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ABSTRACT
Comparison of graph structures is a frequently encountered
problem across a number of problem domains. Comparing
graphs requires a metric to discriminate which features of
the graphs are considered important. The spectrum of a
graph is often claimed to contain all the information within
a graph, but the raw spectrum contains too much informa-
tion to be directly used as a useful metric. In this paper we
introduce a metric, the weighted spectral distribution, that
improves on the raw spectrum by discounting those eigen-
values believed to be unimportant and emphasizing the con-
tribution of those believed to be important.

We use this metric to optimize the selection of param-
eter values for generating Internet topologies. Our metric
leads to parameter choices that appear sensible given prior
knowledge of the problem domain: the resulting choices are
close to the default values of the topology generators and,
in the case of some generators, fall within the expected re-
gion. This metric provides a means for meaningfully opti-
mizing parameter selection when generating topologies in-
tended to share structure with, but not match exactly, mea-
sured graphs.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
topology; I.6.4 [Simulation and Modeling]: Model Vali-
dation and Analysis

General Terms
Topology, Performance, Measurement

Keywords
Internet topology, Topology generation, Degree-based gen-
erators, graph metrics

∗This work was done while the author was at the Computer
Laboratory, University of Cambridge.
†This work was done while the author was at the Computer
Laboratory, University of Cambridge.

1. INTRODUCTION
In this paper we present a metric, weighted spectral dis-

tribution, for comparing graphs based on the distribution
of their internal structure. Graph comparison is a problem
that occurs in many branches of computing, from vision to
speech processing to systems. The metric we present dif-
fers from existing graph-matching techniques which seek to
identify graphs which share common clusters, i.e., are simi-
lar. Instead, our metric is designed specifically for situations
where the graphs being compared are in general dis-similar
but can be expected to share, in some sense, a common
structure. For example, when generating synthetic work-
loads from trace data described as a graph, the generated
graphs should not match the original trace data exactly but
should share some common structure with them. Situa-
tions where this is encountered include workload generation,
e.g., as in Magpie [2], and Internet topology generation.

We specifically focus on the latter problem domain in
this paper, addressing the problem of generating synthetic
topologies designed to mimic the structure of the Internet.
The Internet topology’s structure is not easy to characterize.
In the core there is a full mesh formed between various tier-
1 Internet Service Providers (ISPs). However, at the edges
there are a huge number of smaller ISPs and customer net-
works which connect through upstream providers. These
smaller ISPs and customer networks may have only one up-
stream provider, or may have many for resilience and perfor-
mance reasons. This rich and varied structure makes it dif-
ficult for researchers to provide a single model, and hence a
single metric, that captures all the characteristics of various
topologies. Many attempts to capture one or even several
characteristics have been made, resulting in several topology
generators which each synthesize Internet-like topologies us-
ing different models and parameters. Unfortunately, little
or no guidance is available on how to set these parameters,
with the default values subjectively chosen by the original
authors usually being used.

Using our metric, we compare five different topology gen-
erators and a measurement of the existing Internet’s AS
(Autonomous System) topology. Empirical evidence from
this comparison shows that the weighted spectral distribu-
tion is consistent with expected results. Using our metric we



are also able to give optimum parameter settings for these
topology generators with respect to the measured AS data
and the weighted spectral distribution.

In summary, we present three contributions in this pa-
per: (i) a metric for comparing the structure of graphs that
reveals important characteristics such as in what way two
graphs differ; (ii) a comparison of the outputs of five ma-
jor Internet topology generators and a measured dataset;
(iii) optimal parameterizations under our metric of these
topology generators with respect to the measured dataset.

2. BACKGROUND
Graph analysis is typically concerned with determining

the relationships among the vertices of a graph, and its var-
ious applications can be broadly classified as topology tun-
ing, graph matching and cluster determination, examples of
which will now be discussed.

Topology tuning is the problem domain we are concerned
with here, namely adjusting parameters used to generate
topologies with the aim of generating topologies “close enough”
to some representative. Graph spectra have not been used
for this purpose before, although Hanna [7] uses graph spec-
tra for numerical comparison of architectural spaces in large
building plans. By defining space as a graph, he shows that
the spectra of two plan types can be effectively used to judge
the effects of global vs. local changes, and hence the edit dis-
tances, to the plans. Hanna believes spectra are a reliable
metric for capturing the local relationships and can be used
to guide optimization algorithms for reproducing plans.

Alternatively, graph matching is concerned with the com-
parison of two or more graphs to determine which clusters in
the graphs are related. For example, Luo and Hancock [11]
compare several images of an object taken at different an-
gles and determine the correspondence between them by
representing the images as graphs. Their technique seeks
to maximize the likelihood that groups of vertices in one
graph correspond to those in another. However, the aim of
this work differs from ours as it seeks to identify the edges
between specific nodes and clusters.

Techniques for cluster identification differ mainly in the
choice of matrix associated with a graph. Ng et al. [13]
present an algorithm for determining the dominant clusters
in a graph by examining the eigenpairs of the normalized
graph Laplacian L. They suggest that a graph with n-
vertices may be represented in k < n-dimensions by choosing
the first k eigenvectors as ordered by the k smallest eigenval-
ues. The value of k is determined by examining the eigenval-
ues of L, denoted by λi, i = 0, . . . , n−1. The eigenvector as-
sociated with the first (non-zero) eigenvalue determines the
largest clusters in the graph with subsequent eigenvectors
determining finer subclusters. If there exists an eigenvalues
λi, for which abs(1 − λi+1) >> abs(1 − λi) then λi+1 to
λn−1 are clustered around 1, and this is known as the spec-
tral gap. The spectral gap represents eigenvalues which have
little power and can be thought of as representing noise or
small variations in the graph structure. Typically, the value
of k is determined by examination of a plot of the eigen-
values and set by the spectral gap. The n × k matrix of
eigenvectors is then clustered using the k-means clustering
algorithm, although variations using other clustering algo-
rithms exist.

Graph spectra have also been used for characterization of
Internet topologies. Gkantsidis et al. [5] perform a compar-

ison of clustering coefficients by using the eigenvectors of
the k largest eigenvalues of adjacency matrices on BGP [14]
topology graphs. However, the choice of k is arbitrary and
those chosen are given equal importance. They consider the
rest of the spectrum as noise, despite works that have shown
that the eigenvalues of the adjacency matrix or the normal-
ized Laplacian matrix can be used to accurately represent
a topology and some specific eigenvalues indicate properties
such as robustness of a network to failures [16, 10].

Vukadinovic et al. [18] use the normalized Laplacian spec-
trum for analysis of AS graphs, proposing it as a fingerprint
for Internet-like graphs. Using the Inet [19] generator and
AS graphs extracted from BGP data, they obtain eigenval-
ues of the normalized Laplacian matrix. They believe that
the graph spectrum should be considered as an essential
metric when comparing graphs. We expand on this work by
demonstrating how an appropriate weighting of the eigenval-
ues can be used to reveal the structural differences between
two topologies.

We now present our metric, the weighted spectral dis-
tribution, before using it to compare synthetic and mea-
sured topologies, and to optimize parameter selection for
the topology generators with respect to the measured topol-
ogy.

3. METHODOLOGY
We define an undirected graph G = (V, E) where V is the

set of vertices (nodes) and E is the set of edges (links). The
adjacency matrix of G, A(G) is then defined as:

A(G)(u, v) =

(

1, if u, v are connected

0, if u, v are not connected

Several matrices associated with the adjacency matrix ex-
ist, such as the computational Laplacian L(G), the normal-
ized Laplacian ℑ(G), and the walk Laplacian ℑrw(G):

L(G) = D − A(G)

ℑ(G) = D
−1/2

L(G)D−1/2

ℑrw(G) = D
−1

L(G)

where D is a diagonal matrix of the row sums of A(G). From
a graph theoretic point of view the matrices A(G), L(G),
ℑ(G), and ℑrw(G) have some very interesting properties as-
sociated with the eigenpairs of the matrices, see e.g., [12,
15]. Although the choice of which matrix to use is often ap-
plication dependent [8], the normalized Laplacian is thought
to be superior as it is size independent and so allows com-
parison of graphs of different sizes. Also, von Luxburg and
Bousquet [17] show that spectral clustering based on the
normalized Laplacian converges to a nice partition of the
data space, but for the computational Laplacian this is only
true in the limit and can only be guaranteed for finite sam-
ples under assumptions which often cannot be verified by
the data. Therefore it would appear that the normalized
Laplacian, ℑ(G), is the best choice in our case.

As noted by Zhu and Wilson [20] the eigenvalues of two
isomorphic graphs will be equal but the converse is not true.
However, studies have shown [20] that the number of co-
spectral graphs, i.e., graphs that share the same eigenval-
ues of ℑ(G) but are not isomorphic, fall drastically with n



and so for large n two graphs that share the same eigenval-
ues can be considered “almost certainly” (in the statistical
sense) isomorphic. The question next arises with regards to
two graphs which have similar but different eigenvalues. Al-
though the eigenvalues may be close, the eigenvectors may
be different and thus represent different clusters of data.
Again, Zhu and Wilson [20] empirically show that the edit
distance between graphs may be linearly related to the sum
squared difference in the eigenvalues. However, their sim-
ulations were carried out on graphs for small values of n

and so the relationship may not hold at higher values. Fur-
ther evidence relating the importance of the eigenvalues in
a graph can be seen from the following relationship due to
Chung [3], relating graph subsets and the eigenvalues:

min
i6=j

dist(Xi, Xj) = max
i6=j

2

6

6

6

ln
q

vol(X̄i)vol(X̄j)

vol(Xi)vol(Xj)

ln
λn−1+λk

λn−1−λk

3

7

7

7

(1)

where X ⊂ G, X̄ is the complement of that subset, vol(X)
is the total number of edges in X and dist(Xi, Xj) is the
distance between subset i and j. Equation 1 may be in-
terpreted as representing the distance between subsets for
k subsets k = 1,...,n − 1. In other words the eigenvalues
may be used to estimate the number of subsets in a network
without forcing the distances to be too short [15]. The in-
teresting point to note about Equation 1 is the way in which
λk is expressed; as the distance between the kth eigenvalue
and the largest eigenvalue, λn−1. This implies that the dis-
tribution of the eigenvalues is important in the structure of
a graph.

Next, we examine the interpretation of the eigenpairs as
a spectral decomposition of a graph:

ℑ(G) =
X

i

λieie
T
i

where ei are the eigenvectors of ℑ(G). As the graphs ex-
amined here are undirected, ℑ(G) is symmetrical and thus
{e1, e2, ..., en−1} form a basis for ℑ(G) with {λ1, λ2, ..., λn−1}
representing the strength of the projection of the matrix
onto each of these bases. This may be viewed from a sta-
tistical point of view [15] where each λieie

T
i may be used to

approximate A(G) with approximation error inversely pro-
portional to 1 − λi. Thus, again, the distribution of eigen-
values can be seen to be linked to the structure of a graph.

As mentioned in the introduction, we propose a metric
for comparing the structure of two graphs. We are not in-
terested in the particulars of the structure, i.e., the actual
clusters, but rather in their number, size and distribution.
From the discussion above the distribution of the eigenvalues
would appear ideal for this task. If we define the eigenvalue
distribution as fλ(λ),† we construct a metric based on fλ(λ)
as:

J(G1, G2) =

Z

λ

µ(λ)(F 1
λ(λ) − F

2
λ(λ))p

dλ (2)

where µ is a weighting function, F i
λ is the distribution of

eigenvalues of graph i, p is an integer, and J(G1, G2) is the
distance between two graphs G1 and G2. The next question
arises as to the appropriate weighting function. In this paper

†This is not a distribution in the strict statistical sense as the
eigenvalues are deterministic quantities for a given graph.

we choose the weighting by noting a result from [3]:

dev(G) =
X

i

(1 − λi)
4 + 20

p

Irr(G)

where Irr(G) is the irregularity of the graph [3]. The devi-
ation of a graph may be used as a measure of the structure
in a graph or its distance away from randomness. In addi-
tion we choose p = 2 to give the standard sum-squared-error
although other values may be of interest, resulting in:

J(G1, G2) =

Z

λ

(1 − λ)4(F 1
λ(λ) − F

2
λ(λ))2dλ

However, calculating the eigenvalues of a large (even sparse)
matrix is computationally expensive. In addition, the aim
here is to represent the global structure of a graph and so pre-
cise estimates of all the eigenvalues are not required. Thus,
the distribution1 of eigenvalues is sufficient. In this paper
the distribution of eigenvalues f(λ = k) is estimated using
pivoting and Sylvester’s Law of Inertia to compute the num-
ber of eigenvalues that fall in a given interval. To estimate
the distribution we use K equally spaced bins.2 A measure
of the graph can then be constructed by considering the
distribution of the eigenvalues as

ω(G, N) =
X

k∈K

(1 − k)N
f(λ = k) (3)

where the elements of ω(G, N) form the weighted spectral
distribution:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)N
f(λ = k))} (4)

The corresponding metric is then constructed from ω(G)
for comparing two graphs, G1 and G2, as

J(G1, G2, N) =
X

k∈K

(1 − k)N (f1(λ = k) − f2(λ = k))2 (5)

where f1 and f2 are the eigenvalue distributions of G1 and
G2 and the distribution of eigenvalues is estimated in the
set K of bins ∈ [0, 2].

For each type of topology generator a family of WSDs
may be generated by varying the parameters of the gen-
erator. The aim at this point is to show that these WSD
families map onto different curves for different topology gen-
erators, i.e., the WSDs generated by an AB model should
not correspond to any of those of the GLP model or the
Waxman model, etc. It is not possible to plot these families
side by side as in Figure 3 as the plot becomes too cluttered:
the key problem is that the data is essentially of dimension
K and so cannot be distinguished in a 2-d plot. First the
dimension of the data must be reduced from K to two.

We begin by sampling from the family of WSDs for each
topology generator. Specifically we generate 100 topologies
of each using random parameters. 70 bins are used in this
experiment, resulting in a data matrix of 400 WSDs (4 topol-
ogy generators) of size 400 × 70. The next stage is to re-
duce the dimension of this data to 400 × 2. As we require
any projection that separates the data classes (generators),
not specifically an optimal projection, random projection
is used [4]. Random projection is a technique often used
in compressed sensing in which a high dimensional matrix

1The eigenvalues of a given graph are deterministic and so
distribution here is not meant in a statistical sense.
2K can be increased depending on the granularity required.



is reduced to a low dimensional matrix by multiplying the
data by a random matrix as:

Z = XT (6)

where Z ∈ RM,k is the projected data matrix, X ∈ RM,K

is the WSD sample data, T ∈ RM,k is the random projec-
tion matrix where each of the elements of T are drawn from
a Gaussian distribution T ∼ N(0, 1),3 M is the number of
samples in the data (400 in this case) K is the original di-
mension (70) and k << K is the reduced dimension (2 in
this case).

Figure 1 shows the projection of the sampled families onto
two dimensions using random projection. The first thing to
note is that most of the Waxman WSDs lie well outside
the range of the figure. This is to be expected as Waxman
topologies differ significantly from the others. Second, the
actual units of the graph are of no importance; only the sep-
aration of the points is significant. At the right of the graph
(around 0,0) there is a clustering in which the GLP, AB and
Waxman models all overlap. This occurs at low parameter
values when the graphs contain few links and so are difficult
to discern from each other. The GLP and AB graphs are
very close for a large section of the families. This occurs as
GLP is similar in structure to AB but not equal. In order to
demonstrate this, a Support Vector Machine (SVM) [9] was
used to determine the boundary between the the AB class
(topologies) and the GLP class. The decision boundary is
shown in Figure 1 as a solid black line. Note the boundary
value is irrelevant outside of the training range. As can be
seen the boundary separates the two classes efficiently with
an 11% false classification rate (out-of sample). The Inet
models generate a different cluster of projections which is
shown quite clearly in Figure 1. Thus the WSD has been
shown empirically to generate unique WSDs for different
topologies.

4. RESULTS AND DISCUSSIONS
In this section we use the weighted spectral distribution,

Equation 5 to obtain parameter estimates for four Inter-
net topology generators [6]: the Waxman model, the 2nd

Barabasi and Albert Model (BA2), the Generalized Linear
Preference model (GLP) and the Inet model. These are com-
pared with the Skitter dataset [1] and the Positive Feedback
Preference model (PFP), which has no parameters. In ad-
dition, we show that the spectrum on its own, equivalent
to p = 1, µ(λ) = 1, is not sufficient to obtain parameter
estimates.

Figure 2 shows a plot of the weighted spectral distribu-
tion distance between the four topology generators and the
Skitter dataset, as a function of values of the topology gen-
erator parameters. Each grid (Figure 2(d) is a curve as Inet
has only one parameter) shows a quantile contour plot of
the surface of the distances at different parameter values.
It is encouraging to note that the minima in each case lie
close to the default values (see Table 1). In addition, it is
known that the behavior of the BA2 model splits into two
regions: exponential behavior and scale free behavior. The
Internet is known to exhibit scale free behavior, and the area
of minimum distance lies in this area.

3As the rows of T are normally distributed independent vari-
ables their correlation is zero in expectation and so they are
(near) orthogonal vectors.
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Figure 3: Comparison of the weighted spectra.

Figure 3 shows the weighted spectrum (each element that
makes up the summation in Equation 5) for the optimal
values of the parameters calculated using the Nelder Meade
optimization algorithm. As can be seen the results are quite
distinct, showing that no single topology is capable of gener-
ating the same distribution of structure as the Skitter data
(it is in any case questionable that Skitter represents the
actual Internet due to inherent measurement difficulties).
However, it is the way in which each topology differs that
is revealing. The Waxman model has peaks at 0.6, the clos-
est peaks to 1 of all the topologies examined. This implies
that the Waxman topologies exhibit more random behavior
than desired, as expected. Alternatively the Inet topology
correctly peaks at 0.4, but exhibits too strong structure at
this point. The best model is the PFP model which is a
non-linear model considered to be a good approximation to
the actual Internet. Table 1 confirms these results.
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Figure 4: Parameter grid for sum of absolute differ-

ences of BA2 spectrum CDF.

As an example of using the unweighted spectrum, the grid
for the BA2 model is shown in Figure 4. As can be seen there
exists no minimum. This is because the unweighted spec-
trum weights each eigenvalue equally and so random struc-
ture, mainly in the spectral gap, makes the surface noisy.
We show only the BA2 result here due to space constraints,
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Figure 1: 2-d random projection of WSD families corresponding to four different topology generators. Axis

labels are not relevant: the crucial information is in the separation of points. See text for details.

Table 1: Optimum parameter values for matching Skitter topology.

Waxman α = 0.08 (default=0.15) β = 0.08 (default=0.2) J(θ) = 0.0026 J(θ) = 0.0797

BA2 p = 0.2865 (default=0.6) q = 0.3145 (default=0.3) J(θ) = 0.0014 J(θ) = 0.0300

GLP p = 0.5972 (default=0.45) β = 0.1004 (default=0.64) J(θ) = 0.0021 J(θ) = 0.0446

Inet α = 0.1013 (default=0.3) − J(θ) = 0.0064 J(θ) = 0.0150

PFP − − J(θ) = 0.0014 J(θ) = 0.0371
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Figure 2: Grid of sum squared error of weighted spectra for topology generators.

but a similar situation was found for all of the topology gen-
erators. We thus conclude that the spectrum on its own is
not sufficient to reveal the structure of the topologies.

5. CONCLUSIONS
Comparison of graph structures is a frequently encoun-

tered problem across a number of problem domains. To per-
form a useful comparison requires definition of a metric that
encodes which features of the graphs are considered impor-
tant. Although the spectrum of a graph is often claimed to
be a way to encode a graph’s features, the raw spectrum con-
tains too much information to be useful on its own. In this
paper we have introduced a new metric, the weighted spec-
tral distribution, that improves on the graph spectrum by
discounting those eigenvalues that are believed to be unim-
portant and emphasizing the contribution of those believed
to be important.

We use this metric to optimize the selection of parameter
values of Internet topology generation. The weighted spec-
tral distribution was shown to be a useful metric in that it
leads to parameter choices that appear sensible given prior
knowledge of the problem domain: the resulting choices are
close to the default values and, in the case of the BA2 gener-
ator, fall within the expected region. In addition, as the met-
ric is formed from a summation it is possible to go further

and identify which particular eigenvalues are responsible for
significant differences. Although it is currently difficult to
assign specific features to specific eigenvalues, it is hoped
that this feature of our metric will be useful in the future.
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