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ABSTRACT
AtoZ, an automatic traffic organizer, provides control of

how network-resources are used by applications. It does
this by combining the high-speed packet processing of the
NetFPGA with an efficient method for application-behavior
labeling. AtoZ can control network resources by prohibit-
ing certain applications and controlling the resources avail-
able to others. We discuss deployment experience and use
real traffic to illustrate how such an architecture enables
several distinct features: high accuracy, high throughput,
minimal delay, and efficient packet labeling — all in a low-
cost, robust configuration that works alongside the enter-
prise access-router.

1. INTRODUCTION
The evolution of the Internet has encouraged new data-

intensive applications to emerge and gain quickly in pop-
ularity. Examples include Peer-to-Peer (P2P) file-sharing,
online video services (e.g., YouTube), IPTV and wide-area
file storage. Meanwhile, many business critical or highly
interactive applications such as VoIP, financial trading plat-
forms and real-time multi-player games are delay and loss
sensitive, and thus prone to starvation due-to other data-
intensive applications. Simple over-provisioning is insuffi-
cient and comes with its own drawbacks.

There have been two main kinds of approaches in appli-
cation-based traffic-shaping systems. The first is based upon
a list of known IP-addresses and port-services, such as the
Linux netfilter, and a second approach is based upon indi-
vidually-identified flows and through the use, for example,
of deep-packet inspection (DPI) modules, which is common
as part of commercial products (e.g., Qosmos QWork, Blue
Coat PacketShaper, and Riverbed Steelhead) and NIDSes
(e.g., Snort [1], Bro [2]).

In contrast we present AtoZ, an automatic traffic orga-
nizer that allows flexible traffic management on a per-appli-
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cation basis. We envisage use in an enterprise environ-
ment: that is, a single link between organization (or office-
location) and Internet. Our prototype deployments are in-
line with the access router in the same manner as NIDSes
(Network Intrusion Detection Systems). Our approach is a
novel packet-labeling system combining a machine-learning
software system and a high-speed hardware subsystem lead-
ing to a novel solution that meets all our design objectives
— high throughput, high accuracy, swift packet-labeling,
minimum delay and zero (unintended) packet loss.

AtoZ is built upon a hybrid hardware-software platform
and combines two significant elements: a novel hierarchi-
cal packet labeling scheme based on accurate behavioral ap-
plication identification, and a high performance data path
implemented in hardware using the NetFPGA platform[3].

Our contribution is a flexible architecture that has sub-
stantial advantages over operating system-based solutions
or existing commercial application-traffic shaping solutions.
With lower computational and memory requirements, AtoZ
handles multiple full-duplex gigabit line-rates and provides
accurate and efficient labeling of packets, with minimal de-
lay and zero unintended packet loss.

We have conducted evaluations using real network traffic
from a university campus and a research institution to show
how specialized hardware for packet-processing allows for
high accuracy application-labeling with minimal impact on
performance.

We envisage AtoZ deployment on the granularity of access-
policy: an enterprise, department, or hall-of-residence. Us-
ing this approach the advantages of deployment are enjoyed
by those bearing its cost.

2. TRAFFIC CLASSIFICATION
Recent research in the area of traffic classification has

brought many interesting methods that can identify appli-
cations without relying on “well-known” port numbers, or
looking at the contents of packet payloads. Most of these
newer schemes classify traffic by recognizing statistical pat-
terns in externally observable characteristics (e.g., [4, 5]. For
a given flow identified by the {src IP, src port, dst IP, dst
port, proto.} 5-tuple, a common approach is to assign the
membership of the flow to one of several application groups
based just on flow features such as the number and size of
packets, inter-packet arrival times, or flow duration. A big
difference among these methods is the feature-set.

[5] shows that high-accuracy can be achieved with only
the first few packets of each flow. We use such light-weight
early-flow identification mechanism to provide accurate and



timely labeling results, although our approach is not depen-
dent upon this specific method.

Further, we note that usually, for any given traffic, there is
only one unique application for a distinct {IP, port, proto.}
3-tuple within a given time period. For example, TCP pack-
ets to and from 207.46.107.73:1863 would be associated
to MSN Messenger. This observation leads to the (reason-
able) assumption that packets associated to the same 3-tuple
commonly belong to the same application in a certain time
period. This means that automatically learned {IP, port,
proto.} rules can be used to accurately label packets at a
higher level of aggregation than the standard 5-tuple. Thus,
significantly reducing the memory cost maintaining a map-
ping table based on the 5-tuple while also accelerating the
labeling process.

We test our assumption on observations of institutional
networks with traces taken over multiple-day periods since
2003 until the current day. Within each 24 hour period, we
identify flows through pattern matching and manual inspec-
tion of the payload contents. The results show that traffic
follows our stability assumption within each 24-hour period.
The only exceptions that exist are the different applications
encapsulated in VPNs, tunnels or SOCKS proxies. In our
current implementation these applications are identified as a
special class of their own. Other mechanisms can be applied
to identify the encapsulated applications as needed [6].

3. DESIGN
Several significant features allow our system to meet our

objectives. A hybrid architecture (§ 3.2) allows the fast-path
to support high-throughput, minimum packet-delay and no
packet-loss, while maintaining functionality (e.g., applica-
tion identification) in software components. The hierarchi-
cal packet-labeling (§ 3.1) is combined with accurate appli-
cation identification (§ 4.1) to obtain high labeling accuracy
while significantly reducing the overall time-to-bind1 and oc-
cupation of the flow cache. Further, the modular structure
(§ 3.3) of our system allows flexible updates and extensibil-
ity of the system. In the following sections we present the
design, discuss the trade-offs and show its advantages over
standard approaches.

3.1 Hierarchical Packet Labeling
The packet labeling in our system, illustrated in Figure 1,

is hierarchically structured: it comprises of the Host Cache
(HC) and Flow Cache (FC). The HC stores entries that con-
tain dynamically learned rules to label the packets associ-
ated to hosts and service activities that cause significant
traffic on the link. A rule maps an {IP, port, proto.} 3-tuple
to an application class. Packets not labeled by the HC are
handled by the FC, which implements the mapping between
a flow (identified by its 5-tuple) and an application class.
Finally, all labeled and unlabeled packets are forwarded for
application-specific management.

The application-class labels in both caches are automat-
ically learned. Specifically, the HC is dynamically updated
by inferring the binding of an application to a certain 3-
tuple: an aggregation of application information derived
from flows identified earlier. Once the 3-tuple association
has been established, subsequent packets can immediately

1We define time-to-bind as the period between the time a
new flow is first observed and the time it is identified.
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Figure 1: Hierarchical Packet Labeling

Figure 2: The hybrid architecture and data flow in
the traffic organizer.

be labeled at this higher aggregation. This means that new
flows involving a known 3-tuple are handled without requir-
ing to track and identify them; and they have an instanta-
neous time-to-bind.

In common with past-authors [7], we capitalize on the
observation that host interactions on the Internet exhibit
a heavy-tail behavior, that is, the majority of the traffic
is associated to only a small proportion of the interacting
hosts. The HC deals with the most frequently used services:
the heaviest traffic load. The HC also reduces the utilization
of flow records in the FC, since a significant number of flows
may be handled by fewer HC entries.

However, the HC does not label packets carrying 3-tuples
for which there is no known association. To guarantee that
the rest of traffic is also handled timely and correctly labeled,
we complement the HC with the FC which supports the
maintenance of per-flow state information. Further, the FC
serves to select the subset of initial packets from each flow
that are needed to identify applications.

The application-identification module provides flow iden-
tification to initiate updates of the FC and HC as further
discussed in Section 4.2.

High packet-labeling accuracy is achieved by the result-
ing hierarchical application-identification mechanism. We
remove the time-to-bind for up to 79% of the flows and save
up to 75% of the FC occupation in our evaluation.

3.2 Hybrid Architecture
The NetFPGA has meant we are able to implement the

data path for packet processing at full-duplex Gbps line rates
with minimal processing delay measured in only a few clock
cycles [3]. Its capabilities are only limited by the complex-
ity of the logic and the size of available memory; therefore,
our system adopts a hybrid architecture that integrates the



NetFPGA as a fast packet processor with a more compre-
hensive, albeit slower, software data path executed on a host
machine to overcome memory and complexity limitations.

Several design challenges exist for such a hybrid architec-
ture. The first challenge is the gap between sophisticated,
dynamic organizing-functions and heavily constrained com-
plexity and memory availability in hardware. The second
challenge is to be disruption-free: that is, to minimize the
impact on performance, at speed, delay and (unintended)
packet loss. The third challenge is to find the right balance
between the high-speed hardware and the lower speed soft-
ware. The communication between hardware and software
through the PCI bus is limited, operating at rates far slower
than the total fast-path throughput. This requires the hard-
ware to realize load shedding for the software, handling the
majority of the traffic. One final challenge is that the hard-
ware ought to allow dynamic rule updates, of the FC and
the HC, on-the-fly.

These challenges are resolved with appropriately designed
data paths and a distribution of processing tasks between
hardware and software components, leading to an uninter-
rupted packet processing data path in hardware while mini-
mizing HBA-host transfers, limiting the complexity of gate-
ware, reducing hardware memory usage, and maintaining
a functional modularization of each system component per-
mitting component-mobility between hardware and software.

Core packet-processing components, aka the fast-path: the
packet-labeling process based on the HC and FC hierarchy,
the Application-specific Management logic, and the packet-
receive and transmit units are each implemented in hard-
ware. In testing, our prototype switches traffic to a different
physical interfaces. Traffic-shaping extensions (e.g., rate-
limiting) for specific applications are also available.

The components not located on the fast data path are im-
plemented in software. These are the software flow cache,
the application identification module, and the hardware con-
trollers.

Moreover, the software only needs observe the first few
packet headers of a flow for it to derive classification results.
And so, the computational cost in this architecture can be
significantly reduced by limiting the portion of data to be
processed in software. Hence, we design a packet filter in
hardware that duplicates only the first few (typically five)
packet headers of each unmatched flow to the software.

The hardware and software interface is data-driven, e.g.,
immediately after identifying a flow, the software forces an
update of the corresponding hardware FC entry on-the-fly.

The packet filtering and the de-synchronization between
hardware and software guarantee that the processing capa-
bility of software components will not be a bottleneck in the
system. Consequently, the whole system is able to work at
a constant high speed, handling the maximum system spec-
ification (8Mpps) with an average delay of less than 17 µs.

3.3 Modular Structure
Like the Click Modular Router [8], we design our system

as a set of functional modules. Each component in our sys-
tem can be flexibly reorganized and tuned, for (a) extensi-
bility: facilitating further research, (b) flexibility: allowing
the system to be re-assembled for specific tasks or differ-
ent purposes, and (c) adaptability: enabling easy update of
identification models or traffic organizing policies to tackle
novel development of Internet applications. For example,

the application identification module can be replaced with
other machine-learned models, DPI methods, or even hybrid
classifiers. Further, host-based classification models may be
used alongside the flow identification to derive HC rules.

4. SYSTEM COMPONENT DESIGN
The traffic organizer is comprised of several modules, as

shown in Figure 2. The modules may combine codes on two
different platforms: gateware on the NetFPGA card and
software on the host machine. For convenience we refer to
them as hardware components and software components.

Hardware components focus on supporting a fast data
path providing minimal packet-processing delay and no un-
intended packet loss. Accordingly, software components are
designed for two objectives: firstly, to support sophisticated
functions such as rule creation and flow identification, and
secondly, to manage and control the hardware components.

In the following subsections, we describe a system design
which is based upon several functional modules. We show
how the modules connect with each other, and how soft-
ware and hardware components collaborate in each module
to achieve the design goals. Here we focus on the high-level
functional design, while hardware design and implementa-
tion is discussed in Section 5.

4.1 Application Identification
The hierarchical packet labeling scheme is supported by

an application identification module whose goal is to classify
each observed flow with the category of the application(-
type) to which it belongs. The classification method used in
our prototype is summarized in this section, but is not the
primary contribution of this work. A thorough description
is in [5].

Using flow features collected from the first several packet
headers of a set of training flows and a small amount of pre-
classified ground-truth data, the method employs a C4.5
supervised machine learning algorithm to build real-time
classification models. These models are accurate, but are
trained off-line due to the need of ground-truth data.

For this work, we implemented in C++ the flow-feature
computation and classification scheme providing a method
suitable for online execution with a low overhead (the C4.5
implementation devolves to several nested if statements).
As in [5], we use a set of 12 behavioral features derived from
the first five packets of each flow to classify traffic into 13
application classes that group applications based upon their
purpose (e.g., MSN Messenger text-window conversations
being classified as “CHAT”).

4.2 Host Cache
As mentioned (§ 3), the Host Cache serves to label packets

involving hosts responsible for large amounts of traffic flows.
The HC is a two-stage mechanism, comprising a fast packet

labeling stage in hardware, and a management stage in soft-
ware. The packet labeling stage operates at the per-packet
level, matching three packet header fields, either {dst IP,
dst port, proto.} or {src IP, src port, proto.} against a set
of existing rules based on {IP, port, proto.} 3-tuples. If it
finds a match, the packet is labeled using the application
class associated with the matching rule; otherwise it retains
a default label.

These rules are created and managed by the HC manage-
ment stage, using results from the application identification



module. It operates by defining a time window in terms of
seconds during which candidate rules are formed from the
aggregation of newly classified flows (5-tuples) into server2

end-points: {IP, port, proto.} 3-tuples. At the end of each
time window, we score each candidate rule using a utility
metric. Note that only flows starting after the beginning of
the current measurement interval are counted. To each end-
point corresponds a flow count x and a set of application
classes obtained by application identification. Let p be the
proportion of flows belonging to the class with the majority
of memberships, then: U = f(x, p) where f() is a function
increasing with x and p3. The idea is that the utility is pro-
portional to the flow count and is affected by the consistency
of the application identification results. Then we select the
rules whose utility exceeds a threshold Uth. If the rules are
more than the HC capacity H , the top-H rules with higher
utility are kept.

Lastly, we need to consider the active rules: those already
in use in the hardware stage. For active rules, we estimate
their utility as U = n where n is the number of flows matched
by this rule during the past time window. However, we aim
to minimize the use or hardware memory resources, and so
in the case of TCP traffic, U is measured by counting the
SYN+ACK packets matching a given rule. For UDP traffic,
we use a space-efficient, shared Bloom filter [9] to track the
number of distinct flows by hashing a key derived from the
rule 3-tuple fingerprint and the flow 5-tuple.

Finally, the management stage identifies the new rule set
by sorting the candidate together with the active rules. Ac-
tive rules that are not considered sufficiently useful, or have
existed longer than a time-to-live period are evicted and re-
placed by new candidate rules. When an entry is evicted,
then the full classification path is required for the future
traffic it corresponds to.

The utility score serves to quantify the contribution of a
rule. Using the utility metric allows us to directly trade un-
certainty in classification-stability (i.e., the applicability of
previous classifications to future traffic) for efficiency gains
made through the use of the HC.

4.3 Flow Cache
Flow level operations are supported by a dual flow cache,

combining two data structures: hardware Flow Cache (HFC)
and software Flow Cache (SFC), located on the NetFPGA
and on the host machine, respectively. The role of the dual
flow cache is to maintain flow state information for currently
active flows (inactive flows are identified using a timeout).
Specifically, the HFC only observes and processes packets
which are not matched by the HC. Furthermore, the SFC
processes only the headers of several packets of each flow,
according to the principle that the hardware supports a far
larger throughput than software.

Both the HFC and the SFC are bi-directional, i.e., there
is only one entry for packets of the same flow in both direc-
tions. However, the HFC is devoted to packet labeling, and
maintains minimal information about the flows (stored in a
space-efficient format). On the other hand, the SFC sup-
ports the flow identification by collecting the flow features

2The server side is the recipient of TCP connections or the
first destination of UDP flows.
3The f() in this prototype is the linear function x × p, and
further investigation is planned in the future work to also
include a packet count per end-point.
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Figure 3: FPGA gateware – Fast processing pipeline
and the NetFPGA environment.

from the first several packet headers.
Furthermore, the HFC is managed by the SFC using a spe-

cial asynchronous and data driven mechanism. For example,
the software updates the application class of a certain flow
once it is classified and manages the flow timeout4. Finally,
it removes the HFC entry when a flow expires.

Importantly, stricter hardware constraints require that the
HFC has a smaller capacity than the SFC. When changes in
the traffic patterns cause an increase in the number of flows
leading to a saturation of its capacity (e.g., during DoS at-
tacks), the HFC can only label all packets for a subset of
identified flows in the SFC. Counter-measures such as ele-
phant flows detection [10] or reducing the flow timeout can
overcome the impact of such an attack with the drawback of
(potentially) increased classification inaccuracy. Section 5.2
describes a simple LRU-based eviction policy used to main-
tain the most active flows in the HFC.

5. HARDWARE DESIGN
While software components provide the control plane of

the whole system, the hardware implements the entire data
path on a NetFPGA card. The gateware in the NetFPGA
is described in Verilog and can be ported to any network
interface card equipped with FPGA chips.

5.1 The Fast Packet Data Path
The hardware components form a fast data path consist-

ing of several modules, as shown in Figure 3. Our hardware
modules work in cut-through mode: each processes frames
(Ethernet encapsulated packets) immediately upon data are
available and independently of any other module. Modules
receive and transfer data using a 64-bit wide data bus with
a FIFO-like interface, and are designed to process up to 8
Mpps which is sufficient to handle four fully utilized Gigabit
interfaces irrespective of packet sizes.

The life of a packet in the pipeline begins in the HC.
Firstly, the IP addresses, ports and protocol are extracted
from the packet. Then two hash values are computed, the
first using {src IP, src port, proto.} and the second using
{dst IP, dst port, proto.}. These hash values are used to
look up the application class label in the HC table. The
mechanics of the hash table is discussed in detail in Sec-
tion 5.2. If the lookup is successful, then the frame header
is annotated with the class label. In this case, the frame

4The flow timeout is managed in software only to maintain a
simple hardware logic. When a flow times out, the software
resets the packet filtering counter to test whether the flow
is still active. If no packets are observed for this flow during
another timeout period, the flow is considered expired.



passes the HFC without any further processing. Otherwise,
the HFC extracts the IP 5-tuple and computes a single hash
value (since we consider bi-directional flows) which is used
to look up the flow record in the HFC table. If found, the
flow record contains the class label and a packet counter. If
the label is valid, the frame header is annotated with it. The
counter is only used to keep track of the first few packets
for this flow (typically 5) so that their headers can be dupli-
cated to software. When the counter reaches its maximum,
aside from TCP packets with FIN or RST flags set, no more
packets for this flow are duplicated to software. However,
the software can reset the counter when required (e.g., to
handle a flow-timeout). When the lookup fails, a new flow
entry is created in the HFC table, with counter of zero and
an empty class label. The class label is updated as soon as
the new flow is identified.

Both labeled and unlabeled frames are forwarded for appli-
cation-specific management. In our implementation, this is
done by the Forward Module which is capable of forwarding
traffic to different output ports and/or to modify destination
MAC addresses based on the application class. The imple-
mentation of this module can vary depending on the desired
functionality. Examples include priority queues to acceler-
ate critical traffic, filters and rate-limiters to throttle unde-
sired traffic, intelligent load balancers or specific modules
that apply different Service Level Agreements to different
application classes.

5.2 Hash Table Lookup Scheme
The lookup scheme in both the HC and HFC is based on a

Näıve Hash Table (NHT). The concept of the NHT is based
on using a hash function to divide the search space into
disjunctive buckets with approximately the same number of
entries in each bucket. Searches are made by computing the
hash value of a request descriptor to locate its corresponding
bucket, which is then searched for the target entry.

We are aware of other schemes, such as those based on
Bloom filters, e.g., [11, 10], but NHT is readily mapped on
FPGA on-chip memory structure and inherently has char-
acteristics that other schemes might miss or implement only
with some difficulty, NHT allows addition and removal of
items quickly and continuously, and the storage and update
of per-entry state information.

As both tables are stored in the on-chip memory, space is
a major limitation. At the expense of accuracy, we store in
each entry only a small fingerprint of the original item in-
stead of its complete descriptor (e.g., 5-tuple). This greatly
increases the number of available entries, but it introduces
the possibility that two different items (e.g., flows) collide
into the same entry if they have the same hash value and
fingerprint. This undesired situation is called a false posi-
tive. However, by dimensioning the bit-length b of the fin-
gerprint, the probability of false positives pf can be reduced
to an acceptable rate. This probability can be estimated by
the birthday problem. For 2h buckets, the bit-length of the
hash value and the fingerprint is h + b, therefore we have:

pf = 1 − m!

mn(m − n)!
= 1 − 2(h+b)!

2(h+b)n
(2(h+b) − n)!

≈ 1 − e
− (n−1)n

2×2(h+b)

where m is the total number of hash values and n is the
number of entries in use. Table 1 gives the false positive
rate for several configurations of the NHT.

Number of Bit-length of hash (h + b)
entries 40 44 48

4K 1.9 · 10−6 1.2 · 10−7 7.5 · 10−9

8K 4.1 · 10−5 3.2 · 10−7 2.4 · 10−8

16K 1.2 · 10−4 7.6 · 10−6 4.8 · 10−7

32K 4.9 · 10−4 3.1 · 10−5 1.9 · 10−6

Table 1: Probability of false positives (pf)
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Figure 4: Bucket of NHT managed by S3-LRU.

5.3 S3-LRU
The HFC has a limited capacity, insufficient to track every

active flow at any time. Therefore, it is important that
the HFC stays up to date to contain the state of the most
active flows in order to label a major portion of traffic. An
early attempt was to include a simple LRU eviction policy
to the HFC. However, LRU caches are susceptible to the
eviction of wanted entries during a flood of new activity and
flows consisting of only a few packets are very common [12].
Single Step Segmented LRU (S3-LRU) includes a mechanism
for dealing with this phenomenon using a variation of the
Segmented LRU (SLRU) of [13].

Fig. 4 illustrates that like SLRU, an S3-LRU policy divides
cache into two segments: a probationary segment and a pro-
tected segment. When a cache miss occurs, the new flow is
added to the front of the probationary segment in the S3-
LRU list and the least recently used flow of this segment
is removed (Fig. 4 (1)). Hits (accessed flows) are advanced
in the list of a single step toward the front of the protected
segment by swapping their position with that of the adja-
cent flow (Fig. 4 (2)). If the flow is already at the front,
it maintains its position. The migration of a flow from the
probationary segment to the protected segment forces the
migration of the last flow in the protected segment back in
the probationary segment (Fig. 4 (3)). The S3-LRU policy
protects the cache against traffic patterns that can flood an
LRU cache with flows that will not be reused because these
flows will not enter the protected segment. The size of the
protected segment is a tunable parameter which depends on
the workload. We leave as future work how to select the
proper value, and how to adapt it to changes in the work-
load.

Together, recency and frequency determine the order of
flows in the two segments — and ultimately which flow shall
be evicted when a new one arrives. Moving each hit by a
single position means that it is more likely that only the
large flows will compete for the protected segment. This is
unlike SLRU, which moves hits to the front of the protected
segment and thereby keeps both segments ordered from the
most to the least recently accessed flow. Promoting a flow to
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the front of the protected segment as soon as it is accessed
weights ordering in favor of recency over frequency, and that
penalizes elephant flows.

5.4 Naïve Hash Table with S3-LRU in FPGA
We consider that an internal on-chip memory is composed

of many, equally-sized independently addressable blocks, in
case of Xilinx Virtex technology called BlockRAMS. The
lay-out of NHT is a row of dual-port BlockRAMs where
a bucket is composed of words with the same address, an
implementation is displayed on Fig. 5.

Due to the parallel access to all BlockRAMS, all finger-
prints in a bucket are available at once and so the lookup is
performed in a single clock cycle by comparing each finger-
print with the requested fingerprint (CMP).

Once the position of a corresponding flow state is found it
is delivered to the processing unit (PU) via the multiplexor
(MX). The PU updates the flow state and stores it back
to a new position given by S3-LRU policy. If the bucket
contains more than 4 entries it is convenient to pipeline the
design in order to break a potentially critical path caused
by a comparator, multiplexor and PU in a chain.

The S3-LRU can be implemented on-site with no addi-
tional memory overhead by moving entries within the bucket
(Fig. 4) or can use an additional vector attached to each
bucket which keeps the ordering of flow states while the en-
tries stay at the same location.

The on-site implementation, on Fig. 5, needs additional
multiplexors in front of memory blocks in comparison to
plain NHT. On the other hand, the vector implementation
requires additional memory with n�log l� bits (l – number
of entries allocated per one bucket, n – number of all entries
in NHT). Despite the memory overhead, vector implemen-
tation might prove useful when a flow state is large and is
kept apart from the fingerprint in an external memory. In
such case, the NHT and the vector memory in FPGA are
utilized to lookup a flow state and to maintain the replace-
ment policy as the swapping or shifting data in an external
memory is not an option. For example, consider tracking of
inter-packet arrival times for the first several packets of each
flow. The last packet timestamp and the packet counter can
be kept in NHT inside the FPGA while the inter-packet ar-
rival times would be stored in an external memory word by
word.

The additional logic consumed by S3-LRU is negligible.
An exemplary output of the S3-LRU unit for an on-site im-
plementation is given in Table 2. The unit must drive control
signals of multiplexors (mx bus) and write enable signals of

Reqests mx bus we bus
insert c (0,0,1,0) (0,0,1,1)
update b (0,0,1,0) (0,0,1,1)
update b (0,1,0,0) (1,1,0,0)
insert d (0,0,1,0) (0,0,1,1)

Table 2: An output of an on-site S3-LRU unit. The
setup and sequence of requests corresponds to Fig. 4
with its initial content of a bucket (x,y,b,a).

BlockRAMs (we bus).
Either implementations are scalable in size and speed.

Both parameters may be improved by allocating additional
parallel modules of NHT. Part of a flow fingerprint would
determine not only a bucket but also a module to hash in.

The analysis of pipelined NHT reveals two scenarios when
additional steps must be taken to maintain stable perfor-
mance. The three level pipeline would have to be flushed
when 2 requests target the same entry in an interval shorter
than 5 clock cycles otherwise changes made by the first re-
quest would not be accounted for later on.

An exemplar is presented for maintaining flow states of
100 Gbps traffic. A clock cycle of 7 ns allows to update a flow
information for every packet even if the traffic is composed
of the shortest possible IP packets but at the same time the
throughput of any flow in the traffic cannot be higher than
20% of the processing capacity (≈ 20 Gbps). Otherwise the
distance between two packets belonging to the same flow
would be less than 5 clock cycles (35 ns), and the flow state
would not be stored back in the memory before its next
retrieval.

This could be overcome by forwarding the PU results back
to its input (Fig. 5 (Forwarding path)) and notifying the S3-
LRU unit to update information driving the control signals
in the next clock cycle. Subsequently, a Reservation Unit
(RU) at the input of NHT can control the distance between
requests for the same flow state and may reorder these by
inserting other requests in between to make the distance
larger than 5 clock cycles or by joining the same requests
next to each other so the forwarding path may be utilized.

Another issue arises from requests that target the same
bucket but are of two different flows. We solve it by stalling
such requests until previous request has not been processed.
Such situations are rare since most of the requests are dis-
tributed uniformly among all buckets.

5.5 Hardware Setup
The total on-chip memory available in NetFPGA would

allow us to accommodate approximately 128 K entries if each
entry has a 36 bit fingerprint and a few bits reserved for the
application class and the packet counter. Unfortunately, the
NetFPGA infrastructure (MAC cores, etc.) consumes over
a half of the memory resources. In our prototype, we use
the configuration of the HC and the HFC as shown in Table
3. Each bucket in the HC and the HFC contains 8 entries;
with a total length of 48 bits for the hash, the false-positive
probability of the NHT is negligible for our experiments.

Moreover, our approach works sufficiently well with these
limited numbers of table-entries for modest sized organiza-
tions. The HC effectively labels a significant number of flows
and the HFC gracefully degrades the labeling performance
when the number of concurrent flows exceed its capacity. In
no case are packets dropped.



Parameters HC HFC
Entries 2048 32768
Buckets 256 4096
Fingerprint 40 36
Length of hash 48 48

F.p. probability pf 7.5 × 10−9 1.9 × 10−6

Table 3: Configuration of Host Cache (HC) and
Hardware Flow Cache (HFC)

6. PERFORMANCE EVALUATION
The experiments aim at validating our hierarchical packet

labeling scheme, and demonstrating the performance advan-
tages of simple and cost-effective hardware.

6.1 Experimental Setup
For this system, the packet and flow rate have more sig-

nificance than just the data rate. The data path is de-
signed to handle multi-Gigabit/s data streams. However,
each packet and flow undergoes a number of operations (e.g.,
table lookup, feature extraction, classification) that must be
able to keep up with packet and flow rates, respectively, so
it is important to include realistic traffic in the evaluation
methodology. Moreover, as AtoZ derives and uses informa-
tion of behavior of applications we conclude that real traffic
data are fundamental to the system evaluation. To validate
our approach, we deployed the system alongside the edge
router of a large university campus using a span port to mir-
ror the Internet traffic and tracked the system performance
on live data since April 2009.

As an exemplar evaluation in a more controlled environ-
ment, we use two data traces for the reported experiments:
one from a research institute (R.Inst.), and one from a uni-
versity campus (Campus) the working dimensions and the
methodology for which we obtain ground truth information
is described in [14].

Our testbed consists of two high-end server machines which
can replay the traffic using tcpreplay5. We partitioned the
traces into two halves, using flow hashing to ensure that
packets belonging to the same flow are in the same trace, to
allow them being replayed from the two machines with high
fidelity. The traffic from the two machines is aggregated in
a Cisco C6509 switch to provide high data-rate traffic. The
NetFPGA is connected to an optical port on the switch via
a media converter. By means of an optical splitter located
on the path to the optical port, we also connect a DAG
card downstream from the switch so that measurements are
not impacted by jitter and delay introduced at aggregation.
tcpreplay is used to reproduce the timings of the original
trace with sufficient fidelity.

The NetFPGA board is hosted on a machine with an Intel
Quad Core CPU (2.40 GHz) with 4 GB of RAM, running
CentOS Linux 5.0 (kernel version 2.6.18). However, our soft-
ware implementation is only single threaded.

In order to compare AtoZ with an equivalent software-
only solution, we combine our software components with
elements from the standard Click distribution that provide
packet-receive and transmit functionalities. In this case, we
run the software on the same PC hosting the NetFPGA,
but we use a high-end dual port NIC (Intel e1000) to re-
ceive and retransmit packets, because the NetFPGA is not

5http://tcpreplay.synfin.net/

Module Latency Mode Bus width
Eth. Input 608–11952 ns SF 8 bits
HC 224 ns CT 64 bits
HFC 208 ns CT 64 bits
FM 16 ns CT 64 bits
Out. Pkt Queues 72–1496 ns SF 64 bits
Eth. Output 16 ns CT 8 bits

Table 4: Packet processing delay of each module.
(SF: store and forward, CT: cut-through)

appropriate as a standard NIC.
We point out that our prototype uses research-grade code

and many opportunities exist for further improvements to
be made. We simply intend to show the performance gap
between using a software-only solution and a system that
builds on that same software but combines with functional-
ities implemented in specialized hardware.

6.2 System Capacity
We start by examining whether AtoZ is able to handle a

fully loaded link, as our simulation predicted. To test the
system’s throughput, we generate traffic by replaying the
R.Inst. traffic traces at maximum speed. This produces a 1
Gbps data stream. Our experiments confirm that no packets
are dropped, even when traffic is sent at maximum speed.
We measure the throughput across a 10 s intervals. The
mean throughput is about 137 Kpps and achieves a maxi-
mum of 173 Kpps, while the software processes on average
1.6 Kpps with a peak of 12 Kpps (duplicated packets).

6.3 System Delay and Packet Loss
We simulate the hardware processing pipeline (Figure 3)

to derive the delay introduced by each module. Recall that
the Host Cache (HC), Hardware Flow Cache (HFC) and
Forward Module (FM) work in cut-through mode as to re-
duce the overall delay, whereas the Output Packet Queues
and Ethernet Input use a store and forward approach. Also
note that the delay of each module is cumulative because
all packets traverse the same pipeline irrespective of where
they are labeled.

The module delays are reported in Table 4. The FM only
adds a small delay for rewriting the MAC address based
on the label value. The Ethernet Input and Output Packet
Queues contribute to most of the delay, although due to a
wider bus, the Output Packet Queues delay is significantly
smaller compared to that of Ethernet Input. At the expense
of hardware complexity, the delays could be reduced by con-
verting these modules to operate in cut-trough mode.

The overall delay is derived using minimum and maxi-
mum IP packet lengths of 64 and 1500 bytes respectively.
Summing the individual contributions of all modules in the
pipeline, we obtain 143 and 1739 clock cycles (125MHz)
which corresponds to about 1.1 µs and 14 µs for the mini-
mum and the maximum packet length, respectively.

To measure the actual real-life delay6, we generate traffic
by replaying the captured traces at 300 Mbps, 600 Mbps and
maximum speed. The packet-length distribution is of a real
traffic mix with most of the packets being longer than 1 KB.
Table 5 shows the measured processing delays with standard
deviations (which do include buffering and transmission de-
lays). AtoZ maintains a very low delay (≤17 µs) with no

6Measurements have been done with DAG cards.



 0.68
 0.7

 0.72
 0.74
 0.76
 0.78

 0.8
 0.82

15 30 45 60 75 90

F
lo

w
 m

at
ch

es
 [%

]

Time window [s]

(a) R.Inst.

 0.68
 0.7

 0.72
 0.74
 0.76
 0.78

 0.8
 0.82

15 30 45 60 75 90

F
lo

w
 m

at
ch

es
 [%

]

Time window [s]

(b) Campus

128
256
512

1024
2048

Figure 6: Host Cache efficiency as flow hits in cache.

Data rate 300 Mbps 600 Mbps 1 Gbps
(Packet rate) (51 Kpps) (107 Kpps) (137 Kpps)
AtoZ 13 ± 4 µs 16 ± 3 µs 17 ± 2 µs
SW only 304 ± 120 µs 12 ± 25 ms -

Table 5: Packet processing delay of AtoZ compared
to software-only solution.

observed packet loss and host CPU utilization ≤6%. The
slightly increased delay of an NetFPGA under a heavy-load
is most likely caused by a buffer dynamics of Ethernet Input
and Output modules. The software-only system sustains a
data rate of 300 Mbps, but its processing delay is already
an order of magnitude higher than AtoZ. At 600 Mbps, the
software drops about 4% of the packets and the CPU reaches
100% utilization, causing an increase in delay of tens of mil-
liseconds. As packet loss already starts to occur, there is no
need to test the software with 1 Gbps. Further tuning might
improve the bandwidth of a software solution for the sake of
a longer delay due to larger buffers for DMA transfers.

6.4 Packet Labeling
For these experiments, we replayed the traffic traces at

their original speed.
Host Cache Efficiency: We evaluate the Host Cache

(HC) efficiency by measuring the number of flows that it
matches over the total number of flows in each time window.
We vary the time window from 15 to 90 s, and we vary the
capacity from 128 to 2048 entries by powers of two. Figure 6
shows the average efficiency for some significant time window
lengths. The value of Uth is 10. We experimented with
several values and we found that 10 is a sufficient trade-off
between avoiding spurious rules (which happen with lower
values) and requiring longer time windows.

As expected, the number of flows matched by the HC
increases with a higher HC capacity. The optimum value of
the time window is 30 to 45 s for both traces to reach the
highest number of matches. Although a longer time window
allows establishing with higher confidence which end-points
are the most significant and stable over time, extending the
time window for too long also reduces the opportunity for
applying the rules just derived.

Time-to-bind: An important benefit of the HC is that
the system can promptly organize the traffic of new flows
involving known hosts: the time-to-bind is zero for all new
flows matched by the HC, which means that their packets are
labeled from the time the flows start. To demonstrate this
improvement, we measure the time-to-bind when the HC is
disabled and compare it with the case when it is enabled.
Figure 7 shows the time-to-bind histogram obtained for the
R.Inst. trace.

Labeling Accuracy: By comparing with pre-determi-
ned application ground-truth [14], we evaluate the overall
accuracy of the packet labeling process.
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Figure 7: Time-to-bind distribution, with Host
Cache vs. without Host Cache.

Two metrics are considered: the flow accuracy and the
packet labeling accuracy. To measure the flow accuracy we
export the application identification results and HC rules on
the host. For the packet labeling accuracy, we use the DAG
card to capture only the packets that are not labeled. By
combining this with the results above, we determine which
packets are correctly labeled.

For R.Inst., AtoZ achieves 99.63% flow accuracy and 99.46%
packet accuracy. The accuracy for Campus is also high at
99.59% and 99.36% for flows and packets, respectively.

Load Shedding: Figure 8 presents the temporal evolu-
tion of the SFC size for R.Inst. We compare the case of HC
disabled with HC enabled. When the HC is disabled, every
active flow is present in the SFC, causing greater load on
the system (e.g., longer table lookup times) and high uti-
lization of the (limited) HFC resources. In this case, the
SFC maintains on average 38.5 × 103 entries which is 17%
larger than the HFC. However, when the HC is enabled only
about 25% of the active flows need to be maintained in the
SFC, reaching a maximum of 25 × 103 entries and less than
77% utilization of HFC.

The two curves in Figure 8 have similar profiles except
for point marked (1). This corresponds to the expiration
of a certain HC entry due to timeout. As desired, the sys-
tem periodically expires HC entries even though they are
well performing. This is done to maintain accurate traffic
classification. Here, the number of flows entering the SFC
increases. These are the flows that are matched by the HC
until (1), but when the HC entry is removed, the successive
5 packets for these flows are processed by software. AtoZ
now has two alternatives: it can label these flows based on
the expired HC entry or it can classify the flows using mid-
flow features. In our implementation, we chose the simpler
solution which is to label the flows using the HC entry. Once
the HC entry is removed we still keep a record of the entry
in software for one additional flow timeout period. In this
case, after one time window the HC management restores
the HC entry.

Further, another source of load shedding in our system is
represented by the packet filter in HFC which combines with
the HC effectively to reduce the traffic processed in software.
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Figure 8: Temporal evolution of SFC size, with HC
& without HC.

For our traces, this is reduced to about 0.1% of the original
traffic. This result agrees with the findings of other works
that also leverage the heavy-tailed nature of traffic. For
instance, in [7] the authors reduce the data to less than 6%
of the original traffic from their sites by collecting the first
15 KB of each flow. In our experiments, the reduction is
even more drastic due to the use of just the first 5 packets
and the efficiency of the HC. Disabling the HC increases by
5 times the amount of traffic processed in software.

Tracking most active flows: Using simulations, we
evaluate the capability of the HFC to keep track of the most
active flows while evicting flows that do not account for sig-
nificant portions of traffic.

We measure the percentage of large flows tracked by the
HFC using different replacement algorithms – Least Re-
cently Used (LRU), Segmented LRU (SLRU) and S3-LRU.

We look separately at how well the algorithms perform
for three reference groups: very large flows (above one thou-
sandth of the link capacity), large flows (between one thou-
sandth and a tenth of a thousandth) and medium flows (be-
tween a tenth of a thousandth and a hundredth of a thou-
sandth). We experiment with just 1024 entries in the cache
to guarantee that there are more active flows than those that
can be tracked at any time. We use a measurement inter-
val of 5 s and probationary segment size set to 70% of the
entries in each bucket as it was determined to perform the
best after a full space search.

Table 6 presents the results averaged over all runs and
measurement intervals. Our replacement algorithm is able
to obtain lower values of unidentified large flows for all the
tested conditions (not reported due to space limit).

We note that many recent approaches for tracking large
flows (e.g., [10]) are based on a compact filtering data struc-
tures that allow to identify and account large flows only
after they pass the filter threshold. However, our applica-
tion specifically requires the possibility of assigning a state
to all flows, even before they could pass the filter.

7. DISCUSSION

Robustness
The robustness of the whole system is guaranteed by the
hardware fast data path, in which each component is de-
signed to support full line-rate packet switching.

System failures may impact other traffic organizer imple-
mentations due to resource exhaustion or system-overloading.
In our system, there is no interruption to the fast data path
which serves as the default path for all data, so that even

Algorithm
Group (flow size)

> 0.1% 0.1. . . 0.01% 0.01. . . 0.001%

S3-LRU 0.14 0.24 0.88
SLRU 17.10 10.20 35.50
LRU 23.53 12.60 41.72

Table 6: Unidentified large flows [%] for S3-LRU vs.
SLRU and plain LRU using 32 buckets each of 32
entries.

in exceptional circumstance only the software system can
be overloaded. In the worst case only a certain portion of
packets are labeled. We could conjecture that the resulting
performance will still be an improvement over no device,
since at least some traffic labeling would take place. While
the current approach has been effective in deployment, a
full characterization of the cache hierarchy is left for future
work. In common with many high-end network device de-
signs, e.g., NIDS[15], the hierarchical packet labeling scheme
also provides more resilience against attacks which lead to
poisoning of the flow cache.

Quality of Experience (QoE)
QoE provides a motivation and our prototype is useable as
such a device. We currently perform aggregate rate-limiting
in deployment and while space limitations prevent discussing
this in depth, AtoZ flexiblity is suited to a wide range of ap-
proaches such as application-specific rate-limiting, and other
protocol-specific methods. Further, AtoZ can provide a flex-
ible classification of network-traffic for other systems such as
diffserv and MPLS.

Extensibility
The traffic organizer presented uses only rules automatically
learned from the flow classifier. However, thanks to its mod-
ular structure, it is readily extensible to allow input infor-
mation from other sources such as an organization’s NIDS
or input from a manual interface, or to provide network uti-
lization information to specific traffic-handling systems such
as firewalls and NIDS implementations.

Scalability
The size of on-chip memory is the dominant factor for the
system scalability. The current constraints of on-chip mem-
ory have meant that the system worked well for smaller insti-
tutions (≈1,000 hosts) but was not best-suited to the largest
enterprise (15,000 users and close to 100,000 hosts).

The NetFPGA board is equipped with 4 MB of SSRAM
memory that is currently dedicated to the packet buffers and
queues. We estimate half of the memory could accommodate
almost 500 K entries for the HFC.

However, scaling the system to higher speeds (i.e., ≥ 10
Gbps) requires us to keep the caches on the FPGA in order
to support link-rate processing. At the same time, the fre-
quency and the bus width of the whole processing pipeline
must be designed to cope with 20 Gbps of network traffic.
The most likely option seems to be the 128 bits wide bus
synchronized to 156 MHz design frequency. To achieve such
configuration, we may extrapolate from Virtex-II-Pro 50 to
a Virtex-5-LX155T and also to a larger Virtex-5-SX240T re-
spectively providing near twice and four times the on-chip
memory capacity. Extrapolating results from our previous
experiments, such resources provide the necessary ground-
work to process network traffic at and above 10 Gbps.



Implementation
Our current implementation is based on software extensions
to Click and makes extensive use of the NetFPGA.

The NetFPGA was available to us and so its use as our
implementation/evaluation vehicle was ideal. It is a flex-
ible platform and real multi-Gigabit/s solution which per-
mits rapid prototyping of our system and demonstrates the
feasibility of the hybrid architecture to fulfill the design ob-
jectives. Further, the implementation we have made is pub-
licly available and may be ported to existing systems (e.g.,
Netronome and NetCOPE), to provide 10 Gbps implemen-
tations at reasonable cost.

For future implementations, one tempting approach is to
extend the Linux netfilter to use the NetFGPA by adding
hardware implementations of appropriate functional mod-
ules, as we have done in the AtoZ traffic organizer.

8. RELATED WORK
Our work on the AtoZ automatic traffic organizer relates

to a wide set of fields ranging from systems-architectures to
application-identification based upon machine-learning.

We are indebted to the creators of the Click modular
route [8], and extend this idea with an approach that pre-
serves functionality between modules. While this does not
permit the same level of plug’n’play that Click provides, our
approach still permits high-performance hardware modules
to be co-designed alongside software implementations.

The architecture of AtoZ shares a few common character-
istics with other FPGA-based architectures that “shed load”
for network-intrusion detection and prevention systems (e.g.,
SnortOffloader [16] and Shunt [17]), in particular, the way
that it distributes the workload and functionalities between
hardware and software. These approaches are specifically
designed to offload the static subset of traffic that is large in
volume but of little interest to intrusion detection and pre-
vention systems. In contrast, AtoZ aims at automatically
organizing the entire traffic on the link, and tackles different
challenges associated with traffic organizing.

9. CONCLUSION
We have described the design and implementation of the

AtoZ traffic organizer: a small, intelligent and high-speed
network device. It enables seamless, application-specific traf-
fic management on edge-network, benefiting from a highly-
efficient packet-labeling mechanism based on intelligent be-
havioral flow identification, and high performance packet
processing using NetFPGA. We deal with several technical
challenges: how to support the entire system functionality
under maximum throughput, without delay or packet loss;
while incorporating effective intelligent traffic classification.

Furthermore, we showed the feasibility of a simple, cost-
efficient hardware-software hybrid implementation that fa-
cilitates seamless and sophisticated traffic management op-
erations on multiple Gigabit-rate links.

We are making our implementation available to the com-
munity and at the NetFPGA project page.

Limitations and Future Work
Our implementation is an early-day prototype, and while
deployment experience has been positive, we can identify
several areas for future work.

One avenue to be explored is that our implementation
could logically be integrated into an existing access-router;
and while current practical limitations make this a challenge

for a NetFPGA-based solution, current FPGA technology
in combination with suitable, modest, quantities of SSRAM
can easily accommodate such a set of logic and caches.

We also note that our work does not provide full traffic-
accounting functionality at line rate. However, there is no
reason (aside from NetFPGA gate-resource limitations) that
AtoZ could not be integrated with the NetFlow probe also
developed on the NetFPGA.
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