki) =
ki + 1∑
j kj + 1

(1.18)

where kj is the degree of node j, with probability q, m links are rewired and new
nodes are added with probability 1 − p − q. A new node m has m new links that,
with probability Π(ki), are connected to nodes i already present in the system. We
use the BRITE [25] implementation of this model in this chapter.

GLP. Our third model is the Generalized Linear Preference model (GLP) [5]. It
focuses on matching characteristic path length and clustering coefficients. It uses a
probabilistic method for adding nodes and links recursively while preserving selected
power law properties. In the GLP model, when starting with m0 links, the probability
of adding new links is defined as p where p ∈ [0, 1]. Let Π(di) be the probability of
choosing node i. For each end of each link, node i is chosen with probability Π(di)
defined as:

Π(di) = (di − β)/
∑

j

(dj − β) (1.19)

where β ∈ (−∞, 1) is a tunable parameter indicating the preference of nodes to
connect to existing popular nodes. We use the BRITE implementation of this model
in this chapter.

Inet. Inet [37] produces random networks using a preferential linear weight for the
connection probability of nodes after modeling the core of the generated topology as
a full mesh network. Inet sets the minimum number of nodes at 3037, the number
of ASes on the Internet at the time of Inet’s development. By default, the fraction
of degree 1 nodes α is set to 0.3, based on measurements from Routeviews10 and
NLANR11 BGP table data in 2002.

PFP. In the Positive Feedback Preference (PFP) model [41], the AS topology of the
Internet is considered to grow by interactive probabilistic addition of new nodes and
links. It uses a nonlinear preferential attachment probability when choosing older
nodes for the interactive growth of the network, inserting edges between existing and
newly added nodes. As the PFP generator does not have any user-tunable parameters
we include it only in the last part of §1.7 for completeness.

10http://www.routeviews.org/
11http://www.nlanr.net/
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1.5.3 Observations

The AS topology can be inferred from two main sources of data, BGP and traceroutes,
both of which suffer from measurement artifacts. BGP data is inherently incomplete
no matter how many vantage points are used for collection. In particular, even if
BGP updates are combined from multiple vantage points, many peering and sibling
relationships are not observed [15]. Traceroute data misses alternative paths since
routers may have multiple interfaces which are not easily identified, and multi-hop
paths may be hidden by tunnelling via Multi-Protocol Label Switching (MPLS). In
addition, mapping traceroute data to AS numbers is often inaccurate [24].

Chinese. The first dataset is a traceroute measurement of the Chinese AS Topology
collected from servers within China in May 2005. It reports 84 ASs, representing
a small subgraph of the Internet. Zhou et al. [40] claim that the Chinese AS graph
exhibits all the major topology characteristics of the global AS graph. The presence of
this dataset enables us to compare the AS topology models at smaller scales. Further,
this dataset is believed to be nearly complete, i.e., it contains very little measurement
bias and accurately represents the AS topology of that region of the Internet. Thus,
although it is rather small, we have included it as a valuable comparison point in our
studies.

Skitter. The second dataset comes from the CAIDA Skitter project.12 By running
traceroutes towards a large range of IP addresses and subsequently mapping the pre-
fixes to AS numbers using RouteViews BGP data, CAIDA computes an observation
of the AS topology. For our study we use the graphs from March 2004 to match those
used by Mahadevan et al. [23]. This AS topology reports 9,204 unique ASs.

RouteViews. The third dataset we use is derived from the RouteViews BGP data.
This is collected both as static snapshots of the BGP routing tables and dynamic BGP
data in the form of BGP update and withdrawal messages. We use the topologies
provided by Mahadevan et al. [23] from both the static and dynamic BGP data from
March 2004. The dataset is produced by filtering AS sets and private ASs and merging
the 31 daily graphs into one. This dataset reports 17,446 unique ASs across 43 vantage
points in the Internet.

UCLA. The fourth dataset comes from the Internet topology collection13 maintained
by Oliviera et al. [30]. These topologies are updated daily using BGP routing tables
and updates from RouteViews, RIPE,14 Abilene15 and LookingGlass servers. We use
a snapshot of this dataset from November 2007, computed using a time window on

12http://www.caida.org/tools/measurement/Skitter/
13http://irl.cs.ucla.edu/topology/
14http://www.ripe.net/db/irr.html
15http://abilene.internet2.edu/
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the last-seen timestamps to discard ASs which have not been seen for more than 6
months. The resulting dataset reports 28,899 unique ASs.

1.6 COMPARING TOPOLOGY GENERATORS

Most past comparisons of topology generators have been limited to the average node
degree, the node degree distribution and the joint degree distribution. The rationale
for choosing these metrics is that if those properties are closely reproduced, then the
value of other metrics will also be closely reproduced [22].

In this section we show that current topology generators are able to match first and
second order properties well, i.e., average node degree and node degree distribution,
but fail to match many other topological metrics. We also discuss the importance of
various metrics in our analysis.16

1.6.1 Methodology

For each generator we specify the required number of nodes and generate 10 topolo-
gies of that size to provide confidence intervals for the metrics. We then compute
the metrics introduced in §1.5 on both the generated and observed AS topologies.
All topologies studied in this chapter are undirected, preventing us from considering
peering policies and provider-customer relationships. This limitation is forced upon
us by the design of the generators as they do not take such policies into account.

Each topology generator uses several parameters, all of which could be tuned to
best fit a particular size of topology. However, there are two problems with attempting
this tuning. First, doing so requires selecting an appropriate goodness-of-fit measure,
of which there are many as noted in §1.5. Second, in any case tuning parameters
to a particular dataset is of questionable merit since, as we argued in §1.2, each
dataset is but a sample of reality, having many biases and inaccuracies. Typically,
topology generator parameters are tuned to match the number of links in the synthetic
and measured networks for a given number of nodes. However we found this to be
infeasible as generating graphs with equal numbers of links from a random model
and a power-law model gives completely different outputs. For space reasons we deal
with this particular issue elsewhere [18]; in this chapter we simply use the default
values embedded within each generator.

1.6.2 Topological metrics

In this section we discuss the results for each metric separately and analyze the reasons
for differences between the observed and the generated topologies.

Table 1.2 displays the values of various metrics (columns) computed for different
topologies (rows). Blocks of rows correspond to a single observed topology and the

16We present an extended set of metrics in [16] which further support our claims; we restrict ourselves
here to only the most significant results.
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generated topologies with the same number of nodes as the observed topology. Bold
numbers represent nearest match of a metric value to that for the relevant observed
topology. Rows in each block are ordered with the observed topology first, followed
by the generated topologies from oldest to newest generator. For synthetic topologies,
the value of the metrics is averaged over the 10 generated instances. Note that Inet
requires the number of nodes to be greater than 3037 and hence cannot be compared
to the Chinese topology.

We observe a small but measurable improvement from older to newer generators
in some metrics such as maximum degree, maximum coreness, and assortativity
coefficient. This suggests that topology generators have successively improved at
matching particular properties of the observed topologies. However, the number of
links in the generated topologies may differ considerably from the observed topology
due to the assumptions made by the generators. The Waxman and BA generators
fail to capture the maximum degree, the top clique size, maximum betweenness and
coreness. Those two generators are too simplistic in the assumptions they make about
the connectivity of the graphs to generate realistic AS topologies. Waxman relies on
a random graph model which cannot capture the clique between tier-1 ASes nor the
heavy tail of the node degree distribution. BA tries to reproduce the power-law node
degrees with its preferential attachment model but fails to reach the maximum node
degree, as it only adds edges between new nodes and not between existing ones.
Hence, neither of these two models is able to create the highly-connected core of
tier-1 ASes. PFP and Inet manage to come closer to the values of the metrics of the
observed topologies. For Inet this is because it assumes that 30% of the nodes are
fully meshed (at the core), whereas for PFP its rich-club connectivity model allows
to add edges between existing nodes.

Node degree distribution. In Figure 1.6 we show the CCDF of the node degree
for all topologies on a log-log scale. We observe that the Chinese topology does not
exhibit power law scaling due to its limited size, whereas all the larger AS topologies
do exhibit power-law scaling of node degrees. The Waxman generator completely
fails to capture this behavior as it is based on a random graph model, but recent
topology generators do capture this power law behavior of the node degrees quite
well, as observed in [5]. In the case of the RouteViews and UCLA datasets, Inet
and PFP outperform other topology generators. Note that the more complete UCLA
dataset has a slightly concave shape in contrast to RouteViews where the degree
distribution displays strict power law scaling. In summary, more recent generation
models reproduce node degree distributions well as expected since this has been a
primary focus in the literature.

Average neighbor connectivity. Neighbor connectivity has been far less studied
than node degree, although it is very important to match local interconnection among
a node’s neighbors when reproducing the topological structure of the Internet [23].
Figure 1.7 shows the CCDF of the average neighbor degrees for all topologies. We
observe that Waxman, BA and GLP underestimate the local interconnection structures
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Figure 1.6 Comparison of node degree CCDFs.

around nodes. BA and GLP typically generate graphs with far fewer links than the
observed topologies so they underestimate neighbor degrees on average.

For the larger observed topologies, i.e., RouteViews and UCLA, PFP and Inet
typically overestimate the neighbor connectivity, as they both place a large number
of inter-AS links in the core. In addition, the shapes of the neighbor connectivity
CCDF differ for the larger topologies: Inet and PFP have two regimes, one for highly
connected nodes (those with larger neighbor connectivity), and another for low-degree
nodes. On the other hand, observed topologies have a smooth region for the high-
degree nodes followed by a rather stable region caused by similar degree nodes. We
observe that the highest degree nodes in the UCLA topology have very high values
of neighbor connectivity. This is consistent with the belief that tier-1 providers are
densely meshed.

Clustering coefficients. Like the average neighbor connectivity, the clustering co-
efficient gives information about local connectivity of the nodes. It is important to
reproduce clustering due to its impact on the local robustness in the graph: nodes
with higher local clustering have increased local path diversity [23].

Figure 1.8 displays the clustering coefficients of all nodes in the topologies. Error
bars indicate 95% confidence intervals around the mean values of the 10 topologies
from each generator. We observe that Waxman and BA significantly underestimate
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Figure 1.7 Comparison of average neighbor connectivity CCDFs.

clustering, consistent with their simplistic way of connecting nodes. GLP approxi-
mates the clustering of the Chinese topology quite well but fails in the case of the
larger observed topologies. PFP and Inet capture clustering reasonably well com-
pared to the other topology generators. However, Inet does not reproduce the tail of
the distribution well due to the randomness factor in its model for edge addition once
the core is fully meshed.

We also observe that for medium degree nodes, clustering coefficients display
rather high variability which increases with the size of the observed topologies. This
behavior seems to be a property of the observed AS topology of the Internet.

In summary, all topology generators fail to properly capture clustering, typically
underestimating local connectivity. Only Inet for the UCLA topology overestimates
connectivity of low-degree nodes while still underestimating it for high-degree nodes.
Current topology generators do not seem to adequately model of local node connec-
tivity.

Rich-club connectivity. Rich-club connectivity gives information about how well-
connected nodes of high degree are among themselves. Figure 1.9 makes it clear
that the cores of the observed topologies are very close to a full mesh, with values
close to 1 on the left of the graphs. The error bars again indicate the 95% confidence
intervals around the mean values of the different instances of the generated topologies.
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Figure 1.8 Comparison of clustering coefficients.
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Waxman and BA perform poorly for this metric in general. Only PFP and Inet generate
topologies with a dense enough core compared to the observed topologies. Given the
emphasis that PFP gives to the rich-club connectivity, it overestimates it in the case of
the Chinese and RouteViews topologies. Inet performs well due to its emphasis on a
highly connected core, especially for larger topologies where data has been collected
across multiple peering points.

In summary, most topology generators underestimate the importance of rich-club
connectivity of the AS topology. PFP is the only topology generator that emphasizes
the importance of the dense core of the AS topology.
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Figure 1.10 Comparison of shortest path distributions (number of hops).

Shortest path distributions. Figure 1.10 displays the distributions of shortest path
length. Apart from BA, most topology generators approximate the shortest path
length distribution of the Chinese graph quite well due to its small size. For the
other topologies, PFP and Inet generally underestimate the path length distribution
while Waxman and BA overestimate it. Particular generators seem to capture the
path length distribution for particular topologies well: PFP matches Skitter’s well
and GLP is close for Routeviews. Inet and PFP both do a better job for UCLA than
for RouteViews but both still underestimate the distribution.
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In summary, shortest path length is not well captured by any topology generator. As
shortest path length is related to local connectivity, failing to capture local connectivity
is likely to lead to such a behavior.

Spectrum. The spectrum of the normalized Laplacian matrix is a powerful tool for
characterizing properties of a graph. If two graphs have the same spectrum, they have
the same topological structure.

0

0.2

0.4

0.6

0.8

1

C
D

F

0  0.5 1  1.5 2  

eigenvalue
0  0.5 1  1.5 2  

0

0.2

0.4

0.6

0.8

1

eigenvalue

C
D

F

Skitter

Waxman

BA

GLP

INET

PFP

Chinese

Waxman

BA

GLP

PFP

UCLA

BA

GLP

INET

PFP

RouteViews

Waxman

BA

GLP

INET

PFP

Figure 1.11 Comparison of cumulative distributions of eigenvalues (from normalized
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Figure 1.11 displays the CDF of the eigenvalues computed from the normalized
Laplacian matrix of each topology.

As with other topological metrics, Inet and PFP perform best. The difference
between the topology generators is most easily observed around the eigenvalues equal
to 1. These eigenvalues play a special role as they indicate repeated duplications of
topological patterns within the network. By duplication, we mean different nodes
having the same set of neighbors giving their induced subgraphs the same structure.
Through repeated duplication, one can create networks with high multiplicity of
eigenvalue 1 [2]. Further, if a network is bipartite, i.e., it consists of two connected
parts with no links between nodes of the same part, then its spectrum will be symmetric
about 1. This phenomenon can also arise through repeated structure duplication.
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We observe that the spectra have a high degree of symmetry around the eigenvalue
1, and so the observed AS topologies appear close in spectral terms to a bipartite
graph. In the AS topology, many ASes share a similar set of upstream ASes without
being directly connected to each other. Inet and PFP are good examples of topology
generators where this strategy is implemented. Note that the simple preferential
attachment model of BA does not reproduce the eigenvalues around 1 very well. In
the simple BA model, new nodes connect randomly to a given number of existing
nodes, favoring connections to high degree nodes. In the Internet in contrast, although
small ASes may tend to connect to large upstream providers, they might not connect
preferentially to the largest ones, connecting instead to national or regional providers.
In summary, these results provide further evidence that the interconnection structure
of the AS topology is more complex than current models assume.

1.6.3 Discussion

Deviations between topology models and observations have been already studied in
the literature. However, most works so far have focussed on particular topological
metrics. Concentrating on particular topological metrics has lead to underestimate the
mismatch between the properties of observed AS topologies and what current models
produce. When comparing several models with several observed AS topologies as we
do, we see that current topology models mostly try to capture some properties of one
set of observations from the AS topology. For a topology model to claim to model
the Internet’s AS topology, we would expect that it tries to approach the properties of
observed AS topologies in many respects, which is not the case today.

1.7 TUNING TOPOLOGY GENERATOR PARAMETERS

The aim of this section is to examine how well the topology generators match the
Skitter topology for different values of their parameters. To facilitate this comparison,
grids are constructed over the possible values of the parameter spaces and various cost
functions are evaluated as follows:

1. A cost function measuring the matching between the number of links in Skitter
and the generated topologies:

C1(θ) = (lt(θ)− lskitter)2 (1.20)

where C1 is the first cost function, θ are the model parameters (which differ
for each topology generator), lt is the number of links (which is a function of
the parameters) and lskitter is the number of links in the Skitter dataset.

2. A cost function measuring the matching between the spectra of the Skitter
network and of the generated topologies:

C2(θ) =
∑

i

(P (Λ ≤ λt,i)− P (Λ ≤ λskitter,i))2 (1.21)
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where λt,i is the ith eigenvalue for topology t.

3. A cost function measuring the matching of the weighted spectra:

C3(θ) =
∑

i

((w ∗ P (Λ = λt,i)− w ∗ P (Λ = λskitter,i))2 (1.22)

where weight w = (1− i)4.

In addition to examining different parameter values across a grid, the optimum
parameters with respect to C3(θ) are estimated using the Nelder Meade simplex search
algorithm [27, 11]. Note that the topologies generated by the topology generators
are random in a statistical sense, due to differing random seeds for each run. Ten
topologies are generated for each value of θ and the average spectral distribution is
calculated. We found that the variance of the spectral distributions was sufficiently
low to allow reasonable estimates of the minima in each case.

1.7.1 Link Densities

Figure 1.12 displays the value of the cost function C1(θ) as a function of the topology
generator parameters. On the upper and lower left graphs, the grayscale color indicates
the value of the cost function. For Inet (lower right) there is only one parameter, p,
so it is plotted as a curve in Figure 1.12(d). Figure 1.12 shows that a minimum exists
for each topology in approximately the same regions as the default values of each
generator.17 For the BA generator + it is known that for values of p and q above the line
shown in Figure 1.12(b), the topologies generated follow an exponential node degree
distribution while those below follow a scale-free distribution. It is encouraging to
note that the values of C1(θ) are large in the exponential region and the minimum is
in the scale-free region as the node degree distribution of the Internet is known to be
approximately scale free [1]. Overall the results obtained by tuning the parameters
based on C1(θ) appear reasonable. For link density matching it is possible to obtain
parameter values which match the link densities exactly. Indeed, there is a ridge of
parameters for BA, GLP and Waxman for which the link densities can be matched.
However, as noted in the introduction, there is no control over any other characteristic
of the graph using this method.

1.7.2 Spectra PDF

Figure 1.13 shows the spectral PDF of the Skitter dataset and the four topology
generators calculated at three parameters values in each grid (the parameter values are
indicated in brackets in the legends). The aim is to illustrate how much the spectral
PDFs change with the values of the parameters. The spectral PDFs of Waxman
(Figure 1.13(a)) vary significantly for different values of α and β. Furthermore, none
of the Waxman PDFs match well the spectral PDF of the Skitter graph. The BA PDFs

17Some of these default values are listed in Table 1.3.
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Figure 1.12 Topology generator parameter grid for sum squared error from number of links.

vary to a lesser extent (Figure 1.13(b)) and appear to give a much better match than
the Waxman model, especially around eigenvalue 1 (λ = 1). This better match of
BA is not surprising as the Waxman model is not a good model for the Internet as
noted in §1.6. GLP (Figure 1.13(c)) and Inet (Figure 1.13(d)) give similar results
to BA, with a poor match outside eigenvalue 1. The better match of the BA model
around eigenvalue 1 is interesting. As noted in §1.3 the regions away from eigenvalue
1 are far more important than the region around λ = 1. However, what is required
is a technique that reveals the differences with distance from one as these are more
important. Thus it would appear difficult to evaluate which model, or even which
parameter, is better based on the PDFs alone. This point is now further explored by
analysis of the grids calculated with respect to C2(θ).

1.7.3 Limitations of Spectra CDF

Figure 1.14 shows the value of the second cost function C2(θ) as a function of the
topology generator parameters, in the same way as Figure 1.12. As can be seen in
Figure 1.14, there are many islands corresponding to local minima, creating a rugged
landscape. The variance in the PDFs referred to in this section is actually greater than
any gradient that might exist in the grid. This means that it is not possible to estimate
the minimum with respect to C2(θ). Figure 1.14 shows that the spectrum on its own
is not sufficient to identify the optimum parameters of any of the topology generators.
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This is because each eigenvalue in C2(θ) is weighted equally. As noted in §1.3, the
eigenvalues close to 1 are more likely to be affected by the random seeds for each
topology generator and are the source of the noise on the grid.

1.7.4 Weighted Spectra

The previous section illustrated the limitations of using the raw eigenvalues to find op-
timal topology generator parameters to match the Skitter topology. Figure 1.15 shows
a plot of the weighted spectra of the same topologies as those shown on Figure 1.13.
As can be seen the results are quite different from those shown in Figure 1.13. The
Waxman weighted spectra still shows a bad fit with respect to the Skitter data (mainly
around 0 and 2) compared to the other generators. The other generators (BA, GLP
and Inet) now show that they are capable of matching the weighted spectra of the
Skitter topology, especially around the point of greatest weight (λ = 0.4 or 1.6). The
difference between the weighted spectra around 1 is no longer of importance (in con-
trast to Figure 1.13), reflecting that the weights here approach zero as we approach
eigenvalue 1. In the next section the optimum values and the resulting weighted
spectra will be compared.
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1.7.5 Weighted Spectra Comparison

Figure 1.16 shows the grids associated with C3(θ). As can be seen the grids show that
there is a region with a minima in each case and in addition, comparing Figure 1.16
and Figure 1.12 it can be seen that these minima lie in a region close to those for
C1(θ). However, it should be noted that the weighted spectra will try to fit more
than just the number of links in a topology. This demonstrates the inherent trade-off.
Also of note is that the region of interest for the BA model lies inside the region of
scale-free behavior as shown in Figure 1.16(b).

1.8 GENERATING TOPOLOGIES WITH OPTIMUM PARAMETERS

Table 1.3 displays the optimum values for the topology generators for generating
networks that are close to the Skitter graph. In addition, we give the values for C3(θ),
which show that PFP gives the closest fit followed by BA, GLP, Waxman and finally
Inet. While these results are mostly expected, the ranking of Inet as the worst topology
generator is surprising. We have also listed some of the default parameters used in
certain generators such as BRITE [25]. While many of the optimized parameters are
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Figure 1.14 Parameter grid for sum of absolute differences of spectra CDFs.
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close to the default values, which is encouraging, it should be noted that the default
parameters are for a typical graph and are not selected for any particular situation.
Thus a direct comparison is meaningless.

Table 1.3 Optimum parameter values for matching Skitter topology.

Generator Optimum and Default Parameter Values C3(θ) C3(θ)

Waxman α = 0.08 (def. 0.15) β = 0.08 (def. −0.2) 0.0026 0.0797
BA p = 0.2865 (def. 0.6) q = 0.3145 (def. 0.3) 0.0014 0.0300

GLP p = 0.5972 (def. 0.45) β = 0.1004 (def. 0.64) 0.0021 0.0446
Inet α = 0.1013 (def. 0.3) − 0.0064 0.0150
PFP − − 0.0014 0.0371

Figure 1.17(a) shows the weighted spectra for each of the topology generators and
inspection of this figure goes some way to explaining the discrepancy in the results.
As can be seen the main peak in the weighted spectra for the Skitter data occurs at a
value of λ = 0.4. The Waxman generator peak occurs at λ = 0.6 which is closer to
1 demonstrating the greater amount of random structure in the Waxman topologies.
However, for the Inet generator the peak occurs at the correct point (λ = 0.4) but the
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Figure 1.15 Weighted spectra grid for generator parameters.
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weighted power at this point is far greater than in the Skitter topology. By normalizing
the weighted spectrum this point becomes clear:
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Figure 1.16 Grid of sum squared error of weighted spectra for topology generators
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Figure 1.17 Comparison of the weighted spectra.
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C3(θ) =
∑

i

((wi ∗ P (Λ = λt,i))∑
i

((wi ∗ P (Λ = λt,i))
− ((wi ∗ P (Λ = λskitter))∑

i

((wi ∗ P (Λ = λskitter))
(1.23)

Using the normalized weighted spectrum the results in Figure 1.17(b) show that
Inet is the best match for the Skitter data while the Waxman model still performs worse
than the other models. Further research is required before stating which version of
C3 is superior.

Figure 1.18 shows a comparison of the optimized topologies with respect to four
typical network metrics: the node degree distribution, the average neighbor connec-
tivity, the clustering coefficient and the rich-club connectivity [41]. As can be seen
PFP gives the best match for these metrics in agreement with our proposed metric
C3(θ). The performance of the other topologies is mixed showing that while one
topology is able to match one metric it fails to match another. For example, the GLP
generator achieves a reasonable match for the node degree distribution but fails to
match the average neighbor connectivity. It is interesting to note that BA does not
match the rich club connectivity which is not evident in our metric.
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Figure 1.18 Comparison of topology generators and Skitter topology.
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1.9 INTERNET TOPOLOGY EVOLUTION

The WSD produces a mapping from <M×M 7−→ <|K|, where |K| = 71 bins are
used in the examples in this section. However, a 71 dimensional space is still too large
to effectively visualise clustering across graphs. In this section, we introduce Multi-
Dimensional Scaling (MDS), a technique mapping the WSD into a lower dimension.

Specifically, given C different graphs we seek a mapping from their WSD’s into
an l dimensional space: <C×|K| 7−→ <C×l where l << |K|. Typically l = 2
or 3 makes visual inspection most straightforward. Note that the methods used are
parameter-free and so a natural clustering of the data is sought, as opposed to a
supervised method which applies a mapping learned from training data.

Multi-Dimensional Scaling (MDS) [10] is a technique mapping distances between
objects into a reduced dimensional space. An intuitive example involves taking the
distance matrix commonly shown in the bottom corner of many road maps and using
it to reconstruct the map itself. The technique uses distance between the graphs here
defined in terms of the metric introduced in Equation 1.16, =(G1, G2, N). First, a
dissimilarity matrix, R, is constructed as:

R(i,j) =

{
=(Gi, Gj , N) if i 6= j

0 if i = j
(1.24)

The goal of MDS is to find a set of vectors Z1, Z2, ...Z|K| that incrementally
approximate the distance in the dissimilarity matrix. Specifically, we wish to minimise
the distance between the projected vectors and the orignal data as:

C = min
Z1,Z2,...Z|K|

∑
i<j

(‖Zi − Zj‖ −R(i,j))2 (1.25)

where C is the cost function to be minimised. We then perform the minimisation
using numerical optimisation based on the eigenvector decomposition of R [32].
Typically, the first and second vectors, Z1 and Z2, are sufficient to allow visualisation
of clustering within the data.

Figure 1.19 shows the evolution of the Internet AS topology over time, as observed
in the UCLA dataset described in §1.5.3. It is difficult to discern any consistent
evolution from the raw WSD plots in Figure 1.19(a). However, applying the MDS to
reduce the dimensionality from 71 to 2 results in Figure 1.19(b), in which each point
represents the projection of a computed WSD for a given topology, i.e., the WSD
computed for a given month’s observations in the UCLA dataset. Note that the axes
are dimensionless: it is not the particular values that are important but the separation
of points computed.

Interestingly, plotting with an arrow joining consecutive points, i.e., an arrow
connects the points for datasets 1 and 2, another connects points for datasets 2 and 3,
&c., shows that the evolution of the WSD for the topology appears to be consistent
over time: it represents the “structural walk” of the Internet AS topology observed
by the UCLA data. The lack of clustering of points around a centre suggests the
structure of the Internet is evolving in some way. This evolution is very difficult
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Figure 1.19 Structural evolution of the Internet via raw WSD and WSD with MDS applied.

to see by directly comparing the WSD lines but can easily be observed using this
multi-dimensional scaling technique. This is much more straightforward than the
current alternative approach which would involve using a complex set of topological
measures to distinguish the different graphs [20]. The reason for this actual evolution
is better examined in a different domain; for the interested reader we recommend
reading [17]. Here the aim is merely to show that MDS used in conjunction with
WSD can be used to track the structural changes in a network.

1.10 CONCLUSIONS

Comparison of graph structures is a frequently encountered problem across many
scientific areas. To perform a meaningful comparison requires the definition of a
cost-function that encodes those features of each graph considered important. While
the spectrum of a graph encodes a graph’s features, the raw spectrum contains too
much information to be useful on its own. In this chapter we have introduced a new
metric, the weighted spectral distribution, that improves on the raw graph spectrum
by discounting those eigenvalues believed to be less significant and noisy, while
emphasizing the contribution of those believed to be important and information-rich.

We then showed the use of this cost-function to optimize the selection of parameter
values for the subject of Internet topology generation. The cost-function defined by
the weighted graph spectrum was shown to lead to parameter choices that are appro-
priate in the context of the particular problem domain: Internet topology generation.
In particular, we showed that the parameter choices so made are close to the default
values and, in for one particular graph-generator (BA), fall within the expected region.
In addition, as the metric is formed through summation, it is possible to go further
and identify the particular eigenvalues that are responsible for significant differences.
Although it is currently difficult to assign specific features to specific eigenvalues,
we hope that this will also become a feature of the weighted spectral distribution in
the future. Finally we briefly demonstrated a technique for projecting the raw WSD
distributions into a lower dimensional space. This makes comparison of different dis-
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tributions straightforward, as shown by the clear evolution of the Internet’s topology
viewed through the UCLA dataset.
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