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Abstract—The distribution of flow sizes is a quantity of
interest fundamental to traffic engineering and network
modelling and only likely to become more important in
the future. The recovery of the flow-length distribution
from (sampled) packet data is referred to as flow-inversion.
Traditional packet sampling methods cause distortions in
a recovered distribution of flow-length. We propose an
improved method for inverting data sampled using the
technique known as sample-and-hold. We show that the
technique improves upon existing inversion techniques
illustrated using both real and artificial data sets. The
technique described may have applications to other inver-
sion problems.

I. I NTRODUCTION

Sampling is a critical part of today’s network mea-
surement and monitoring. The volume of data traversing
core routers makes it practically impossible for them
to keep track of all the packets and their sources and
destinations. Hence nearly all commercial routers nowa-
days implement sampling the packets and forming flow
records, with the dominant format being that of Cisco
NetFlow 1.

Although sampling eases the measurement and moni-
toring burden on core routers, it also lends itself to inac-
curacies. Many smaller flows are missed and the longer
flows can be truncated due to various time-outs. Much
has been written on the problem of estimating statistics
for flows, eg [1]–[3] and many others. The inversion
problem is of critical importance for network operators.
Aside from flow length being an obvious part of auditing
and accounting, flow length estimation and inversion in
general provides an effective mechanism to improve the
accuracy of traffic-matrix computation [4]. In day-to-day
network operations, the increasing adoption of streaming
media and peer-to-peer applications makes it vital for an
operator to be able to keep track of the larger flows,
identifying heavy-hitters on the network and developing

1http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/
netflsol/nfwhite.htm

appropriate traffic shaping strategies in order to ensure
adherence with the quality of service agreement levels.

It is common for network administrators to investigate
the performance of a network by collecting sampled
information about packets. The sampling method known
as sample-and-holdis a method for sampling which is
aimed at better estimates of long flows [1], [5]. This
paper describes an inversion method for packet data
sampled using sample-and-hold and tests it on real and
artificial data sets.

A. Background and related work

A flow in a network is a set of packets which have
the same5–tuple (source IP address, destination IP
address, source port, destination port and protocol). The
flow length distributionis the set of probabilities that
randomly selected flows have given lengths. Assume that
for a given sample of packets there is some maximum
flow lengthM (this may not be known) and therefore the
distribution is{θ1, . . . , θM}. whereθi is the probability
that a randomly selected flow is of lengthi. The flow
inversion problemis the problem of estimating the flow
length distribution from sampled packet data.

One common sampling scheme is to sample everyN th
packet. A similar sampling scheme is to sample in an
independent and identically distributed (iid) manner (that
is simply sampling each packet with a given probability
p). The differences between these two methods can
be important [6]. Duffield et al [2] used a Maximum
Likelihood Estimator (MLE) based method for flow in-
version on both schemes but encountered problems with
adjusting the process to get accurate results. Hohn and
Veitch [3] discuss inversion methods for iid sampling and
come up with mathematically sound solutions although
these have some practical limitations. Ribeiro et al [7]
use several methods to estimate the flow distribution
from iid sampled packets. Using features of the TCP
protocol (sequence numbers and the SYN flag) they give



an MLE for flow lengths but only for “short” flows (in
their paper, less than one hundred packet flows).

The majority of sampling techniques distort the flow
distribution and are subject to one or more of the
following problems: short flows may be totally missed;
it is hard to estimate the length of long flows; flows may
be misranked [8] and large flows may be split due to flow
expiry [2]. Recent work on the flow inversion problem
includes [2], [3], [7]. Previous researchers have noted
that different sampling techniques may be desirable to
improve the ability to recover longer flows [1], [5].
One such sampling method found in the literature is
sample-and-hold. This method has advantages for the
flow inversion problem. Cohen et al [9], [10] have
produced an inversion method to recover the flow-length
distribution from data sampled using sample-and-hold.
The authors of this paper independently derived their
method but improved upon its accuracy. In addition [9],
[10] detail many ways to get useful statistical properties
from data sampled using the sample-and-hold technique
(and variants thereof).

The sample-and-hold method involvestracked flows.
For each tracked flow its5–tuple, as described in Section
I, is stored. Every packet which is in the set of tracked
flows is sampled. If a packet is not in the tracked set
then this flow may be added to the set of tracked flows
with a fixed probabilityp ∈ (0, 1). (Note that to prevent
the number of tracked flows growing until it consumes
all available memory some method is needed to expire
old flows. For a summary of some flow expiry issues see
[11].)

The proportion of packets sampled for a givenp is

Psamp(p) = 1 −
1 − p −

∑M
i=1 θi(1 − p)i+1

p
∑M

k=1 kθk

,

whereθi andM are as defined in the previous section.
The original description of sample-and-hold [5] pro-

posed a probability varying with packet length,1− (1−
p)b, wherep ∈ (0, 1) and b is the length of the packet
in bytes (it can be thought of as considering sampling
every byte with probabilityp).

II. M ETHODOLOGY

A. Inverting sample-and-hold

The basic flow inversion for sample and hold is now
given. A similar solution was independently discovered
[9, Lemma 6.1] although the derivation is different. For
each packet not in the set of tracked flows there is a
probability p that the flow will be added to the set of
tracked flows. Defineq = 1 − p.

Let φi be the probability thati packets are sampled
in a randomly chosen flow (noteφ0 6= 0 – some flows
may have no packets sampled). Now,

φi =

{

∑

∞

j=i pqj−iθj i > 0
∑

∞

j=0 qjθj i = 0.
Let Xi, i ∈ N be the distribution of flow lengths
observed. The expectation value forXi is given by,

E [Xi] = P [Sample length =i|Sample length> 0]

=
φi

∑

∞

k=1 φk

=

∑

∞

j=i q
jθj

qi
∑

∞

j=1 qjθj

∑j
k=1 q−k

.

Evaluating
∑j

k=1 q−k gives,

E [Xi] =
(1 − q)

∑

∞

j=i q
jθj

qi
∑

∞

j=1 qj(q−j − 1)θj

=
(1 − q)

∑

∞

j=i q
jθj

qi[1 −
∑

∞

j=1 qjθj ]
.

(1)
SubtractingqE [Xi+1] from E[Xi] and rearranging gives
the final answerθi = (E [Xi] − qE [Xi+1])/(1 − q +
qE [X1]).

This is an exact solution but E[Xi] is unknown.
Obviously Xi is an unbiased estimator for E[Xi] and
it can be seen that, therefore, an unbiased estimator for
θi is

θ̂i =
Xi − qXi+1

1 − q + qX1
. (2)

This is similar to [9, Lemma 6.1]. Their version does
not give the normalising constant1/(1 − q + qX1)
but this could trivially be calculated since theθi must
sum to one. Note that this equation is not guaranteed
to be in the range[0, 1]. In particular negative values
regularly occur whenXi+1 ≫ Xi. Obviously one
could arbitrarily set negative values to zero but this
would have two undesirable effects, firstly the estimator
would no longer be unbiased and secondly the estimated
distribution would then sum to more than one. Because
these negative values are more likely to occur in the tail
of the distribution, introducing a minimum of zero and
rescaling the distribution would also produce a bias by
increasing the probability of longer distributions.

B. Improving this inversion

If E [Xi] is known then the previous calculations
would completely solve the problem. WhileXi is an
unbiased estimator for E[Xi] it may have a high coef-
ficient of variance. In particular, when E[Xi] is small a
problem occurs sinceXi is the observed proportion of
flows of lengthi then it must, by definition, be an integer
divided by the total number of observed flows. Consider,
for example, a sample with one thousand observed flows,
then Xi can take values in{0, 0.001, 0.002, . . .}. If the
true value of E[Xi] is 0.00001 then Xi will not be a
reasonable estimate. Since it is likely that nearby values



of E [Xi] are close for largei then êi, an improved
estimator for E[Xi] for large i, might be given by a
weighted sum of nearby values.

êi =

∑n(i)
j=−n(i) wjXj+i

∑n(i)
k=−n(i) wk

, (3)

where thewj are a series of weights andn(i) is awindow
size which depends oni. The question then is how to
selectwj and alson(i).

Firstly, the problem of picking the weights will be
dealt with. A common assumption with flow distributions
is that they have a heavy-tail. Assume initially that
the flow length distribution is a Zeta distribution (this
assumption will be weakened later to heavy-tailed and
the consequences of the assumption not being met will
be examined experimentally)θi = ζ(α)i−α for some
α ∈ (1, 3) where ζ(α) is the Riemann–Zeta function.
Assume that the data has been sampled using sample-
and-hold with probability parameterp (and letq = 1−p
as usual). Therefore, substituting the above formula for
θi for the zeta distribution into (1) gives

E [Xi] =
(1 − q)q−i

∑

∞

j=i q
jζ(α)j−α

1 −
∑

∞

j=1 qjζ(α)j−α

= Cq,αq−i
∞
∑

j=i

qjj−α, (4)

whereCq,α is a constant fixed for a givenq andα. It is
given by

Cq,α =
ζ(α)(1 − q)

1 −
∑

∞

j=1 qjζ(α)j−α
.

From (4) for i + 1 and i − 1 then
E [Xi+1] = E [Xi] q

−1 − Cq,αq−1i−α

E [Xi] = qE [Xi+1] + Cq,αi−α

E [Xi−1] = qE [Xi] + Cq,α(i − 1)−α

Substitute to get

E [Xi] = qE [Xi+1] +

(

i − 1

i

)α

[E [Xi−1] − qE [Xi]]

= qE [Xi+1] +

(

1 +
∞
∑

k=1

(

α

k

)

(−i)−k

)

[E [Xi−1] − qE [Xi]]

=
qE [Xi+1] + E [Xi−1]

1 + q
+

(

∑

∞

k=1

(α
k

)

(−i)−k
)

[E [Xi−1] − qE [Xi]]

1 + q
,

where
(α
k

)

= 1/k!
∏k−1

j=0(α − j). For α ∈ (1, 3) then
|
(α
k

)

| < 2 since
(α
k

)

= [(α − 1)/1][(α − 2)/2] · · · [(α −
k + 1)/k] and the modulus of each of the terms is less
than 1 apart from the first which is at most 2. Since
∑

∞

k=1(−i)−k = 1/(i − 1) then the right hand term is

O(1/i). Therefore

E [Xi] =
qE [Xi+1] + E [Xi−1]

1 + q
+ ε,

whereε ∼ O(1/i) is an error term and

|ε| ≤
2(E [Xi−1] − qE [Xi])

i − 1
,

hence a good approximation for largei is given by

E [Xi] ≃
qE [Xi+1] + E [Xi−1]

1 + q
.

Similar manipulations will yield that fork ≪ i,

E [Xi] ≃
qkE [Xi+k] + E [Xi−k]

1 + qk
, (5)

although the bounds on the error term grow weaker as
k gets larger.

This leads to a possible scheme for choosing the
weightswj in (3),

wj =















1 j = 0

qj(1 − j/[n(i) + 1]) n(i) ≥ j > 0

(1 + j/[n(i) + 1]) −n(i) ≤ j < 0.

(6)

This includes a linear fall off which reduces thewj to 0
outside the windown(i) in addition to theqj factor from
(5). In fact this linear fall off makes no major difference
and the results are largely unaffected without it.

An obvious question is how this is affected when the
distribution is not a zeta distribution. For a heavy-tailed
distribution whereθi = Ki−α for large i, someK > 0
andα ∈ (1, 3) will yield exactly the same result. Many
heavy-tailed distributions have this approximate form.
The question of what happens if the distribution does
not have a heavy-tail is dealt with empirically in section
III-B.

C. The final estimation procedure

A final issue remaining is the choice of window size
n(i). The critical issue is how many sampled flows had
a given sizei packets. If the number of sampled flows
of size i is high thenXi is likely to be a good estimate
of E [Xi]. So for i = 1 a window size of zero (which
means simplŷei = Xi) is likely to still get a reasonable
estimate. On the other hand, for largei, in a given
sample it is likely that there were no flows at all with
size exactlyi packets and the window size should be
increased. However, if the window size is too large the
error in (5) will also become large. One obvious strategy
is to set a desired number of sampled flows within the
window size. LetT to be the desired number of samples
within the window. That is, the window size should be
adjusted so thatT or more flows were observed with
packet lengths in the rangei − n(i) to i + n(i). The
estimation procedure then becomes the following.

1) Seti := 1 and the sample window used isn := 1.



2) Get an estimate for E[Xi] using the weights in (6)
in conjunction with (3).

3) Use this to get an estimate forθi using (2).
4) If fewer thanT flows were observed with packet

lengths in the rangei − n to i + n then increase
the sample windown := n + 1.

5) Set i := i + 1. If i is less than the largest flow
length available in the observed data then go to
step 2.

Note that the last step terminates the algorithm when
observations run out. This is practically necessary but
does mean that the inverted distribution will, by neces-
sity, not estimate the tail of the original distribution. For
reasons of practicality, in these experiments, a maximum
window size of 1,000 was enforced. This is because,
in extreme cases with a few very fat flows of 100,000
packets the algorithm was having to estimate the flow
size at hundreds of thousands of points using a window
size of tens of thousands.

III. R ESULTS

The results on simulated and real data are shown
in the following sections. The experiments are first
performed on simulated data with a zeta distribution in
Section III-A. Simulated data using a non-heavy tailed
distribution is tried in Section III-B. Real data from
several sources is tested in Section III-C.

In this section, the graphs are presented on a logscale
as a complimentary cumulative distribution function
(CCDF), P [X > x] versusx where x is a given flow
length. In fact the data given here are troublesome
to display in any form. Because of the nature of the
estimation procedure, the estimated probabilities can be
negative as noted in [9] and this remains true even for the
improved estimates. The CCDF is no longer strictly non-
increasing and can become negative hence some values
cannot be seen on a logscale.

The errors in estimating the sample distribution are
given by the following procedure. Letoi be the value
of the CCDF at pointi before sampling. Letei be the
estimated value of the CCDF at pointi after inversion.
Let l be the lowest flow length of interest andh be the
highest flow length of interest. Two error measures are
used here, the mean error (which is a measure of bias in
the data)

εm(l, h) =

∑h
i=l oi − ei

h − l + 1
and the mean absolute error

εa(l, h) =

∑h
i=l |oi − ei|

h − l + 1
.
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Fig. 1. The distribution of sampled and reconstructed flow lengths
for packets where flow lengths have a zeta distribution.

The notation εm(1,−) or εa(1,−) will be used to
indicate the error over all flow lengths from1 to the
maximum flow length present in the reconstructed sam-
ple (which is the maximum flow length in the sampled
data).

A. Results on simulated data with a zeta distribution

The top part of figure 1 shows results using simulated
data for a million packets. The flows in this experiment
have a zeta distribution withα = 2 and the simplest
correction method using (1). The figure (and all figures
in this section) plotsP [X > x] vs x on a logscale. The
most obvious thing from this plot is the severe distortion
to the flow length distribution. As can be seen, the
reconstruction is very good forx < 5, quite good for
x < 10 but becomes very poor forx > 20.

The lower part of figure 1 shows the same data set
reconstructed with the algorithm given in Section II-C
with T = 20 and the windows set as in (6). As can be
seen, the inversion is greatly improved when compared
with Figure 1.

The top of Table I shows the errors as described in
the introduction to this section using inversion with and
without the window. The method called “Simple” is the



reconstruction just using the method of Section II-A.
For methods using windows parameters from (6) the
value of the parameterT is given. Window parameters
T = 1, 20, 100, 500 are shown here. As will be seen
the method is relatively insensitive to this parameter (a
desirable property) and the value 500 is large enough
that errors begin to increase again.

From the table first we can see that the results for
the window method is, largely an improvement on the
results using the simple method. The exceptions are
the results whereT = 500 and for εm(1,−) which is
slightly worsened. The reason for this may be that the
simple estimator was already an unbiased estimator for
the probability that a flow had a given length and hence
the mean error might be expected to be low already. The
method can be seen not to have great sensitivity to the
value ofT and, for example, the results forT = 20 and
T = 100 do not vary greatly.

εm(1, 20) εa(1, 20) εm(1, −) εa(1, −)
Zeta distribution

Simple −0.0012 0.0041 0.0032 0.0069
T = 1 0.00028 0.0039 0.0047 0.0056
T = 20 0.00051 0.0027 0.0048 0.0054
T = 100 0.0027 0.0027 0.0051 0.0054
T = 500 0.0095 0.0095 0.006 0.0063

Normal distribution
Simple −0.18 0.3 −0.14 0.25
T = 1 −0.088 0.27 −0.056 0.22
T = 20 −0.082 0.17 −0.054 0.12
T = 100 −0.086 0.098 −0.052 0.08
T = 500 −0.12 0.12 −0.085 0.11

TABLE I
ERROR ANALYSIS FOR THE ESTIMATION ON THE ZETA

DISTRIBUTION AND NORMAL DISTRIBUTION.

B. Results of simulated data which is not heavy-tailed

The next obvious test is to test on some simulated data
which definitely does not meet the assumption of heavy-
tailed flow lengths. In this section, therefore, a simulated
data set ridiculously far from this assumption is created.
The flow lengths of the data set in this section are chosen
to have a normal distribution with mean 100 and variance
20. This is obviously a hopelessly unrealistic model for
real data but should test whether the method used fails if
the assumption of heavy tails is not met. Again a million
packets are generated using this assumption and sampled
using sample-hold withp = 0.001.

The bottom half of table I shows the errors calculated
using inversion techniques on the normal distribution
data. In this case, perhaps surprisingly, it can be seen that
the window method is a great improvement although this
data set does not meet the assumptions that the method
was designed for. Again the sensitivity to the window
parameterT is not great which is a positive sign. While

 0.001

 0.01

 0.1

 1

 1  10  100

P
 (

X
 >

 x
)

x

Original distribution
Sample inverted (simple method)

Sample inverted (window 20)

Fig. 2. Reconstruction of the QUAINT data using the simple method
and a window withT = 20.

the errors in the inversion remain high in this case, the
window method much more than halves them in the best
caseT = 100.

C. Results on real data

The same tests were performed on four real data sets,
two from the CAIDA website2, one from the QUAINT
project [12] and one from the NLANR project3. For full
details on the data consult the references given. The data
set CAIDA 1 is 7.5 million packets and 5500 flows. The
data set CAIDA 2 is 11 million packets and 7535 flows.
The NLANR data is 47 million packets and 26000 flows.
The QUAINT data is 2.7 million packets and 1200 flows.
In all cases the methodology was the same. The data was
processed into flows using no sampling to get the base
case to compare with and then sample using sample-and-
hold with p = 0.001 and inverted using the techniques
from Section II. Figure 2 shows the CCDF reconstructed
using inversion for the QUAINT data using the simple
method and a windowed method withT = 20.

Table II shows the results for all the real data anal-
ysed. As can be seen, the windowed method provided
improved reconstruction of the flow distribution, in many
cases, greatly so. Because of the larger sample sizes,
the errors were in general lower here than the artificial
data tested. As would be hoped the method is robust
to changes in window size and this is not a critical
parameter.

IV. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated a technique for recov-
ering estimates for the flow length distribution from
data sampled using the sample-and-hold technique. The

2http:www.caida.org
3http://pma.nlanr.net/Special/leip2.html



εm(1, 20) εa(1, 20) εm(1, −) εa(1, −)
CAIDA data set 1

Simple −0.014 0.016 −0.0016 0.0017

T = 1 −0.012 0.015 1 × 10−5 0.00013

T = 20 −0.012 0.015 1.2 × 10−5 9.8 × 10−5

T = 100 −0.011 0.012 1.6 × 10−5 8.3 × 10−5

CAIDA data set 2
Simple 0.0045 0.0096 −0.00097 0.001

T = 1 0.0055 0.0099 1.1 × 10−5 2.3 × 10−5

T = 20 0.0055 0.0099 1.2 × 10−5 1.9 × 10−5

T = 100 0.0053 0.0081 1.2 × 10−5 1.6 × 10−5

QUAINT data
Simple −0.038 0.067 −0.0087 0.0087

T = 1 −0.029 0.065 −5.1 × 10−5 7.1 × 10−5

T = 20 −0.027 0.061 −5 × 10−5 6.6 × 10−5

T = 100 −0.022 0.059 −4.8 × 10−5 6.4 × 10−5

NLANR data
Simple −0.0076 0.0079 −0.00037 0.00037

T = 1 −0.0073 0.0077 9.5 × 10−7 2.3 × 10−5

T = 20 −0.0073 0.0077 1.1 × 10−6 2.2 × 10−5

T = 100 −0.0073 0.0077 1.2 × 10−6 2.2 × 10−5

TABLE II
ERROR ANALYSIS FOR THE ESTIMATION ON REAL DATA.

simplest method used has been seen before in the litera-
ture. Inversion techniques involving averaging estimates
over a window create an improved estimate. While these
techniques were developed based on the assumption of
heavy-tailed flow distribution, they remain valid even
when this assumption is completely violated in the data.
The improved inversion techniques work very well on
four real data sets. Although the choice of window is
somewhat ad hoc, the method is not sensitive to the
specifics of this choice.

Further research remains to be done in this area. The
techniques given here estimate flow lengths only up to
the length of the largest flow available in the sampled
data. This will miss the tail of the real (unsampled)
distribution. The exact choice of window given here is
somewhat ad hoc, however, tests show that the results
are not sensitive to the window parameters used. While
some optimisation might be done here, it seems that
there may be diminishing returns in exactly optimising
the choice of window. As mentioned in section II the
CCDF is non-monotone. Mathematical techniques exist
to produce a monotone function which is closest to a
non-monotone function. The most straightforward ideas
(negative probabilities set to zero and then normalised so
the sum is one) would introduce systematic biases into
the flow distribution.

The estimates could certainly be improved by other
techniques. In particular, long flows are poorly estimated
and flows longer than the maximum flow observed in
sampling are not estimated. This is simply because
the authors have no good method for estimating the
maximum flow length in the original data and this, itself,
would seem to be a research problem of some interest.

One approach taken by some authors is to use features
of the TCP protocol (for example SYN flags) to increase
inversion accuracy. Another possibility would be to look
at correlations in the TCP/IP header fields (source and
destination port) since different types of traffic would be
expected to have different flow length distributions.
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