
From 1G to 10G: Code Reuse in Action

Gianni Antichi
Dept. of Information Engineering

University of Pisa, ITALY
gianni.antichi@iet.unipi.it

Muhammad Shahbaz
Computer Laboratory

University of Cambridge, UK

muhammad.shahbaz@cl.cam.ac.uk

Stefano Giordano
Dept. of Information Engineering

University of Pisa, ITALY
s.giordano@iet.unipi.it

Andrew W. Moore
Computer Laboratory

University of Cambridge, UK

andrew.moore@cl.cam.ac.uk

ABSTRACT

Ever increasing traffic quantities and link-bandwidths force
network devices to meet ever-increasing demands; the march
to 100G is well under way. The high-speed networking of
today is no longer that of five years ago: Unfortunately,
such growth contrasts with current financial forces and this
leads organisations to find ways to save money. As a re-
sult many developers face the common problem: how to
make existing, systems reusable in this new, higher-speed
scenario? To attack this problem, we propose new, flexible,
legacy support mechanics for designs built using System on a
Chip (SoC) and System on FPGA (SoFPGA). We illustrate
our approach using the widely used, open-source, NetFPGA
platform presenting a migration path for existing 1G de-
signs to plugin into the new NetFPGA 10G board without
alteration to code structure.

Categories and Subject Descriptors

B.5.0 [Register-Transfer-Level Implementation]: Gen-
eral; C.2.m [Computer-Communication Networks]: Mis-
cellaneous

General Terms

Design

Keywords

Protocol Bridges, Reusable Hardware, NetFPGA

1. INTRODUCTION
Network speeds increase, demand-for and supply-of band-

width has meant a move to 100G is now in progress. Even
now, 10G is increasingly commodity with high-end mother-
boards shipping with 10G Ethernet interfaces on them. De-
spite increasing performance the return on investment is not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPPN’13, June 18, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1981-2/13/06 ...$15.00.

linear; Moore’s law has provided faster (and smaller silicon)
but communications has increased at a higher-still rate[11].

Furthermore, FPGA clock rates have remained stable for
sometime, with 250-300Mhz being a maximum clock rate
on high-end commodity FPGA products for greater than 5
years. Thus, when wanting to manipulate high speed net-
work streams such as those at and beyond 10Gbps, FPGA-
based designs must capitalise on the increased gate-count:
the designs must become larger and inevitably more com-
plex. This in-turn, lengthens design and development time.
None of this is news to the high speed networking commu-
nity. In contrast organisations are encouraged to do “more
with less”1 and financial pressures have meant that code-
reuse is encouraged — if only because of a lack of imple-
menter resource.

Code reuse is not a new concept [12], but the incentive
continues to push all developers from those working in the
highest level language to the lowest level hardware imple-
mentations. From hardware-designers perspective, such an
approach is also not new.

The Xilinx and Altera IP stack along with open-source
code repositories such as opencores.org have utilized or
capitalised upon this approach for many years. Code reuse
often permits a minimization of the total coding effort: de-
velopment, debugging, eventual extensions, and support.

Following a keen motivation for code-reuse and a signifi-
cant existing codebase we propose a flexible legacy support
mechanics for designs built using System on a Chip (SoC)
and System on FPGA (SoFPGA). We illustrate our ap-
proach using the widely used, open-source, NetFPGA plat-
form presenting a migration path for existing 1G designs to
plugin into the new NetFPGA 10G board without alteration
to code structure.

2. NETFPGA
The NetFPGA [19] is a low-cost reconfigurable hardware-

software ecosystem optimized for high-speed networking orig-
inally developed by the HPNG (High Performance Network-
ing Group) at Stanford University. It was conceived as a tool
for both teaching networking design and a research platform
for developing new high performance networking systems.
The first generation of the NetFPGA that used Gigabit Eth-
ernet was developed in 2005 [16][23] and since its release this
platform has seen wide-spread use by researchers and edu-

1“Moore with less” if you prefer.

31

cators alike. In 2009, efforts started on the development of
a next generation of the NetFPGA board [4], one capable of
4×10 Gbps. The platform, now well established in its beta
programme is being tested and used by over a hundred users
worldwide.

2.1 1st Generation
The first generation of NetFPGA boards is a standard

PCI card that plugs into a standard PC. The card consists
of a Xilinx Virtex-II Pro Field-Programmable Gate Array
(FPGA) which is programmed with user-defined logic and
has a clock of 125 MHz. The PCI interface connecting the
host PC to the NetFPGA is managed by a small Xilinx
Spartan II FPGA. Four Gigabit Ethernet ports, 4.5 MiB
of static RAM (in 2 banks) and 64MiB of DDR2 dynamic
RAM are also on-board.

Figure 1: The NetFPGA Reference Pipeline

The reference pipeline, as shown in Figure 1 [8], is parti-
tioned into two planes: (1) Control plane and (2) Data plane.
The buses shown in blue (i.e., continuous lines) constitutes
the data plane and the ones in green (i.e., dashed lines) form
the control plane. Overall, reference pipeline presents eight
receive queues, eight transmit queues, Input Arbiter, Out-
put Port Lookup, Output Queues and Register IO Control.
The Output Port Lookup is where custom modules like NIC,
Switch etc., are inserted. Each “MAC” (Media Access Con-
troller) is a physical network port with an associated queue,
and each MAC queue has an associated CPU queue used
for communication between the NetFPGA and the host PC.
The queues are multiplexed by Input Arbiter into a single
packet stream and then de-multiplexed to respective ports
according to the Output Port Lookup module.

The data plane is 64 bits wide running at 125 MHz giving
a peak bandwidth of 8Gbps. Packets are passed between
modules using a non-standard FIFO-like simple pull inter-
face with four signals: WR, RDY, DATA, and CTRL. These signals
in conjunction are known as Packet Bus. The data signal oc-
curs when the destination module asserts its RDY signal and
in response the source module places a valid data on the
DATA bus with associated control information i.e. header,
body, or end of packet on the CTRL bus, finally asserting the
WR signal. The control plane, on the other hand, is a 32-bits
wide daisy-chain bus running at 125MHz. It follows a simi-
lar protocol like structure to that of the IBM Device Control
Register (DCR) bus which was originally used for accessing

control and status information in parallel with the primary
bus without halting the overall system [10]. The control
plane operates over six signals: REQ, ACK, RD_WR_L, ADDR,
DATA, and SRC forming a Register Bus. The source module
places the address and data information on to the ADDR and
DATA bus respectively. It then populates the SRC bus with
the source ID, used to uniquely identify masters and sets
the RD_WR_L signal to high if a read operation is requested
or low if a write one is requested. Finally, the source module
asserts the REQ signal till it receives acknowledgement back
through the daisy-chain over the ACK signal.

2.2 2nd Generation
The NetFPGA-10G design embodies much of the original

NetFPGA design philosophy. The hardware itself is based
upon a Xilinx Virtex-5 FPGA on a PCI Express board pro-
viding 4×10 SFP+ Gigabit Ethernet ports, 27 MBs QDRII
SRAM, 288 MBs RLDRAM-II, and Two Platform XL Flash
(128 MB). Additional I/O capacity is provided through two
high-speed QTH Samtec connectors. The combination of
wide high-speed memory interfaces as 3×36 bit QDRII SRAM
interfaces and 2×64 bit RLDRAM-II interfaces provide an
ideal memory solution for most common networking appli-
cations. From a platform design perspective, the 10G dif-
fers in several significant ways from the 1G platform. For
example, the interface standards for hardware components
have been completely redesigned, relying instead upon the
industry standard AMBA AXI architecture. Additionally,
the platform now utilises industry-standard tools for dealing
with design composition, automated register mapping, and
IP library management2. These replace the custom tools
and design environment of the earlier platform. By using
standard modules and tools there exists a greater opportu-
nity for IP reuse.

Figure 2: The NetFPGA 10G Reference Pipeline

The modules use Xilinx AXI Streaming Protocol Spec-
ification [3] as the standard data-plane interface while the
control-plane uses the AXI Lite Protocol Specification. These
standards were originally released by ARM as AXI4. Xilinx
implements a cut down version that places some application-
specific restrictions on the original AMBA AXI4 Specifica-
tions. The data plane for the reference pipeline, shown in
Figure 2, is similar in most parts to its 1G counterpart, al-
though the control plane has changed significantly. The data
plane as illustrated is 256 bits wide and operates at 160MHz

2IP, Intellectual Property, cores provide the standard atom
of construction for the hardware design & synthesis process.

32

to provide a peak bandwidth of 40Gbps. The control plane
is no longer the daisy-chained bus-like model instead it’s a
complete embedded system with support for interconnects
and CPUs. A significant advantage of this system is that it
assists in the building of systems where there is a tight cou-
pling between the CPU and data path, e.g., Openflow with
integrated on-chip controller. Additionally, in contrast with
the 1st generation NetFPGA where only one master - the
host system (PCI) - could be used for accessing registers,
in the NetFPGA 10G platform both the embedded Microb-
laze processor and host system (PCIe) can act as master for
register accesses.

3. SPANNING 1G TO 10G
Since the introduction of NetFPGA-1G, back in 2006, the

research community has published numerous solutions in
the field of networks, on-chip architectures and high-speed
packet processing and monitoring algorithms capable of han-
dling data at line rate. The most successful and broadly used
applications developed using this platform are network in-
terface card (NIC), IPv4 reference router and learning CAM
switch, to name the few. Other than being used as a proto-
type system, it has also extensively been used as a testing
framework in various scenarios and environments.

Figure 3: Integration using entire design re-

modification

For example, in one arrangement it provides the services
of a configurable packet generator tool to test a network
by spawning packets of diverse nature varying both in their
structure and length. For over six year, NetFPGA-1G has
accrued a collection of versatile set of applications contributed
by academics and researchers all over the world and has ma-
tured significantly. Though it has been a desirable platform
for research and development for many years but with recent
advancements in contemporary networks, where 10G Ether-
net is becoming a commodity, it can no longer keep up with
the demand of ever increasing bandwidth. In response to
this issue the members of the NetFPGA team have come up
with their next generation of networking platform. Capa-
ble of handling multiple 10G of data rates and having high
density of on-board FPGA fabric and memories, it can an-
swer many of the problems found in the present day network
infrastructure.

NetFPGA-10G is a clean-slate program. The architec-
ture resembles in some parts with its previous version but
communication protocols are no longer compatible. This
hampers the pathway for integrating existing 1G designs to
the 10G without having to make significant modifications.
Two solutions exists for this problem; either re-modify the
whole design using the new communication protocol or im-
plement a bridging logic to overlap the two varying protocols
to interoperate, as shown in Figure 3, 4 respectively.

Realizing the latter approach, we present a migration path

Figure 4: Integration using bridges

for existing 1G designs to plugin into the 10G platform with-
out alterations in the code structure i.e. processing logic and
bus protocol etc.

4. ARCHITECTURE
The proposed architecture consists of two bridges, (1)

Data-plane bridge and (2) Control-plane bridge, that when
plugged into the NetFPGA-10G platform provides a seam-
less integration path enabling migration of NetFPGA-1G
modules. Figure 5 illustrates that the Data plane bridge
resides between Input Arbiter and Output Queues module.
At the outer boundaries it connects to the AXI Stream-
ing interfaces of the neighboring modules and internally ex-
poses Packet Bus interfaces for the NetFPGA-1G Output
Port Lookup (OPL) modules. The Control plane bridge
acts as a conduit for moving transactions from an intercon-
nect, (based upon the Xilinx AXI Interconnect [25]), to the
NetFPGA-1G daisy-chain. At one end, the bridge attaches
itself as a slave to the interconnect and, at the other end, it
presents itself as a master on the Register Bus daisy-chain,
flowing through the NetFPGA-1G OPL module(s) and ter-
minating at the Control plane bridge, as shown in Figure 5.

Figure 5: Top Level Architecture

4.1 Data Plane Bridge
The data plane for NetFPGA-10G is a collection of mod-

ules connected through AXI4 Stream (AXIS) bus whereas
in the case of 1G it’s a Packet Bus (PB). Though both of
them are streaming interfaces, they differ significantly in
their specifications and are not interoperable without the
use of coupling logic. Thus, to support 1G module(s) to run
on 10G platform we have implemented this coupling logic in
the form of bridge for seamless data plane transformation.
The bridge operates on packets received from the Input Ar-
biter (Figure 5,) on AXI Stream slave bus and pushes them
out to the NetfPGA-1G OPL module via the master Packet
Bus.

For the reverse data-flow the complimentary operations
occur: packets are received on the slave Packet bus from

33

OPL and packets are sent out to the Output Queues on the
AXI Stream master bus. Figure 6 shows the bridge logic is
composed of two stages: specification conversion and width
conversion.

Figure 6: Packet Bus Stream to AXI4 Stream

Bridge

The specification conversion stage performs the transla-
tion in each direction between the Packet Bus (PB) inter-
face [21] and the AXI Stream interface [20]. The structure
and signal mapping of the two interfaces is shown in Fig-
ure 7. For the case of PB Slave to AXIS Master, the inter-
faces conform using a mapping function δn where n corre-
sponds to six signals of the AXIS interface. The mapping
function describes the semantics for connecting these indi-
vidual signals. As the Packet Bus and AXIS interface are big
endian and little endian respectively, the δ1 enforces the con-
straint of having the data bus between each of the interfaces
connected in byte reverse order. Similarly, δ2 and δ4 specify
the correct order of byte and metadata extraction as men-
tioned in the interfaces specification [21, 20]. The remaining
mapping functions are straight forward. The mapping of
AXIS Slave to Packet Bus master obeys a similar set of se-
mantic rules represented by a mapping function ψn; this is
shown in Figure 7.

Figure 7: Packet Bus Stream to AXI4 Stream Sig-

naling

The width conversion stage allows configuring the AXIS
to PB data width ratio. A ratio of 1:1 means that both
the buses have same operational data width, a ratio of 1:2
means that AXIS is twice the size of PB, and a ratio of
1:n where n ≤ 4 means that AXIS is n times the size
of PB. NetFPGA-10G platform natively operates with 256
bits wide data path, (§ 2.2), and NetFPGA-1G by default
supports a data width of 64 bits, § 2.1). This property of

variable data width configuration in the bridge helps in two
different ways when importing NetFPGA-1G modules:

1. NetFPGA-1G pipeline modules with 64 bit data path
can be added into the NetFPGA-10G pipeline without
modification, while

2. NetFPGA-1G pipeline modules that are fully parame-
terize over data width can be added to operate at line
rate in the NetFPGA-10G pipeline by extending the
data width to 256 bits.

4.2 Control Plane Bridge
In contrast with the NetFPGA-1G, the control plane in

NetFPGA-10G is no longer a daisy-chain bus-like model in-
stead it’s a complete embedded system with support for in-
terconnects, memories and CPUs. This extends the control
plane capabilities from being a means for only accessing con-
trol and status information to a more complex and flexible
system of building designs having contingent constraints on
CPU and data plane proximity. Openflow switch implemen-
tation with an integrated controller within a single fabric
also provides desirable performance or security side-effects3.

Figure 8: Register Bus Stream to AXILITE Bridge

Upholding our principle of providing a seamless integra-
tion path to permit existing NetFPGA-1G modules be used
on NetFPGA-10G, we have implemented a bridging logic
for control plane. This is shown in Figure 8. The bridge is
composed to two specification conversion stages.

The first stage receives transaction requests from AXI In-
terconnect [3] on its AXI4LITE slave interface, (Figure 5),
and converts them to IPIC (IP Interconnect), a slightly sim-
ple protocol based upon the Xilinx AXI4LTIE IPIF (IP In-
terface) core [26]. The semantics and structural transfor-
mation for AXI4LITE signals to IPIC using the mapping
function αn where n ∈ [1 : 8] are shown in Figure 9.

Figure 9: AXI4LITE to IPIC Signaling

The second stage, alongside protocol conversion from IPIC
to Register Bus Stream (RBS) [21], also acts as an arbitrator

3As might be done under the DARPA MRC programme4
4http://www.darpa.mil/Our Work/I2O/Programs/Mission-
oriented Resilient Clouds (MRC).aspx

34

on Master RBS (M RBS) for IPIC and Slave RBS (S RBS).
It is shown in Figure 8. It operates as a priority arbiter
with S RBS always being served prior to IPIC in case of
simultaneous requests. The signaling and structural map-
ping for IPIC to RBS are shown in Figure 10. Like the first
stage, the second stage also implements a mapping func-
tion βn where n ∈ [1 : 9] that annotates the semantics for
transformation and arbitration among these two protocols.
As an example, for the mapping function βn where n = 1,
the stage assigns BUS2IP_ADDR to M_RBS_ADDR if the request
is from IPIC, indicated by asserting BUS2IP_CS signal, and
S_RBS_REQ signal is low. If the S_RBS_REQ signal is high
then M_RBS_ADDR is latched with S_RBS_ADDR, thereby drop-
ping the IPIC request altogether. The remaining functions
operate in a similar manner.

Figure 10: IPIC to RBS Signaling

4.2.1 Features

Memory Map: the AXI Interconnect shown in Figure 5,
provides a contiguous 4GBs of address space accessible by
both the host system via PCIe interface and the on-chip
micro-processor, e.g., the Microblaze. The modules such as
Memory controllers, Ethernet MACs, Bridges, and CPUs
etc., attached to the interconnect are mapped within this
address space. In the same way, the control plane bridge
connected as slave to the AXI interconnect maps itself in
this address space using the parameters C BASE ADDR
and C HIGH ADDR. In the RBS domain, the bridge ex-
poses a contiguous address window (always starting with the
base address of zero) for assigning modules in the register
pipeline each with a distinct memory range for IO accesses.

Multiple Masters: the NetFPGA-1G control plane, (also
referred to as the register pipeline,) is capable of hosting
multiple masters each, identified with their unique source
identification number (SRC ID). To conform with this prop-
erty of the RBS protocol, we have provided the control plane
bridge with a unique source identifier which is configured us-
ing the C RBS SRC ID parameter inside the core. When-
ever a request is received on the S RBS with SRC ID 6=
C RBS SRC ID, the bridge forwards the request over the
M RBS to the next module in the pipeline, otherwise, it
latches the request and sends the response out on the AXI4
LITE interface.

Finite Daisy-chain Depth: the NetFPGA-1G control plane
is a set of modules connected together as a daisy-chain. The
number of these modules is limited by the control plane
bridge using the parameter C RING SIZE. The bridge uses
this parameter as a timeout value for the wait-timer to ex-
pire. This is to avoid the system from going into a live-lock

when no acknowledgment is received for the bridge at its
S RBS interface.

5. PERFORMANCE EVALUATION
We evaluated the actual performance of the 1G learning

Ethernet switch (ported on the 10G board using the pro-
posed port mechanics) through a variety of experiments.
Some tests are taken by means of a flexible high perfor-
mance traffic generator developed on a commodity multi–
core platform [5], which is able to generate up to 10Gb/s
traffic, even in the worst case scenario (i.e., 64 byte packet
length). We measured the device utilization of our mechan-
ics for the ported switch OPL and tested the maximum num-
ber of packets it is able to process without losing data.

5.1 Test Framework
Evaluating the performance of our bridge (i.e, using the

ported switch) requires the development of a native AXI
system in order to perform comparative tests. Therefore,
we developed a fully functional layer 2 10G learning CAM
switch using the Xilinx AXI Streaming Protocol Specifica-
tion as interface standard. We started from the NetFPGA
10G reference pipeline, (Figure 2), and modified the OPL
module accordingly. We set the width of the User Data
Path to 256 bits in order to achieve full 40Gbps transport.
We implemented the learning CAM feature using the Xilinx
Application Note [24]. The 16-entry CAM IP was configured
as SRL16-based CAM with a 16 clock-cycle write operation
and a single-cycle search operation.

5.2 Device Utilization
Table 1 and 2 show the device utilization of both Data

Plane Bridge and Control Plane Bridge in terms of Slices,
LUT Flip Flop pairs and Block RAMs of our bridges.

Resources
Virtex 5 TXT Utilization
Utilization Percentage

Slices 3944 out of 299520 1.3%
LUT Flip Flop pairs 2630 –

Block RAMs 9 out of 324 2.7%

Table 1: Resource utilization of the Data Plane

Bridge.

The Data Plane Bridge architecture uses 1.3% of the avail-
able slices on the Xilinx Virtex V-TXT FPGA, while the
Control Plane Bridge requires less than 0.01%. 2.7% of the
available block RAMs are used by the Data Plane Bridge.
Most of it, is due to the FIFOs that enable the data width
conversion. While NetFPGA-1G support a data plane width
of 64-bit, the NetFPGA-10G supports a variable width as
described in § 2.2.

Then, we compared (table 3) the device utilization for the
OPL of the native AXI Switch with the ported switch. This
module is responsible for demultiplexing the single packet
stream (i.e., from Input Arbiter) into the right output queue.
It carries all the logic that implements the forwarding de-
cisions (i.e., the learning CAM feature). The resource uti-
lization of the ported switch is greater with respect to the
native one, since more resources are needed for both OPL
module and the Bridge (i.e, the module in charge of 1G-to-
10G conversion).

35

Resources
Virtex 5 TXT Utilization
Utilization Percentage

Slices 299 out of 299520 0.01%
LUT Flip Flop pairs 176 –

Block RAMs 0 out of 324 0%

Table 2: Resource utilization of the Control Plane

Bridge.

Project
Slices LUT Flip- Block RAMs
(%) Flop pairs (%)

Native AXI Switch 0.66% 1302 2%
Ported Switch 1.79% 3496 3.39%

Table 3: Comparison between resource utilization of

the native AXI switch OPL and the ported switch.

5.3 Maximum Packet Rate
Figure 11 shows the actual testbed. We equipped a PC

(i.e., 2.4GHz Xeon processors, 12-core, 24GB RAM) with
an IntelTMEthernet Server Adapter X520-DA2 and we con-
nected both ports of NIC to the NetFPGA using HP ProCurve
10GbE SFP+ Direct Attach cables.

Figure 11: The testbed

In order to assess the performance of our bridge, we car-
ried out some speed tests by using the software traffic gen-
erator mentioned above. Such a device is able to completely
saturate a 10 Gigabit link with minimum sized packets,
thus recreating the worst case scenario for a network device
performing packet-by-packet processing; actually we always
performed our tests with minimum sized packets. Firstly,
we programmed the NetFPGA with our ported switch, then
with a native AXI solution to compare results. We used
both 10G ports of the Intel NIC to generate an increasing
traffic rate up to 20Gbps.

Figure 12 shows the comparative results in terms of through-
put. The native AXI switch is able to process all of the
packets without losses. This is not surprising, since it was
conceived to sustain up to 40Gbps of traffic. On the other
hand, the ported switch is able to process all the received
traffic without losses when it receives up to 10Gbps of traffic;
whereupon it starts dropping some packets. In particular,
when the offered rate is 15Gbps it drops the 27.80% of the
packets, while at 20Gbps it drops the 43.64%. Since the
old-1G OPL module of the switch was not fully parameter-
izable over data width (i.e., it is 64 bits wide) it could not
be extended to operate at line rate (i.e., 40Gbps, consider-
ing the four 10G ports of NetFPGA) by increasing the data

 0

 5

 10

 15

 20

 0 5 10 15 20

Th
ro

ug
hp

ut
 (G

b/
s)

Offered Traffic (Gb/s)

Native AXI Switch
Ported Switch

Figure 12: Comparison of the obtained throughput

with growing rates of offered traffic.

width to 256 bits. This causes such losses in performances.
However, we are able to port it to operate at 10G without
losses.

6. RELATED WORK
Reuse and the sharing of hardware IP remains a core prac-

tice in system design. In a need to meet aggressive time-
to-market objectives, organisations have focused upon two
prior areas relevant to this research: the reuse of old IP on
new architectures; and the compilation of high level pro-
gramming languages to FPGA.

Reuse in code is not new, it has been an area of both ongo-
ing interest and active research research [12, 17, 7]. Specific
examples include Meng et al. [18] who propose a soft IP
interface modification methodology (SIPIMM) for systems
on Field Programmable Gate Array (FPGA); this purports
to minimize the need for interface modification and thus en-
able interface reuse. In contrast, Rowson et al. [22] suggest a
new system design methodology that separates communica-
tion from behaviour. Code reuse may even be generalised as
Design Patterns and through this are also asserted to have a
strong heritage and utility in computer network architecture
design [9].

A number of approaches may be taken to enable code
reuse, including multi-target compilation, and domain-specific
languages. The related field of multi-target compilation
has given us approaches such as Kiwi of Greaves et al. [13]
used to transform C# (parallelizable) programs into circuits.
Certainly, such an approach helps to make reconfigurable
computing technology accessible to software engineers who
are willing to write parallel programs however the technol-
ogy of tools is still rather limited. The need to enhance the
development tools available and achieve more abstraction in
languages to make hardware development easier for software
programmed is also analyzed in [14]. Attig et al. [2] intro-
duces PP: a simple high-level language for describing packet
parsing algorithms in an implementation-independent man-
ner. It can be compiled to give high-speed FPGA-based
packet parsers that can be integrated alongside other packet
processing components to build network nodes. In direct
contrast, Kobiersky et al. [15] utilize an XML description
to auto-generate finite state machines for protocol handling
at up to 20 Gb/s rates. This is then strongly optimised
for resource consumption and speed by an automatic HDL

36

code generator. A predecessor to PP, Brebner [6] intro-
duced G, a high-level packet-centric language for describ-
ing packet processing specifications in an implementation-
independent manner, and demonstrates that G can be com-
piled to give high-performance FPGA-based packet process-
ing components. A final example, Anwer et al. [1] present
Switchblade: a platform for rapid deployment of network
protocols on programmable hardware.

Given the context of this past work, we present our work
as an example that attempts to employ some of the princi-
ples of code reuse while meeting our desired goals of work-
minimization.

7. CONCLUSIONS
This paper presents a new, flexible, legacy support me-

chanics for designs built using System on a Chip (SoC) and
System on FPGA (SoFPGA). We showed our approach us-
ing the widely used, open-source, NetFPGA platform pre-
senting a migration path for existing 1G designs to plugin
into the new NetFPGA 10G board without alteration to
code structure. A case study is discussed to illustrate how
this port mechanics can be efficiently applied on a real-word
design. We performed also some comparative tests in order
to verify the actual performance of a ported design against
a native 10G one. Nowadays, improved code reusability is
fundamental in system design and our bridges could help
developers to migrate old 1G designs to the new shiny 10G
scenario saving a remarkable amount of time.

8. REFERENCES
[1] M. Anwer, M. Motiwala, M. Tariq, and N. Feamster.

Switchblade: A platform for rapid deployment of
network protocols on programmable hardware. In
ACM SIGCOMM, 2010., 2010.

[2] M. Attig and G. Brebner. 400 gb/s programmable
packet parsing on a single fpga. In ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, 2011. ANCS’11., 2011.

[3] AXI Reference Guide.
http://www.xilinx.com/support/documentation/ip
documentation/ug761 axi reference guide.pdf.

[4] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and
H. Zeng. Fpga research design platform fuels network
advances. Xilinx Xcell Journal, (73), 2010.

[5] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.
Flexible high performance traffic generation on
commodity multi-core platforms. In Traffic
Monitoring and Analysis, 2012. TMA’12, 2012.

[6] G. Brebner. Packets everywhere: The great
opportunity for field programmable technology. In
International Conference on Field-Programmable
Technology, 2009. FPT’09., 2009.

[7] M. Champman and A. Van der Merwe. Contemplating
systematic software reuse in a small project-centric
company. In Saicsit, 2008., 2008.

[8] G. Covington, G. Gibb, J. Lockwood, and
N. Mckeown. A packet generator on the netfpga
platform. In Field Programmable Custom Computing
Machines, 2009. FCCM’09. 17th IEEE Symposium on,
pages 235–238. Ieee, 2009.

[9] J. Day. Patterns in Network Architecture: A Return to
Fundamentals. Prentice Hall, 2008.

[10] Device Control Register Bus 3.5 Architecture
Specifications. https://www-01.ibm.com/chips/techlib
/techlib.nsf/techdocs/2F9323ECB-
C8CFEE0872570F4005C5739/$file/DcrBus.pdf.

[11] C. A. Eldering, M. L. Sylla, and J. A. Eisenach. Is

there a mooreÃIJs law for bandwidth? IEEE
Communications Magazine, 37(10):117–121, 1999.

[12] W. Frakes and K. Kang. Software reuse research:
Status and future. IEEE Transactions on Education,
31(7):529–536, 2005.

[13] D. Graves and S. Singh. Kiwi: Synthesis of fpga
circuits from parallel programs. In International
Symposium on Field-Programmable Custom
Computing Machines, 2008. FCCM’08., 2008.

[14] J. Hopf, G. Itzstein, and D. Kearney. Hardware join
java: A high level language for reconfigurable
hardware development. In IEEE International
Conference on Field-Programmable Technology, 2002.
FPT’02., 2002.

[15] P. Kobiersky, J. Korenek, and L. Polcak. Packet
header analysis and field extraction formultigigabit
networks. In IEEE Design and Diagnostics of
Electronic Circuits and Systems Symposium, 2009.
CS’09., 2009.

[16] J. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
Netfpga–an open platform for gigabit-rate network
switching and routing. In Microelectronic Systems
Education, 2007. MSE’07. IEEE International
Conference on, pages 160–161. IEEE, 2007.

[17] S. McConnell. Rapid Development: Taming Wild
Software Schedules. Microsoft Press, 1996.

[18] X. Meng, B. ThÃűrnberg, and N. Lawal. Soft-ip
interface modification methodology. In International
Conference on Information and Electronics
Engineering, 2011.

[19] NetFPGA. http://www.netfpga.org.

[20] NetFPGA-10G Standard IP Interfaces.
https://github.com/NetFPGA/NetFPGA-10G-
live/wiki/Standard-IP-Interfaces.

[21] NetFPGA-1G Reference Pipeline.
http://netfpga.org/foswiki/bin/view/NetFPGA/
OneGig/ReferenceRouterWalkthrough#Reference
Pipeline Details.

[22] J. Rowson and A. Sangiovanni-Vincentelli.
Interface-based design. In Design Automation
Conference, 1997.

[23] G. Watson, N. McKeown, and M. Casado. Netfpga: A
tool for network research and education. In Workshop
on Architecture Research using FPGA Platforms,
2006.

[24] Xilinx CAM Application Note.
http://www.xilinx.com/support/documentation
/anmeminterfacestorelement cam.htm.

[25] Xilinx LogiCORE AXI Interconnect IP.
http://www.xilinx.com/support/documentation/ip
documentation/ds768 axi interconnect.pdf.

[26] Xilinx LogiCORE AXI4-Lite IPIF Data Sheet.
http://www.xilinx.com/support/documentation/ip
documentation/axi lite ipif ds765.pdf.

37

