
Operating System and File System Monitoring :A Comparison of Passive Network Monitoring with FullKernel Instrumentation TechniquesbyAndrew W. Moorea thesis submitted in fulfillment of therequirements for the degree ofmaster of computingdepartment of robotics and digital technologyM O N A S HU N I V E R S I T Y1995

c
 Copyright 1995byAndrew W. Moore

ContentsList of Tables viList of Figures viiAbstract viiiAcknowledgements x1 Introduction 11.1 System monitoring : 11.2 Kernel instrumentation : 21.3 Passive network monitoring : 31.4 Work performed : 41.5 Thesis organisation : 52 Background 82.1 The UNIX �le system : 82.1.1 Files : 82.1.2 File structures : 102.1.3 The vfs/v-node interface : 102.2 NFS : 122.2.1 NFS protocol : 142.2.2 Server : 172.2.3 Client : 172.2.4 NFS �le references : 17i

2.3 File system operations : 182.3.1 The block cache : 192.4 Operating system monitoring : 212.4.1 Benchmarks and load generators : : : : : : : : : : : : : : : : : : 232.4.2 Log �les : 252.4.3 Snap-shots : 252.4.4 Network monitoring : 262.4.5 Kernel instrumentation : 282.4.6 Specialist hardware : 313 Related Research 323.1 Data from system-monitoring research : : : : : : : : : : : : : : : : : : 323.1.1 Types of data : 333.1.2 The open-close session : 333.2 Prior system monitoring research : 353.2.1 Benchmarks and load generators : : : : : : : : : : : : : : : : : : 353.2.2 System logs : 383.2.3 Snap-shots : 393.2.4 Network monitoring : 403.2.5 Kernel instrumentation : 413.2.6 Specialist hardware : 443.3 Research using system monitoring results : : : : : : : : : : : : : : : : : 453.3.1 Trace-driven research : 453.3.2 Characteristics and conclusions : : : : : : : : : : : : : : : : : : 464 Kernel Instrumentation 474.1 Objectives : 474.2 The design of full kernel instrumentation : : : : : : : : : : : : : : : : : 474.3 A kernel instrumentation implementation : : : : : : : : : : : : : : : : : 484.3.1 Trace system control : 49ii

4.3.2 In-line instrumentation : 514.3.3 Activities snooper traces : 534.3.4 Additional information created by snooper : : : : : : : : : : : : 534.3.5 Data generated by Snooper : 544.3.6 Program execution : 574.3.7 O�-line processing : 594.3.8 Impact : 655 Network Monitoring 675.1 Objectives : 675.2 Network monitoring : 685.3 A network monitoring implementation : : : : : : : : : : : : : : : : : : 705.3.1 Network monitoring and data extraction : : : : : : : : : : : : : 715.3.2 Data �ltering, data translation and NFS/RPC call processing : 725.3.3 Data check-pointing and compression : : : : : : : : : : : : : : : 755.3.4 Post-processing : 765.4 Implementation restrictions : 835.4.1 Network packet capture mechanism drawbacks : : : : : : : : : : 835.4.2 Restrictions in available data : : : : : : : : : : : : : : : : : : : 875.4.3 nfstrace restrictions : 885.4.4 Local versus remote �le system performance : : : : : : : : : : : 906 Comparison of Monitoring Techniques 936.1 Introduction : 936.1.1 Excluded data : 956.2 System tra�c : 956.3 File system transactions : 986.4 System users : 1016.5 Files : 1026.6 File open-close sessions : 105iii

6.7 Results from rpcspy/nfstrace only : : : : : : : : : : : : : : : : : : : 1136.7.1 Network : 1136.8 Results from snooper only : 1156.8.1 Process information : 1166.9 Summary : 1176.9.1 rpcspy/nfstrace problems : 1197 Improving passive network monitoring 1217.1 Improving rpcspy : 1217.1.1 Limitations of rpcspy : 1217.1.2 Improvements to rpcspy : 1227.2 Limitations of nfstrace : 1237.3 Improvements to nfstrace : 1247.3.1 nfstrace treats the creation of a �le as two separate open-closesessions : 1247.3.2 Underestimation of the number of open-close sessions : : : : : : 1247.3.3 nfstrace is unable to observe logical data transfer : : : : : : : 1267.3.4 nfstrace has no record of open-close sessions that transfer nodata at the logical level : 1287.3.5 nfstrace has no record of open-close sessions that transfer bothread and write data : 1297.3.6 The nfstrace method used for summation of read operationsand write operations can result in transferred data not beingcounted : 1307.3.7 The method used for estimating the purpose of an NFS getattrtransaction is simplistic : 1307.3.8 nfstrace does not estimate the contents of a client cache. : : : 1317.3.9 nfstrace is unable to detect short open-close sessions : : : : : : 1317.4 A block cache simulator for nfstrace : : : : : : : : : : : : : : : : : : : 1327.4.1 Block cache operation : 133iv

7.4.2 A block cache simulator design : : : : : : : : : : : : : : : : : : 1347.5 Summary : 1358 Conclusion 1408.1 Summary comments : 1418.2 Future work : 142A Glossary 144Bibliography 148

v

List of Tables1 NFS calls : 152 Snooper trace record types and data �elds : : : : : : : : : : : : : : : : 573 Modi�ed Andrew Benchmark results for non-instrumented and instru-mented kernel : 664 rpcspy trace record types and data �elds : : : : : : : : : : : : : : : : : 755 NFS transactions and the related system calls : : : : : : : : : : : : : : 816 Tra�c breakdown : 847 Modi�ed Andrew Benchmark results for local and remote disks : : : : : 928 Data transferred : 969 Remote �le system breakdown : 9810 File system data operations : 9911 Number of users and quantity of data transferred per user : : : : : : : 10112 Comparison of average �le size per �le system : : : : : : : : : : : : : : 10313 Number of di�erent �les per �le system : : : : : : : : : : : : : : : : : : 10514 Open-close sessions : 10615 Open-close session types by �le system : : : : : : : : : : : : : : : : : : 10716 Open-close session �le systems by type : : : : : : : : : : : : : : : : : : 10917 Total NFS read/write breakdown to server : : : : : : : : : : : : : : : : 11318 NFS transaction breakdown : 11519 Total �le server results : 11620 Average time for phases of process lifetime : : : : : : : : : : : : : : : : 117
vi

List of Figures1 Block based �le transfer and storage : : : : : : : : : : : : : : : : : : : 92 A single �le system tree. : 103 A single, composite �le system from several �le systems : : : : : : : : : 114 A block diagram of a typical NFS client and server layout. : : : : : : : 135 Relationship between NFS and RPC : : : : : : : : : : : : : : : : : : : 166 Flow of actions for local disk data : 197 Flow of actions for NFS data : 208 An illustration of system monitoring : : : : : : : : : : : : : : : : : : : 249 Network monitor system : 2710 Various types of open-close sessions : 3411 kernel instrumentation in an operating system : : : : : : : : : : : : : : 5112 Ordering in open-close sessions : 6213 The passing of a �le ID from a process to its child. : : : : : : : : : : : : 6214 Program execution as �le open-close sessions : : : : : : : : : : : : : : : 6315 The
ow of a read request on an NFS client : : : : : : : : : : : : : : : 7816 Packet loss versus Ethernet utilisation : : : : : : : : : : : : : : : : : : 8517 Processed NFS transactions versus Ethernet utilisation : : : : : : : : : 8618 Various open-close sessions with block activity : : : : : : : : : : : : : : 8919 Open-close sessions as generated by nfstrace : : : : : : : : : : : : : : 9120 Data
ow between a user program and an NFS �le system : : : : : : : 9421 Read and Write transfers as recorded by kernel instrumentation andnetwork monitoring : 9722 Distribution of number of di�erent �les accessed versus �le size : : : : : 10423 Distribution of the number of open-close sessions versus the duration : 11024 Alternate Read-Write data transfer rate : : : : : : : : : : : : : : : : : 11025 Data transferred : 11126 File sizes : 11227 Process lifetimes : 11828 The nfstrace timeout : 12529 nfstrace timeout versus number of open-close sessions : : : : : : : : : 126vii

AbstractSystem monitoring is the process by which information about computer systems andusers of those systems is collected. It is carried out typically to assist in improvingthe operation of current systems and to aid in the development of future computersystems. This thesis compares and contrasts two system-monitoring techniques: fullkernel instrumentation, where information is obtained through the placing of instru-mentation code into the computer's operating system (kernel), and passive networkmonitoring where data associated with one or more computer systems attached to anetwork are extracted by monitoring the communications tra�c exchanged by thosecomputers with others on the network.In order to achieve this comparison and the contrast of the two system-monitoringtechniques, two such systems were implemented, operated in tandem and the resultsthen compared. A kernel-instrumentation system was ported from an earlier revisionof the UNIX operating system to a more up-to-date version. This involved devel-oping a working knowledge of the kernel system in general and the development ofprograms to process the records generated by the kernel instrumentation into a formatthat could be then be compared with the passive network monitoring system. Thepassive system was substantially complete as received although some support softwarewas written. Processing software also had to be written for summarising the recordsof each technique and for producing a comprehensive analysis of the trace record. Anunderstanding of the rule base of the post-processing software was achieved by thor-ough investigation including instrumentation and trial operation. A simpli�ed cachesimulator was constructed which, although it could not be integrated into the passivenetwork monitoring software, aided in an understanding of the cache system.viii

Full kernel instrumentation has been a popular technique because of its compre-hensive nature but it su�ers, among other things, from the necessity to have the kernelsource-code available, from the need to make changes to the system being monitoredand from the impact it can have on that system. In contrast, passive network monitor-ing can be conducted in a non-invasive, platform-independent manner which involvesno changes to the operation of the monitored machine. Passive network monitoring hasthe potential to be used in place of full kernel instrumentation for many tasks, and eventhough it was unable to give results comparable with full kernel instrumentation in allcases, it is able to give good predictions of many values when compared with thosederived from full kernel instrumentation. This was particularly true in areas related tothe writing of data. This thesis also notes discrepancies between the result from thetwo system-monitoring methods and discusses ways in which those discrepancies canbe reduced or eliminated.

ix

AcknowledgementsFirstly, I would like to thank my parents, Alan and Dorothy Moore, and my brother,Nicholas, for their endless and unwavering love and encouragement. Mere words cannotbegin to express my appreciation and love.I could not have had a better combination of mentors than my supervisors, TonyMcGregor and Jim Breen, They are both true and steady friends who willingly givetheir time and guidance.This thesis would have been at least di�erent and, perhaps, impossible withoutaccess to a number of programs. The starting point of this thesis was when Matt Blazemade the original rpcspy/nfstrace suite of software available to me. He then passedon changes and additions as well as words of advice and encouragement. I am morethan grateful to him.Songnian Zhou and Chris Siebenmann gave me access to the original snooper codeand gave unstintingly of their time to answer many questions and to o�er advice.Michael Dahlin willingly assisted me by supplying changes his work group had madeto rpcspy/nfstrace. My thanks to you all.I am grateful to Randy Appleton, Mary Baker, Charles Briggs, Dan Eaves, RickFloyd, Simon Hill, Rick Macklem, John Ousterhout, Alan Rollow and Margo Seltzerfor unhesitatingly giving of their enthusiasm, sought-after papers, ideas and the con-�rmation that the work of this thesis was worthwhile.I owe an eternal debt to the sta� of the Department of Robotics and Digital Tech-nology and to the users of the machines used for testing for putting up with crashingclients and low performance networks. x

My thanks to Andrew Lysikatos for organising access to the Hewlett Packard net-work analyser and to Kathy Ching for giving so much of her time to assist in obtainingthe much-needed source code which made this thesis possible.I extend thanks to my friends, in particular Michelle Judson, Cameron Blackwood,Rik Harris and Chris Beecroft, for making the past years both interesting and enjoyableand to Cameron and Chris for proof-reading.Finally, special thanks to Ralphe Neill, who willingly read through and commentedon early revisions of this thesis.

xi

Chapter 1Introduction1.1 System monitoringSystem monitoring is indispensable for the development and re�nement of computersystems. Systems monitoring is also important in providing assistance in the day-to-day operations of the systems. It is only through system monitoring that it is possibleto quantify changes in the operation of a system or to determine how well a newimplementation meets its speci�cations.Workload statistics, such as the average amount of data a user transfers in a giventime are important factors when evaluating both current and future systems. Di�er-ences in such values, occurring when older studies are compared with more currentones, can indicate the reasons for such changes and allow meaningful projections offuture trends. For example, a projection of the amount of data transferred per user ina given time can then be used for determining minimum required network-bandwidthsand disk transfer rates.The original AT&T UNIX [81] operating system and its descendants [52] are widelyused, particularly in research and educational establishments, and have been the sub-ject of many systems-monitoring studies. In recent years, the area of distributed sys-tems has grown rapidly and distributed operating systems based upon UNIX or ona UNIX-style framework have become common. A widely-used system which allowsdistributed �le access is the Network File System (NFS) [87]. There have been rela-tively few studies of NFS but they have had a wide impact because of the system'spopularity. 1

1.2. KERNEL INSTRUMENTATIONIn this thesis, a method of analysing distributed systems, passive network monitor-ing, is compared with full kernel instrumentation and the results of each system arecompared. Similarities and di�erences in the data are noted and discussed. Dispari-ties between the two systems are analysed and explained, and methods by which theresults of passive network monitoring can be made to parallel more closely those ofkernel instrumentation and achieve greater accuracy are outlined.1.2 Kernel instrumentationA common method of system monitoring involves the instrumentation of the operatingsystem. Operating system instrumentation or kernel instrumentation requires the in-stallation of extra instructions into the kernel to record desired information about theoperation of the kernel and the services it provides.However, kernel instrumentation has a number of drawbacks, as seen in followinglist (adapted from Mogul et al. [65]):� code which is to reside in the kernel is di�cult to write and debug,� kernel source-code is not always available,� each time an error is found, the kernel must be recompiled and the machinerebooted,� errors in the kernel code are likely to cause system crashes,� functionally-independent kernel modules may have complex interactions overshared resources,� kernel-code debugging cannot be done during normal machine operation; speci�cdevelopment time must be scheduled, resulting in inconvenience for users sharingthe system and odd work hours for system programmers,� sophisticated debugging and monitoring facilities available for developing user-level programs may not be available for developing kernel code. Page 2

1.3. PASSIVE NETWORK MONITORINGA particular set of kernel instrumentation will suit only one version of a speci�coperating system. Each operating system and each version of each operating systemrequires speci�c code to be written for it.It is common for the results of kernel instrumentation to be recorded by the in-strumented machine. This might be di�cult in an environment of networked machineswhich did not have local disks. Kernel-instrumentation data would have to be collectedfrom many machines simultaneously when monitoring a distributed system and eachmachine might have to be equipped with a local disk. Furthermore, the collectionof kernel instrumentation data on the machine instrumented will change the resultsthemselves.1.3 Passive network monitoringIn many cases, the statistics collected by kernel instrumentation may also be collectedsatisfactorily using passive network monitoring.Use of distributed systems has increased in popularity in recent years. The reasonsfor this are, �rstly, the cost of high performance workstations and memory componentshas decreased, and high-speed computer network technologies are now widely availableat moderate cost. Additionally, the interactive service obtained from large centralisedcomputer services is often of poor quality with long, unpredictable response times,restricted user interfaces and di�culty in con�guring hardware and software to users'needs. Finally an increasingly diverse range of applications and facilities is requiredby users. As a result of this, the option of using a network of many smaller, morepowerful workstations sharing common �le systems and printing resources has becomemore popular than the installation of a single large computer resource.Because of these developments, distributed systems are in increasingly commonuse, and with an increasingly common usage, there has developed a need to monitordistributed systems. Distributed systems are not as easily monitored using traditionaltechniques of kernel instrumentation, this is because problems such as the complexityin monitoring, in a distributed system each machine needs to be instrumented and thePage 3

1.4. WORK PERFORMEDtrace information must be collected from each machine and then the traces from eachmachine synchronized together. Additionally, kernel instrumentation has drawbacksassociated with needing access to the operating system source-code and the need toinstrument the source-code itself.As a result of having many vital activities conducted over a local network, passivenetwork monitoring, a method of monitoring distributed systems, can often be usedin place of kernel instrumentation. Passive network monitoring has many advantagesover kernel instrumentation such as the fact that no modi�cations to the operation ofthe distributed system are required. It is independent of the hardware on which thedistributed system is based and of the operating system itself, and can collect datasynchronously and simultaneously about every machine on a particular network, withthe collection being independent of the machines being monitored.While there are drawbacks to passive network monitoring, in particular a potentiallack of accuracy, this thesis seeks to demonstrate that it can be a valid alternative tokernel instrumentation for certain system-monitoring work. Additionally, the currentdrawbacks of passive network monitoring can be removed to provide greater accuracyand utility, and to yield a system that could replace kernel instrumentation in manyareas. The passive network monitoring system analysed in depth is designed to re-port information about NFS-based distributed �le systems, although passive networkmonitoring can be used for the instrumentation of any network-based system.1.4 Work performedIn order to achieve this comparison and contrast of the two system monitoring tech-niques, two such systems were implemented, operated in tandem and the results thencompared.A kernel instrumentation system was ported from a version developed for an olderrevision of the UNIX operating system, into a more up-to-date UNIX revision. Thisport involved developing a working knowledge of the kernel system in general andPage 4

1.5. THESIS ORGANISATIONthe installation and updating of the instrumentation system itself. During this de-velopment, unresolved problems in the original implementation were also dealt with,including a mutual exclusion problem in data-recording. An additional, substantial,part of the kernel instrumentation system was the development of program code toprocess the records generated by the instrumentation system into a format that couldbe then be compared with the passive network monitoring system.The passive network monitoring system was substantially complete as received,although an amount of enhanced software was added. In particular, software waswritten to assist in the management of the large amount of data potentially produced;this software incorporated check-pointing and compression routines. An understandingof the rule base of the post processing software (nfstrace) was achieved by thoroughinvestigation including instrumentation and trial operation. The relationship betweennetwork utilisation and passive network monitoring e�ciency was also determined.For both systems an extended period was spent ensuring the correct operation ofeach technique. This was principally done through trial operation, particularly in acontrolled environment.In order to compare and contrast the two monitoring methods, processing softwarewas written to summarize the records provided by each technique and to producecomprehensive analyses of the trace records. This software also required extensiveassessment to ensure correct operation.In developing a plan of improvements that could be made to the passive networkmonitoring system, a simpli�ed cache simulator was constructed. While not able to beintegrated into the passive network monitoring software (nfstrace), this system aidedin an understanding of the cache system and was a valuable tool in the developmentof the cache simulator concept.1.5 Thesis organisationThe rest of this document is organised as follows.Chapter 2 provides background information about approaches to the monitoring ofPage 5

1.5. THESIS ORGANISATIONoperating systems, with particular reference to passive network monitoring and kernelinstrumentation techniques. The chapter also provides background material on aspectsof operating systems in general and NFS-based distributed �le systems in particular.Chapter 3 discusses the place of system-monitoring research and discusses variousstudies categorised by the monitoring techniques used. Additionally, this chapter dis-cusses research that has used the results of other system-monitoring studies. By lookingat work following from system-monitoring studies seeking to show that a signi�cantcontribution of system-monitoring research is the further research opportunities it mayreveal. Finally, this chapter discusses certain concepts speci�c to the monitoring ofoperating systems and �le systems in particular, such as the �le open-close session.In Chapter 4 the implementation of full kernel instrumentation is outlined. Thefull kernel instrumentation system snooper is discussed with particular reference tothe modi�cations required to port the software to the required system. The methodsused to transform the results of snooper into an appropriate format are also discussed,along with the e�ects the snooper modi�cations had on the monitored system.The passive network monitoring system, rpcspy/nfstrace, is outlined in Chap-ter 5. This chapter discusses the operation of the passive network monitoring system,the relationship between its two principal components and the impact passive networkmonitoring may have on a monitored system.Chapter 6 presents and analyses the results of a comparison of the kernel instrumen-tation and passive network monitoring implemented on a single machine instrumentedwith both systems. The comparison is based on measures commonly used in systems-monitoring research such as the amount of data a user transfers in a given time, theduration of an open-close session and the total amount data transferred by a computersystem in a given time. This chapter establishes the areas of shortcoming in the passivenetwork monitoring implementation and the divergence in the results.Chapter 7 discusses changes that can be made to improve the accuracy of nfstraceand decrease the di�erence in the results obtained by each monitoring system. ThePage 6

1.5. THESIS ORGANISATIONchapter then discusses future possibilities for system monitoring using the passive net-work monitoring technique.Chapter 8 presents a summary of the results and �ndings of this thesis and discussespotential future work both to extend the comparisons made for this thesis and thefuture uses of passive network monitoring.

Page 7

Chapter 2Background2.1 The UNIX �le system2.1.1 FilesThe UNIX operating system and its derivatives have the �le as their basic construct [81,52]. A �le can be any collection of data. It could be the text of a thesis or the machineinstructions of a program. A directory is a �le containing reference information aboutthe location of other �les.Associated with a �le is the data it contains and an index node (usually referred toas an i-node). An i-node contains information about the �le such as which user ownsit, its size, where on the disk the �le's data is located, when the �le was last accessed,etc.Figure 1 shows the relationship between a bu�er of data (buffer), at the user level,the system block bu�ers and the physical disk sectors (sector 1 and 2). The sector isthe smallest working unit of the physical device. All operations involving the physicaldevice must involve sequential runs of data of this size. The block cache of the UNIXsystem also works in sequential bytes of data of this size. In this diagram a user bu�eris shown to be part of a �le. That �le extends over four disk sectors. The user's bu�erof interest (buffer) extends over two of these sectors.Although a user may wish to change only a single byte on a disk, the underlyinghardware can read and write only in integral units of physical storage, sectors. Thesystem must, therefore, read the sector containing the byte to be modi�ed, replace the8

2.1. THE UNIX FILE SYSTEM
0 1 2 3logical file blocks:

system buffers:

user: write

cnt

1

3

0
disk:

:

buffer :(buffer)

logical file (fd)

2

(fd,buffer,cnt)

(from file block cache)

Figure 1: This �gure shows the relationship between a bu�er of data, at the user level,the system block bu�ers and the physical sectors of the disk.a�ected byte and write the sector back to the disk.Processes may need to read data in sizes smaller than a disk block. The �rst time asmall read is required from a particular disk block, that block will be transferred fromthe disk into a kernel bu�er. Successive reads of parts of the same block then usuallyrequire only copying from the kernel bu�er to the memory of the user process.Multiple small writes are treated similarly. A cache bu�er is allocated when the�rst write to a disk block is made and succeeding writes to parts of the same block arethen likely to require only copying into the kernel bu�er with no disk I/O.In addition to providing the abstraction of arbitrary alignments of reads and writes,the block-bu�er cache reduces the number of disk I/O transfers required by accesses tothe �le system. System-parameter �les, commands and directories are read repeatedlyso their data blocks are usually in the bu�er cache when they are needed. The kerneldoes not need to read them from the disk every time they are requested.The situation is more complicated in the case of cached writes. The data on the diskwill be incorrect and data will be lost if the system crashes while data for a particularPage 9

2.1. THE UNIX FILE SYSTEMblock is in the cache and has not yet been written to disk. (Critical system-data, such asdirectories, are written synchronously to disk to ensure �le system consistency). Blockwrites are forced periodically for dirty bu�ers, to alleviate this potential problem ofdata loss.2.1.2 File structuresUNIX organises �les into tree structures called �le systems. Figure 2 shows a single�le system. The single �le system has an inverse tree structure.
/

/bin

/bin/ls /bin/cat

/home/joan/home/fred

/home/sam

/home/etcFigure 2: A single �le system tree.UNIX enables �le systems to be grafted together to form (from the user's perspec-tive) large tree-structures of �les. The user need not know on which disk a �le isphysically located to be able to access that �le. Figure 3 shows how several, di�erent�le systems can be grafted together into a single tree structure. File system 2 ismountedonto �le system 1. The directory /home/joan is referred to as the mount point of �lesystem 2. The resulting composite �le-system tree is shown as �le system 3.Under UNIX, there are a number of di�erent types of �le systems supported. Forexample, a �le system could be located on local disk drives, CD-ROMs or on a remotesystem, accessed via networks using a network based �le system such as the NetworkFile System (NFS). As a result, �le systems grafted together as in Figure 3 may be ofdi�erent types as well as residing on di�erent disks or parts of disks.2.1.3 The vfs/v-node interfaceIn order to implement various types of �le systems under UNIX without requiringusers to modify their programs, or make substantial changes to the operating systemPage 10

2.1. THE UNIX FILE SYSTEM
/

/work/paper /work/thesis

/work
/games

/

/bin

/bin/ls /bin/cat

/home/joan/home/fred

/home/sam

/home/etc

/

/bin

/bin/ls /bin/cat

/home/fred

/home/sam

/home/etc

/home/joan

/home/joan/work/thesis/home/joan/work/paper

/home/joan/games
/home/joan/work

1. 2.

3.Figure 3: File system 2 is grafted onto �le system 1, to form the composite tree shownas �le system 3.itself, Berkeley Software Distribution (BSD) and variants of UNIX, often BSD-derived,such as SunOS and Ultrix use the vfs/v-node system. vfs, which stands for virtual �lesystem, combined with the v-node, a virtual i-node, enables the operating system toperform a generic set of operations on a particular �le independently of the type of�le-system upon which it resides.Prior to the introduction of the vfs/v-node system, the contents of an i-node wereidentical whether in memory or on disk. With the introduction of the v-node, additionaldata were added to the structure when in memory, making the v-node a super versionof the i-node. In this thesis there will also be reference to the term g-node; this is theDigital Ultrix term for a v-node. Ultrix also refers to the virtual �le system, vfs, as thegeneric �le system or gfs. A g-node or v-node can be considered equivalent. In turn,both a g-node or v-node can be considered as super i-nodes.Using the vfs/v-node interface, the kernel directs commands to an appropriate, �le-system-speci�c part of the operating system. When a request is made on a particularPage 11

2.2. NFS�le the kernel will use regular �le-system operations to access that �le if that �le is ona �le system which is local to the user. For a �le on a networked �le system the kernelwill use network operations for its access.In the NFS, a server makes �le systems available for use by users on client machines.A machine is said to be a client of another if it mounts a �le system physically locatedon other machine. The �le system requests are passed through a network from theclient to the server. The server then performs the requested operation and returns theresult to the client. For example, in a read operation performed on the client, the readoperation would be transferred to the server. The operation would be processed by theserver and the results returned to the client.Figure 4 depicts how the client and server communicate through the network. Theserver performs the operations on its local �le system that were requested by the clientin exactly the same manner as they would have been if they had been requested byusers on the server itself. The client is shown with a local �le system in addition tothe connection to the server although such a �le system is not a necessity for a client.Remote Procedure Call (RPC) and the eXternal Data Representation (XDR) areused in the communications of the NFS client and server [55, 54]. They are discussedmore fully in Section 2.2.1.2.2 NFSThe following section describes the NFS. Much of this information has been drawnfrom NFS Implementation by Sandberg et al. [87], the NFS:Network File System Pro-tocol Speci�cation by Nowicki [70] and Overview of the Sun Network File System byWalsh et al. [112].The NFS protocol, as well as the standards for Remote Procedure Call (RPC) [55]and eXternal Data Representation (XDR) [54] were developed by Sun Microsystems.To enable a wide-scale implementation and use of this system, Sun Microsystems madethese standards publicly available, and has made available to operating system devel-opers a reference implementation of the NFS system. Page 12

2.2. NFS
RPC

XDR

IP

UDP/TCP

RPC

XDR

IP

UDP/TCP

NFS Filesystem

System Calls

Server Routines

Client Server

Local Filesystem

System Calls

Local Filesystem

Network

vfs/v-node vfs/v-node

Figure 4: A block diagram of a typical NFS client and server layout.The design goals for NFS included:� machine and operating system independence: while NFS was designedunder UNIX, it should be (and has been) implementable under most operatingsystems,� malfunction recovery: an objective of NFS was to minimise the di�culty ofrecovering from a server or client malfunction,� UNIX �le semantics to be maintained on clients: that is, to maintaintransparent access to UNIX machines, clients must maintain UNIX �le systemsemantics,� reasonable performance: NFS would not become commonly used if existingnetworking utilities were faster to use. NFS was expected to be no slower thanabout 80% the speed of a local disk.These goals lead to the design of a stateless distributed �le system. By stateless it isPage 13

2.2. NFSmeant that every request made of an NFS server is totally self-contained (idempotent)and repeatable.2.2.1 NFS protocolThe NFS protocol [70] uses the Sun Remote Procedure Call (RPC) mechanism [55].The use of the RPC system insulates NFS from the intricacies of server-client com-munications, data formats and communications reliability, thus allowing it to dealexclusively with �le-system-related matters.An RPC call is synchronous and, as a result, the RPC call will block until it canbe completed. A function run from a remote machine will wait for the results to bereturned from the remote machine before resuming program execution. This results inan RPC call behaving like a local procedure call and, with a few important exceptionssuch as handling machine-speci�c parameters, can be treated as such.Statelessness has important advantages for crash recovery. In a state-oriented Dis-tributed File System (DFS), a server crash would mean the loss of all informationabout the state of �les which clients may have been accessing. It is for this reason thatelaborate, crash-recovery protocols are established for servers to recover informationabout the DFS's state before the crash. This, of course, adds to the complexity to theoverall distributed system.NFS is stateless, each procedure call must contain all the information (parameters)necessary to complete a call. Additionally, the server does not keep track of any pastrequests. This results in uncomplicated crash recovery. When a server crashes, a clientresends NFS requests until a response is received. The server itself does no crashrecovery speci�cally for NFS. Sandberg et al. note that a client would not be able totell the di�erence between a server that had crashed and recovered, and a server thatwas slow to respond.Table 1 shows the NFS system calls. While most �le system operations are rep-resented here, notable omissions include open and close. The changes introduced bystate-oriented operations such as open and close are kept on the client only, suchPage 14

2.2. NFSnull() do nothing.lookup() returns a new �le handle and attributes for the named �le ina directory.create() creates a new �le handle.remove() removes a �le from a directory.getattr() returns �le attributes.setattr() set a �le's attributes (permissions, owner, etc).read() returns a number of bytes from a particular o�set into a �le.write() writes a number of bytes at a particular o�set into a �le.rename() renames a �le.link() creates a hard link on the remote �le system.symlink() creates a symbolic link on the remote �le system.readlink() reads the string associated with the symbolic �le name.mkdir() creates a new directory.rmdir() removes an existing directory.readdir() returns a number of bytes of directory entries froma particular directory.statfs() returns information about a �le system.Table 1: NFS �le system callsstate-oriented operations are not sent on to the server. As a result, when these opera-tions occur on a client, there is no speci�c associated NFS activity between client andserver.For NFS to provide transparent, remote access to �le systems it must also be in-dependent of system-architecture issues. The eXternal Data Representation (XDR)standard was designed to facilitate communication between computers that use dif-ferent data representations. This standard overcomes the di�erences between the waydata is represented on di�erent computer architectures. For example, computers canvary in the way each represents the concept of an integer such as varying the orderand the number of bits, octets, etc. XDR has speci�cations for common buildingblocks from which other values can be created including integers, character strings and
oating-point numbers. By using XDR, complex data structures can be machine andlanguage independent.An NFS call has a related pair of messages; a request and the response (eitheracknowledged or declined). Each of the messages (a pair for each of the system calls inTable 1) has arguments and returns parameters appropriate to their particular function.Page 15

2.2. NFSFor example, the read request message passes arguments relating to a �le's identi�ca-tion, where the data is to be read from (an o�set into the �le) and the amount of datato be read. The read reply message contains (in the success case) the attributes ofthe read �le, as well as the data. Because each RPC operation can have only 8 Kbytesof data associated with it, a read (or a write, etc.) request for more than 8 Kbytes ofdata is broken (by NFS) into two or more RPC requests.
read from fd:16385

to fd:20000

to fd:16384

read from fd:8193

read from fd:0
to fd:8192

return a buffer
of 8192 bytes

return a buffer
of 8192 bytes

return a buffer
of 3616 bytes

RPC

read from fd:0
to fd:8192

return a buffer
of 8192 bytes

return a buffer
of 8192 bytes

to fd:16384

read from fd:8193

read from fd:16385
to fd:20000

return a buffer
of 3616 bytes

RPCOperating System

(NFS client)

to fd:16384

read from fd:8193

return a buffer
of 8192 bytes

read from fd:16385
to fd:20000

return a buffer
of 3616 bytes

read from fd:0
to fd:8192

return a buffer
of 8192 bytes

Operating System

(NFS server)

U
D

P
or

 T
C

P
on

 I
P

N
et

w
or

k

U
D

P
or

 T
C

P
on

 I
P

ServerClient

T
im

e

read(fd,buffer,20000)

return 20000 bytes

Communications between

client and serverFigure 5: This �gure shows how a single operating system request, too large to traversethe RPC layer, is segmented and reassembled by NFS for processing by RPC.Figure 5 shows this relationship between RPC and NFS more clearly. The NFSinterface will, as required, segment a request into manageable pieces (8 Kbytes in thisexample). These requests are received by the server which, in turn, sends back theresults. The NFS interface will then reassemble the replies and return this data to theuser via the operating system. Both the requests and replies travel via a communica-tions system. The common communications system used is the Unreliable DatagramProtocol (UDP) [78] or, more recently ([56, 100]), the Transmission Control Protocol(TCP) [77]. Each of these then use the Internet Protocol (IP) [76]. The UDP and TCPcommunications layers may each fragment/de-fragment the packet from the previouslayer but this process is not shown in Figure 5. Page 16

2.2. NFS2.2.2 ServerAs has already been stated, the NFS server is stateless. When serving requests, thestandard implies that an NFS server must commit any modi�ed data to stable storagebefore returning results. For a UNIX system this means that requests which modify the�le system must
ush all modi�ed data to disk before returning from the (RPC) call.As a result, for a write call both the data blocks of the �le and the block containingthe i-node must all be
ushed if there have been any modi�cations [87].2.2.3 ClientThe client side provides the transparent interface to NFS. For transparent access toremote �le systems to function, the locations of �les must be independent of the �lenaming structure. In NFS, the remote server's hostname is looked-up once when the�le system is mounted. However, the disadvantage is that remote �les are not availableto the client until the mount is done.2.2.4 NFS �le referencesFrom the perspective of the client, each v-node individually identi�es a particular �le.The v-node contains enough information to determine which type of �le system a �leis on, for example: a local disk, a local CD-ROM or on a �le system of a speci�c NFSserver.For NFS, the v-node references a structure called a �lehandle which is always pro-vided by the server and used by the client. From the client's perspective the �lehandleinformation is opaque; the client is not required to decode the contents of the �lehan-dle. The �le handle can contain whatever information the server requires to identifyan individual �le, e.g. which the system the �le is on. The �lehandle implemented inUNIX also contains a reference to the �le itself (typically the i-node of the �le on theserver's �le system) and a generation counter to ensure that the client is referring tothe correct version of the server's �le. Thus, the �lehandle forms a unique identi�cationof the �le that can be used by both the server and client. Page 17

2.3. FILE SYSTEM OPERATIONS2.3 File system operationsA system call is the interface between a user's program and the operating system. Itis the means by which a user's program can perform �le system operations such aswriting data into �les, creating directories, etc.We will take the read system call as an example. This routine, which will reada nominated number of bytes from a particular �le. This call forms the front-end ofa set of operations that access the desired �le. Once the appropriate data has beenretrieved, the read routine places it into the bu�er nominated by the user.In order to read data from a �le residing on a local UNIX �le system, the kernel willgather up the read operands from the system call and pass them to the generic readinterface. These are then passed to the local �le system (called UFS, for UNIX FileSystem although most commonly the BSD Fast File System (FFS) [60]) read routines.The appropriate type of �le-system-read routine is automatically determined becauseit is part of the information denoting the �le.As a result of each �le being made up of a number of blocks, the UFS-speci�c readroutine will process each of the blocks that makes up the data to be read. If the blocksize is 8 Kbytes and the read request is 20 Kbytes this could involve up to four blocks:two complete blocks and one partial block at each end. The UFS read routine �rstchecks if the block from which it wants data is already in a system bu�er. If it is, thedata are copied into the bu�er space nominated by the user.Figure 6 shows the
ow the kernel will follow to obtain a block of data. For thisparticular read operation, the block resides on a local disk.In comparison, Figure 7 shows the
ow the kernel will follow to obtain a blockof data from a �le residing on an NFS server. The system cache is checked for therequired data. If it is not found, the data is read from the server. If the data is in thecache, and the cache copy is recent, this is returned to the user. If the data is in thecache and the copy was not made recently, a check is made with the server to ensurethe copy held in the cache is the latest available. This check will result in either thecache copy being supplied (if it is the latest available). Or it will result in a new copyPage 18

2.3. FILE SYSTEM OPERATIONS
read

ufs_read

No

Yes

Is the

already

?

block

read block of data

return block of data from

in cache

from disk into cache

cache to the userFigure 6: A chart of the
ow of actions required in returning a block of data to theuser. In this case the block resides on a local disk.replacing the client's cache copy and this data will, in turn, be supplied to the user.2.3.1 The block cacheAs explained in Section 2.1.1, the block cache improves the performance of disk relatedactivities. In addition to bu�ering up pending write operations and saving data fromprevious read operations, the block cache implementation in UNIX also performs aread-ahead to improve performance.Read-ahead is a technique where the operating system will read the next blockto the one actually requested into cache in anticipation of it being required in theimmediate future. Numerous studies on caching have found that �le accesses tend tobe sequential and the possibility of consecutive blocks being accessed in a �le is veryhigh [73, 8, 98, 109]. As a result, read-ahead is a very e�ective technique for improvingperformance.The write-behind, where modi�ed blocks of data are not immediately written to thePage 19

2.3. FILE SYSTEM OPERATIONS

Is the

cached copy

up to

date

?

the file on the server

get the attributes of

nfs_read

read

Has the

cache copy

been checked

recently ?

of this block

Yes

Yes

Yes

No

No

No

Is the

already

?

block

in cache

read block of data

from server into cache

return block of data from

cache to the userFigure 7: A chart of the
ow of actions required in returning to the user a block ofdata from a �le residing on a networked �le system (NFS). Page 20

2.4. OPERATING SYSTEM MONITORINGdisk drive, has an advantage in distributed systems, apart from increasing the speedof clients, as programs that write data no longer do so synchronously with the disk.Write-behind also decreases the activities of the server and the communications tra�cbetween server and client. However, the write-behind facility of the bu�er cache has adisadvantage in a distributed system. Modi�cations made to a �le by one client will notbe visible to another client reading the �le. In order to minimise the amount of timeduring which clients will access incorrect data, and also to minimise the chances of dataloss due to write-behind, NFS uses a modi�ed write-behind technique. In NFS, theclosing of a �le forces any unwritten data associated with that �le to be synchronisedwith the server's disk.The existence of the block cache does result in a di�erence in operations between thelogical operations of users requesting data from the cache and the blocks themselvesbeing written to and read from the �le systems. An example of this is that twoconsecutive read operations on a particular �le (for example, by a program executed twotimes in succession) may involve the complete reading of the data into the cache onlyonce with that data being available for the second set of requests without additionaldisk access.2.4 Operating system monitoringThis section will broadly cover the di�erent techniques of system monitoring; the fol-lowing chapter will cover particular methods and work derived from these methods inmore detail.Systemmonitoring is increasingly important for the evaluation of operating systems.Examples of the uses of system monitoring include assisting in the assessment of anoperating systems performance, or the validation of a particular sub-system, e.g. thecorrect implementation of an NFS server.Modern operating systems have grown in size and complexity resulting in consid-erable di�culty building an understanding of the complete system. In the past, anoperating system may have been understood by the study of the program code used;Page 21

2.4. OPERATING SYSTEM MONITORINGin a modern operating system this code may be many hundreds of thousands of linesof code, and the code itself may not be readily available for proprietary and copyrightreasons. As a result, system monitoring is often considered necessary to reveal aspectsof the system and users' behavior, and to provide information on how to the improveperformance of existing systems as well as assisting in the design of future systems.There are four aspects that system monitoring must address in its design and im-plementation for it to be useful. These aspects, which may con
ict with each other,are listed below in a summary adapted from Zhou et al. [117]:� Comprehensiveness: a monitor system must provide enough correct informa-tion for a complete picture to be built up from the data captured. For example,the monitoring of �le system should give information on all aspects of the usage ofthe �le system and not only the operations resulting from one particular activityor user.� Flexibility: ideally, a monitor system should be able to satisfy di�erent moni-toring needs. It should be able to trace the whole computer system, parts of thecomputer system, the actions of a particular user and of a particular program.� Minimal Impact: the use of a monitoring system should involve minimalchanges to the computer. In system monitoring it is most important that thesystem being monitored has the same behavior as when it is not being monitored.Minimising the changes required for monitoring has the additional advantage ofreducing the chance of errors being introduced into the operation of the systembeing monitored.� Convenience of Analysis: the output of the system monitoring, in its �nalform, should be of use to the researcher. Ideally the output of the analysisshould require little or no post-collection processing. For example, complex cross-correlation of trace records should, if required at all, be only a single task requiredjust once at the end of the trace. Page 22

2.4. OPERATING SYSTEM MONITORINGSystemmonitoring often takes two broad, interrelated forms: gathering informationabout the system itself, and gathering information about the behavior of the users ofthe particular system.For some forms of system monitoring, such as kernel instrumentation or networkmonitoring where the machines are monitored in situ, the users can be considered tobe load generators, using and causing the machines to behave in particular ways, thecharacteristics of which are being collected by the system monitor. This method canreveal the behavior of a system when in normal use. In this way the monitoring of oper-ating systems involves extracting behavior of a system and commonly this informationre
ects the behavior of the users.Several di�erent techniques are used to monitor operating systems in general and, ofparticular interest in this study, the �le system. In Figure 8 several system-monitoringtechniques are illustrated. Shaded regions represent the area each system monitoringtechnique involves. A technique such as network monitoring has its access restrictedto the data in the network, while kernel instrumentation could potentially involve anypart of the operating systems kernel.2.4.1 Benchmarks and load generatorsLoad generators refer to a type of program which exists to generate a load on a system.Commonly a load generator recreates the behavior of one or more users by duplicatingthe operations of the users. In this way a load generator could be built to operate ata high level, duplicating the exact commands a user has executed (e.g. ls, make, cp)or can operate at a lower level, simulating the logical operations. An example of thiswould be opening a �le and reading or writing to it, as a simulation of using an editor.Because an arti�cial load generator commonly seeks to recreate the behavior pat-terns of users, the building of such load generators makes use of the behavior of usersthat have been previously monitored. As an example of the use of previous studies, itwas noted that the use of small �les is common in UNIX [73, 8, 88] so a benchmarkmight be designed to replicate this characteristic by dealing with a large number ofsmall �les. Page 23

2.4. OPERATING SYSTEM MONITORING
Local Filesystem NFS Filesystem

User Program

kernel

instrumentation

System call stubs

RPC

XDR

IP

Device Driver

UDP/TCP

Operating System Kernel

load generators
benchmarks &

monitoring
network

Block Cache

NetworkFigure 8: An illustration of several system monitoring techniques. Shaded areasrepresent the scope each technique can potentially access.Load generators take a number of forms. For example, a load generator might betimed over its operation and the time taken can then be used to compare the same loadgenerator running in di�erent environments, thereby comparing the environments. Thissort of load generator is usually termed a benchmarking program. Another examplewould be where the load generator tests several di�erent types of operations. In thisway, the load generator is exercising di�erent alternatives, perhaps testing a wide setof operations on a �le system.The uses of benchmarks in particular and load generators in general include:� testing the performance of a machine before and after modi�cations,� testing a new implementation of an operating system attempting all operationsto ensure they are functional,� imposing an arti�cial load on a system, commonly a number of loads togetherare used to stress-test a system. Page 24

2.4. OPERATING SYSTEM MONITORING2.4.2 Log �lesLog �les are records of information collected for such activities as auditing and resourcecontrol. Log �les can give potentially valuable information about the operation of thesystem and the activities of users. They provide the basis for useful studies even thoughcommonly kept for other purposes and containing only the simplest of information.Commonly used log �les include:System logs which commonly record information at a user level; which users werelogged in and how long were they logged in are typical contents of user logs.Program accounting logs which keep records on which programs are executed ona system, how much time was used by a particular program, how much memorywas used, how many disk accesses were made, who ran the program, how longthe program ran, etc.Miscellaneous logs, such as the recording of old �les as they are moved from sec-ondary to tertiary storage.Each log can help characterise the behavior of users and the particular usage amachine has had.2.4.3 Snap-shotsTaking a snap-shot of the system is the process of making a static copy of the requiredinformation at a speci�ed time. Such a snap-shot might be taken regularly, perhapshourly, so that the di�erences between two (or more) successive snap-shots may becompared. As an alternative, a snap-shot may be taken only a single time. Such datacould be used to give such things as average �le size on the system at that moment.A snap-shot requires little interference in the overall operation of the operatingsystem. Typically, data can be collected for a snap-shot using tools built with userprograms that require no alterations to the system, or, more-rarely, with special tools.However, such studies, particularly of the �le system, are best done on a quiescentPage 25

2.4. OPERATING SYSTEM MONITORINGsystem so as not to be perturbed by changes (deletions, creations, �le-moves and soon) during the collection of the data.Snap-shots are most often made from the user level and, because of this, similarinformation can be collected, with the same user tools, from a wide variety of operating-system implementations.Taking snap-shots as a form of ongoing system monitoring does have one majordrawback; it cannot be performed continuously. It gives only a static picture of thesystem at any one time. The result is that using this technique will tend not to revealshort-term trends. This may not be a problem in studies of long-term trends buttaking snap-shots is not considered an appropriate technique where there is need forinformation over the shorter term.2.4.4 Network monitoringWith the common use of networks for distributed-computing environments, computerinterconnectivity has become as important to a computer system as more-traditionalcomponents such as disk drives and CPUs. In distributed-computing environment thecommunications channel can be carrying disk tra�c or inter-process communicationstra�c, monitoring the network between machines not only reveals information aboutthe communications itself, but other activities of machines, for example, �le systemoperations and the communication of processes. As a result of this, network monitoringhas become a useful technique by which the activities of network-attached systems canbe monitored.Local area computer networks (LAN) are commonlyEthernet [61] or IEEE 802.3 [2]1based but other network types are also in common usage [3, 4, 44].The popularity of LANs has led to large numbers of people using computer net-works as part of their daily work. The networks could be providing users with accessto remote printing services or remote computer access, but particularly with UNIXsystems, networks also commonly provide access to central �le servers. In more ad-vanced distributed systems, networks are the communications channel for the sharing1Ethernet and IEEE 802.3 refer to two related but slightly di�erent LAN standards. Page 26

2.4. OPERATING SYSTEM MONITORINGof processor load as well as more elaborate network-based �le systems.In many local network systems, communications tra�c is easily accessible. All in-formation passed using the cable is available for anyone with the appropriate tools tointercept and monitor. On a segment of an Ethernet-based network (to which manycomputers may be connected) the network can carry only one packet from any com-puter at a time. The communication between the machines is forced into a linear timesequence. All data packets are consecutive and no network event can occur simultane-ously with another.Figure 9 shows a network monitoring system connected to a network used by othercomputers. If the network monitor can extract the communications tra�c betweenother machines, the monitor can record this information and process it either then orlater, by analysing information from the communications between the other systems.
spy record

Local disk for

ServerClientFigure 9: A network monitor system connected to a local area network can monitorand record the conversations between other machines that use the same network tocommunicate.At one stage, such a network monitor would have been specially built for the taskbut modern workstations have been shown to be e�ective as network monitors [63].They also often have the capacity to do rudimentary processing of the captured datain real-time.This thesis discusses the use of network monitoring for gaining information abouta distributed �le system, although a network monitor could intercept communicationsof any sort passing through the appropriate network. The level at which a networkmonitor program can intercept communications betweenmachines is shown in Figure 8.As shown in this �gure, the network monitor will typically record the results to localPage 27

2.4. OPERATING SYSTEM MONITORINGdisk, rather than generate extra communications tra�c to be monitored, by sendingthe results to remote disk.Network monitoring does place several requirements on the system it is monitoring.First, the information of interest (for example, communications tra�c in a distributed�le system) must pass via the network. This means that passive network monitoringwould be of no use for the monitoring of �le-system operations between a machine anddisks attached directly to it because the operations between the machine and its diskswould not pass through the network.Secondly, network monitoring relies completely on the ability to derive the appro-priate information from the communications tra�c between machines on the network.For NFS, this is the communications tra�c between clients and a �le server. However,in the case of an NFS-style �le system, not all of the actions that occur on a client willcause operations on the network. In particular, the use of a cache to increase perfor-mance in a �le system will �lter requests from a client to the server so a network-basedmonitor will not be able to record these requests. The use of processing heuristicsbased around the particular protocol used across the network is needed to make in-formed estimates on when the cache was used. This becomes necessary in situationswhen all that was sent across the network was a test to ensure that the contents of thecache were correct.The network-monitoring technique has the particular advantage of being non-in-trusive on the operation of other equipment (other systems being monitored). Thisincludes both the recording of data from the network and allowing the recording oflogs and so on to occur on a machine that is independent of the monitored systems.An additional advantage of network monitoring is the simultaneous collection ofinformation about potentially many di�erent clients and servers. Any machine thatuses the network may have data about it collected.2.4.5 Kernel instrumentationKernel instrumentation consists of inserting extra code into parts of an operating sys-tem to collect and record statistics or more comprehensive data about the operationPage 28

2.4. OPERATING SYSTEM MONITORINGof the kernel.Figure 8 shows the scope of kernel instrumentation. As the diagram indicates,kernel instrumentation could potentially record information about any operation ofthe operating-system kernel.There are two commonly-used techniques for kernel instrumentation: a full instru-mentation and use of kernel variables.Full kernel instrumentationFor full kernel instrumentation, the instrumentation code is inserted into every partof the kernel that performs a function of interest. Such instrumentation is usuallycomplex and involves adding code to many di�erent parts of the kernel. An exampleof the variety of areas that may require modi�cation is the reading of blocks from a�le. Not only does the read system call cause blocks to be read from a �le, but in somecircumstances the write system call can cause this to occur also. Additionally, thevirtual memory system on occasion needs to be able to read blocks from executable�les. As this example demonstrates, even a seemingly easy example can be morecomplicated than it �rst appears.Kernel code is limited by the fact that it is in the kernel, i.e. it must be craftedspecially not to impact heavily on either the size or time-constraints placed on thekernel. It is also di�cult to debug because every potential change to the systemcan, cause the system to crash, often without warning and sometimes without enoughinformation to easily track the source of the error.Kernel instrumentation also has a serious lack of portability. The instrumentationdesigned for one particular version of the operating system is not �tted easily to thekernel of another operating system. Indeed, it is often not even �tted easily to anotherversion of the same operating system. Kernel instrumentation also presupposes accessto the source-code for the kernel of a particular operating system. Such source-code isoften di�cult to obtain being restricted by high prices, non-disclosure agreements orsimple lack of availability.Owing to an e�ort by kernel-instrumentation implementors to minimise the impactPage 29

2.4. OPERATING SYSTEM MONITORINGof the monitoring system on the machine, the post-processing phase of a kernel tracecan be both time consuming and complex. This process often involves the matching ofrecords, for example, open and close records, to calculate the duration of �le activity.Finally, kernel instrumentation involves the careful management of the data gen-erated by the trace mechanism itself. The data collection can, if poorly implemented,skew the results and change the operation of what is being monitored.A full kernel-tracing system can su�er from the very characteristic that makes it soadvantageous, that is, the sheer volume of generated data can quickly overwhelm localresources.Despite these problems, kernel instrumentation has the potential to give an exactrecord of what occurred in the kernel of a system and, as a result, is commonly usedwhen high precision is required.Kernel variablesWhat has been termed kernel variables refers to the placing in the kernel of variousvariables. These variables record the activity of various parts of the kernel, for example,the number of times a page was found in the cache or the number of times a read systemcall occurred. These variables are often used in the development phase of the kerneland this extra instrumentation has simply never been removed. The most commonmethod of using this form of information is to have a user process regularly obtain thevalues stored in the various variables and collect them in a �le for later analysis.Because such variables were placed in the kernel during its development, they mightbe of little use because they do not give the information that is needed. They might beincomplete (a read counter without a write counter), or little understood. Additionally,there is often no easy way to �nd out about their existence.Access to the kernel source-code is required if kernel variables and variables are tobe added or modi�ed and, as has been mentioned above, kernel source-code is oftenunavailable. In such cases, this form of instrumentation relies totally on any pre-existing variables. Kupfer [50], in discussing various kernel instrumentation availablein the Berkeley UNIX 4.2BSD kernel, comments on the ease with which various kernelPage 30

2.4. OPERATING SYSTEM MONITORINGvalues and the user programs that use them can become useless, incorrect or failure-prone, serving no useful purpose as a result.Kernels instrumented in such a way do have a major advantage over other tech-niques, as the variables can be accessed easily by user programs.Often the amount of data involved with kernel variables is small enough that thecollection and storage is a modest or trivial problem. However, like kernel instrumen-tation, it is possible for the action of accessing and recording results to skew the valueswe wish to measure. As an example, if a program collecting statistics about the ac-tivity of the �le system records its data to disk too often, it will quickly dominate thestatistics it is collecting.2.4.6 Specialist hardwareSpecialist hardware is equipment designed speci�cally to collect information about aparticular aspect of a machine, e.g. disk transfers; it could be attached to the sameinterface as the disk drive and all instructions to the disk drive would then be recordedby the specialist hardware. The data recorded by specialist hardware may well requirean immense post-collection processing task although that does depend greatly on whatis being monitored, how the specialist hardware performs this task and the nature ofthe �nal record the specialist hardware records.Specialist hardware is, by its nature, extremely task-speci�c. For example, an an-alyser for a SCSI interface could not be adapted easily to any other task. Furthermore,the design and debugging stages of specialist hardware could be most-complex unlesssome type of modular, general-purpose equipment were used.While having drawbacks that could be of great consequence, specialist hardwarecan be fast and accurate. It can record di�cult-to-measure values at the circuit andinterface level; measurements that might not be possible using another system mon-itoring technique. Additionally, good design of the monitoring hardware could makethe system completely non-intrusive, introducing no changes at all to the system be-ing monitored. A special-purpose network monitor could also be considered in thiscategory. Page 31

Chapter 3Related ResearchThis chapter examines the reasons for analysing the performance of operating-systemsand how such needs directly motivate research into obtaining information on operatingsystems.The �rst section discusses the types of data that system monitoring can make avail-able to researchers. The second section describes the desire for analysing operating-systems with emphasis on how this research contributes towards the development andre�nement of existing systems. The third section discusses previous research conductedusing the techniques described in the preceding chapter. The �nal section covers brie
yseveral publications for which the authors have made use of the raw data, results andconclusions of previous publications to assist in their own research.The assessment of systems makes a signi�cant contribution in the development ofnew systems, as well as an important contribution in the process of re�ning existingsystems. In addition, system monitoring can usefully contribute to a system's e�ectiveday-to-day operation. In the development and redevelopment of systems a substan-tial number of studies have been performed, and while most studies are not directlycomparable, the variety of studies has meant the development of a number of di�erentmonitoring methods.3.1 Data from system-monitoring researchSystem-monitoring produces information that is either used and interpreted by theoriginal researchers or made available for others to work with.32

3.1. DATA FROM SYSTEM-MONITORING RESEARCHThis data can be the characteristics of a group of users such as:� the average and maximum number of users using a system in a given time,� the average and maximum number of �les read by a user in a given time,� the average and maximum amount of data transferred by users in a given time,or� the average type of access users perform on a �le.or the data can be the characteristics of the system such as:� the number of processes over a given time,� the average lifetime of a process, or� �le-system information such as the average length of a �le.The data are then used by researchers, showing trends in user and system behavioras well as identifying areas in which systems can be improved.3.1.1 Types of dataThere is a considerable variety in the types of data produced by researchers. Oftenthe data are tailored to answer a small group of questions but sometimes, the data canbe used by a number of di�erent researchers. Data collected can include traces andthe results from those traces (in the case of trace-driven analyses), statistical analysisof the user and system, or accurate timing information about accesses by software tovarious hardware systems.3.1.2 The open-close sessionThe open-close session has been a central concept in research of �le systems [73, 8,108, 117, 116, 58]. An open-close session is the access by one user to a �le through oneparticular program bounded by one set of open-close operations. If a program has a �leopen n times simultaneously, it is considered that there are n simultaneous open-closePage 33

3.1. DATA FROM SYSTEM-MONITORING RESEARCHsessions. The open-close session bounds the read and write operations performed ona �le for a user. Thus an open-close session has a duration and a session record willgenerally record the amount of data read from or written to a �le.The execution of a program can be considered to be bounded by the opening ofthe program's �le at the beginning of execution and the closing of that �le at the endof execution. In this way the execution of a program can be considered to cause anopen-close session as well although, in this case, data are read from the �le only duringthe course of the execution.Figure 10 shows a variety of open-close sessions. Case 1 could be the reading ofa demand-paged executable; initially data are read from the �le and then, during thecourse of the open-close session, more data are read as those pages are needed. Case 2could be an example of a con�guration �le that is read once only and closed when theprogram terminates. Case 3 could be an output �le, �rst opened when the programstarts up and then, when the data are produced, written to and closed at programcompletion. Case 4 could be a �le being edited; it is �rst read by the editor and then,when the changes had been made, written to disk and the �le closed.
Open

Read

Close

Case 2

Open

Write

Close

Write

Case 3

Time

Open

Close

Write

Read

Case 4
Close

Read
Read

Read

Open

Case 1Figure 10: A variety of open-close sessions with read, write or read/write activity.The characteristics of open-close sessions tell us a great deal about the �les on a�le system and the way users utilise those �les. The average length of an accessed �lehas been used in research on the optimum block size in the �le system [73, 60, 43].Page 34

3.2. PRIOR SYSTEM MONITORING RESEARCHThe length of time a �le is accessed, that is the duration of the open-close session, hasbeen used in research related to the sizing of �le caches and also to research on �le-lifetime [73, 8, 108]. The total quantity of data transferred in an average open-closesession is used in publications on cache characteristics in addition to simulations ofcaches [98, 73]. A related measure, the number of open-close sessions transferring agiven amount of data, has also found use [58, 68, 24].Open-close-session data can also reveal such information as the frequency-of-use of�les, the characteristics of �le access (read-only vs. write-only vs. read-write accesses)and the amount of data read from or written to �les during the course of an open-closesession.3.2 Prior system monitoring research3.2.1 Benchmarks and load generatorsThe running of a benchmark or load generator on a machine to assess the machine'sperformance in various situations is a commonly-used technique of system monitoring.These programs need to be repeatable, and thus cannot rely on the actions of asingle user. Instead, load generators and benchmark programs usually will attempt tosimulate the average or peak usage of a machine. In the case of a benchmark, the timetaken for the completion of a particular task helps in the assessment of the performanceof the machine.While popular, benchmarks have inherent problems that are not easily circum-vented. The �rst major problem is that the typical user pro�le on one machine candi�er from that on another machine. As a result, users of benchmarks must either de-sign their own particular benchmarks for each system to be tested or use benchmarksthat do not exactly match the researchers' requirements.One way to overcome this problem partially is the development of standard bench-marks that test several di�erent commonly-used aspects of the system. In this way anattempt can be made to exercise as many di�erent aspects of operation as possible.Despite this, benchmarks often fail to test enough aspects of a machine's operation toPage 35

3.2. PRIOR SYSTEM MONITORING RESEARCHbe a totally reliable measure of performance.Secondly, a single run of a benchmark does not provide reliable results. Randomoperations on a machine (tasks initiated by the operating system, other users, etc.),in addition to the unknown contents of the machine's caches, mean that the run timeof a single test can vary considerably. This problem is overcome by running suchbenchmarks multiple times and averaging the various results.The Andrew Benchmark, introduced in Howard et al. [42] tests �ve distinctly dif-ferent parts of the operating system's operation. These �ve phases are:� MakeDir - Construct a target subtree that is identical in structure to the sourcesubtree.� Copy - Copy every �le from the source subtree to the target subtree.� ScanDir - Recursively traverse the target subtree and examine the status of every�le in it but do not access the contents of any �le.� ReadAll - Scan every byte of every �le in the target subtree once.� Make - Compile and link all the source-code program �les in the target subtree.This benchmark has been used by others [82] without any changes, although Ouster-hout [71] produced an improved version of the Andrew Benchmark (the Modi�ed An-drew Benchmark or MAB) which suits simultaneous testing in varied operating systemenvironments. The major change is that, instead of compiling and linking code forthe host machine, a C compiler is included that compiles for an experimental targetmachine called SPUR [41]. As a result, the same compiler is used on every machinetested. MAB has been used in the research of Macklem [56] and Ousterhout [71].Endo et al. [34] note the problems of benchmarks, particularly in reference to �lesystem testing. In Endo et al. problems of benchmarks are noted, including poorscalability and the benchmark failing adequately to measure the �le system. Theyrecommend a better benchmark, give outlines of the abilities such a benchmark shouldPage 36

3.2. PRIOR SYSTEM MONITORING RESEARCHposses, and additionally detail two methods of achieving this end, although at thisstage such a benchmark does not exist.On a related issue, to address problems of benchmarks not being accurate simu-lations of the user workload, Ebling and Satyanarayanan [32] implemented a systemthat produces what they refer to as micro-models. A micro-model is a characterisa-tion of a particular program. For example, the micro-model of a C compiler wouldbe the reading of a .c �le, the reading of several .h �les and the writing of a .o �le.Ebling and Satyanarayanan generated micro-models from short-term-trace data and,using these short-term traces, they were able to characterise various operations. Othermicro-models were used to drive load generators which, as a result of the micro-models,gave a better approximation of the actual load. Such techniques seem certain to �gureprominently in the future of benchmarks.The microscopic-benchmarks of McGregor [59] were speci�cally intended to bench-mark a single operation, such as a single read or write system call. The elapsedtime for a single operation can then be used as a parameter for the queueing systemthroughout which that operation must pass.Thekkath et al. [107] make use of a load generator to compare a new method ofsimulation. The use of a load generator means consistent testing of the simulated modelcan be compared with the original system on which the model is based. In this way,benchmarks are used to validate aspects of the simulator's usefulness and accuracy.The creation and use of benchmarks is a popular technique for the comparison ofsystems and changes to systems. The results of Howard et al., Ousterhout and Eblingand Satyanarayanan among others [93, 113] lead to the introduction of new benchmarksand new methods of creating benchmarks. Researchers have also used benchmarks tocompare the performance of di�erent types of systems [69, 115, 31].Benchmarks can also be used to show the change in performance on a systemthat result from changes in policy or procedure, that is, the method or procedurethe system follows. Mogul [64] makes and measures the results of changes to theupdate policy of UNIX which a�ects when dirty disk blocks are written from thePage 37

3.2. PRIOR SYSTEM MONITORING RESEARCHcache to disk. Cao et al. [19] use benchmarks to measure performance changes whenthe policy for �le caching is altered. Baker and Sullivan [7] also used benchmarksto measure the performance of a system. In this case the measures were used toensure that modi�cations to the system to improve other aspects of its operation didnot degrade the systems performance too much. Workload generators have been usedto load a system with user-like jobs or with tasks that stress-test the system [91, 46].Macklem [56] used combinations of benchmarks and load generators to give informationto assist in improving the NFS protocol. Additionally, benchmarks are common whencomparing major changes in a system. The implementation of a new type of �lesystem [84, 83, 82, 26] or a new type of object naming system [22].3.2.2 System logsSystem logs can give usable information about the operation of the system and activitiesof users. In particular system logs can provide the basis for useful research even thoughthese logs are kept usually for other purposes (typically auditing).Jensen and Reed [45] and Miller and Katz [62] investigate trends in �le-migrationpatterns by analysing logs of �les moving from one level of storage to another. These�les are being typically moved into and out of a tertiary, mass-storage system (MSS).Smith [97, 96] studied the movement of data sets associated with a particular editorto develop an algorithm for automatically moving data into and out of MSS.The use of particular system logs, as with check-pointing, most commonly involvesthe analysis of long-term trends only. This was the case in the three cases cited above.The use of system logs is usually highly restrictive and dependent solely on theinformation logged. A researcher may not have any control over the contents of thelog. This situation is common where the log is designed for a particular purpose andthe researcher has no desire to change the log, or perhaps because of access rights isunable to change the contents of the log.However, there is one redeeming bene�t: the logs themselves were generally notcreated for the research but for other reasons such as auditing, billing, cross-checkingand error control. As a result, the researcher does not need to add signi�cant workloadPage 38

3.2. PRIOR SYSTEM MONITORING RESEARCHto the system or have any signi�cant overhead having the information contained in thelogs made available.3.2.3 Snap-shotsThe ease with which benchmarks and system-log analysis can be done is comparableonly to the ease with which system snap-shots can be taken.Irlam [43] collected information from a once-only snap-shot operation of over 1,000�le systems. This collection was made by the running of several user programs withthe results being collected and sent on for collation. These programs were able tobe run on any UNIX-based operating system without any special access to operatingsystem code. Irlam was able to obtain data easily from numerous sites in many, variedenvironments; the only common requirement was that they run an operating systemwith the appropriate user programs.Snap-shots are suitable for use in long term research and, subsequently, the studyof �le migration. Both Smith [96] and Strange [101] have used snap-shots in such astudy. A further study by Smith [98] uses a snap-shot with �le-size and �le-referencedata to provide information on driving a cache simulator.A system snap-shot makes an excellent supplement to other techniques. Full kernelinstrumentation in association with a full snap-shot of the �le system at the beginningand end of the trace period can, with appropriate post-processing, provide an accuraterecord of events on the system with knowledge of the state of the machine beforeand after the trace. Such a combination can mean the trace monitoring output doesnot need to be as comprehensive, reducing the size and potential impact of the fullkernel instrumentation. Floyd [36, 37] used a combination of trace-driven analysis andsnap-shots for a study on short-term �le reference patterns.Snap-shots do have one major drawback in that they can not be performed contin-uously. They give only a static picture of the �le system at any one time. The resultis that research such as that presented in Satyanarayanan [88] has �ltered out all �letrends that take place in the period between the times when the snap-shots of the �lesystem are taken. This may not be a problem in research of longer-term trends butPage 39

3.2. PRIOR SYSTEM MONITORING RESEARCHthe use of snap-shots is not an appropriate technique per se in research where there isa need for shorter-term information.3.2.4 Network monitoringWith the increasingly common use of networks for interconnecting computer systems,network monitoring, a relatively new technique, has the potential to be a commonlyused monitoring method. Network monitoring takes two forms: �rstly just the moni-toring of the tra�c of a communications network, useful for interpreting the make-up ofcommunications-tra�c in a particular network and secondly, interpreting the tra�c ofa communications network, useful in determining the operation of machines connectedto a communications network.While the interpreting of communications tra�c is still a technique in relative in-fancy, there have been several research topics, particularly monitoring studies, per-formed already. Investigations into the overall capacity of networks investigated, suchas that presented in Boggs et al. [17], is important when the e�ciency of the com-puter network can play a signi�cant role in the performance of an attached machine.Additionally, the work of Gusella [39] into the usage of these networks can assist inthe planning for future networks. Gusella recorded the header information of everyEthernet network transaction (packet) over a given time period and later processedthat data o�-line. In this way, a partial trace of the operations on the network wasmade.In 1990, Mogul [63] argued that workstations could make e�cient monitors of lo-cal networks. They had the required combination of CPU power, memory size andnetwork-interface-speed to enable them to e�ciently collect and process network datain real time. Several years ago the monitoring of computer networks required compli-cated, expensive, specially-built equipment. Of course, such equipment still has a placein the analysis of the increasingly-faster computer networks becoming available.Two facilities available on many common computers are Sun's Network InterfaceTap (NIT) [103] and Digital's packetfilter [65, 27]. These facilities allow user pro-grams to access and record data passing through the network directly. Before thePage 40

3.2. PRIOR SYSTEM MONITORING RESEARCHavailability of such facilities, packages such as that written by Barnett and Molloy [10]had to be written speci�cally for the Ethernet interface a particular machine possessed.With the increased capacity of workstations, researchers now need not limit them-selves to capturing all (or part) of the raw data that traverses the network and inter-preting it at a later stage. Because of the capacity of networks (Ethernet has a rawcapacity of 10Mb/s), the sheer quantity of data does not easily allow for a raw traceof the network contents (di�cult to store). Programs such as rpcspy [11, 12], built onthe Sun and Digital network monitoring facilities mentioned above, do some processingand interpretation of incoming data to reduce the quantity of information ultimatelyrecorded.Blaze, who constructed the rpcspy system of reference [11, 12], has used it togood e�ect for the monitoring of a network based around a large �le server. Hisresearch results have also been used in several other publications [39, 10, 15, 16, 13].Dahlin et al. [24] used the rpcspy tools to characterise �le-system load in a distributedsystem. The results of this research have then been used to justify the building of anew style of distributed �le system, xFS [120]. Anderson [1] used rpcspy to analysethe distribution of tra�c across di�erent �le systems and to theorise on better use oflocal disks in a networked �le system.The non-intrusive nature of network monitoring and the ability to easily analysethe activity of a whole network simultaneously will mean an increase in the quantityand variety of research using this technique.3.2.5 Kernel instrumentationMuch system-monitoring research has used kernel instrumentation but there is a broaddelineation between those performing full instrumentation and those using kernel vari-ables available at the user level.Full kernel instrumentationThe accurate and comprehensive nature of kernel instrumentation makes it a popularchoice when kernel instrumentation is possible. The accuracy of kernel tracing is anPage 41

3.2. PRIOR SYSTEM MONITORING RESEARCHimportant bene�t and the ability to get �ne resolution on the timing of system calls wasused in Gri�oen and Appleton [38]. Zhou et al. [117] detail a full kernel instrumenta-tion package called snooper, which is designed to be a low-overhead, system-call-onlyrecording package. This paper also details interesting �ndings including informationon data-transfer rates to and from �le systems, the durations of various operations andprocess-lifetimes in the traced system.A common use for full kernel instrumentation is to generate data that can thenbe used in trace-driven analysis of the operating system and �le system. Ouster-hout et al. [73] use full kernel tracing to give characteristics of the �le system as well asdata to drive a cache simulator. Smith [98] makes use of this method to drive �le cachesimulations. Bozman et al. [18] used kernel instrumentation to generate data used tocharacterise �le reference behavior and drive a simulation of �le reference behavior.Several publications with instrumented kernels have been done on distributed sys-tems. Several of these were done with the Sprite distributed system [72]. Baker et al. [8]presented not only the characteristics of the distributed �le systems (and how its char-acteristics had changed when compared with a previous paper [73]), but also used thetrace of the study to investigate how e�ective the caches were in a distributed �le sys-tem. Welch [116] further performed a related study on the same distributed �le systemto analyse the e�ectiveness of cache consistency models in use. Additionally, in thesame distributed �le system, Welch [114] used a tracing system to look at the impact ofchanges in this system including the use of the number of client-server transactions persecond as one of his comparison metrics. Makaro� and Eager [58] use kernel instru-mentation to record physical-block information to show di�erences between systemsperforming di�erent tasks such as the clients and servers of a distributed �le system.Others have used kernel instrumentation to gain speci�c information about a machine.Ruemmler and Wilkes [86] were interested particularly in the disk's active data set.Li [53] instrumented MS-DOS machines to gain information about augmenting cachebehavior in those systems.Mummert and Satyanarayanan [67, 99] detail a distributed-system kernel tracingPage 42

3.2. PRIOR SYSTEM MONITORING RESEARCHfacility. In this facility, machines will forward their tracing results onto a centralmachine for storage. In this way some aspects of kernel instrumentation, such as theneed to write large local trace �les, are modi�ed. This system exchanges the workloadwhich would be incurred in the local recording of large trace-logs for the overhead ofsending the data through the network to the logging host. This facility uses agentsin the clients of a distributed system to periodically send trace records to a collectionunit. Such a system has the e�ect of passing the problems of trace-data volume to thecollector, a machine that would not necessarily be among those being traced. Kistlerand Satyanarayanan [48] and Kistler [49] have used this technique to aid research intoa new �le system design.Kernel instrumentation has been combined with other techniques to provide addi-tional information. Floyd and Ellis [37] combined kernel instrumentation with the useof benchmarks in a study on �le reference patterns. Floyd [36] combined this techniquewith the use of snap-shots to study shorter-term �le references. In 1989, Cheriton andMann [22] used kernel instrumentation in combination with benchmarks in a studyon an improved naming service for distributed systems. Endo et al. [34] discusses amethod of kernel tracing involving intercepting the communications between kernelcomponents. For example, the tracing of the cache bu�er would involve the intercep-tion of all information exchanged by this kernel component with the rest of the system.Such a method depends upon a highly modular kernel system, however, Endo et al.present this method as a facility in an already highly modular kernel design.Kernel instrumentation is both popular and e�ective if its drawbacks can be over-come.Kernel variablesThe use of kernel variables often provides easy access to information in the kernel fromthe user level. UNIX system programs such as ps use such variables for the informationthey generate. In addition, the remote collection of kernel values is possible. A simpleexample of this is the rwho daemon service [28]. This daemon periodically broadcastsonto the network a packet of data containing information about the status of thePage 43

3.2. PRIOR SYSTEM MONITORING RESEARCHmachine and the users on that machine. While the rwho daemon is a simple example,Kupfer [51] shows the use of remote instrumentation for the collection of comprehensivedata from kernel variables.Spasojevic and Satyanarayanan [67, 99] mention the collection of an elaborate activ-ity summary when a main trace system fails and then, at a suitable time, sending thissummary to a collection agent. In this way their distributed data collection does notfail to collect any results even during a time when clients are unable to communicatewith the collection agent. In 1988, Bach and Gomes [5] used kernel variables to show,among other things, that an operating system spends the most of its time dealing with�le-system operations. Macklem [57] makes use of kernel variables to assess the per-formance of a new implementation of NFS. This is a good example of variables whichhave been placed into the kernel during development remaining available to anyoneusing derivatives of the implementation (unless, of course, the variables are removeddeliberately).Owing to the ease with which kernel-variable data can be collected, such informationhas been used in a variety of research, either as a primary or a secondary mechanismfor supplying information.3.2.6 Specialist hardwareSpecialist hardware is often used during the development of other hardware. Emer andClark [33] and Clark et al. [23] used specialist monitoring hardware to characterise theperformance of particular CPUs. Such techniques would have common usage duringthe development cycle of such hardware but, because of the speci�c purpose for whichsuch hardware must be built, wider applications are often not possible. Shand [92],however, used general-purpose equipment to design a hardware monitor. The resultwas that his hardware monitor could be adapted to monitor not just the system itwas designed for but also other systems of similar architecture. Shand used hardwareinstrumentation to study the operation of a machine running UNIX and was able togive accurate, short-duration timing of events as well information on other aspectsof the operating system such as task preemption and Direct Memory Access (DMA)Page 44

3.3. RESEARCH USING SYSTEM MONITORING RESULTShandling.The use of specialist hardware is uncommon for systems monitoring because ofthe investment that would have to be made in time and e�ort to get such a systemoperational. However, with the application of general-purpose equipment such as thatin Shand's study, more reports done using this technique will become available.3.3 Research using system monitoring resultsIn addition to publications that have incorporated their own system monitoring, aconsiderable number of researchers have used the results of others, commonly the tracesof a full kernel instrumentation analysis, for use in their own work.3.3.1 Trace-driven researchConsiderable research has used the trace data collected by other authors for use intheir own work. This is a major bene�t of trace analysis. Once the original data sethas been collected, dependent on its coverage, the trace may potentially be reused inother work.The data used in Ousterhout et al. [73] is re-used in Thompson [108] in a follow-onstudy of the e�ects of �le deletion.The data from Baker et al. [8] has been used by Shirri� and Ousterhout [94] for aname and attribute caching study. The Baker data was again re-used in Baker et al. [6]and Baker [9] for a proof-of-concept study involving changes to hardware support forcaches.Blaze and Alonso [16, 15, 14] and Blaze [13, 11] all make use of common sets ofdata gained with the rpcspy tool [12].While details are not given on exactly what traces are used, Ebling and Satya-narayanan [32] used traces to develop their micro-models for incorporation into high-accuracy load generators. Page 45

3.3. RESEARCH USING SYSTEM MONITORING RESULTS3.3.2 Characteristics and conclusionsIn the tradition of citation, many papers also use information from previous papers toassist in the justi�cation (or refutation) of ideas. As a result, research into operatingsystems can quickly gain momentum through the structured use of a results fromseveral sources.Baker et al. [8] uses results from Ousterhout et al. [73] for comparison as a followon study covering similar ground. In this way Baker et al. have been able to showinteresting trends in growth of systems between the two publications by comparingtwo related sets of results. Conclusions and the system characterisation documentedin Ousterhout et al. [73] is used in Davies and Nicol [25], Floyd and Ellis [37] andReddy and Banerjee [80]. This further work uses such values as the basis for workload,prospective, measured and simulated respectively. Ramakrishnan and Emer [79] useZhou et al. [117] among others for examples of characteristics from which mathematicalsimulations are then built. Carson and Setia [20, 21] use the results of Ousterhout et al.,Baker et al. and Smith [98], among others, to de�ne and re�ne models they are devel-oping. Thompson [110] uses the results of Ousterhout et al. and Smith [98, 96], amongothers, in an analysis of cache designs and a more general study of caching. Thompsonalso uses the work of Zhou et al. and results from his own previous studies [109, 108]in this work. Hartman and Ousterhout [40] use the conclusions of Ousterhout et al.and Baker et al. to justify the need for a new system and to assist in de�ning thecharacteristics the new system should possess.As can be seen by this small snap-shot of workload, system-monitoring researchhas been extremely important both for the raw data it generates and the results andconclusions that are drawn from that data.
Page 46

Chapter 4Kernel InstrumentationThis chapter describes the kernel instrumentation performed in this study.4.1 ObjectivesAs discussed in Chapter 3, a system-monitoring procedure can be required to provideinformation about the computer and operating system being monitored, in addition tothe activities of the users of that computer. This information, as it relates to studiesof the �le-system, includes:� the average or maximum amount of data an average user will require in a giventime,� the average or maximum time a �le is used, or� the average amount of data in a �le.Full kernel instrumentation gives us the ability to accurately and comprehensivelyrecord this information, directly from the kernel, as the events occur.4.2 The design of full kernel instrumentationAs discussed in Section 2.4.5 there are a number of methods of kernel instrumentation.One of these methods, full kernel instrumentation, through the insertion of instru-mentation code into an operating system, has the potential to generate comprehensivetraces of information about a monitored system and its users.47

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONHowever, full kernel instrumentation, as previously mentioned, does involve a siz-able complexity in programming. A kernel for Ultrix 4.3a is made from approximately1300 �les, and has a total of approximately 720,000 lines of code. Implementing afull kernel instrumentation system, snooper, required changes or additions to 48 �lesinvolving approximately 1,600 lines and the addition to four new �les which results in2,750 extra lines of kernel code.An additional complexity relates to the use of a kernel instrumentation system.Snooper is based on a set of modi�cations to the Ultrix 4.3a operating system. To makethese modi�cations, the source-code is needed. To obtain operating system source-codeit is necessary to obtain a licence from the vendor (Digital in this case) and also a licencefromAT&T. The second licence is necessary because most commercial implementationsof UNIX, such as Ultrix, are built around the original AT&T implementation, andincorporate some of its code. As a result source-code for the two operating systemsmustbe sought, and because these are not common, their purchase can be time consumingand in some circumstances, expensive.4.3 A kernel instrumentation implementationThe kernel instrumentation this thesis uses is the snooper package. The package wasoriginally implemented by Siebenmann and Zhou [95] for Ultrix version 3.3. Snooperis a set of kernel instrumentation routines for the recording of information about log-ical �le operations, physical-block operations, process execution and termination, etc.The snooper package also instruments parts of the virtual memory system, howeveras this does not have direct relevance to this thesis, it will not be discussed furtherhere. The snooper package is based upon the package of the same name describedin Zhou et al. [117] which, in turn, has its ancestry in the package used by Ouster-hout et al. [73] to perform their study of the UNIX 4.2BSD �le system.It was required that the snooper package operate with Ultrix 4.3a, the latest versionat the time. Due to di�erences in the various versions of the operating systems, thecode can not be copied simply from one kernel system to another or from the Ultrix 3.3Page 48

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONimplementation to Ultrix 4.3a. These code changes involved accommodating di�erencesin the
ow of the kernel code itself. Code changes were needed to be able to handlenew data structures and accommodate changes in the usage of older data structures.To ensure the correct operation of the new kernel, a suite of programs was writtenthat would comprehensively test the modi�ed kernel code.The implementation of snooper under Ultrix 4.3a consists of four parts:1. the mechanism for activating and deactivating the trace system, and the mecha-nism for changing tracing �les during the course of a trace,2. instrumentation of the various kernel components,3. trace bu�er management and synchronisation, and4. o�-line processing software.The implementation of these parts in snooper is described in the following sections.4.3.1 Trace system controlModi�cations to the snooper system involved building two extra system calls to allowuser-level control software to have access to the snooper code. The �rst of these systemcalls, strace, allows a user-program to activate the trace system. The arguments forstrace include the name of the �le to trace to and an indication of which kernel systemsshould be traced. By passing the strace system-call a NULL in place of the trace �le,the trace system is signalled to shutdown.The second of the system calls, straceserver, does not take any arguments orperform any direct function for the user program. It is a control point over the tracefacility for emptying the trace bu�ers into the trace �le. Typically, a part of themonitoring program will become a daemon program. This daemon program will makean straceserver call which will not complete unless the tracing system is deactivated.The daemon program can then be stopped, restarted or have its priority changed, justlike any other process, thereby controlling directly the overhead introduced into thesystem by the transfer of trace bu�ers into the trace �le. Such access to certain kernelPage 49

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONfunctions is quite common and is used to control programs such as the NFS serverprograms [102].In snooper, the trace bu�ers are managed as a ring. A routine (getroom) allocatesand �lls successive bu�ers in a bu�er pool. As each bu�er is �lled, a
ag is set as anindicator that the bu�er should be
ushed. If bu�er space cannot be allocated, thetrace record is dropped (and a counter is incremented tracking the number of droppedrecords). The straceserver call will look for and
ush successive full bu�ers to diskcontinually and reset the appropriate
ag when a bu�er is free again.The getroom routine uses bu�ers but cannot wait for straceserver. This isbecause straceserver may depend on kernel activities that are being traced andgetroom, being critical in the trace code, may be called from one of those traced oper-ations. An example is where getroom is being called to trace a record due to a bu�er
ush. The straceserver code can also cause a bu�er to be
ushed. As a result, thissystem as implemented is deadlock-free, but getroom will discard all trace records ifstraceserver should stop operating.Amutual-exclusion problemwas recognised in the porting of snooper to Ultrix 4.3a.This problem is related to the point in the trace system where the trace system outputis changed from one �le to another. The kernel tracing system may be required tochange trace �les at any time. When a particular trace �le is growing too large, theoutput can be switched to a new �le so that the old �le can be dumped onto tape tofree disk-space. However, without appropriate programming, there is a possibility thatthe straceserver process, unaware of the �le changeover, can attempt to write datato the old �le using an invalid or uninitialised �le-reference. This situation exists partlybecause there are two di�erent processes at work; one changing the output �le and onedumping the current �le. The UNIX system can cause the process changing the output�le for the trace data to be suspended in the middle of its activity and signal the record-dumping process to continue. The result is straceserver (the record dumper) willattempt to use a �le reference that is in an indeterminate state which will, typically,cause the operating system to crash. Page 50

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONA busy-wait lock is not acceptable in the kernel because, at this level, it wouldplace an unnecessary overhead on the kernel and possibly change the system's behavior.Instead, to give a mutual-exclusion lock that was not overly-consuming of resources aPeterson's-solution-style lock [75] was implemented as part of the port of snooper toUltrix 4.3a. The result of using this lock is that it is possible that the straceserverprocess may spend more of its time temporarily suspended and, thus, unable to dumpthe contents of bu�ers to the trace �le. However, this risk of trace-data loss occursonly at trace-�le changeover.4.3.2 In-line instrumentationFull kernel instrumentation involves the coding of trace points into the kernel. At thesetrace points, data are recorded about what is occurring. In Figure 11 we can see thatkernel instrumentation can (potentially) capture information about every operationperformed by user programs.
Local Filesystem

User Program

NFS Filesystem

Network

kernel

instrumentation

System call stubs

Block Cache

RPC

XDR

IP

Device Driver

UDP/TCP

Operating System KernelFigure 11: All levels of an operating system, showing the point at which kernel in-strumentation information is extracted.An example of instrumented system calls is the seek operation, which changes thepoint at which data are read from or written to a �le. The following code fragmentPage 51

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONis from lseek, showing the snooper instrumentation in that system call. The addi-tional code required for the tracing system is surrounded by #if define(STRACE) and#endif STRACE. This tracing code will cause the seek_trec function to be activatedeach time a program successfully uses the lseek function call. The tracing functionseek_trec could then record information about the seek operation..... if ((where < 0) && ((vp->v_mode & VFMT) == VFREG)) {u.u_error = EINVAL;return;}ret = VSEEK(vp, where); /* actual Seek command */if (u.u_error) {u.u_error = EINVAL;where = -1;} else {if (ret) {u.u_error = EOPNOTSUPP;return;}#if defined(STRACE)if ((trace_flags & TRACE_SYSCALL) && strace_vnode(vp))seek_trec(vp, (u_long) fp->f_offset, (u_long) where,uap->sbase, start_time);#endif STRACE smp_lock(&fp->f_lk, LK_RETRY);fp->f_offset = where;smp_unlock(&fp->f_lk);}....A decision must be made when setting up an implementation of kernel instrumenta-tion as to what is to be traced. In the snooper system only regular �les are traced forlogical operations. For the block-tracing component, snooper will trace all operationsthat involve the use of blocks. Page 52

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION4.3.3 Activities snooper tracesThe system calls which snooper will trace include creat, truncate, open, close,read, write and seek. All of these operations are at the logical level and are carriedout only on regular �les. Additionally, snooper instruments the delete and renamesystem calls to allow the names of existing �les to be traced as they are changed. Thesystem calls mkdir, rmdir, chdir, mount and umount are traced to allow informationon changes in the directory structure to be recorded. Completing the list of system-call operations which snooper traces are exec, fork and exit. These records canthen be used to give information about which programs caused which particular openand close calls as well as chasing parent/child-process chains. It is also possible toreconstruct open-close sessions where the opening of a �le is in a parent process andthe close operation occurs in a child process.All read and write operations involving blocks are traced by snooper. Potentiallythese could include operations involving tape units or raw disk devices but, in practice,block activities are related exclusively to �le data on a diskless client.4.3.4 Additional information created by snooperIn order to give a form of unique �le identi�cation, snooper generates and assignsunique �le-identi�cation numbers (�le IDs). The unique identi�cation of �les is impor-tant for the various operations on a particular �le to be linked together and for anymeaningful analysis to be conducted. An ideal approach to �le identi�cation is to usethe pathname of the �le. However, the pathname of a �le is di�cult or impossibleto obtain during a trace without causing substantial overhead on the traced system.Additionally, a �le can potentially be deleted and the �le name reused.Another alternative is to use the �le's i-node number. However, while the i-nodenumber is unique for a particular �le system it is not unique across �le systems. Fur-thermore, an i-node is potentially reused when a �le is deleted and recreated.The �rst time a �le is processed by a �le routine (read, write, open, close, andso on) a
ag in the i-node is tested and set if it is not set already. Additionally, the �lePage 53

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONis given a �le ID which is recorded in the i-node allowing it be identi�ed by snooperthe next time it is seen. The �le IDs are consecutively-assigned integers and are usedinternally by snooper as the names of �les.Each snooper transaction is also identi�ed by the process ID (PID) that causedit. This means that each of two di�erent processes holding open the same �le can beuniquely identi�ed.As a result of these two di�erent forms of identi�cation, every set of logical oper-ations on a �le by a process, (starting with an open and ending with a close) can beseparated.File IDs are associated only with logical operations such as read, open, write andnot with block operations.Snooper cannot easily identify when a process has the same �le open a numberof times simultaneously. In the o�-line processing phase all the operations of thesimultaneous open-close sessions are considered to be part of one open-close session.More details on how open-close sessions are determined is given in Section 4.3.7.4.3.5 Data generated by SnooperSnooper collects a copious amount of data from the various �le system operations.Table 2 shows the �elds for each record type. The trace �le is binary to ensure compactdata and quick transfer of records from each trace stub to the trace bu�er.
Page 54

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONRecord Type Data �eldsopen/creat record type, open mode, reference count, pathname statistics,real time, CPU time, last-modify time, last-access time, g-node number, g-node generation number, �le ID, �le size atopen, parents g-node number, parents device number, devicenumber, process ID (PID), User ID (UID), �le type, durationof operation, �lenameclose record type, reference count, real time, CPU time, g-nodenumber, g-node generation number, device number, �le ID,�le size at close, process ID (PID), User ID (UID), �le type,duration of operationread/write record type, reference count, duration of operation, real time,CPU time, �le ID, o�set into �le, bytes read/written, processID (PID), User ID (UID), �le typeseek record type, seek base, duration of operation, real time, CPUtime, �le ID, old o�set into �le, new o�set into �le, processID (PID), User ID (UID)ftrunc/trunc record type, duration of operation, real time, CPU time, g-node number, g-node generation number, device number, pro-cess ID (PID), User ID (UID)delete record type, pathname statistics, duration of operation, realtime, CPU time, last modify time, last access time, g-nodenumber, g-node generation number, �le size at deletion, de-vice number, parents g-node number, parents device number,process ID (PID), User ID (UID), �lenamecontinued on next pagePage 55

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONRecord Type Data �eldsrename record type, duration of operation, real time, CPU time, lastmodify time, last access time, g-node number, g-node gener-ation number, device number, old parent g-node number, oldparent device number, new parent g-node number, new parentdevice number, old �lename, new �lename, process ID (PID),User ID (UID)exec record type, pathname statistics, duration of operation, realtime, CPU time, g-node number, g-node generation number,device number, �le size, parent g-node number, parent devicenumber, text size, data size, stack size, �lename (last compo-nent), process ID (PID), User ID (UID)vfork/fork record type, child process ID, duration of operation, real time,g-node number, g-node generation number, device number,text size, data size, stack size, process ID (PID), User ID(UID)exit record type, duration of operation, real time, process ID(PID), User ID (UID), text size, data size, stack size, CPUtime used in user mode, shared text size, shared memorysize, unshared data size, unshared stack size, page reclaims,page faults, swaps, block input operations, block output op-erations, messages sent, messages received, signals received,voluntary context switches, involuntary context switches,rmdir/mkdir record type, pathname statistics, duration of the operation,real time, CPU time, g-node, g-node generation number, de-vice number, directory size, parent g-node number, parentdevice number, process ID (PID), User ID (UID), �lenamecontinued on next pagePage 56

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONRecord Type Data �eldschdir record type, pathname statistics, duration of the operation,real time, CPU time, new directory g-node number, new direc-tory g-node generation number, new directory's device num-ber, old directory g-node number, old directory number g-node generation number, old directory device number, parentg-node number, parent device number, process ID (PID), UserID (UID), new directory's �lenamemount/umount record type, duration of the operation, real time, CPU time,process ID (PID), User ID (UID), mount
ags, max transfersize, optimal transfer size, block size, �le system type, totalnumber of i-nodes, total number of free i-nodes, total numberof 1Kbyte blocks, total number of free 1Kbyte blocks, totalnumber of user consumable 1Kbyte blocks, minimum size inbytes before paging, major/minor devices, root mapping fromexports, �le system's root �le path name, device's path nameblock read/write record type of block read/write, why the block read/writehappened, cache hit, device block's �le is on, size of I/O re-quest, duration of the operation, real time, process ID (PID),g-node to which this block belongs, number of the blockTable 2: Snooper trace record types and data �elds4.3.6 Program executionWhen a program is executed, the exec system-call will cause the program header tobe read from the beginning of the executable �le. The header of an executable �lecontains additional information about the size and position of the executable code,data and stack segments as well as checksums to ensure the integrity of the �le. Theexec system-call will then transfer control for that process to the executed programPage 57

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONbased on the contents of the header.Some executable programs start with a special number which is used to indicatethe type of the program. If no such special number is present, as is the case with mostscript �les, the exec system-call will cause /bin/sh command interpreter or anotherprogram (if given) to be executed.There are two di�erent ways to treat executable programs:Pure: pure executables are loaded into memory completely by the exec call. Theseprograms are typically small, and it is expected that all parts of the program�le could be referenced during execution. In most systems, pure executables arerare, most executables being of the demand-paged type.Demand-paged: demand-paged executables are not fully loaded immediately intomemory. Only a small amount of the program is loaded, the exec call will thentransfer control to the program components loaded and will force the loadingof pages of information from the program �le as the information in the pagesis needed. This method minimises the amount of memory needed to load aparticular program.The early implementations of NFS introduced a modi�cation to the way some exe-cutable �les were loaded to improve NFS performance [87]. Demand-paged executablesdid not bene�t from the �le system performing read-ahead because pages of the exe-cutable are frequently accessed from the �le in a non-sequential fashion. The solutionimplemented was to cause small, demand-paged programs to be treated as if they werepure executables. This meant that all pages for the program were loaded into memoryfrom disk at the start instead of being demand-paged during the course of execution.The result was improved performance because of the ability to take better advantageof read-ahead and the elimination of the demand-paging overheads for that particularclass of executable. An additional improvement was the use of �ll-on-demand clus-tering to group small page-in requests resulting from demand paging into one largeone. Fill-on-demand clustering is a method used by the memory manager for the pre-paging of data. When a page fault occurs, the page-fault handler attempts to read inPage 58

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONthe desired page along with adjacent pages on either side of the page for which thefault occurred. These changes have now been incorporated into most modern UNIXoperating system versions.The loading of pages by a demand-paged executable is performed by the virtualmemory manager, so there is no logical read operation associated with the loading.Instead, virtual-memory page-faults will cause calls to the paging routines to get datafrom the �le as required. As a result for page-on-demand executables, snooper willgive much lower values for logical bytes read than the reads actually required for theexecution of the �le. There is some di�culty in instrumentation of the virtual memorysystem because a number of virtual memorymanagement modules are in use; includingthe swapping and paging sub-system. Because these routines are critical to the kernel'soperation, instrumentation could potentially cause massive performance degradation.The virtual memory routines were considered to be outside the scope of this study.As determined from the Ultrix exec source-code, the header (the �rst 76 bytes)will always have an associated logical-read operation. However, there will be no otherlogical tra�c associated with the loading of the program �le unless the executable iseither a pure executable or smaller than a given size threshold (256 Kbytes by default).The reading of data from the program �le is done via special routines in the virtualmemory system. These routines access directly the vfs/v-node read routines bypassingthe logical read operation all together. The result is the snooper system collects anincomplete record of �le accesses for a program �le that is being executed.4.3.7 O�-line processingThe data which snooper creates are placed into data-�les in a format that is both timeand disk-space e�cient but which is far from being user-friendly. O�-line processing isnecessary to extract and summarise the required information and, because informationabout sessions of open-close events is particularly desirable, a majority of the o�-lineprocessing of snooper data involves the creation of open-close session records.A trace-record formatting program (based on one present in the original snoopertools) was used to turn the binary data-�le into a human-readable text �le listingPage 59

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONevery transaction in the raw log. This was to allow the development of processing toolsthat can read the text �les allowing faster tool development. The o�-line processingtools have been written mostly in the Perl programming language [111] with occasionalrecourse to the C programming language [47] when this o�ered an easier alternative.The trace record formatting program generates a line for each transaction. A sampleoutput record may be:B | 2118298 | 26742 | 0 | -10495 | 8301 | 0 | 8192 | FileF | Li | Rf | Hit |In this �rst case we have a block-level operation with a block-read at time 2118298, byprocess ID 26742, owned by UID 0, of the �le with inode 8301 on device -10495. Theread was of the �rst 8 Kbytes of the �le. It was �le data from a remote disk and wasin the system's local cache (Hit). Another sample entry may be:rd | 2118302 | 26742 | 0 | 117 | 521 | 0 | 1271 | 4 |In the second entry we have a logical-level read at time 2118302, by process ID 26742,owned by UID 0 and reading from the beginning of the �le (0 o�set), 1271 bytes. Thesnooper-allocated �le ID is 521. The other numbers in this entry (117 and 4) aretiming values and of no interest to us for this thesis.As mentioned above, block entries do not have �le IDs associated with them. Thiswas a design decision taken by the original authors of snooper to reduce the amountof data the snooper system generates and the overhead of information in every blockentry.For the purposes of processing snooper data, open-close events need to be clearlyde�ned. This is needed because there are numerous special cases for which an open-close record must be created. Open-close sessions can be considered to be summariesof the trace output, tabulating things such as duration of the open-close, the amountof data transferred, the size of the �le when it was closed and so on.A sample single line (shown over two lines for convenience) of the output from theo�-line processing software follows:2179130 | 4 | 26747 | 526 | 0 | -10495:8284 |791 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 791 | 791 | op-clPage 60

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONFor this example, the session occurred at a time of 2179130 and took 4 milliseconds.Process ID 26747 (a process of User ID 0) opened and closed �le ID 526 where the �leID refers to i-node 8284 on device -10495. A total of 791 bytes was read from the �le(logically), 2 blocks were read from a locally-cached copy of the �le. Finally, the �lewas 791 bytes long when opened and 791 bytes long when closed. The op-cl indicatesall parts of the open-close record were located. The other zeroes indicate no bytes werewritten, no blocks were read directly from the �le (rather than the cache copy) and noblocks were written to the �le either.This record can then be used to give information about the average and maximumsize of �les accessed, the duration of open-closes, the amount of data transferred, thenumber of blocks in cache, the number of blocks written and so on.Creating open-close sessionsThere are several cases to be handled for the creation of an open-close record. We willgo through each of the cases which the o�-line processing software needed to be ableto reconstruct.Figure 12 shows various open-close sessions including sessions as they cross thebeginning and end of the trace period. A regular open-close session where both openand close system calls occur during the trace period is illustrated by Case 1. Case 2and Case 3 illustrate situations where either the open or the close operations were notrecorded as they did not occur during the trace period. Case 4 illustrates the situationwhere neither the open or the close occurred during the trace period.Figure 13 shows an additional complication to the process of creating open-closesessions from the trace records. This situation occurs when a parent process opens aparticular �le and its child process closes the �le. The main complication is to whichprocess are the �le operations to be attributed. Should the o�-line processing softwareconsider this to be two sets of operations and subsequent sessions? For these situationswhere a �le open-close is broken across two processes, a simpli�cation was introducedto reduce the complications of o�-line processing; all operations that the child andparent perform are added together to create a single open-close session record. ThisPage 61

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION
Time

Open

Close

Case 2

Close

Open

Case 3

Close

Open

Case 4

Close

Open

Case 1

Trace ends

Trace begins

Figure 12: Various ordering of open-close operations that occur during the course oftracing.simpli�cation was made on the basis of several observations. Firstly, it was noted thisoccurrence of an open �le descriptor being passed to a child did not occur often, 18times over the whole trace period. Secondly, it was also noted that while the �le wasopen for several processes, the majority of data, (all data in 16 cases), was transferredby one process only. Finally, when compared with passive network monitoring, theopen-close sessions have no process related information in them. As the comparisonbetween monitoring systems was on the basis of open-close sessions, independent ofthe processes responsible, this simpli�cation seemed satisfactory.
Parent Process

Child Process

Open

Close

TimeFigure 13: The passing of a �le ID from a process to its child. This complicates theopen and close sessions as the open occurred in the parent process and the close occursin the child process. Page 62

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONSection 4.3.6 discussed inaccuracies that result from the method by which executa-bles are loaded and inadequacies in the snooper instrumentation in this regard. Inaddition to those di�culties discussed, forming open-close sessions for the execution ofprograms adds additional complexity.Figure 14 shows two situations where the initial loading of an executable from the�le system in preparation for execution is considered to be an open-close session. Case 1shows the case where a process is forked and then subsequently execs a particularprogram. Case 2 shows the case where one process execs another program over thetop of itself. In each case the close is simulated for the end of that particular program'slife, whether that program exited or another program was subsequently executed. Anopen is simulated at the time data is �rst read from the �le. The kernel does not usethe open system call to open �les for execution but it does generate read system-callsto read data from the �le. These reads are then logged by the tracing system. For thefork-exec and exec-exec situations illustrated in Figure 14, the size of the �le can bedetermined from information in the exec system call.
Time

fork/vfork

exec

exec/exit

first read

"Close"

first read

"Close"exec/exit

exec

previous exec

Case 2Case 1Figure 14: The two situations where the loading (paging) of �les from disk for executionis considered an open-close session. Case 1 shows the case where a process is forkedand then subsequently executes a particular program. Case 2 shows the case whereone process will execute another program over the top of itself.An objective of the o�-line processing software was to sum the number of block readsand writes caused by each open-close session as well as the number of bytes logicallyread from or written to the �le. However, because of the block cache implementedin UNIX, these logical operations may not have a one-to-one agreement with blockoperations nor will the block operations occur at the same time as the logical read orwrite, as the block cache is being used to minimise real disk activity. The result is thatPage 63

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONsome logical activities might not cause physical activities until many seconds later.These characteristics further complicate the requirements of the o�-line processingsoftware.An additional issue was that the snooper block records do not contain �le IDs forthe particular block on which an operation occurred, making the matching of logicaland block level operations di�cult. This situation was alleviated by there being certainrecords that allowed the matching of pairs of �le IDs and device, g-node and g-nodegeneration. Such operations which had both values present were open and close. Un-fortunately, there were still a number of situations where this important mapping couldnot be established, such records were matched by hand.The o�-line processing software made use of a �le containing mappings from �leID to device, g-node and g-node generation. This �le was formed following a �rstpass by the processing software. The �rst pass would display all sets of open-closesessions for which there were no block records and open-close sessions for which therewere no logical operations (open/close/read/write). By comparing these entries withthe original trace dump, a mappings �le was created to give the links between theunknown pairs of �le IDs and device, g-node and g-node generation.The o�-line processing software bases the duration of sessions (the time from theopen to the close) upon the time of the open and close when they were available. Forthe unusual situations shown in �gures 12 and 14 above, the duration of sessions wasbased on the �rst and last operation (logical or block) recorded by the trace packageon that particular �le. The situation described in Figure 13 required the o�-lineprocessing software to keep track of which parents produced which children so thatthese cross-generation open-close sessions could be matched together to generate asingle, open-close session record.O�-line processing implementationThe o�-line processing software took records from the trace �le and generated open-close session records which were then used in the analysis described in Chapter 6for the comparison of the full kernel instrumentation and passive network monitoringPage 64

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONtechniques.The implementation, in the Perl language, of the o�-line processing software isabout 1000 lines. Each element (counter) of the output open-close session record istreated as an array item. These arrays were indexed by either �le ID or a combination ofdevice/g-node/g-node-generation. The data base [104] extensions to Perl were used tolimit the in-memory sizes of arrays. Because some block activity occurs after the logicaloperation that caused it (blocks to be written caused by logical writes will sometimesnot occur until the �le is closed), there is a potential for records to cause data to beadded to a particular open-close session record well after the logical operations had�nished. This meant the trace records needed to have been parsed a considerable timeafter the last logical operation on the �le in order to catch all block operations.The o�-line processing of the trace data, for a trace of 24 hours, took over 130hours of CPU time, on a high-end workstation (Digital 2100 Server Model A500MP)to process 1.2 million records produced by the kernel trace system into 12 thousandopen-close session records. It was determined that a great deal of time in processingthe o�-line processing phase was needing to search and match certain record typestogether.4.3.8 ImpactThe impact of the snooper system can be measured in a number of di�erent ways suchas the complexity of development, as mentioned in Section 4.2 or the speed changes tothe machine we consider in this section.A large concern in the development of kernel instrumentation is the e�ect on theperformance of the system. If there is a degradation of system performance of a system,there is the possibility of altering the behavior of the system itself and that of the users.In order to assess the e�ect of the instrumentation on the kernel speed, the Modi�edAndrew Benchmark (MAB) of Ousterhout [71] was used. This benchmark was rununder several di�erent con�gurations of the machine's kernel and the mode of the test| these results are presented in Table 3. The results presented are an average of 10consecutive tests. Before each test run, a single MAB was run to place the local blockPage 65

4.3. A KERNEL INSTRUMENTATION IMPLEMENTATIONRegular kernel Snooper kernel Snooper kernel(inactive) (active)Phase I 3.0 (0.0) 3.3 (0.8) 3.4 (0.5)Creating directoriesPhase II 18.9 (0.3) 19.9 (0.6) 22.2 (0.7)Copying each �lePhase III 17.3 (0.8) 17.7 (1.8) 18.9 (1.0)Recursive directory statsPhase IV 15.3 (0.5) 16.0 (0.5) 17.1 (0.3)Scanning each �lePhase V 146.8 (2.0) 148.9 (1.8) 160.1 (2.9)Compiling and linkingTotal 201.3 205.8 221.7Table 3: Results from running the Modi�ed Andrew Benchmark for a non-instrumentedkernel, for a snooper kernel without tracing enabled and for a snooper kernel perform-ing tracing. All values are in seconds | values in parenthesis are standard deviations.cache into a consistent state. For these tests the �le systems of the machine are locatedon a central NFS server. However, for all the runs performed with snooper operating,the trace �le was recorded on disks local to the test machine.The results indicate that the di�erence between the regular kernel and the instru-mented kernel with snooper inactive are relatively small, when compared to overallbenchmark times, and are due to the extra code in each system call that tests if thesnooper system is inactive. It is interesting to note that even such a small number ofadditional instructions to perform add so signi�cantly to the overhead of the system,4.5 seconds over the total benchmark.The largest di�erence, though, is between the inactive and active instrumentedkernel. The additional overhead of logging activities into trace bu�ers, logging traceresults to disk and bu�er management have added approximately 10% of overhead tothe system. In real terms this is a di�erence of over 20 seconds between the regularkernel and the active snooper kernel. Page 66

Chapter 5Network MonitoringThis chapter describes the network monitoring performed for this thesis. The network-monitoring system captures and processes NFS tra�c between clients and server.5.1 ObjectivesPassive network monitoring can collect much of the information full kernel instru-mentation is currently used to collect; such data as the number of active users on asystem, the amount of data transferred to and from disks, which �les are being ac-cessed. However, a great deal of system monitoring information used by researchers isbased on records of sessions delimited by the opening and closing of �les. The kernel-instrumentation data was processed into such records. For network monitoring to beused as a replacement for full kernel instrumentation, the ability to generate such anopen-close session record is required. This ability should give comparable informationabout the data transferred, the amount of data in a particular �le and so on. Withsuch open-close-session records we can then study the system in all aspects that wouldhave been done using kernel instrumentation. Thus giving the ability to calculate suchthings as:� the average or maximum amount of data transferred per �le, in a given time,� the average or maximum time a �le is used, or� the average amount of data in a �le.67

5.2. NETWORK MONITORINGUsing network monitoring much of this information must be inferred from the trans-actions which are observed. This chapter discusses the processes used for inferringopen-close sessions from network tra�c.5.2 Network monitoringNetwork monitoring, if done by a independent machine, can gain information about twocommunicating systems without impacting on their work or changing their behavior.Network monitoring does not require any changes to the system(s) being monitoredand allows the simultaneous monitoring of multiple machines. However, network mon-itoring relies on there being suitable, useful information passing through the network.Without enough useful information, network monitoring may not be able to estimatesatisfactorily what has occurred on a particular client.With the network-based �le systems in use or under development, such as NFS [87],Sprite [72] and Andrew File System (AFS) [66, 42], clients require many or all �le-system operations to be done through the network. Because the network will be car-rying all �le-system tra�c between clients and server, network monitoring can collectand interpret this data to give information on the �le operations which clients areperforming.Network monitoring of distributed �le systems gives access to information aboutphysical blocks as they are read from and written to the server by clients. Additionally,there is a great deal of other information exchanged between client and server which isrelated to directory operations and cache consistency that enable users of this techniqueto estimate the operations clients have performed.Network monitoring must rely exclusively on information present in the communi-cations between client and server. It is generally not possible, nor desirable, to addadditional information to this communication stream. As a result, network monitoringrequires that the procedure for processing the incoming data incorporates a speci�cknowledge of the type of communications used and can make use only of what dataare available in the communications channel. Page 68

5.2. NETWORK MONITORINGIn the case of NFS, the post-processing software must estimate operations on theclient using not only the reading and writing of data from the server but also theother messages used to co-ordinate client caches and obtain directory information.Knowledge of the type of communications system (in this case, the details of NFS) canbe considered to be a main requirement in e�ective network monitoring.To perform network monitoring, a researcher requires a machine that can interfacewith the network and capture all data traversing it. Network monitoring can now beperformed by today's faster workstations with the appropriate software. Typically, sucha network-monitoring machine will be a workstation using software based around theNetwork Interface Tap (NIT) [103] packet capture mechanism from Sun Microsystemsand the packetfilter [27] capture mechanism from Digital. The machine will recorddata from the network to a local disk. In a number of cases the workstation hassu�cient power to perform some rudimentary processing of the data which can reducethe amount needing to be saved to disk.Because the distributed �le system used in this study is NFS, which uses RPC [55]for each transaction, the network monitor need look only for the two parts of theRPC exchange; the request and the reply. This is a considerable advantage over, forexample, monitoring the stream of characters to a terminal. In a terminal's characterstream, each character must be collected and the full stream reassembled to gain anyunderstanding.Additionally, RPC uses XDR [54] to allow communications between machines thatdo not share common hardware or operating-system software. Because of this, a net-work monitor can be any particular type of machine from any vendor, running anyoperating system. A Sun workstation can monitor a network of Digital machines be-cause the type of data on the network is independent of the hardware or operatingsystem of the machine that generated it.In order to generate the desired open-close sessions from the monitoring of NFStra�c between client and server, the network monitor must process collected datafollowing its capture. Page 69

5.3. A NETWORK MONITORING IMPLEMENTATIONFirst and foremost, the network monitor must �lter the tra�c of interest from thedata captured from the network. In this situation only RPC transactions pertainingto NFS are of interest. Each individual RPC request or reply can be made-up of anumber of Ethernet packets and a whole RPC request or reply will be retransmittedif it was partially lost in transit. Data to be discarded includes repeat copies of thesame transaction as well as the parts of the RPC transaction that are not relevant tothe monitoring (typically the data payload of NFS read and write transactions). Therequest and reply of each RPC transaction must be matched together and incompletetransactions (presumably retransmitted) must be discarded.The network monitoring system must process the NFS transactions and estimatefrom them the open-close sessions that have occurred on the clients of the distributed�le system.5.3 A network monitoring implementationThe implementation carried out in the present study consists of four parts:1. network monitoring and data extraction,2. data translation, �ltering and NFS/RPC call processing,3. data check-pointing and compression, and4. post-processing.The network monitoring software implementation used in this study is a toolkitmade up from two parts: rpcspy and nfstrace. This toolkit was implemented byBlaze [11] to enable network monitoring of a large distributed �le system based uponNFS [11, 15, 16, 13]. Additionally, work of others [24, 1] has been based on measure-ments taken using rpcspy and nfstrace. The software is designed to operate on anymachine that supports the Sun NIT capture mechanism or the Digital packetfiltercapture mechanism. rpcspy collects network tra�c, extracts NFS/RPC requestsPage 70

5.3. A NETWORK MONITORING IMPLEMENTATIONand replies, matches these requests and replies and constructs concise one-line-per-transaction records. nfstrace provides post-processing, creating open-close sessionrecords from the trace records generated by rpcspy.It was required that the rpcspy/nfstrace operate with Ultrix 4.3a or SunOS 4.1.The software needed no modi�cation to operate on the systems used, having beendesigned in a similar environment. nfstrace was modi�ed to give duration informa-tion on the length of open-close operations. Both rpcspy and nfstrace were modi-�ed to give additional data in the trace, in particular some �le-attribute information.nfstrace was augmented with a view to �nding information about its method of op-eration and to be able to evaluate the open-close identi�cation heuristics it uses.Additionally, a time-stamping compression �lter was written to reduce the quantityof data generated by rpcspy. This �lter was also able to change output �les, eitherafter a given amount of time or a given quantity of data (number of lines).5.3.1 Network monitoring and data extractionAs mentioned previously, the rpcspy utility is built upon either the Sun NIT capturemechanism or the Digital packetfilter capture mechanism. These facilities provideuser-level software access to raw data packets traversing the network to which thesystem is attached.In each of these mechanisms the user con�gures what type of data is to be extractedfrom the network and which hosts on the network this data could have come from (thiscould be set to all hosts). The device will return packets that satisfy this �lter into abu�er.It is assumed by the network capture mechanisms (NIT and packetfilter) thatthe bu�er will be emptied continuously by the user's program. If the incoming queueof data over
ows the bu�er the extra data is discarded.rpcspy con�gures the incoming network interfaces to accept any IP [76] packetsfrom all hosts on the local network and then expects the network interface to passthese incoming packets to it. Page 71

5.3. A NETWORK MONITORING IMPLEMENTATION5.3.2 Data �ltering, data translation and NFS/RPC call pro-cessingAfter receiving data from the network interface, rpcspy uses a series of �lters, transla-tors and algorithms to piece the NFS transactions together. rpcspy �lters the incomingpackets, accepting only those packets that are from the internet user datagram protocol(UDP) [78]. It then �lters the packets again, selecting only those destined for the NFSservice port on the assumption that these are NFS packets. This NFS data is thentranslated from XDR [54] format into a data-format suitable for the local machine toprocess.Once the data are in the required format, rpcspy checks the RPC header and ifthe packet is a reply to a previously recorded request the pair are matched togetherand processed. If the packet is a new request it is queued in a list of requests pendingreplies.Once the RPC request and reply have been paired they are processed according tothe type of NFS transaction the RPC request/reply is carrying. Each NFS transactionhas data of interest extracted and a transaction record is recorded along with a timestamp of when the transaction was complete.An example pair of RPC transactions is printed below. These are hexadecimaldumps of the two Ethernet packets that make up a particular RPC transaction. Inthis case, the transaction is to get the attributes of a particular �le.An RPC request (transmitted using UDP/IP on Ethernet):0000 08 00 2b 24 34 2b 08 00 2b 1c 26 9d 08 00 45 00 | ..+$4+..+.&...E.0010 00 94 a6 38 00 00 ff 11 79 fb 82 c2 4a d7 82 c2 | ...8....y...J...0020 4a c9 03 ff 08 01 00 80 0b b4 0f 90 e8 6b 00 00 | J............k..0030 00 00 00 00 00 02 00 01 86 a3 00 00 00 02 00 00 |0040 00 01 00 00 00 01 00 00 00 30 2f 4b ac e9 00 00 |0/K....0050 00 18 62 75 73 6d 61 6e 2e 72 64 74 2e 6d 6f 6e | ..busman.rdt.mon0060 61 73 68 2e 65 64 75 2e 61 75 00 00 00 00 00 00 | ash.edu.au......0070 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 |0080 00 00 04 15 00 00 02 00 00 00 02 3d 3b 52 02 00 |=;R..Page 72

5.3. A NETWORK MONITORING IMPLEMENTATION0090 00 00 02 3d 3b 52 00 00 00 00 00 00 00 00 00 00 | ...=;R..........00a0 00 00 | ..and the matching RPC reply:0000 08 00 2b 1c 26 9d 08 00 2b 24 34 2b 08 00 45 00 | ..+.&...+$4+..E.0010 00 7c 48 7f 00 00 ff 11 d7 cc 82 c2 4a c9 82 c2 | .|H.........J...0020 4a d7 08 01 03 ff 00 68 36 79 0f 90 e8 6b 00 00 | J......h6y...k..0030 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |0040 00 00 00 00 00 00 00 00 00 02 00 00 41 ed 00 00 |A...0050 00 07 00 00 00 00 00 00 00 00 00 00 02 00 00 00 |0060 20 00 ff ff ff ff 00 00 00 02 00 00 15 04 00 00 |0070 00 02 2e a7 11 ae 00 01 be 35 2f 4b 83 d6 00 03 |5/K....0080 a5 d7 2f 4b 83 d6 00 03 a5 d7 | ../K......After the network capture mechanism and rpcspy have �ltered the transactionand rpcspy has reconstructed the particular NFS operation, rpcspy would record thistransaction as (shown here on three lines for clarity):793488611.244329 | daneel.rdt.monash.edu.au | busman.rdt.monash.edu.au.0 |getattr | "131500000200000036b514020200"|ok, {040755, 0, 1024, 0x2, 785561935.347853 }Table 4 shows the NFS transactions and data �elds recorded by rpcspy. Severaltransactions such as root and writecache are typically not used in NFS implementa-tions although rpcspy can process them because they are part of the NFS standard.
Page 73

5.3. A NETWORK MONITORING IMPLEMENTATIONTransaction Type Data �eldsnull real time, server, client, transaction type, user IDgetattr real time, server, client, transaction type, user ID, NFS �lehandle, call status, �le attributessetattr real time, server, client, transaction type, user ID, NFS �lehandle, requested attributes of �le, call status, new attributesof �le (at the end of the call)root real time, server, client, transaction type, user IDlookup real time, server, client, transaction type, user ID, NFS �lehandle of directory, �le name (to be looked up), call status,NFS �le handle for �le name, attributes of the �le namereadlink real time, server, client, transaction type, user ID, NFS �lehandle of link, call status, contents of symbolic linkread real time, server, client, transaction type, user ID, NFS �lehandle, o�set, number of bytes to read, call status, number ofbytes actually read from the �le at the given o�setwritecache real time, server, client, transaction type, user IDwrite real time, server, client, transaction type, user ID, NFS �lehandle, number of bytes to write, call status, attributes of the�le at the completion of the writecreate real time, server, client, transaction type, user ID, NFS �lehandle of directory, �le name, call status, NFS �le handle ofcreated �le, attributes of created �leremove real time, server, client, transaction type, user ID, NFS �lehandle of directory, NFS �le handle of �le to remove, callstatus continued on next pagePage 74

5.3. A NETWORK MONITORING IMPLEMENTATIONTransaction Type Data �eldsrename real time, server, client, transaction type, user ID, NFS �lehandle of source directory, NFS �le handle of �le to be re-named, NFS �le handle of destination directory, NFS �le han-dle of �le destination, call statuslink real time, server, client, transaction type, user ID, NFS �lehandle of source �le, NFS �le handle of destination directory,�le name of destination �le, call statussymlink real time, server, client, transaction type, user ID, NFS �lehandle of destination directory, �le name of the symlink to becreated, target of symlink, attributes for symlink, call statusmkdir real time, server, client, transaction type, user ID, NFS �lehandle for destination directory, �le name of new directory,�le attributes for new directory, call statusrmdir real time, server, client, transaction type, user ID, NFS �lehandle of target directory, �le name of directory to remove,call statusreaddir real time, server, client, transaction type, user ID, NFS �lehandle of directory, call statusstatfs real time, server, client, transaction type, user IDTable 4: rpcspy transaction types and data �elds5.3.3 Data check-pointing and compressionMonitoring a network can generate a considerable amount of data. A program likerpcspy, even condensing the data to the extent that it does, can generate severalmegabytes of data in less than ten minutes of monitoring a moderately-busy network.Consequently there is a potential for running out of storage space on the monitoringmachine. A solution is to checkpoint and compress the output and, if possible, toPage 75

5.3. A NETWORK MONITORING IMPLEMENTATIONchange �le names to allow previous records to be copied to tape.A compression and check-pointing �lter was written, which was option-driven tochange to a new �le either after a given amount of time or a given number of lines ofinput. This �lter was able to incorporate the current time into the name of the �le foreasy identi�cation of the sequence of log �les. Also the �lter could, if required, gener-ate compressed output using the standard compress utility in UNIX which routinelyobtained a 4:1 compression ratio. This compression and check-pointing �lter makesthe data output from rpcspy more manageable.5.3.4 Post-processingThe post-processing of the rpcspy data is done by the utility nfstrace.NFS has no explicit open or close transaction, so this piece of software must piecetogether open-close sessions from the NFS transaction log of rpcspy using a heuristicbased on the operation of NFS. nfstrace makes an estimation of open-close sessionsthat have caused the NFS transactions to occur. Partially, this relies on consistency inNFS implementations, that is, for every open system call (independent of whether the�le is to be read to and/or written from or just accessed) an NFS getattr transactionis generated.However, open-close sessions to read or write data handle the data itself in sig-ni�cantly di�erent ways, although it should be noted the write transaction case iseasier to handle, because the cache does not have as dominant an e�ect on the writeoperations. As a result, much of the special case handling nfstrace must do appliesonly to NFS read transactions.NFS writeWhen a user on an NFS client writes data to a �le, it will either be written directly tothe server or be written to the server at the close of the �le on the client. This meansthat during an open-close session on a client, writes are synchronous with the serverduring that session. By the time the open-close session has ended, all data written bythe client into the �le will have been carried over the network. Page 76

5.3. A NETWORK MONITORING IMPLEMENTATIONBecause of this, a program such as rpcspy will see these writes as one or more NFSwrite transactions. The result is the write system-call will be written to the �le as anNFS transaction. However, if only a partial block was written, the write will not occuruntil the block is full, a periodic operation occurs, causing modi�ed data blocks to bewritten to disk (commonly each 30 seconds) or the �le is closed.NFS readWhen a user on an NFS client requests data from a �le, this data will either be availablelocally, in the cache of the client or it will need to be read from the server.Figure 15 shows the
ow of a read request on an NFS client. The shaded boxesindicate operations that can be recorded by the rpcspy program.This
ow diagram shows how the cache-consistency model of NFS works.� If a particular block is not present in the cache of the local client, it is retrievedfrom the server. In this case rpcspy will see a read transaction occur.� If a particular block is present in the cache of the client but the cache copy hasnot been checked recently, the client will perform a getattr transaction. Thegetattr transaction will return the time and date of the �le on the server. Theclient can now check the cache copy of the �le; if it is older than copy of the �leon the server, the cache copy is out of date.� If the cached copy on the client is out of date, the client will remove it frommemory and force a new copy to be read from the server. In this case rpcspywill see a getattr transaction followed by a read transaction.� If the cached copy on the client is not out of date, the client will not need toobtain a copy from the server, and returns data from the cached block on theserver to the user. In this case rpcspy will see a getattr transaction used bythe client to check and con�rm the validity of the cached copy of this �le.� If the cached copy on the client has been checked recently the client will not checkwith the server in any way. In this case rpcspy will not see any transactionsPage 77

5.3. A NETWORK MONITORING IMPLEMENTATION

up to

cached copy

date

?

Is the

get the attributes of

Has the

nfs_read

of this block

the file on the server

recently

cached copy

been checked

?

Yes

Yes

Yes

No

No

read

No

Is the

already

?

block

in cache

read block of data

from server into cache

return block of data from

cache to the userFigure 15: The
ow of a read request on an NFS client. The shaded boxes indicateoperations that can be recorded by the rpcspy program.
Page 78

5.3. A NETWORK MONITORING IMPLEMENTATIONbetween client and server.It is important to note that rpcspy will not be able to detect the read operation if theblock to be read is already in memory, the cached copy has been checked recently andit was up to date when last checked.nfstrace open-close sessionsAlthough rpcspy generates a large amount of data (an entry corresponding to eachtransaction), nfstrace only uses a small number of transactions in its analysis: theNFS read, write, setattr, getattr and lookup transactions.The heuristic used by nfstrace is important because nfstrace must identify theopen-close sessions which have occurred. Blaze designed nfstrace using several pre-miss; the primary one is that NFS is consistent in its operations when a �le is opened.A getattr transaction on the �le is performed for every open system-call and then theread or write system-calls will cause combinations of NFS read, write, setattr andgetattr transactions.The heuristic nfstrace uses is best described by the conditions under which itwill record an open-close session record. These conditions are used by nfstrace toconclude that particular client has closed the �le; as shown in the following list.1. If the previous operation on a particular �le was more than a given time ago,this will cause an open-close session record to be generated for the previousoperation(s). An access to the �le with an NFS getattr, setattr, read orwrite transaction all reset this timer.2. If the current transaction is a setattr and there were previous data transfersfrom read or write transactions, or the previous transaction occurred more thantwo seconds previously.3. The current transaction is a setattr and size of the �le is being set to zero, yetsome data were previously written to the �le.4. The current transaction is a read and there was previously a write on the �le.Page 79

5.3. A NETWORK MONITORING IMPLEMENTATION5. The current transaction is a read to the �rst byte of the �le and that byte hasbeen accessed previously.6. The current transaction is a write and there were previous data transfers fromread or write transactions or the previous transaction occurred more than twoseconds previously.7. The current transaction is a write to the �rst byte of the �le and that byte hasbeen accessed previously.The recording of an open-close session record will reset all counters and
ags, suchas the amount of data transferred and whether the �rst byte has been accessed.From these rules it is apparent that nfstrace will be unable to correctly interpretseveral situations. For example, nfstrace will be unable to detect open-close sessionswhere the �le is open for both read and write operations, such as a database �le. Itwill not correctly interpret the situation where data is written to the �rst block of a�le a number of times; each time the �rst block is rewritten, nfstrace will considerthis to be the start of a new open-close session on the same �le. These cases are moreextensively discussed with the presentation of results in Section 6.9.1 and in Chapter 7in which a discussion of ways these rules can be re�ned to improve the results nfstraceis given.Table 5 indicates which system calls in Ultrix 4.3a cause NFS getattr, setattr,read and write transactions to occur.NFS Transaction System callwrite In unusual circumstances (an open-close session on the clientwhere the cache is disabled) the write system-call will directlycause NFS write transactions, otherwise the NFS transactionwill not occur until an 8 Kbyte �le block is �lled (writing tothe �le in 8 Kbyte blocks). continued on next pagePage 80

5.3. A NETWORK MONITORING IMPLEMENTATIONNFS Transaction System callEither the fsync or sync system-calls will cause any outstand-ing blocks to be written to the �le server which results in NFSwrite transactions for those blocks.read the read system-call will cause an NFS read transaction insome circumstances (as described above in Section 5.3.4)the write system call (counter-intuitively) can cause an NFSread transaction if the amount of data to be written for aparticular block is less than the size of a block. This is becausethe NFS write operation can write to the server only in unitsthat are integral multiples of the block size.setattr The fchmod, chmod, fchown, chown, utimes, sync, fsync,truncate and ftruncate system calls will all cause NFSsetattr transactions.getattr The NFS getattr transaction is used for getting directory in-formation as well as cache consistency, so it may be caused bythe unlink, creat, close, fsync, access, stat and lstatsystem calls in addition to being caused by the read systemcall.Table 5: A table of the NFS transactions and the systemcalls that can cause their occurrence.A comparison of the heuristic for nfstrace and the causes of certain NFS transac-tions reveals the behavior of nfstrace when processing records from the Ultrix NFSimplementation. For the rule-base used in nfstrace it can di�erentiate only betweenread and write open-close sessions. nfstrace will be unable to determine if a �le wasboth read from and written to in the same session; instead it will infer that two separatesessions have taken place. Page 81

5.3. A NETWORK MONITORING IMPLEMENTATIONSome of the rules used by nfstrace do not seem intuitive. However, rules such asthose surrounding the setattr transaction mean that nfstrace can, in this example,interpret correctly a truncate system call on a pre-existing �le. If a pre-existing �leis truncated when it is opened, any previous transactions involving that �le will berecorded.During the development of the rules used in the heuristic for nfstrace, Blaze didnot have access to kernel level tracing of the systems he wished to monitor. He useda simple benchmark incorporating the ls, cp, touch and wc programs to develop andevaluate new rules. The ls is particularly important because it will cause numerousNFS getattr transactions which can potentially be interpreted as read operations.Blaze found that after several hours of operation, nfstracewas able to detect 100%of the writes, 100% of the uncached reads and 99.4% of the cached reads. Blaze thenconcludes that cached read operations were over-reported by 11%, even though thels command was 50% of the benchmark activity. Blaze re
ected that, while it wasencouraging to obtain this level of accuracy from the system, it was not conclusive.He suggested that the particular workload of the tests cases may have been misleadingnfstrace in unanticipated ways.nfstrace outputnfstrace will take the transaction log of rpcspy and generate an open-close sessionlog. A sample entry from this log is show below (shown on two lines for clarity):787451296.297919 | 3.299941 | read |daneel:15150000bd100100ef35ff6005f8 | alquist.2015 | 0 | 864For this entry at time 787451296.297919, user ID 2015 on the machine alquist read�le 15150000bd100100ef35ff6005f8 from the server daneel. The read transactionwas of 864 bytes and nfstrace considers the whole �le was read from the contents ofthe client cache. This session lasted 3.299941 seconds.Such open-close session records enable us to give information such as estimations ofthe durations of open-close sessions and the amount of data potentially accessed andPage 82

5.4. IMPLEMENTATION RESTRICTIONStransferred in that time. By generating this information researchers are able to userpcspy and nfstrace as tools for system monitoring. The tools are suited particularlyto the simultaneous monitoring of many machines in a distributed �le system.5.4 Implementation restrictionsWhile the rpcspy/nfstrace system was able to give results comparable to kernel in-strumentation (Chapter 6), there were, sometimes signi�cant, di�erences in the resultsof the two systems.rpcspy has three major drawbacks. The �rst relates to restrictions in the networkinterface supplied for a particular machine. The second drawback is related to therestricted information available to rpcspy at the time of operation. Finally, rpcspydepends on the insecure, unencrypted data of the RPC transactions to be carried overthe network to which the rpcspy machine is attached. As a result, rpcspy cannot beas easily used to extract passive network monitoring information from networks usingsecure RPC implementations such as transmitting RPC using Kerberos [100]. Thislimitation is not easily overcome.Additionally, nfstrace has limitations in its implementation. Primarily these areable to be improved, as discussed in Chapter 7, however several, such as the amountof information available to nfstrace are not easily altered. The limitations of therpcspy/nfstrace system is discussed in the following sections.5.4.1 Network packet capture mechanism drawbacksThe rpcspy/nfstrace tools depend heavily on the ability of the network interface ofthe machine on which they are being run to capture all tra�c passing through thenetwork. Packet-loss by the network interface does not have a linear relationship withnetwork utilisation. The network interface will not lose data when utilisation is low.However, data loss will increase as utilisation increases to a point beyond which it willbe unable to accept any increase in the data-transfer rate and the amount of data itcan process will
atten out no matter what the utilisation beyond that point. Page 83

5.4. IMPLEMENTATION RESTRICTIONSProtocol type Sub-protocol Types of packet Packet size %Internet Protocol (IP) 67 UDP 36.9 NFS 155 24.71500 12.2TCP 30.1 (all) 80 15.1192 9.01272 6.0Novell Netware (IPX) 33 - - 155 19.8768 13.2Table 6: A breakdown of the tra�c mixture used for testing rpcspy response to Eth-ernet utilisationA study was performed to quantify the potential data loss of rpcspy and to cali-brate the network interface rpcspy uses. To perform these tests satisfactorily, a net-work analyser capable of full utilisation measurements on Ethernet was required. AHewlett Packard Internet Advisor Model J2522A was used both to perform measure-ments and to generate arti�cial loads on the network. The packetfilter mechanismused was in a DECstation 3100 running Ultrix 4.3a, the NIT mechanism used wasin a Solbourne SC2000 (a machine compatible with the Sun Sparcstation 2) runningSunOS 4.1.3.Tests of rpcspy, where the network was loaded arti�cially, used the tra�c break-down in Table 6 which was based on an analysis of the network over several 24-hourperiods.The packetfilter facility of Ultrix o�ers some con�guration options. In particular,the size of the packet bu�er, where packets processed by packetfilter are placed forcollection by the user process, can be set. The NIT mechanism in SunOS does not o�erthis con�gurability. The default con�guration and an optimum (largest con�gurablebu�er size) for packetfilter in addition to the NIT mechanisms are compared inFigure 16. This �gure shows the percentage of unprocessed Ethernet packets versusEthernet network utilisation. It is apparent that not only are the characteristics of theNIT mechanism poor beyond 10% utilisation but that the packetfilter mechanismdid not demonstrate the same level of loss until utilization was close to 50%. Thepacketfiltermechanism showed no loss until over 15% utilization, a stage by whichNIT mechanism loss was close to 25%. Page 84

5.4. IMPLEMENTATION RESTRICTIONS
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

T
ot

al
 p

ac
ke

ts
 u

np
ro

ce
ss

ed
 (

%
)

Ethernet Utilization (%)

Packetfilter (default)
Packetfilter (optim.)

NIT

Figure 16: A comparison of Ethernet utilisation versus packet loss for various worksta-tion Ethernet interfaces. packetfilter default and optim(um) are two con�gurationsof the Ethernet packet capture facility of the Digital DECstation, NIT is the Ethernetcapture facility in Sun Microsystem's SunOS.A signi�cant issue in rpcspy is the combination of processing overhead on the client,which is imposed by the need of rpcspy to match RPC transactions, and the packet-loss characteristics of the Ethernet interface which rpcspy is using. Figure 17 showsthe number of NFS transactions versus Ethernet utilisation. The Ethernet utilisationin these tests is almost purely NFS tra�c. By using NFS tra�c exclusively we areable to establish the maximum number of NFS transactions each rpcspy system isable to process in a given time period. The Hewlett Packard test equipment recordedthe actual number of NFS transactions that occurred over this time. For this test thepacketfilter was left in the default con�guration.The test shows that each system has a maximum number of packets it can process.The NIT-SunOS system is limited to processing about 175 NFS transactions per second.The default con�guration packetfilter-Ultrix combination appears to be limited toprocessing approximately 260 NFS transactions per second. It is important to note thiswas a stress-testing of the rpcspy and that such NFS loads were not a characteristic ofPage 85

5.4. IMPLEMENTATION RESTRICTIONSthe network to which these machines were connected. From the �gures in Table 6 wecan see that 36% of the total Ethernet tra�c is from NFS. It would not be true to say ofthis 36% that half of the number of NFS Ethernet packets would be the count of NFStransactions. Such a simpli�cation would not allow for there being incomplete NFStransactions (the loss of the request or reply in a transaction) nor would it allow forNFS transactions that required more than one pair of network packets (transactionswhere the data payload required two or more Ethernet packets). In each of thesecases rpcspy does not need as much processor time as if it had had a complete NFStransaction. As a result, the test network operating at 12% utilisation could mean lessthan 72 transactions per second in a mixed load with a variety of NFS tra�c ratherthan the 200 transactions per second that Figure 17 stress-test indicates.
0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18

N
F

S
 tr

an
sa

ct
io

ns
 r

ec
or

de
d

pe
r

se
co

nd

Ethernet utilization (%)

NFS transactions recorded versus ethernet utilization

packetfilter
NIT

Hewlett Packard

Figure 17: The number of NFS transactions versus Ethernet utilisation for the NITand packetfilter capture mechanisms. Results from a network analyser recording nopacket loss is also given (Hewlett-Packard).The exact cause of such data loss is not certain but it could result from limitationsin the hardware of the network interface and/or limitations in the software of the packetcollection and �ltering mechanism.This characteristic is unfortunate. It is during the time when the network is busiestPage 86

5.4. IMPLEMENTATION RESTRICTIONSthat utilisation across a distributed �le system will be potentially highest. Becausethere is potential for rpcspy based tools to lose data about transactions at busy times,studies such as �le sharing, a situation that would be more likely to occur at busiertimes, would be a�ected adversely.Such drawbacks could be potentially overcome by the use of faster workstationswith faster hardware network interfaces. However, this may not be as easily solved ifthe problem is due principally to a poor software implementation in either the networkpacket capture mechanism (NIT/packetfilter) or rpcspy.While this characteristic loss does exist, it is signi�cant only above about 10%utilisation for the packetfilter mechanism. Boggs et al. [17] comment that mostEthernet loads are well below 50%, close to 5% of the network capacity and the networkon which measurements were taken supports this observation with a maximum loadover 24 hours of no greater than 18%.5.4.2 Restrictions in available datarpcspy is restricted in the information to which it has access; it must work with onlythe information which is carried within the network. Because of this, rpcspy cannotdetermine such information as which process is responsible for a particular transaction.Additionally, rpcspy cannot di�erentiate between two di�erent process accessing thesame �le. The only di�erentiation rpcspy can make are those of �le, user and machine.The result of this is that if a particular user is simultaneously accessing a �le with twodi�erent programs rpcspymight misinterpret the transactions that result. An exampleof where this might occur is when a user is simultaneously editing a source �le andcompiling that source �le.The reason for this alteration of behavior is that the cache will make the twodi�erent sets of logical operations seem to be, typically, the same set of block operations.What rpcspy estimates has happened depends on the actual transactions that occuracross the network. For the same set of operations, slight changes in timing will causedi�erent transactions to occur across the network. As a result, it would be di�cult todeduce what rpcspy would report in such instances. Page 87

5.4. IMPLEMENTATION RESTRICTIONS5.4.3 nfstrace restrictionsnfstrace interprets rpcspy data and estimates the open-close sessions that causedthe NFS transactions rpcspy has traced. As discussed above, this means nfstracedepends heavily on rpcspy collecting all available data from the network.nfstrace can su�er errors as a result of misinterpreting NFS transactions or be-cause information has been omitted from the NFS transactions. Also nfstrace hasimplementation-imposed restrictions. For example, it is unable to identify open-closesessions were data is both read from and written to the �le. Baker et al. [8] foundopen-close sessions that involved data read from and written to the �le accounted for1% of all transferred bytes and 1% of the number of open-close sessions. Such an esti-mation would indicate misinterpretation but it would not cause a dramatic impact onresults. It is, however, worth noting.Errors of misinterpretationnfstrace will interpret some transactions incorrectly. As can be seen in Table 5 anumber of di�erent operations can be responsible for an NFS getattr transactionoccurring. nfstrace assumes that a getattr transaction has occurred in relation to ablock being read from the �le cache. However, there is a potential for the getattr tohave been caused by a program such as ls getting information about the �les or evenby the deletion of a �le.nfstrace has the potential to interpret the write system-call incorrectly. This isbecause of the nature of write which performs all block transactions in the modulus ofthe block size. For an existing �le, the remainder of a partial block write must be read�rst. There is a potential for nfstrace to incorrectly misinterpret this as a separateread-session on the �le.nfstrace uses an heuristic based on accesses of the �rst byte of a �le. Althoughmost �le accesses (90% according to Ousterhout et al. [73]) will be read sequentiallyfrom the �le system, there is a potential for nfstrace to misinterpret up to 10% of�le accesses. Additionally, because nfstrace considers that access to the �rst bytePage 88

5.4. IMPLEMENTATION RESTRICTIONSis a good indicator of a new open-close session, there is potential for nfstrace toincorrectly assess an open-close session where the data are read or written a multiplenumber of times.Errors of omissionnfstrace depends heavily on the information supplied to it through the NFS trans-actions. Because of the lack of an open or close operation in NFS, nfstrace mustattempt to derive open and close operations from the other NFS transactions thatoccur.Figure 18 shows a number of open-close sessions with their associated read/writeoperations. The same �gure shows a set of typical, related block activities.
Time

Open

Read

Close

Block Read

Close

Read
Read

Read

Open

Block Read
Block Read

Block Read

Block Write

Block Write

Open

Write

Close

Write

Block Write

Block Read

Open

Close

Write

Read

Case 1 Case 2 Case 3 Case 4Figure 18: A variety of open-close sessions with read, write or read/write activity, alsoshown is a typical set of related block activity.Case 1 shows a typical open-close session consisting of a number of read operations.The corresponding block operations could be caused directly by the read or could bethe result of a kernel read-ahead operation. As a result nfstrace might consider thissession to have taken less time than it actually did because all the block operationswere �nished very early in the session even though another read occurred much laterin the session.Case 2 shows a simpler open-close and read although the same problem exists.nfstracemight consider this session to have taken a very small amount of time whenPage 89

5.4. IMPLEMENTATION RESTRICTIONScompared with the length of the total open-close session operation.Case 3 shows an open-close session where data are written to a �le. Delays in thewrites themselves occurring because of write-behind policies mean that nfstrace couldeasily misinterpret the length of time taken by this open-close session.Case 4 shows an open-close session where both a read and a write have occurred.nfstrace will see the corresponding transactions and interpret this is an open-closesession of reading and another open-close session of writing.These errors make a very broad assumption that in all four cases the data of theblocks read from or written to the �le caused exactly one read or write transactionto occur over NFS. If this simpli�cation is removed, the number of di�erent possiblemisinterpretations increases many times. Exactly what nfstrace will interpret de-pends on what transactions (if any) occur as a result of each operation. An examplemight be Case 3: for the initial open system-call the client will often cause a getattrtransaction to occur. nfstrace may misinterpret this as being another operation, inthis case most likely a read that was a successful cache-hit of a �le that will towardsthe end of the open-close session have data written to it.Another example is Case 1 If this �le had been accessed recently by a program onthe client, the �le will be in the cache of the client. If the access was recent enough,no transactions, not even a getattr for cache consistency, will be caused. As a resultnfstrace would not even see this session occur.Figure 19 shows that the block operations upon which nfstrace's record will bebased do not necessarily correspond with the logical open and close operations in anopen-close session.5.4.4 Local versus remote �le system performanceThe whole operation of rpcspy and nfstrace depends on �le-system tra�c of interestpassing through the network. In quite recent times there has been a tendency formachines to have large disks supplied with them [24], but before that, there had beena trend towards the centralisation of disk resources. This, after all, is one reason thatdistributed �le systems have become so popular. In the test environment, machinesPage 90

5.4. IMPLEMENTATION RESTRICTIONS
Block Read

Open

Read

Close

Block Read

Open

Read

Close

Close

Read
Read

Read

Open

Block Read
Block Read

Block Read

Case 1
Block Write

Block Write

Open

Write

Close

Write

Case 2 Case 3

close session

nfstrace open-

close session

real open-Figure 19: Several open-close sessions as generated by nfstraceare compared with theactual open-close session that occurred. The open-close session generated by nfstracedepends heavily on the type of NFS transaction each block access will invoke.have small local disks principally for swap space and for the /tmp and /var/tmp �lesystems. However, with /tmp and /var/tmp transactions going to the local �le system,no NFS transactions are generated and rpcspy cannot capture the transactions sonfstrace cannot interpret them.This seemed unsatisfactory because these open-close sessions were potentially ofgreat importance. The /tmp and /var/tmp �le systems generally contain short-termtemporary �les so it could be expected that these �le systems contain a signi�cantpercentage of the small-duration open-close sessions. This seemed a reasonable as-sumption given that the tra�c to these �le systems is commonly temporary �les fromeditors and compilers.A solution used for this study is to move the /tmp and /var/tmp �le systems to aremote disk. This means the transactions can be captured and nfstrace can interpretthis data. Because this move was desirable, it was important to establish the impacton performance of moving the �le system from local to remote disk would have.Table 7 shows variations in the performance of the Modi�ed Andrew Benchmark(MAB) with various disk con�gurations. A typical user would �nd their work closestto the second test with the test done on a remote disk and with the machine havinga local /tmp and /var/tmp �le systems. The di�erence between this and the machinewith remote /tmp and /var/tmp �le systems was less than 7% of time over all the tests,Page 91

5.4. IMPLEMENTATION RESTRICTIONSwhich seemed an acceptable impact.Local test Remote test Remote test/tmp//var/tmp location Local Local RemotePhase I 2.9 (0.5) 4.4 (0.8) 3.0 (0.0)Creating directoriesPhase II 14.5 (0.7) 15.0 (0.5) 18.9 (0.3)Copying each �lePhase III 15.2 (0.6) 15.9 (0.8) 17.3 (0.8)Recursive directory statsPhase IV 14.5 (0.7) 15.3 (0.8) 15.3 (0.5)Scanning each �lePhase V 128.8 (0.4) 138.1 (1.0) 146.8 (2.0)Compiling and linkingTotal 175.9 188.7 201.3Table 7: Results from running the Modi�ed Andrew Benchmark on a system withcombinations of a remote and local disk. Firstly with the test to the local disk, withlocal /tmp and /var/tmp �le systems, then with a test to remote disk with local /tmpand /var/tmp �le systems and lastly a test to remote disk with remote /tmp and/var/tmp �le systems. All values are in seconds, values in parenthesis are standarddeviations.

Page 92

Chapter 6Comparison of MonitoringTechniques6.1 IntroductionThis chapter compares and contrasts two system-monitoring techniques. The rpcspy/nfstrace passive network-monitoring tools are compared with the snooper kernelinstrumentation package. In particular, the results from snooper are used as a baselineagainst which the accuracy of the results of rpcspy/nfstrace can be compared.The comparisons of snooper and rpcspy/nfstrace have been done by using si-multaneous traces of a single machine over a 24-hour period. The trace of this machinewas performed from 11:00 a.m. Monday, 12th of December, 1994, until 11:00 a.m. thefollowing day. The machine traced was a Digital DECstation 3100 con�gured with20Mbytes of memory, running Ultrix 4.3a. This machine was con�gured with a localdisk for virtual memory swap activities. The rpcspy trace was recorded to local diskso as not to perturb the results with extraneous network activity. During the 24-hourperiod, a loss of 1.5% of total Ethernet tra�c was recorded giving a loss of 0.6% ofNFS transactions from the total recorded trace.The nfstrace post-processing tool uses a heuristic (described in Section 5.3.4) thatincorporates a timeout used to determine how long an open-close session will last. Thevalue is user-selectable but the default value of 135 seconds was used throughout theanalysis described in this chapter.Figure 20 shows the relative instrumentation points of snooper and rpcspy. The93

6.1. INTRODUCTIONdi�erences in the points of instrumentation lends to di�erences in the types of informa-tion available to each system. Of particular note is the fact that snooper can recordinformation about �le operations between the user program and the kernel, whereasthe �le-operations rpcspy can record are those between the kernel and the remote �lesystem. A major di�erence between these sets of communications tra�c is that rpcspycan record only operations that were not able to be serviced by the client's block cache,as the cache will prevent many data requests from ever going to the NFS level. In par-ticular, the cache will prevent most consecutive accesses to the same �le from becomingduplicate NFS requests, and many short-duration �le accesses may never have theirassociated data transferred at the NFS level.
NFS Filesystem

User Program

Local Filesystem

Network

kernel

instrumentation

System call stubs

Block Cache

RPC

XDR

IP

Device Driver

UDP/TCP

Operating System Kernel

network
monitoringFigure 20: The data
ow between a user program and an NFS �le system. Instrumen-tation points for kernel instrumentation (snooper) and network monitoring (rpcspy)are indicated. This diagram compares the di�erence in the information available toeach system. In particular, one instrumentation point, snooper, is before the cacheand the other, rpcspy is after the cache.This ability to �lter transactions associated with duplicated access to the same �le-data and those associated with short-duration �les is one of the design objectives ofcaches [73, 98, 8]. The cache is intended to �lter �le-system transactions from needingto be sent to the �le system. The cache performance of a system is related directlyPage 94

6.2. SYSTEM TRAFFICto the system's overall performance because so much of a system's operation is tieddirectly to �le tasks and thus to the performance of the cache [71].6.1.1 Excluded dataDue to the problems noted in Section 4.3.6, all �le transactions associated with thereading of executable �les by either the snooper or rpcspy systems were removedfrom the trace data before processing. It should be noted the problems associatedwith executable �les stem from a shortcoming in the snooper instrumentation, notthe rpcspy/nfstrace system. Records pertaining to the snooper trace �le itself wereremoved from the output records during the processing stage.While the removal of all execution transactions may seem to change the resultspresented, the remaining data still permitted a satisfactory comparison of the twomonitoring systems and that the amount of potential comparison-error which wouldbe introduced due to the inclusion of incomplete execution records by snooper was notjusti�ed. Additionally, �le system tra�c resulting from the loading of executable �leswas excluded from previous studies such as Ousterhout et al. [73] and Baker et al. [8]for the same reasons.6.2 System tra�cThe characteristics of the total �le-system communications tra�c are commonly-usedmeasurements. In the case of diskless workstations, the measurements are importantfor insuring that the networks have adequate transport capacity and that the servers ofdiskless workstations have adequate service capacity. In any sort of workstation suchvalues de�ne the required capacity for disk interfaces, as well as being used in cacheand bus design [117, 80, 73, 8, 85].A comparison of communications tra�c to and from the �le system at the logicallevel, and of the communications tra�c at the rpcspy network level, are not strictlycomparable, as each set of measurements was made on a di�erent side of the cache.However, one of the objectives of nfstrace was to estimate operations that occurredPage 95

6.2. SYSTEM TRAFFICParticular interval snooper nfstracemeasurement length (bytes) (bytes)Total data transferred 86,644,530 46,967,724Average data transferred 10 seconds 10,028 5,436Peak data transferred 5,120,000 5,048,320Average data read 7,468 2,590Peak data read 5,120,000 3,914,935Average data written 2,560 2,846Peak data written 5,120,000 5,048,320Average data transferred 10 minutes 601,698 326,165Peak data transferred 19,028,550 17,015,414Average data read 448,103 155,387Peak data read 10,427,845 7,144,164Average data written 153,595 170,777Peak data written 8,600,705 9,289,091Table 8: The total data transferred for the system. Peak and average values for 10second and 10 minute intervals are also given.at the user level by analysing the data communications tra�c between client and serverand the transactions used by the client to ensure the contents of the cache are up todate. As a result, while rpcspy/nfstrace cannot generate information on exactlywhat data were transferred between the user programs and the �le system (includingthe NFS �le-system routines and the block cache), it can calculate the exact amountof data transferred between the NFS �le system and NFS server.Table 8 gives a summary of results for the comparison period. It is immediatelyapparent that for total data-transfer values, there is a major di�erence in the valuenfstrace estimates for the total data transferred when compared with snooper. Theydi�er by a factor of 1:7. From these results it is equally apparent that over the course ofa long term analysis (24 hours) results for peak values and write data are comparablefor the two systems.Peak values display this characteristic because they typically involve data that is notsuitable for long term storage in the cache because it is too large or too volatile [73, 8, 98]and that this characteristic is independent of the particular load a machine is under [71].As a result, the similarity between transferred data, particularly peak values, wouldremain across any sample taken. In comparison, values for the total quantity of dataPage 96

6.2. SYSTEM TRAFFICtransferred over time is not similar. The di�erence between snooper read averagesand nfstrace values is not surprising. The client cache will eliminate successive NFStransactions for reading data from the NFS server and as a result, nfstrace cannotrecord the data transfer that had occurred at the logical level.Figure 21 shows plots of data transferred over time as recorded by snooper andrpcspy/nfstrace. Heavy data transfer, particularly heavy writing activity, between7am and 11am is due to the testing of image encoding algorithms (by another re-searcher) on this machine requiring the reading and writing of large image �les.
0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Read data transferred over day (10 minute samples)

snooper read
nfstrace read

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Write data transferred over day (10 minute samples)

snooper write
nfstrace write

Figure 21: Read and Write transfers as recorded by kernel instrumentation (snooper)and network monitoring (nfstrace). A quiescent system from 19:00 until 7:00, themachine is busy during the daylight hours.The graph of read-data shows an example of the di�erence between data gainedfrom snooper instrumentation and that available to nfstrace. Periodic accesses byautomatic jobs account for the regular communications tra�c logged during the 19:00to 07:00 period. Because this communications tra�c involves the regular executionof programs, commonly with little other �le-system activity, the cache of the clientcontains all the software and associated data �les to be used on these regular occasions.The result is that approximately 300 Kbytes of logical data are read each 30 minutesPage 97

6.3. FILE SYSTEM TRANSACTIONSFile System Function and Contents/ root �le system, also includes /var and /tmp. Top-level�le system containing temporary directories and loggingdirectories./usr contains standard software distribution, in addition to li-braries and include �les for the current system./var/spool/mail contains each users' mail �le./usr/local contains locally installed software./usr2 home directories for a group of users./packages contains commercial software packages and collections ofproject speci�c data (in this case image data).Table 9: A breakdown of the �le systems of the study and their respective functions.at the snooper level, but rpcspy records negligible read-activity between client andserver over the same period.The reason nfstrace is not as accurate for records of raw data transfer is becauseNFS transactions do not contain signi�cant information about blocks read from thecache of the client. The only speci�c read data available to rpcspy about data transfersthat occur is when data are read by the client from the server's disks.6.3 File system transactionsAs discussed in Section 2.1.2, each �le system is used typically for a particular purpose.For example, one �le system contains the user's directories, another �le system containsexecutable �les for the system, etc. The DECstation analysed in this study did nothave any local �le systems, apart from that used to store trace data locally, and a localswap disk. Table 9 lists the di�erent �le systems the client accessed over the traceperiod and the tasks each �le system served.A breakdown of the type of data transferred to and from each �le system can beused to assist �le system con�guration decisions. Such decisions can include: which �lesystems generates so much server tra�c it should be locally attached to this machineand how widely a particular �le system is used. A breakdown of each �le system'scommunications tra�c is given in Table 10.It is important to note that at the system-call level, as recorded by snooper, therePage 98

6.3. FILE SYSTEM TRANSACTIONSFile System snooper rpcspy/nfstracetotal/ 31,736,478 (36.63) 5,863,351 (11.59)/usr 2,941,480 (03.39) 1,446,003 (02.86)/var/spool/mail 4,385,788 (05.06) 3,142,239 (06.21)/usr/local 1,455,692 (01.68) 965,364 (01.91)/usr2 38,660,513 (44.62) 35,251,413 (69.66)/packages 7,464,579 (08.62) 3,934,663 (07.78)read/ 27,267,823 (42.26) 2,853,302 (12.73)/usr 2,941,480 (04.56) 1,446,003 (06.45)/var/spool/mail 3,836,074 (05.94) 2,311,208 (10.32)/usr/local 1,455,692 (02.26) 965,364 (04.31)/usr2 21,561,247 (33.41) 10,895,621 (48.63)/packages 7,464,579 (11.57) 3,934,663 (17.56)write/ 4,468,655 (20.20) 3,010,049 (10.68)/var/spool/mail 549,714 (02.49) 831,031 (02.95)/usr2 17,099,266 (77.31) 24,355,792 (86.38)Table 10: Total data, read data and write data transferred per �le system as measuredby snooper and rpcspy/nfstrace.is a characteristic breakdown of these transactions. Of particular note is a very largepercentage of operations associated with the / partition. The large number of trans-actions on this partition will have been potentially compounded because the /tmp and/var/tmp directories resided on the / �le systems. /tmp and /var/tmp can potentiallycarry a large percentage of operations because temporary �les are traditionally createdin this directory structure [108, 81].Table 10 shows a moderate similarity between between the result from the two moni-toring methods. Notable exceptions are tra�c involving the / partition, and read-tra�cin general. While di�erences between values for read between snooper measurementsand those of rpcspy can be explained as resulting from the cache mechanism �lteringread requests between client and server, the read tra�c for the / partition is particu-larly pronounced. This di�erence is likely to result from a high usage of system �leslocated in the /etc directory being accessed, resulting in the corresponding cache en-tries always being valid. Such examples are /etc/passwd: the list of users able to usea system, /etc/hosts: a static table of the systems known to this client and for thisPage 99

6.3. FILE SYSTEM TRANSACTIONSparticular version of UNIX, /etc/fstab: a �le listing the �le systems that should bemounted on this client.The notable di�erence in the recorded quantities of read and write data for /usr2is a re
ection of the volatile nature of �les on this �le system. In particular, softwarefor image encoding was being developed and a cycle of1. edit program2. compile program3. run programwill exist. This development cycle, during stage 1, results in source-code �les beingwritten to the NFS server (and seen by rpcspy) but not necessarily read from theNFS server. During stage 2, in addition to the source-code �les, libraries will be readonly once from the server and then may remain in the local cache while being usedrepeatedly. Finally, during stage 3, while �le transactions relating to the loading ofthe executable �le itself have been removed, this program takes as input a raw imagestream and outputs an encoded image stream. On consecutive runs the raw imagestream could have remained in local cache.It should be noted that the ratio of read-to-write tra�c already greatly favours thewrite-tra�c for /usr2 as measured with the snooper system but the cache activities,�ltering tra�c, increase this ratio.Signi�cant di�erences between the amount of write tra�c recorded by each moni-toring system for both the /usr2 and /var/spool/mail �le systems can be attributedto the block cache needing to transfer data to and from the �le system in block-sizedpieces. The result of this is that a modi�cation of one byte in a �le will result in thewriting of a whole block (8 Kbytes for these �le systems) to the �le system.From this breakdown it is clear that, while activities on the / �le system are re-sponsible for a large percentage of logical �le tra�c, block caching seems to reducethat quantity of data transfer by a factor of up to 6. By comparison, the /usr2 �lesystem is responsible for a higher quantity of data transfer and, in the development andPage 100

6.4. SYSTEM USERS interval length snooper rpcspyNumber of active usersMaximum 10 minute 4 4Average 1.6 2.2Maximum 10 second 3 1Average 1.0 1.0Total bytes transferred per active userMaximum 10 minute 6,342,850 5,477,752Average 263,535 109,820Maximum 10 second 5,120,000 5,048,320Average 11,422 18,404Table 11: The maximum and average number of active users over given intervals andthe total quantity of data transferred per active user in those intervals.balancing of �le systems, it would be important to establish whether this is a transientcondition or a regular trend for communications tra�c for that particular �le system.6.4 System usersTable 11 presents several values related to the number of active users on the systemand the amount of tra�c generated by them. Such tabulations have been made in anumber of previous studies and are useful in the estimation of the load a user mayimpose on a system as well as the worst-case scenarios for this load.The di�erences in Table 11 for the number of users are most likely the result ofsnooper recording the real User ID (UID) associated with each logical operation andrpcspy recording the e�ective User ID associated each NFS transaction. This di�er-ence comes about because programs such as inetd (the internet service daemon) [29]perform operations as one user and spawn programs that will run as another user. Theresult is that counts of active users made through rpcspy/nfstrace usually di�er bya value of one when compared with the active user count from snooper.Average-data-utilised per user indicates that cache-hit rates are, once again, absorb-ing a substantial quantity of communications that would have occurred between eachuser and the �le system. It is interesting to note that the maximum values recordedby each system are almost identical. This is most likely due to the transfer of largeamounts of data, causing the client's cache to be quickly overrun with new data. As aPage 101

6.5. FILESresult, only a minimal amount of data is cached at all during this time.6.5 FilesAs �les are the common unit of data accessed on a �le system, information about therange of �les accessed, as well as the working size of those �les, enables developers todetermine the necessary size of �le caches, to establish common working-set sizes andto quantify other related measurements.As had been mentioned earlier, the di�erence in the average �le size for the / �lesystem was predictable. This will principally be a result of a large number of small,system-related �les not requiring access from the NFS system. The di�erences in othervalues will have resulted from the caching of, and repeated accesses to, active �les (evenif these �les were active only for a short period of time). In this context, an active �leis one which is accessed one or more times.Table 13 lists the number of di�erent �les recorded at the snooper, rpcspy andnfstrace levels. At the rpcspy level, this is a count of every �le that had a reador write NFS operation performed on it. The �ltering characteristic of the cache isobvious when comparing the number of �les that had logical operations performed onthem at the snooper level with the number of �les for which data was read from orwritten to at the rpcspy level. Larger di�erences for the / �le system will have beenas a result of accesses to the large number of regularly-accessed system �les locatedthere. These �les would be accessed often and be modi�ed infrequently, as a result,having a long cache life.The results in this table show an area where the estimation method used bynfstrace can generate discrepancies. nfstrace must estimate tra�c to and from�les that have not caused any rpcspy read or write transactions. With the exceptionof /var/spool/mail, nfstracemust estimate additional operations for �les on each ofthe �ve �le systems. nfstrace has estimated extraneous operations on �les of /usr2and underestimated these operations for the other �le systems, / in particular.Page 102

6.5. FILES File system snooper rpcspy/nfstrace/ 43,378 227,880/usr 437,123 287,006/var/spool/mail 267,887 201,417/usr/local 10,226 12,310/usr2 42,713 46,067/packages 1,316,180 440,371Table 12: A comparison of the average size for �les accessed on each particular �lesystem.As discussed in Section 5.3.4, nfstrace estimates operations on �les from a com-bination of NFS read, write, setattr and getattr transactions. The estimates of�les which did not involve NFS read or write transactions would have resulted fromsetattr or getattr operations. By using getattr transactions alone, there is poten-tial for nfstrace to confuse getattr transactions caused by such operations as gettinga directory listing with those transactions being used to validate the contents of theclient cache.In comparison, the graph of Figure 22, a normalised cumulative distribution ofthe number of �les of each size, shows that the estimation calculated by nfstracecompares well with the results of snooper. The two signi�cant di�erences between theresults of nfstrace and those of snooper which lead to disparities in the graph arefor the number of zero-length �les and the number of �les which were approximately700 bytes in length.In the �rst case, nfstrace is not able to generate accurate estimations of accessesto various zero-length �les and creates many more than actually existed. This maymost likely be due to nfstrace being unable to di�erentiate getattr transactionsfor directories and getattr transactions being as a result of the opening of a zero-length �le. Files with a short life-span can present a problem to nfstrace. This isbecause given a short enough life-span between �le creation, the writing and readingof data, and �le deletion, no NFS read or write transactions may occur during theopen-close session. As a result nfstrace is not easily able to record data transferoperations on �les with a short life-span. In the second case, related case, nfstracePage 103

6.5. FILEShas underestimated the number of accesses to various �les 700 bytes in length. Inaddition to the reasons above, it is possible that nfstrace evaluates many of the 700-byte �le accesses as being zero-byte �les accesses because of the block cache absorbingthe small-�le transactions.
0

50

100

150

200

250

300

350

400

450

1 10 100 1K 10K 100K 1M

N
um

be
r

of
 fi

le
s

Size of file (bytes)

Cumulative distribution of the number of files of each file size

snooper
nfstrace

Figure 22: Cumulative distribution of number of di�erent �les accessed versus �le size.From this graph we can deduce the number of times di�erent �les less than a givensize have been accessed. For example both techniques suggest that over 150 of the �lesaccessed are 1 kbytes in size or smaller. Note: the �le size axis is logarithmic.The following table, 13, gives a breakdown of the number of di�erent �les accessedby the system during the measurement period. These values are consistent with thehypothesis that nfstrace was unable to evaluate correctly accesses to zero length �les.The average �le size for / would strongly con�rm this, although the /packages resultsrun counter to this. This strong counter-example could be due to the unusual natureof �les on that particular �le system: we note also that nfstrace results count one less�le for that �le system; a single large �le would have modi�ed this average considerably.While there are notable di�erences in each of Tables 13 and 12, the results fromthem, in addition to those of Figure 22 show that nfstrace was able to give resultsbroadly comparable with those of snooper. Page 104

6.6. FILE OPEN-CLOSE SESSIONSFile System snooper rpcspy nfstrace/ 111 (24.89) 68 (17.13) 98 (22.37)/usr 10 (02.24) 8 (02.02) 8 (01.83)/var/spool/mail 3 (00.67) 3 (00.76) 3 (00.68)/usr/local 49 (10.99) 46 (11.59) 48 (10.96)/usr2 269 (60.31) 269 (67,76) 278 (63.47)/packages 4 (00.90) 3 (00.76) 3 (00.68)Total 446 397 438Table 13: A breakdown per �le-system of the total number of di�erent �les accessedduring the trace period. The values in parentheses are each count as a percentage ofthe total number of �les.6.6 File open-close sessionsThe open-close session of a particular �le is a concept around which a number ofmeasurements are based. A number of studies have used such measurements; examplesinclude �le sharing, �le utilisation and various cache studies [73, 8, 42, 48, 89, 6].Such open-close session measurements include the length of time a particular �le isopen, the amount of data accessed in that time, the amount of data potentially accessed(the size of the �le opened), what sort of open-close session was involved, was the �leopened to read and/or write operations, etc.The number of open-close sessions as well as a breakdown of the relative types,are tabulated in Table 14. The implementation of NFS under Ultrix includes thesynchronous writing of modi�ed data blocks to the �le system at the close of a �le.This means that nfstrace can only potentially miss write operations on �les thatultimately leave the �le with zero length, for example, some sort of temporary �le.Read-only open-close operations have no such certainty. As a result, nfstrace willnot be able to generate results for reads on �les that occur in close succession (wherethe cache contents are still valid). Additionally, nfstrace may not correctly interpretgetattr NFS transactions used to validate the cache. The result is nfstrace willeither miss some open-close sessions altogether, incorrectly interpret NFS transactionsas not being an open-close session, or incorrectly consider that the NFS transactionsfrom two or more separate open-close session are from the same open-close session.Page 105

6.6. FILE OPEN-CLOSE SESSIONS snooper nfstraceread entries 7442 (88.07) 1749 (68.51)write entries 557 (06.59) 804 (31.49)read-write entries 35 (00.41) - -null entries 416 (04.92) - -Total 8450 2553Table 14: The count of open-close sessions each monitoring system interprets. Addi-tionally, a breakdown of these open-close sessions into read-only, write-only, read-writeand null open-close sessions is shown. A null session is where no data are read fromor written to the �le (although the �le was opened). Values in parentheses are thepercentage of the total number of �les each type represents.The larger number of writes recorded by nfstrace will certainly include the read-write operations snooper recorded. nfstrace is unable to di�erentiate read-writesessions and would consider each of such operations as a separate read and write session.Null open-close sessions, where no data are transferred and the �le is simply closed,would not be able to be detected by nfstrace. Instead, nfstrace interprets any �leopen, were that the only operation on a particular �le, to be a reading of an unknownamount of data from the client cache.Because the borders between read and write operations cannot be determined accu-rately, nfstracewill tend to collect successive open-close sessions together, interpretingthem as one longer open-close session. As a result of this, the average duration of theopen-close sessions reported by nfstrace may be higher than the durations reportedby snooper.Tables 15 and 16, record the open-close sessions broken down by type of open-closeoperation per �le system basis, and by �le system per operation. Firstly, Table 15shows the full e�ect of the cache �ltering, combined with nfstrace incorrectly in-terpreting information available, causing open-close sessions to be removed. This isespecially the case for the / �le system. The results for /var/spool/mail are a goodexample of where nfstrace has misinterpreted the NFS getattr transactions as open-close sessions because mail �les are often checked for new mail resulting in getattrtransactions. By way of comparison, a better result is given for the /packages �lesystem. Files from this �le system are unlikely to be able to be kept in cache forPage 106

6.6. FILE OPEN-CLOSE SESSIONSFile System session type snooper nfstrace/ read 6415 (90.33) 818 (63.21)write 354 (04.98) 476 (36.79)read-write 35 (00.49) - -null 298 (04.20) - -/usr read 123 (73.21) 61 (100.00)null 45 (26.79) - -/var/spool/mail read 18 (40.91) 75 (91.46)write 4 (09.09) 7 (08.54)null 22 (50.00) - -/usr/local read 146 (100.00) 100 (100.00)/usr2 read 731 (74.52) 686 (68.12)write 199 (20.29) 321 (31.88)null 51 (05.20) - -/packages read 9 (100.00) 9 (100.00)Table 15: A breakdown of the open-close sessions on each �le system by type of open-close session. Values in parentheses are each type of operation as a percentage of theopen-close sessions on that �le system.long periods. The result is that nfstrace is able to give a better result for open-closesessions because the NFS transactions for this �le system were more complete.Because the cache is removing the need for a large number of the read operationsto result in NFS transactions, the read:write ratio is closer to unity for the results ofnfstrace than the results of snooper. While this ratio is expected, even desirable, forthe measurements of data transferred, these values are incorrect for open-close sessions,resulting in higher average data transferred per session and incorrect information aboutthe characteristics of the sessions.However, while the ratios of the various types of open-close sessions produced bynfstrace are not particularly close to those of recorded by snooper, adding the �guresfor null sessions to the read open-close sessions improves the comparison for all �lesystems except for /.For Table 16, all write values are increased by nfstrace, particularly in the caseof /usr2. This error will partly be because nfstrace interprets the creation of any�le and any subsequent writing to that �le as two separate write events. Additionally,nfstrace can incorrectly interpret multiple writes to the same �le as consecutive open-close sessions. Because nfstrace interprets an access to the �rst byte of a �le as thePage 107

6.6. FILE OPEN-CLOSE SESSIONSstart of a new open-close session, nfstrace can interpret multiple writes into the samelocation in a �le as multiple open-close sessions on that �le. As an example, thissituation can arise with the vi editor [30]. vi uses log �les that check-point the editoperations as they occur on the �le, so vi can be continually writing small changesto the log �le. These collections of small writes will result in blocks being writtento the server and if there are a number of writes made to the �rst block, the �rstblock may be written to the server several times. Each time the �rst block is writtento the server nfstrace could potentially misinterpret the writing of data as separateopen-close sessions on the log �le. It is worth noting that the actual number of extrasessions is quite small and in comparison with values for all open-close sessions, will beoverwhelmed by the quantity of other open-close sessions (read sessions in particular).However, for open-close sessions writing to a �le, these extra open-close sessions canbe signi�cant.Some of these problems are as a result of the algorithms used by nfstrace. Whilesome assumptions have been made by nfstrace so as to produce an open-close sessionrecord, this particular situation may be resolved with a more sophisticated nfstracealgorithm.The duration of an open-close session is important in determining the amount oftime a particular �le is in use. This, in turn, is important in calculating the amount oftime �les are shared between users and, in a distributed �le system, between systems.Figure 23 shows that duration of open-close sessions recorded by rpcspy will belonger than those recorded by snooper. The longer open-close sessions that cause thedi�erences in average durations are likely to be a result of transactions that are part ofseparate open-close sessions being interpreted as part of the same open-close session.Additionally, the calculation of duration from NFS tra�c means that lead and lagtimes (times in which the �le is open but no operation occurs) will be di�erent from theaverage length of the open-close session. These situations are represented graphicallyin Figure 19, these �gures show that the block operations upon which nfstrace'srecord will be based may not correspond with the logical open and close operations inPage 108

6.6. FILE OPEN-CLOSE SESSIONSFile System session type snooper nfstraceread / 6415 (86.20) 818 (46.77)/usr 123 (01.65) 61 (03.49)/var/spool/mail 18 (00.24) 75 (04.29)/usr/local 146 (01.96) 100 (05.72)/usr2 731 (09.82) 686 (39.22)/packages 9 (00.12) 9 (00.51)write / 354 (63.55) 476 (59.20)/var/spool/mail 4 (00.72) 7 (00.87)/usr2 199 (35.73) 321 (39.93)read-write / 35 (100.00) - -null / 298 (71.63) - -/usr 45 (10.82) - -/var/spool/mail 22 (05.29) - -/usr2 51 (12.26) - -Table 16: A breakdown of the open-close sessions of each type, breakdown is by the�le system of the �le. Values in parentheses are each �le system's operations as apercentage of the open-close sessions of that type.an open-close session.Figure 24 graphs a comparison of the data-transfer rate as measured by snooper, asper Figure 21, with the amount of data nfstrace estimates was potentially availableto the system, (an accumulation of the sizes of �les accessed). While not directlycomparable, it is worth noting that the accumulation of the sizes of �les is able to giveenough information to estimate with fair accuracy the trends of data transfer betweenclient and server.Figure 25 shows a cumulative distribution of open-close sessions versus the amountof data transferred. It is important to note that one reason that nfstrace di�ers sosigni�cantly with snooper is that nfstracewas unable to detect the large percentage ofopen-close sessions during which approximately 1 Kbyte was transferred. Additionally,snooper results estimate that fewer than 500 of the open-close sessions transferred oneor zero bytes, whereas nfstrace results estimate those circumstances existed for morethan 1,000 of the sessions it recorded.A primary reason nfstracedoes not record the large number of sessions transferringapproximately 80, 750, 900 and 1,100 bytes is because those �les are in the cache andno data is transferred between server and client. This reason is strengthened by thePage 109

6.6. FILE OPEN-CLOSE SESSIONS
10

20

30

40

50

60

70

80

90

100

1ms 10ms 100ms 1s 10s 1min 10min 1Hr 10Hr

%
 o

f o
pe

n-
cl

os
e

op
er

at
io

ns

Duration

Cumulative percentage of open-close operations against duration

snooper
nfstrace

Figure 23: Normalised cumulative distribution of the number of open-close sessionsversus the duration. From this graph we can deduce the longest of the open-closesessions for a given number of those sessions. For example, the snooper techniquerecords that 70% of the sessions have a duration of about 100 milliseconds or less.Note: the duration axis is logarithmic.
0 Mbyte

5 Mbyte

10 Mbyte

15 Mbyte

20 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper read (data transfered)
nfstrace read (filesize)

0 Mbyte

2 Mbyte

4 Mbyte

6 Mbyte

8 Mbyte

10 Mbyte

12 Mbyte

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00

B
yt

es
 tr

an
sf

er
re

d

Time of day

Data over day (10 minute samples)

snooper write (data transferred)
nfstrace write (filesize)

Figure 24: These graphs compare the transfer rate measured with snooper, to the totalamount of data nfstrace has calculated the client has had access to in each �le fromwhich it has read data. As a low-order approximation, these values are comparablegiving the same characteristics for data utilisation over time of the trace. Page 110

6.6. FILE OPEN-CLOSE SESSIONS�les being of small size and stay in the cache, and that nfstrace gives trends similarto those of snooper for other transfer values (even if the actual number of sessions isgreatly reduced).
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r

of
 o

pe
n-

cl
os

e
op

er
at

io
ns

Data transferred (bytes)

Cumulative number of open-close operations against data transferred

snooper
nfstrace

Figure 25: Cumulative distribution of the number of open-close sessions versus the datatransferred for each open-close session. From this graph we can deduce the amountof data transferred per open-close session for a given number of those sessions. Forexample, the snooper technique records that over 7,000 sessions transfer about 1,100bytes of data. Note: the data transferred axis is logarithmic.The di�erences between snooper and nfstrace in Figure 26 have resulted fromnfstrace being unable to interpret frequent accesses to �les of a certain length, inparticular, �les which are 80, 750, 900 and 1,100 bytes in size. Accesses of such �lesaccount for a large percentage of the overall open-close sessions for regularly-accessed�les but nfstrace is not recording an open-close session for them. This results in anexaggeration in the graphs for the number of open-close sessions for common data-transfer and �le-size values. This situation is probably exacerbated by the inability ofnfstrace to record many of the open-close sessions in which no data transfer is made.Page 111

6.6. FILE OPEN-CLOSE SESSIONS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1K 10K 100K 1M

N
um

be
r

of
 o

pe
n-

cl
os

e
op

er
at

io
ns

File size (bytes)

Cumulative number of open-close operations against file size

snooper
nfstrace

Figure 26: Cumulative distribution of the number of open-close sessions versus thesize of the �le accessed in each open-close session. From this graph we can deducethe maximum size of �les opened for each open-close session for a given number ofthose sessions. For example, the snooper technique records that over 7,000 of thesessions access �les containing less than 1,100 bytes of data. Note: the �le size axis islogarithmic.
Page 112

6.7. RESULTS FROM RPCSPY/NFSTRACE ONLYNFS transactions payload data (bytes) Average payload data(%) (%) NFS transactionReads 10,387 (61.73) 26,502,065 (51.87) 2,681Writes 6,129 (38.27) 24,591,581 (48.13) 4,012Table 17: The above values are a count of all NFS read or write transactions as wellas all the data transferred in those transactions to or from the �le server.6.7 Results from rpcspy/nfstrace onlyThe combination of rpcspy and nfstrace may not currently be able to give accurateinformation on open-close sessions and other logical levels of operations. However,both these tools, particularly rpcspy, are able to give useful information about theNFS protocol, the utilisation of the network by a particular client, and server loads.While a small amount of this information may be available from a particular ma-chine, the most-accurate results are recorded from the network itself.6.7.1 NetworkIn Table 17 a breakdown of the number of NFS transactions, data carried by thosetransactions and the average amount of data per transaction are given. This set ofresults is, like those presented previously, without executable �le tra�c. The very high�gure for the average amount of data per write transaction should be noted. It resultsfrom write operations being performed in block-size unit or as close to block-size unitsas possible.In these results the amount of data read and written for a single client is almostthe same. This would lead to a conclusion that the performance of the client wouldbe as dependent on the speed of write operations as on read operations. This is notthe case in logical operations where the amount of data read commonly outstrips theamount of data written to a �le system by a factor of about 2:5 [73, 8].A breakdown of the NFS transactions, as is given in Table 18, shows the type ofutilisation of the network by the client as well as highlighting potential problems. Fromthe table it is interesting to note that over 30% of the NFS transactions performed bythe client were getattr. While these transactions are not used exclusively for cachePage 113

6.7. RESULTS FROM RPCSPY/NFSTRACE ONLYconsistency, the quantity of the transactions far outweighs any other. This wouldimply that in comparison to read transactions, which account for only 6.8% of thetotal number of transactions, there are over four times as many operations to check oncache consistency than transactions that cause data to be placed into the cache.In this particular breakdown a potential problem is highlighted. The number ofreadlink transactions which are used to resolve symbolic links, is over 15% of thetotal. According to an NFS performance guide produced by Sun Microsystems [105],such a high �gure may be adversely a�ecting performance, and reducing the numberof symbolic links will potentially improve performance.In this way, information about the functioning of the NFS protocol can give in-formation both about areas where any development would have best impact. In thisexample, with a large utilisation of getattr, small improvements in its performancewill give potentially dramatic overall performance increases. Additionally, such intrin-sic information can indicate potentially troublesome operational areas, in this case thehigh percentage of readlink transactions.With rpcspy there is potential for this technique to be used to collect informationabout all machines communicating on a particular computer network. For example,complete information about a �le-server's NFS transactions could be collected from thecommunications tra�c of that particular server. Table 19 gives results similar to thoseof Table 11 (results for a single machine), with the exception that these results havebeen collected from all communications tra�c with a particular server. This table hastwo parts. The �rst part is based on the data exchanged between client and server.While the second part is based on the NFS transactions exchanged with the server.This table also provides an additional breakdown between both clients and users. Theresults in this table have not had executable tra�c removed, and thus it is not directlycomparable with results previously given. It is given as an indication of the uniqueabilities of network-based monitoring.Another di�erence between NFS transactions that carry data, read and write andthose that do not, such as getattr, is also given in Table 19. The number of clientPage 114

6.8. RESULTS FROM SNOOPER ONLYNFS transaction Total number (% of total)getattr 45,902 (31.55)lookup 27,214 (18.71)readlink 22,159 (15.23)statfs 12,861 (08.84)readdir 10,109 (06.95)read 9,886 (06.80)write 6,129 (04.21)remove 4,924 (03.38)setattr 3,787 (02.60)mkdir 693 (00.48)rmdir 687 (00.47)rename 434 (00.30)create 352 (00.24)null 339 (00.23)link 11 (00.01)root 0 (00.00)writecache 0 (00.00)Total 147618 -Table 18: A breakdown of all NFS transactions to the �le server.machines and the number of users, transferring data to and from the server, di�erssigni�cantly from the number of di�erent clients and users performing one or moreNFS transactions. This di�erence could result from a number of sources. Firstly,clients may not need to collect data from the server if a local cache copy is available,as a result the NFS transaction will be a getattr, transferring no data, the resultis that users on these machines do not need to retrieve data from the server that isavailable in the client cache. The other reason for the di�erence could be that NFStransactions will be triggered from clients when users do operations on the disk thatdoes not involve retrieving data. An example of this might be getting a listing of adirectory on the NFS server.6.8 Results from snooper onlyBy virtue of snooper being a set of modi�cations to the kernel, there is potential forsnooper to collect any information about the operation of the kernel. This can includeinformation about processes, an aspect of machines that nfstrace will not be able toPage 115

6.8. RESULTS FROM SNOOPER ONLYFrom data transferredTotal number of users 41Total number of clients 44Maximum amount of data transferred by users 339,668,438Maximum amount of data transferred by clients 379,519,630Average amount of data transferred by users 19,626,049Average amount of data transferred by clients 18,287,910From NFS transactionsTotal number of users 101Total number of clients 137Maximum number of transactions by users 618,891Maximum number of transactions by clients 317,547Average number of transactions by users 10394.0Average number of transactions by clients 7662.7Table 19: A comparison of active users, maximum and average data transfers deter-mined using both data transferred and NFS transactions. Results are further brokendown on the basis of per-user and per-client.access as information describing the source process does not become part of the NFStransactions.6.8.1 Process informationThe execution of a process goes through two distinct phases. In the �rst phase, theprocess is created, using the fork system call, and the program to be executed is loadedinto memory. In the second phase, control is transferred to the new program using theexec system call and �nally the process will terminate with an exit system call.Table 20 gives average times for each of these phases as well as the average timetaken between fork and exit, that is, the total lifetime of a particular process. It hasbeen noted that UNIX processes are, on average, short-lived [35, 52]. This is partiallybecause process creation has a low overhead and as a result processes have become aresource that is highly used by operating systems developers.Figure 27 shows a cumulative distribution of the time taken in each phase of theprocess's life. It is noteworthy that while more than 95% of processes have �nished thefork-exec cycle in less than half a second, 3% of processes take 10 seconds or longerto have �nished this phase. Also, 90% of processes take greater than 200 millisecondsPage 116

6.9. SUMMARY fork to exec exec to exit fork to exitAverage time in seconds 0.37 19.80 20.18Maximum time in seconds 53.86 5,810.40 5,810.51Table 20: The average time for phases of a process's lifetime. The fork to exec timecovers the loading of a program. The exec to exit time covers the execution of theprogram. The fork to exit times given are the total time taken for a process.from fork to exit, yet 90% of processes take less than 10 seconds over this same time.If we assume that open-close sessions of �les are not restricted to processes withany particular characteristics in regard to process lifetime, and that open-close sessionsthat extend across two or more processes are relatively uncommon, then this processlife-limit would indicate the open-close session of a �le was unlikely to be longer than10 seconds in duration in 90% of cases. Such a result con�rms that nfstrace may beestimating incorrectly the occurrence and length of open-close sessions and, as a result,will have the potential to incorrectly estimate the amount of data transferred for eachopen-close session.While the �le tra�c for programs executed was not included in these results, itwould indicate, from this result, that if the average open-close session (including �letra�c for executables) was included, the average duration would be closer to 10 seconds.6.9 SummaryThe preceding results show that, while the two set of results are not directly com-parable, nfstrace is able to make a �rst order approximation of number of valuestraditionally measured by systems such as snooper, such as the total I/O transferredby a machine or the quantity of data written. Additionally, other estimated values,while imprecisely estimated by nfstrace in the current version, could potentially giveaccurate enough results to be able to replace systems such as snooper outright in anumber of circumstances, such as measuring the number of active users per machineor the distribution of �le size compared with �les accessed. Most discrepancies in theinterpretation by nfstrace when compared with results from snooper relate to theidenti�cation of open-close sessions. Minimisation of these errors would improve thePage 117

6.9. SUMMARY

10

20

30

40

50

60

70

80

90

100

1ms 10ms 100ms 1s 10s 1min 10min 1Hr

%
 o

f P
ro

ce
ss

es

Time

Process lifetimes

fork to exec
exec to exit
fork to exit

Figure 27: Cumulative distribution of the stages of process-life versus the time takenin each stage. Most processes have two stages, the time taken between the fork andexec system call when the executable is loaded, and the time taken between the execand exit system call when the executable is run. The time given as fork to exit isthe total amount of time taken for each process. From this graph we can deduce themaximum time taken for an execution stage for a given percentage of processes. Forexample these graphs show that about 65% of the fork-exec times of processes take lessthan 100 milliseconds. Note: the time axis is logarithmic.
Page 118

6.9. SUMMARYestimation of both open-close session duration and data-size results.A number of the results collected by nfstrace are not comparable with thosecollected by snooper, for example the amount of data transferred. While values for themaximum data transferred and write operations can be compared, values a�ected bysigni�cant caching (e.g. reading of data, particularly small amounts of data repeatedlyfrom the same �le), will di�er signi�cantly.In addition to measures which can be compared, the unique nature of both snooperand rpcspy means that each has access to di�erent types of information. Snooper,as a piece of kernel instrumentation, is ideally suited to record information aboutprocesses, an area from which network monitors are unable to retrieve information. Incomparison nfstrace is ideally suited to collecting information about all machines on aparticular network, including for example, all the tra�c to a particular for server. Thesedi�erences mean each technique has a role to ful�l, but there is certainly potential fornetwork monitoring to be able to make measurements for which kernel instrumentationhas traditionally been used in the past.Additionally, it is worth pointing out that the information rpcspy generates andthat nfstrace in turn uses, is not in error. The di�erences between nfstrace outputand that of snooper occur because nfstrace attempts to estimate the operations onthe user side of the cache, from the operations that occur on the �le system side ofthe cache. Improvements in the performance of nfstrace would come about fromimprovements in this estimation process.6.9.1 rpcspy/nfstrace problemsFor nfstrace to be a more useful tool, the accuracy of its estimations needs to beimproved. There are a number of areas where nfstrace either makes errors or doesnot have enough information with which to work.Areas in which nfstrace can potentially be improved:1. nfstrace incorrectly interprets the creation of a �le to be two separate open-closesessions. Page 119

6.9. SUMMARY2. nfstrace does not always correctly interpret getattr transactions. The resultof this is an overestimation of cached reads and an underestimation of open-closesessions with no data transfer.3. the method nfstraceuses for summing transfers together can result in spuriouslymissing read or write transactions.To a large extent these problems, particularly 2 and 3, are also a result of NFSnot making enough information available for nfstrace to be able to estimate theoperations that are occurring. The lack of data supplied by NFS also means nfstraceacts as a �lter removing short, consecutive, open-close read sessions. Such operationsare absorbed by the cache and as a result �ne-grain sporadic operations are missed.During this study, the recording of all Ethernet tra�c by the rpcspy machine wasnot possible (a loss of 1.5% was recorded). This implies a loss of 0.6% of the totalNFS transactions from the recorded trace, if we assume a ratio of NFS to non-NFStra�c at the same ratio as was recorded during the testing of rpcspy network packetcapture mechanism (Section 5.4.1). While a source of potential error, this data lossis overshadowed by the error introducing aspects of the operation of nfstrace. Asa result, while this error should not be discounted, it can be considered to have lowoverall signi�cance in the results.
Page 120

Chapter 7Improving passive networkmonitoringIn this chapter the discrepancies between results gained with rpcspy and nfstraceand those gained by snooper (as shown in Chapter 6) are discussed. This chapter alsoincludes a discussion of methods by which the discrepancies can be reduced.There are two distinct levels at which this suite of software operates: rpcspy collectsNFS transactions from the network and nfstrace interprets the NFS-transaction traceof rpcspy and generates a trace of open-close session records. Each of these two levelsis discussed separately.7.1 Improving rpcspy7.1.1 Limitations of rpcspyrpcspy must be able to collect and pair enough NFS-transaction requests and repliesto enable accurate interpretation. Ideally, rpcspy should be able to record every NFStransaction, but its ability to do so depends also on the Ethernet packet capture mecha-nism of the machine on which it is operating. As was shown in Section 5.4.1, Figure 16,neither of the Ethernet packet capture facilities rpcspy can use (the NIT mechanism ofSunOS and the packetfiltermechanism of Ultrix) are able to capture every Ethernetpacket beyond a particular level of Ethernet utilisation. In addition to this, rpcspyhas limits on the number of NFS transactions it can handle in a given time because ithas a signi�cant amount of processing to perform in the matching of each transaction.121

7.1. IMPROVING RPCSPYThe tapering e�ect of this processing is shown in Table 17.As a result of these limitations, the performance of rpcspy is bound by the abilityof the Ethernet capture mechanism to collect all packets on the Ethernet network ata given utilisation-level and on the performance of the rpcspy machine to process theNFS transactions.7.1.2 Improvements to rpcspyIn Section 5.4.1, a comparison revealed that the NIT Ethernet facility of SunOS o�erslimited con�gurability as well as a higher packet loss, while the packetfilter facilityof Ultrix o�ers better con�gurability and higher performance (fewer lost packets). Thecon�gurability of packetfilter, in particular the ability to increase the size of �lterbu�ers, gave a much better loss-characteristic for this system than the NIT basedimplementation of rpcspy. Because rpcspy depends so critically on the characteristicsof the Ethernet packet capture mechanism facility for the equipment compared, theselection of packetfilter is almost unavoidable.Obtaining optimum performance from rpcspy also involves using a machine thatdoes not have other signi�cant duties that would detract from its ability to processNFS transaction information. For example, running rpcspy on the NFS server ora workstation with a heavy workload would not give optimum performance results.Ideally, the workstation used should be one dedicated to the task of collecting rpcspydata, if only for the period of the trace. Additionally, it is a reasonable assumption thatthe more powerful the workstation, the greater its ability to process NFS transactions.While an rpcspy con�guration was not attempted on the newer workstations fromDigital or Sun Microsystems, both the improved performance of the workstations andEthernet capture mechanism would suggest potential improvement in the operation ofrpcspy on such machines.
Page 122

7.2. LIMITATIONS OF NFSTRACE7.2 Limitations of nfstraceChapter 6 showed discrepancies between results of nfstrace and those collected by thesnooper kernel-instrumentation system. These discrepancies, listed in Section 6.9.1,are a result of the lack of information available to nfstrace and of sometimes incor-rect interpretation of this information by nfstrace. The misinterpretation is causedby simpli�cations in the rule-base used by nfstrace, listed in Section 5.3.4, and inap-propriate nfstrace parameters.In nfstrace, a complicated relationship exists between each rule in the rule-baseit uses. As a result, the solution to a number of problems with nfstrace wouldsimultaneously solve or, in certain cases, complicate other observed discrepancies. Thelisting below shows each major discrepancy or problem with nfstrace.1. nfstrace treats the creation of a �le as two separate open-close sessions.2. Underestimation of the number of open-close sessions. This also means nfstracecan overestimate the data transferred per open-close session, particularly in thecase of writes.3. nfstrace is unable to observe logical data transfer.4. nfstrace has no record of open-close sessions that transfer no data at the logicallevel.5. nfstrace has no record of open-close sessions that both read and write data.6. The nfstrace method used for summation of read operations and write opera-tions can result in transferred data not being counted.7. The method used for estimating the purpose of an NFS getattr transaction issimplistic.8. nfstrace does not estimate the contents of a client cache. As a result nfstracewill assume �les in cache are being accessed when this is not the case.9. nfstrace is unable to detect short open-close sessions. Page 123

7.3. IMPROVEMENTS TO NFSTRACE7.3 Improvements to nfstraceIn this section we will outline methods for improvements in each of the areas listed inthe previous section are outlined.7.3.1 nfstrace treats the creation of a �le as two separateopen-close sessionsThis misinterpretation arises because nfstrace does not interpret NFS create trans-actions at all. With the current algorithm, nfstrace processes the NFS getattrtransaction (a by-product of �le creation used to get the attributes of the new �le intothe client) and assumes that an open-close session involving a cache copy of the �leis taking place. nfstrace then interprets the NFS write transactions that typicallyfollow the creation of a �le as a part of a di�erent open-close session on that �le.While a modi�cation to interpret the NFS create transaction would marginallyincrease the complexity of nfstrace algorithm, the change would mean the correctinterpretation of the �le-creation event. Such a change would also involve modifyingthe interpretation of the getattr transaction caused by the creation of the �le andinsuring, when appropriate, that operations writing data to the new �le were alsotreated as part of the same �le-creation open-close session.7.3.2 Underestimation of the number of open-close sessionsWhile the central reason for this underestimation, a lack of information from the NFStransactions, can not be solved easily, nfstrace does not always correctly interpretthe information it does have available.Figure 28 illustrates the operation of the timeout in rpcspy. The timeout is usedby nfstrace to determine when a record for an open-close session should be generated.If a new transaction occurs after a period greater than the length of the timeout sincethe previous transaction it will be treated as the �rst transaction of a new open-closesession. In this way, the timeout-period represents the time between one open-closesession and the next session, on the same �le, on the same client, by the same user.Page 124

7.3. IMPROVEMENTS TO NFSTRACE
Block Read

Close

Read

Open

Case 1

Block ReadRead

Open

Close

Block ReadRead

Open

Close

Case 2

Block ReadRead

Block Read

Close

Read

Open

Case 3

Time

timeout

nfstraceFigure 28: The operation of the nfstrace timeout in an open-close session. Case 1shows the normal operation of the timeout, where an open-close session involves noadditional NFS transactions. Case 2 shows the situation where too-long a timeout willcause the operations of two separate open-close sessions to be considered part of thesame open-close session. Case 3 illustrates the situation where a timeout is not longenough and will typically cause the later NFS transactions to be considered as part ofa new open-close session.Because this value is adjustable and the behavior of nfstrace depends criticallyon the value of this timeout, the selection of this value is important. Unfortunately,the appropriate value for the timeout is not easily calculated. The nfstrace softwareuses a default value of 135 seconds (Blaze selected this value on the basis of his ownexperimentation), but it is not di�cult to conceive of circumstances where the timeoutmight be inappropriate (in a network of signi�cantly faster or slower machines forexample).Figure 29 is a plot of the number of open-close sessions recorded by nfstraceversus the timeout value. From this graph we can see that, under the current heuristic,no timeout value would enable nfstrace to match the total number of open-closesession records generated by snooper. This graph also illustrates how characteristicsof the underlying NFS system manifest themselves in the trace data. The signi�cantsteps at around 60 and 120 seconds are due to signi�cant amounts of tra�c, 60 and 120seconds after blocks of a �le have been read from the server. This tra�c is most usuallygetattr transactions being sent to validate the contents of the cache. Additionally, thePage 125

7.3. IMPROVEMENTS TO NFSTRACElarge step from zero seconds results from nfstrace assuming each transaction (suchas a single NFS read, write or getattr transactions) as a single open-close session.
2000

3000

4000

5000

6000

7000

8000

9000

0 25 50 75 100 125 150 175 200 225 250 275 300

N
um

be
r

of
 o

pe
n-

cl
os

e
se

ss
io

ns

nfstrace timeout value (seconds)

Open-close session records versus nfstrace timeout value

Figure 29: The number of open-close sessions recorded by nfstrace versus the valueof the timeout nfstrace uses as part of its heuristic. nfstrace uses a default value of135 seconds.The number of open-close sessions is important because it a�ects values such theaverage size of �les and the amount of data transferred over a given time. However,because data written to a �le will almost always be seen as an NFS read transactionand is independent of number of open-close sessions, simply changing this timeoutvalue to increase the number of open-close sessions could correct one of the values atthe expense of another.7.3.3 nfstrace is unable to observe logical data transfernfstrace cannot collect actual data about logical data transfers because NFS trans-actions do not contain this information. In the case of write operations, data arecommitted to disk when a �le is closed and the amount of data logically written isnearly identical to the amount of data written to the �le at the block level. However,the use of the client cache means that the amount of logical-read tra�c does not havePage 126

7.3. IMPROVEMENTS TO NFSTRACEa one-to-one relationship with the data read at the block level. The di�erence is de-sirable because it improves the performance of the client machine and minimises theworkload placed on the communications network and server machine. However, to getan accurate �gure for logical �le operations, a simple approach might be to modifythe amount of data transferred for read operations by some multiplier. The resultsof Section 6.3 indicate that such a ratio would be around 2:8 : 1. This is broadly inagreement with other �le system cache study results [73, 8, 98, 108, 14, 58], most ofwhich consider the ratio 2:5 : 1 to be typical.However, on closer inspection, the values in Table 10 show that while this averagemight be true for tra�c taken as a whole, it is not so on a �le-system-by-�le-systembasis. Using such a ratio as a multiplier is open to error because, as the results in Ta-ble 10 indicate, the di�erent requirements of a �le system in
uence the data transferredat the logical and block level for this �le system as well as the ratio of the transferredamount. As a result, the use of a multiplier derived from this sort of ratio dependsheavily on a similarity between the workload of the machine on which the ratio wasderived and the machine on which this value is to be used.Such a technique has the advantage of simplicity and, depending on the accuracyrequired, the use of a multiplier may be su�cient. However, it is worth noting thatin addition to changes in workload, changes in the amount of memory available forcaching can have a dramatic e�ect on the cache-hit ratio ([8, 73, 98]) and, because ofthis, such modi�ed results could easily, if accidently, be of little worth.Another approach is to estimate the amount of data in the cache. This would,at least, allow a user of nfstrace to estimate the amount of data that could havepotentially been accessed. nfstrace makes such an estimation which, currently, isbased on the size of the �le thought to have been accessed. However, this is misleadingbecause in many cases, such as those involving executable or large data �les, the whole�le might not be in the cache of the client computer. Furthermore, only part of the�le might be accessed. Using the �le size will give at least a rough estimate of theamount of data potentially available during an open-close session but will cause anPage 127

7.3. IMPROVEMENTS TO NFSTRACEoverestimation of the amount of data accessed.An improvement in the estimation of the amount of data in the cache of the clientwould be for nfstrace to incorporate a simulator of the cached data. In this way,nfstrace could make a more-accurate estimation of the amount of data potentiallytransferred in an open-close session. The incorporation of a block cache simulator intonfstrace would also assist in other areas where nfstrace reports results incorrectlyor where the results show a great discrepancy with those of snooper, this concept ismentioned in more detail below.7.3.4 nfstrace has no record of open-close sessions that trans-fer no data at the logical levelBecause nfstrace has no access to logical data, open-close sessions that transfer nodata will either appear as read open-close sessions with no data transferred or notappear at all. This problem has no easy solution. However, it would be solved partlyby a better di�erentiation between programs such as ls causing the stat system callto invoke NFS getattr transactions and the getattr transactions being used to checkthe validity of the contents of cache or at the start of the open system call.Blaze [11] found that the main cause of NFS getattr transactions was not relatedto cache-consistency or to the opening of �les, but was the ls program itself. Withthis information nfstrace may be able to handle, as a special case, NFS getattrtransactions that have occurred immediately following a request for the ls or ls-type programs rather than immediately assuming the NFS getattr transaction wasas a result of a cache-consistency check. This method has a number of potential
aws and would involve pre-loading information about which programs were prone togenerate stat system calls (and thus NFS getattr transactions) so that nfstracecould recognise them.There is no easy way for nfstrace to detect with certainty any open-close sessionsthat have had no logical data transfer. With the use of a block cache simulator,nfstrace would at least be able to predict NFS getattr transactions that did notrefer to blocks a client had in its cache. Additionally, combined with a better methodPage 128

7.3. IMPROVEMENTS TO NFSTRACEof detecting spurious stat system calls, nfstracemay be able to better identify NFSoperations as a result of open-close sessions and, thus, open-close sessions that have,at least potentially, no data transfer at the logical level.7.3.5 nfstrace has no record of open-close sessions that trans-fer both read and write dataBecause nfstrace has no access to logical data and a simple heuristic is used, open-close sessions that cause data to be both read from and written to a �le appear eitheras a pair of open-close sessions (one for read operations and one for write operations)or an open-close session is generated only for the write operations. The reason for thissecond behavior, i.e. only one write open-close session for a �le that has had data bothread from and written to it, is that the heuristic used by nfstrace attempts to copewith the fact described in Section 6.6 that data transfers must be in block-sized units.Consequently, even if only part of a block is being written, the block to be modi�edmust be read by the client before the modi�cation can take place and the modi�edblock must then be written back.An approach of the version of nfstrace Dahlin et al. modi�ed for their study([24]) would be to record when a �le is truncated (the �le is explicitly set to zerolength or the �le has had no data transferred and the �rst operation is to write tothe �rst byte in the �le) and then, regardless of what data was read from the �le, theopen-close session would be treated as a write-only open-close session. In this way,the complex special handling of blocks of a �le read before they are written wouldbe more accurate and doubts about blocks read from the server being part of a writeoperation would be removed. In all other cases where data is both read from andwritten to a given �le, nfstrace would consider the open-close session to be a read-write session. This solution appears to be a good method by which read-write sessionscan be di�erentiated. Page 129

7.3. IMPROVEMENTS TO NFSTRACE7.3.6 The nfstrace method used for summation of read op-erations and write operations can result in transferreddata not being countedAs mentioned above, nfstrace does not have a concept of a �le being both read fromand written to during an open-close session. As a result, the heuristic nfstrace usedto calculate when a �le was written to could cause previous NFS read transactions,resulting from logical reads, to be included as part of the data transferred during thewrite-only open-close session.In combination with the suggestion to di�erentiate read-write open-close sessionsfrom write-only open-close sessions, nfstrace could be modi�ed to record separatelythe data read from and the data written to the server. In this way, post-processingcould enable the actual amount of data read or written to be determined instead ofthe current system where the amount of transferred data is summed.7.3.7 The method used for estimating the purpose of an NFSgetattr transaction is simplisticAs mentioned above, nfstrace uses a relatively-unsophisticated method to determinewhether an NFS getattr transaction was used for cache validation or as a result ofanother operation such as a stat system call. nfstrace does not keep track of thecontents of cache so it can make a prediction of whether an NFS getattr transactionwould be the result of cache validation only by assuming that previously-read cachecontents were being accessed. By incorporating a cache simulator, nfstrace would beable to predict with more certainty whether an NFS getattr transaction was part ofa cache validation or as a result of another operation such as a stat system call.nfstrace does combine the tracking of NFS lookup transactions, where a directoryentry is translated into a particular NFS �le handle, to assist in eliminating spuriousNFS getattr transactions being handled as cache validation. This process is madepossible because the NFS lookup transaction is commonly part of the sequence ofcalls when programs that display information about �les (such as ls) are executed.However, the name-to-NFS-�lehandle translation process, (causing the NFS lookupPage 130

7.3. IMPROVEMENTS TO NFSTRACEtransaction) can result from many other causes. Theoretically, nfstrace could beexcluding some NFS getattr transactions from being considered as having been causedby cache validation (such as at the opening of a �le) because, as part of the openingof a �le, the name of the �le had to be resolved into an NFS �le handle.The incorporation of a cache simulator into nfstrace has the potential to helpminimise the misidenti�cation of NFS getattr transactions. This is a complicatedchange and would also involve nfstrace collecting information about other operationssuch as readdir, an operation which, like lookup, is used in the translation of nameto NFS-�lehandle.7.3.8 nfstrace does not estimate the contents of a client cache.As mentioned above, nfstrace assumes that whenever a cache access is made thewhole of the �le may have been transferred. Additionally, nfstrace may misinterpretNFS getattr transactions as being for �les in cache when that �le was never cachedor when the cache entries had expired.7.3.9 nfstrace is unable to detect short open-close sessionsCase 2 in Figure 28 illustrates a problem nfstrace may have when the operations oftwo separate open-close sessions are close enough together so that nfstrace interpretsthe operations to be part of a single open-close session. In the case where no NFStransactions are generated for the second open-close session (perhaps due to caching)there is no easy method by which nfstrace can be alerted to the second open-closesession and there is no way that nfstrace could generate an open-close session recordfor it.The other situation, where nfstrace interprets operations of the second open-close session as part of the �rst open-close session, may be avoided easily. Currently,nfstrace does attempt to do this. If the �rst byte of a �le is (re)accessed, nfstraceconsiders that to be the start of another open-close session. In this way, if data istransferred as part of the second open-close session then nfstrace will potentiallyrecord these transfers as a second open-close session. An improvement to this methodPage 131

7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACEwould be for nfstrace to include information on which blocks of a �le have beenaccessed so that it could di�erentiate blocks accessed once from those accessed a secondtime. In this way nfstrace would interpret a second set of accesses to any blocksin a particular �le as the beginning of a new open-close session on that �le. Thecomplication this method may introduce is where a �le is not closed but the userstarts to re-read previously read data (although previous studies show this is relativelyuncommon) and instead a new open-close session will be started [73, 8].Another case for nfstrace to handle is where the second open-close session causes asingle NFS getattr transaction. nfstrace is not con�gured to interpret NFS getattrtransactions as a special case. If the transaction occurs within the timeout period,as in case 3, it will be interpreted as being part of the �rst open-close session. Ifit occurs outside the timeout period, nfstrace will consider it the start of a newopen-close session. It is unclear what the e�ect would be of changing nfstrace tointerpret all such single NFS getattr transactions as the start of a new open-closesession (independently of whether the timeout has ended). Such an assumption maypotentially improve the interpretation of transactions by nfstrace.These two modi�cations, combined with the cache simulator mentioned above, havethe potential to improve the ability of nfstrace to record all open-close sessions, exceptthe case where no NFS transactions occur over the duration of the whole open-closesession. In the case of the Ultrix implementation of NFS, this is not as serious alimitation as it would �rst appear. The open system call in Ultrix NFS will alwayscause an NFS getattr transaction. This means that all open-close sessions will causeNFS transactions in the Ultrix implementation.7.4 A block cache simulator for nfstraceThe prospect of a cache simulator improving the performance of nfstrace lead to thedevelopment of a proof-of-concept simulator. While not fully integrated with nfstrace,this software served to prove that such a concept was feasible and did not add overly tothe complexity of the nfstrace system, while still giving the potential to improve thePage 132

7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACEaccuracy of nfstrace results, reducing the divergence between those and the resultsobtained by the kernel instrumentation system.The cache simulator would be designed to supplement the nfstrace system and theexisting nfstrace rule-base (Section 5.3.4). A cache simulator would enable nfstraceto be able to give accurate estimations of the data that may have been accessed in a par-ticular open-close operation, as well as assisting nfstrace to be able to estimate betterwhen open-close operations do and do not occur. In this way, the simulator would bedriven with the NFS transactions that nfstrace uses, potentially by nfstrace itself.Such a simulator could operate without explicit information about clients, usingvarious preprogrammed sizing parameters. However, for accurate operation, the simu-lator should be preprogrammed with the size of caches of the clients and the numberof blocks each client cache can contain. The simulator will not be completely accuratein its assumptions on what is in the client cache contents. This is because of a numberof factors:� the initial state of a client's cache is unknown,� some �le operations may not be visible as NFS transactions.The �rst of these problems is addressed by starting the simulator in a known state.Using the trace of NFS records from the time a client is powered up would be a solutionto this problem. The second problem is less easily solved and nfstrace su�ers similarinterpretation errors with small �les (Section 5.4.4). However, a cache simulator has agreater ability to track the occurrence of read-only operations on any �le, because thecache simulator can track blocks that are still valid in the client cache, thus reducingthe magnitude of this error.7.4.1 Block cache operationThe contents of a client cache are never explicitly removed. The removal process occursbecause the client requires other data to be in the cache, with blocks being removed onthe basis that these blocks have been the least-recently-used (LRU). From the perspec-tive of the simulator, blocks would only be explicitly replaced following the occurrencePage 133

7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACEof an NFS read write transaction. The decision on which block should be expired inthe simulator can be based on which block has been least recently accessed (expired)and which block is oldest. Exact rules involving issues such as the replacement ofcache block entries with data from NFS write transactions require further investiga-tion, however the NFS setattr and create transactions could potentially assist inmore accurate expiration of the cache for these block types. The NFS getattr andsetattr transactions (in combination with other NFS transactions such as create)would cause the simulator to (re)validate the contents of the cache at any time.7.4.2 A block cache simulator designThe proof-of-concept design was developed both as a supplement to increase the accu-racy of nfstrace and as a trial to show the simulator is able to calculate such �gures as�le and block sharing in the distributed �le system without substantial post-processing.This design was implemented in six �les, about 3,000 lines, of C program code. Thisdesign was implemented as follows:� A list of NFS �lehandle references was maintained which in turn, referenced cliententries. The client entries, in turn referenced all blocks of that particular �le thatwas currently contained in each cache. This design made the revalidation of cacheentries (on receipt of NFS getattr and setattr transactions) uncomplicated.Also, in this way the number of copies of each �le in each client cache could beeasily determined.� Another list of clients was maintained, this in turn indexed the cached blocks, inorder of least recent usage and age. This list enabled simpli�ed location of theoldest cache blocks of a client so that these could then be replaced.� An additional list of �les, in turn referencing lists of the blocks that make upeach �le, enabled counts to be maintained for the occurrence of blocks of a �lein each client's cache. In this way block sharing across clients could be easilyestablished. Page 134

7.5. SUMMARYThe trial simulator, while complete, requires extended testing against the kernel in-strumentation system. In particular, such testing could validate the simulated contentsof a client cache against the real contents of a client cache.7.5 SummaryImprovements of rpcspy will be achieved by using a high speed machine with a high-speed, low-loss network interface to be dedicated to the task of data collection. Theimprovements to nfstrace can not be stated quite as concisely. Smaller changes tonfstrace include:� adding the ability to interpret other signi�cant NFS transactions such as create,� using a simple ratio multiplier to obtain an estimate of data transfers at thelogical level,� modi�cation of nfstrace to keep information about �le truncation giving theability to interpret �le re-write events� separately recording data read from and written to the server for all open-closesessions,� recording information on which blocks of a �le have been accessed, and� interpreting NFS getattr transactions that immediately follow a �le being reador written as another open-close session.While some of these changes, such as the last item listed, would need to be tested toensure the resulting extra records were correct, others in the list would give immediateimprovement in the abilities of nfstrace.More signi�cant changes to nfstrace include� pre-loading information about programs that cause stat system calls such as ls,� build a block cache simulator into nfstrace. Page 135

7.5. SUMMARYIn order to pre-load information about commonly-used programs that cause statsystem calls, it may be necessary to pro�le the system prior to any signi�cant tracingactivity. In most systems, commonly-used programs such as ls could be expected togenerate potential problems and could be added by default. However, the need todo a pro�ling operation would not only increase the complexity of passive networkmonitoring but might also negate any advantage of network monitoring by potentiallyrequiring access to the machine being monitored. Another alternative, or addition, topre-loaded con�guration information is for nfstrace to characterise programs such asls as it processes the NFS-transaction data. nfstrace would locate ls type programsby noting programs which, once executed, caused clusters of NFS lookup and getattrtransactions, typically for �les sharing the same sub-directory. In this way, nfstracewould be simultaneously processing the data and gaining enough information to locateprograms causing extraneous NFS getattr transactions thus improving the predictionof ls type programs during the course of the run.The incorporation of a block-cache simulator into nfstrace o�ers the best potentialfor increasing the accuracy of nfstrace. Unfortunately, several signi�cant items ofinformation would be needed to recreate accurately the block cache of a client. Thesewould include the cache size on the client, the number of cache entries and the size of thedata blocks being transferred between client and server. Additionally, the programmingand testing of a cache simulator is not a simple task and because of resources used(memory, etc.) would potentially mean nfstrace could not be run simultaneouslywith rpcspy which is the recommended operating mode (in order to reduce outputdata).The addition of the simulator would mean that nfstrace would be attemptingto model a particular type of block cache. While there is a common ancestry for themethod used by block caches in UNIX and its derivatives, there are notable di�erences.The introduction of such facilities as the demand-paging of executables, a facility notedin Section 4.3.6, means the behavior of the caches of systems being monitored will di�er,sometimes dramatically. The result is that nfstrace may be required to incorporatePage 136

7.5. SUMMARYmodels for several di�erent block-cache systems. While this would add to the complex-ity of nfstrace, the common ancestry of block caches means much of the code used ineach simulator would be common to all. It is conceivable that such an nfstrace couldread a con�guration �le containing information on which cache method each clientwas using. Without appropriate con�guration information, nfstrace could assumea particular model, perhaps the most common cache method used or the worst-casesimulator model.Such a pre-loaded con�guration �le would also contain information about NFSparameters such as cache and attribute timeouts, thereby assisting the accuracy ofthe simulator. This information, on a �le-system by �le-system basis could also giveinformation about the characteristics of access to a �le system, e.g. mail �le systemscan potentially cause open-close sessions to be generated when none was, and so on.A block-cache simulator would increase the accuracy of the open-close session pre-dictions nfstracemakes and allow nfstrace to be used for other purposes. nfstracehas the potential to simultaneously simulate the caches of all the machines on a networkso it could be used to study interactions between the caches of di�erent machines. Forexample, such a facility would enable a comprehensive study of block sharing amongNFS clients.An extension to nfstrace would enable it to keep track of information about thedirectory systems in a distributed �le system. Modi�cations to directory informationare written synchronously back to the server as the modi�cations take place, but thedirectory information itself is cached on the clients. Because changes to the directoryinformation are written to the server synchronously, it is possible for nfstrace tomaintain an accurate simulation of the state of the �le system. Additionally, nfstracecould incorporate a directory-name cache simulator in the same style as a block-cachesimulator and be able to simulate the contents of this cache among many clients. Asin the case of a block-cache simulator, a directory-name cache would enable nfstraceto be used to study interactions between the caches of the clients and track the historyof changes to the �le system. The use of such a modi�cation may enable a follow-upPage 137

7.5. SUMMARYstudy to Shirri� and Ousterhout's work on name and attribute caching ([94]).Many of the limitations in nfstrace, indeed, the very need for nfstrace to have toestimate open-close sessions, are caused by the fact that this information about openor close is not transmitted in the NFS protocol. Other distributed-system protocols,such as Sprite [72] and the Andrew File System [42], transmit information related tothe state of �les in the distributed �le system. If nfstrace was modi�ed to workwith such a state-oriented distributed system, the accuracy of nfstrace output couldpotentially be as high as a full kernel instrumentation trace. The potential for accu-rate rpcspy/nfstrace analysis of distributed systems should also hold true for anydistributed �le system that transmits enough state information across the network.This method even has the potential to work on theoretical distributed �le systems,such as xFS [120, 24], which depart from a central �le server model completely. It isconceivable that during the development of such monitoring systems, methods basedon the passive monitoring of network tra�c would become a primary tool for assistingin the development and ultimately the management of such systems.Another technique for increasing the accuracy of nfstrace is to add simulated stateoperations to NFS. This would involve modifying the kernel of each client to outputextra NFS transactions for system calls such as open, close and seek. It wouldnot be necessary for the server to act on or even acknowledge these calls, howeverthe transmission of the extra information through the network would potentially givenfstrace enough information to be able to establish when �les were opened and closed.Of course, such modi�cations are contrary to many of the concepts of passive networkmonitoring, requiring modi�cations to perhaps many client machines. However, thistechnique would maintain the bene�t that the collection of the trace data would beindependent of the server and clients. It would impose no extra workload directly uponthem. This method of adding additional information to the communications tra�cbetween client and server, for the purposes of monitoring, was used in Baker et al. [8]as one of a number of modi�cations they made to collect data for their work.Page 138

7.5. SUMMARYDistributed computer systems do not consist solely of distributed �le systems. Sys-tems such as Sprite [72], NOW [74, 118] and Amoeba [106] enable the migration ofprocesses among CPU elements (typically a CPU element is a computer workstation).A monitoring method for such a system might involve monitoring the network's in-terconnecting processing elements and tracking the movement of the processes in thesame way that nfstrace monitors the movement of �le data among workstations. Inthis way, passive network monitoring has possible applications in areas other than justthe monitoring of distributed �le systems. Any system with signi�cant amounts ofinformation passing through an easily monitored communications network would lenditself to this technique. Other distributed systems that may lend themselves to mon-itoring in this way are the information services of the World Wide Web [119] or thenetwork based windowing system, X [90].

Page 139

Chapter 8ConclusionSystem monitoring is important in the development, re�nement and operation of com-puter systems in general and of operating systems in particular. Chapter 3 describeda number of methods of system monitoring and Section 3.3 illustrated how the resultsof system-monitoring studies were commonly used in other studies on topics such ascache simulation and user pro�ling. The results of such studies are used in the designand implementation of new computer systems as well as in the re�nement of computersystems already in operation.Chapter 4 discussed snooper, an implementation of full kernel instrumentationable to give detailed, exact, comprehensive trace information about a system beingmonitored. This exhaustive trace information is then processed into a record of �leopen-close sessions. Such a system is able to detail any aspect of the operation of thekernel such as logical or block-level �le operations and details of processes. Because ofthe ability of full kernel instrumentation to present such a wide overview of the system,it has been the preferred method for system monitoring among system developers.Chapter 5 described the rpcspy/nfstrace system. rpcspy/nfstrace is an im-plementation of a passive network-monitoring system which is able to generate anestimation of open-close sessions on �les from NFS transactions exchanged betweenclient and server as observed by a trace machine. While passive network monitoring isnot able to replace full kernel instrumentation in every role, it can give useful �rst-orderapproximations and has a potential for its accuracy to be increased. Additionally, pas-sive network monitoring o�ers independence of the monitored systems and the ability140

8.1. SUMMARY COMMENTSto monitor many machines simultaneously.A comparison of these two system-monitoring methods was the theme of Chapter 6.In that chapter, results show that the passive network-monitoring implementation,while unable to give results comparable with full kernel instrumentation in all cases,was able to give good predictions of values derived from the full kernel instrumentationin certain areas. This was particularly true of those areas related to the writing ofdata. During this chapter we also established several areas of discrepancy betweenthe results of snooper and nfstrace. The chapter then covered areas where eachmonitoring system was able to report information which was outside the capabilitiesof the other. Finally, the areas of discrepancy between snooper and nfstrace weresummarised.Chapter 7 covered comprehensively those areas where rpcspy and nfstrace hadeither errors or signi�cant discrepancies when compared with the results of snooper.Solutions to each of the areas of discrepancy were then discussed. Additionally, itwas noted that passive network monitoring had the potential to give more accurateinformation in a distributed �le system with a greater amount of state informationtransmitted through the monitored network and to be able to monitor other networkbased systems.8.1 Summary commentsIn this thesis, system monitoring has been discussed as a signi�cant part of the de-velopment of computer systems. A common method of monitoring systems is to usefull kernel instrumentation, involving the modi�cation of the source-code for the op-erating system of the machine. Passive network monitoring can be a preferred choiceover kernel instrumentation for certain system monitoring work, particularly where thesource-code of the operating system is not available. Additionally, other advantages ofpassive network monitoring can make it a preferred choice. These include:� an independence of the collection of results from the machines being monitoredon the network, Page 141

8.2. FUTURE WORK� the ability to simultaneously monitor multiplemachines on a network, the passivenetwork monitoring system requires no modi�cations to the operation of themonitored systems, and� the collection of data with passive network monitoring does not impact on themachines being monitored.Through the comparison of these two techniques, it is shown that passive networkmonitoring is satisfactory, as a partial replacement for full kernel instrumentation.In addition to this, passive network monitoring is non-invasive, platform indepen-dent and has the ability to simultaneously monitor many network users. This gives itthe potential for use in many systems studies using a broader cross-section of machines.Only through such a broad analysis can new systems be built based on informationgained from more than just test systems and theories.8.2 Future workIdeally, future work would broaden the base over which the comparison of the twosystems (Chapter 6) was made. The improvements could encompass both the inclusionof all tra�c types, instead of the restriction to only non-executable �le tra�c, and theperforming of the comparison on machines in a variety of operating circumstance. Bycomparing over a variety of systems, any peculiarities of the load the test system wasplaced under would be highlighted or, at least, minimised.The logical extension of this work is the implementation of the suggestions in Sec-tion 7.3. These improvements would also need to be tested in a manner similar tothe comparison of Chapter 6. For suggested improvements to nfstrace, it would beimportant to ensure changes did not alter the algorithm in unexpected ways.Using a more accurate nfstrace, a comprehensive analysis in the style of Ouster-hout et al. [73], Baker et al. [8], Howard et al. [42] and Spasojevic and Satyanara-yanan [99] could be possible. Such an analysis would not only form an interestingcomparison and contrast with those studies but also enable data to be collected fromPage 142

8.2. FUTURE WORKa variety of systems, rather than the traditional limitation to academic or researchinstallations.A comparison of nfstrace with a similarly-designed RPC transaction processoranalysing other distributed �le systems based upon RPC communications would givean interesting point of comparison between NFS and those systems.The incorporation of a cache simulator into nfstrace would o�er the potential foran increase in the accuracy of nfstrace estimations and the possibility for nfstraceto be used to perform other system studies directly without the need for any exten-sive results processing. Such a study could cover performance issues, while anotherstudy could be made into the sharing of �les and blocks among clients. In the caseof a performance study, the cache simulator could be used to establish relationshipsbetween block lifetimes and cache e�ectiveness with the size of caches and timeoutcharacteristics of the NFS system.As discussed in Section 7.5, a study into the utilisation of �les and sub-directories,including lifetimes, usage distribution, etc., would also be possible with a suitably-enhanced nfstrace system. By combining such a modi�ed nfstrace system withdata about the �le system before and after the trace period, it would be possible fornfstrace to accurately simulate and track operations on the directories of the �lesystem. Such a facility would allow studies into �le-naming structures and the cachingof those structures in the style of Shirri� and Ousterhout [94].
Page 143

Appendix AGlossaryblock In a �le system, a block is a unit of allocation. The �le system allocates spacein block-size units, or in fragments of block-size units.block cache/cache In operating systems, a block cache is an area of memory wherecommonly used disk blocks are stored. The objective of a block cache is to min-imize a machine's need to access disk drives. In exchange, block caches will usereal memory, making it unavailable to the operating system or other programs.child process A process that is the direct descendent of another process which createdit using the fork system call.client A machine that requests services from a server. A client is usually unrelatedto a server: the only association with the server is through a communicationschannel.daemon A long-lived process that commonly provides a system-related service. Acharacteristic of such a process is that it has no controlling user terminal; i.e. itis a \background" process.DMA/Direct Memory Access A hardware technique whereby the memory of amachine may be accessed without involving any activities on the part of theCentral Processor Unit (CPU). This technique is commonly used for disk drives,so that disk drive controllers can place data directly in memory, enabling theCPU to continue doing other tasks.144

dirty bu�er blocks When a process changes the contents of a �le, the cache will con-tain these modi�ed versions of disk blocks, known as called dirty bu�er blocks.The operating system must keep track of these blocks ensuring this data is ulti-mately written to the disk.disk block A disk block is a unit of allocation for the disk. The �le system is allocatedin disk block-sized pieces or fragments of disk block size pieces. Commonly a diskblock is the same size as the sector size of the physical disk media in use.Ethernet A 10Mb/s baseband communication technology for the interconnection ofcomputers in a local area network. Ethernet involves the use of a single broadcastcable connecting all machines in a local area network. To communicate with eachother, machines send consecutive broadcasts onto the network for the receivingstation to record.exec A system call in the UNIX operating system allowing a process to execute aparticular program. The exec system call has the e�ect of causing a process toreplace its current code, stack and data memory with those of a new program;i.e. a new process is not created.exit 1. The termination of a process in the UNIX operating system. 2. A system callin the UNIX operating system allowing a process to terminate itself.�le A �le is a basic construction in the UNIX operating system. It is a linear array ofbytes, it has at least one name (link) and it exists until all its names are deletedexplicitly.�le system A collection of �les. In the UNIX operating system, a �le system is, inmost cases, restricted to a single, physical, hardware device such as a disk drive.�lehandle A �lehandle is an NFS construct by which an NFS server can uniquelyidentify each �le it makes available to NFS clients. An NFS client does not needto decode the contents of a �lehandle, a client only depends on it being a uniquereference to the �le on the NFS server. Page 145

fork A system call in the UNIX operating system allowing a process to create otherprocesses.full kernel instrumentation Obtaining data about a computer system through theplacing of instrumentation code into the operating system (kernel) of the com-puter system.kernel A kernel is the central controlling program that provides basic operating-system facilities. The UNIX kernel provides functions to access the �le system,creates and manages processes, and supplies communications facilities.ls A UNIX command to list and generate statistics for �les including access times,ownership, etc.mount 1. A UNIX command to make available a the data of �le system from aparticular point in a pre-existing �le system. 2. The action of splicing togethertwo separate �le systems so that from the users perspective there appears to beone larger �le system.mount point A mount point is the position (directory) in a �le system under which amounted �le system will be placed. For example, the /usr �le system is mountedupon the directory /usr.Network File System/NFS Sun's Network File System, a distributed �le systemwhich is a de facto standard in the UNIX computer community for the sharing of�les between computers. Statelessness is central to the NFS mode of operation;i.e. servers do not store state information about clients such as which �les aclient has open. Additionally, all NFS transactions (between client and server)are self-contained and repeatable (idempotent).NFS transaction An NFS transaction is a self-contained pair of RPC operations; arequest and a reply.NIT SunOS Ethernet packet �lter. A software packet capture mechanismgiving directaccess to Ethernet tra�c. Page 146

packet�lter Digital's Ethernet packet �lter. A software packet capture mechanismgiving direct access to Ethernet tra�c.parent process A process that is the direct ancestor of another process as a result ofcreating the second process with the fork system call.passive network monitoring Obtaining data about one or more computer systemsattached to a network by monitoring communications tra�c exchanged by thatcomputer with others through the network.PID/process ID In the UNIX operating system, a process identi�er. An identi�ca-tion of a process, unique for the lifetime of the process.process A process is a basic construction in the UNIX operating system. In operatingsystems, a process is a task or thread of execution. Each process is identi�edindependently and consists of program code, a data area and a stack area. Thesecomponents may be shared with other processes.ps A UNIX command to print process-status statistics.RPC Remote Procedure Call. A speci�cation by which a client can request that aservice be performed by a server.SCSI The Small Computer Systems Interconnect/Interface (SCSI) is an interface stan-dard for connecting a computer and other devices via a fast, high-speed, parallelinterface. This interface is commonly used for connecting CD-ROM players, diskdrives and tape units to a computer system.sector A sector is the smallest contiguous region on a disk that may be accessed witha single I/O operation.server A machine that provides services to another machine (client) via a communi-cations channel.synchronous I/O The appearance of an operation being synchronized with the cur-rent process. In UNIX, read and write system calls are synchronous: The readPage 147

and write system calls do not return until the operation has been completed. Inthe case of the write system call, the data may not actually be written to the�nal destination until some time later, for example, writing to a disk �le.system call A request by a user program to the operating system for some service tobe carried out.UID/User ID In the UNIX operating system, a numerical identi�cation assigned toa user. Typically, such identi�ers are assigned uniquely so that each user on asystem is assigned one User ID (although this need not always be the case). UserIDs are used in the control of resources such as �le and directory access andprocess control.UNIX An operating system developed originally at the AT&T research laboratoriesand �nding popular usage in many research and educational establishments partlybecause of the availability of source-code.XDR eXternal Data Representation. A speci�cation for the exchange of data in ahardware-independent manner.

Page 148

Bibliography[1] Anderson, P. E�ective Use of Local Workstation Disks in an NFS Network.In USENIX LISA VI October 19-23, 1992 (October 1992), pp. 1{8.[2] ANSI. Carrier sense multiple access with collision detection (CSMA/CD) accessmethod and physical layer speci�cations. IEEE, 1984. ANSI/IEEE Std 802.3 -1985, ISO Draft International Standard 8802/3.[3] ANSI. Token-Passing Bus Access Method and Physical Layer Speci�cations.IEEE, 1984. ANSI/IEEE Std 802.4 - 1985, ISO Draft International Standard8802/4.[4] ANSI. Token Ring Access Method and Physical Layer Speci�cations. IEEE,1984. ANSI/IEEE Std 802.5 - 1985, ISO Draft International Standard 8802/5.[5] Bach, M., and Gomes, R. Measuring File System Activity in the UNIXSystem. In EUUG Spring '88 (London, UK, April 1988), pp. 43{52.[6] Baker, M., Asami, S., Deprit, E., Ousterhout, J., and Seltzer, M.Non-Volatile Memory for Fast, Reliable File Systems. In Proceedings 5th Inter-national Conference on Architectural Support for Programming Languages andOperating Systems, October '92 (October 1992).[7] Baker, M., and Sullivan, M. Recovery box: Using fast recovery to providehigh availability in the UNIX environment. In USENIX Conference Proceedings,Summer 1992 (San Antonio, TX, June 1992), pp. 31{44.[8] Baker, M. G., Hartman, J., Kupfer, M., Shirriff, K., and Ouster-hout, J. Measurements of a Distributed File System. In Proceedings of the 13thSymposium on Operating System Principles (Paci�c Grove, CA, October 1991),ACM, pp. 198{212.[9] Baker, M. L. G. Fast Crash Recovery in Distributed File Systems. PhD thesis,University of California, Berkeley, 1994. Also available as UCB:CSD technicalreport UCB:CSD-94-787.[10] Barnett, L., and Malloy, M. K. ILMON: A UNIX network monitoringfacility. In USENIX Conference Proceedings, Winter 1987 (Washington, D.C.,1987), pp. 133{144. 149

BIBLIOGRAPHY[11] Blaze, M. NFS Tracing by Passive Network Monitoring. In USENIX Con-ference Proceedings, Winter 1992 (San Francisco, CA, January 1992), USENIX,pp. 333{344. Also available as a Technical Report with the Department of Com-puter Science, Princeton University.[12] Blaze, M. nfstrace network monitoring tool, January 1992. Availablity anony-mous ftp ftp.uu.net:/networking/ip/nfs/nfstrace.shar.Z.[13] Blaze, M. Caching in Large-Scale distributed �le systems. PhD thesis, PrincetonUniversity, January 1993.[14] Blaze, M., and Alonso, R. Dynamic hierarchical caching in large-scaledistributed �le systems. In USENIX Conference Proceedings, Summer 1991(Nashville, TN, 1991), pp. 3{19. Also cs-tr-353-91, Computer Science Tech-nical Report, Dept of Comp Sci, Princeton, NJ , Availability anonymous ftpsamadams.princeton.edu:~ftp/cstr/cs-tr-353-91.ps.Z.[15] Blaze, M., and Alonso, R. Long-Term Caching Strategies for Very LargeDistributed File Systems. In USENIX Conference Proceedings, Summer 1991(Nashville, TN, 1991), pp. 3{16.[16] Blaze, M., and Alonso, R. Issues in Massive-Scale Distributed File Systems.In USENIX File System Workshop, May 21-22, 1992 (Ann Arbor, MI, 1992),pp. 135{136.[17] Boggs, D. R., Mogul, J. C., and Kent, C. A. Measured Capacity ofan Ethernet: Myths and Reality. Tech. Rep. 88/4, Digital Western ResearchLaboratory, April 1988.[18] Bozman, G., Ghannad, H., and Weinberger, E. A trace-driven study ofCMS �le references. IBM Journal of Research and Development 35, 5/6 (Septem-ber/November 1991), 815{828.[19] Cao, P., Felten, E., and Li, K. Implementation and performance ofapplication-controlled �le caching. In First USENIX Symposium on OperatingSystems Design and Implementation (OSDI) (Monterey, CA, November 1994),pp. 165{178.[20] Carson, S., and Setia, S. Analysis of the periodic update write policy fordisk cache. IEEE Transactions on Software Engineering 18, 1 (January 1992),44{54.[21] Carson, S., and Setia, S. Optimal Write Batch Size in Log-Structured FileSystems. In USENIX File System Workshop, May 21-22, 1992 (Ann Arbor, MI,1992), pp. 79{92. Page 150

BIBLIOGRAPHY[22] Cheriton, D., and Mann, T. Decentralizing a Global Naming Service forImproved Performance and Fault Tolerance. ACM Transactions on ComputerSystems 7, 2 (May 1989), 147{183.[23] Clark, D. W., Bannon, P. J., and Keller, J. B. Measuring VAX8800Performance with a Histogram Hardware Monitor. In Proceedings of the 15thAnnual International Symposium on Computer Architecture (Honolulu, HI, May1988).[24] Dahlin, M. D., Mather, C. J., Wang, R. Y., Anderson, T. E., andPatterson, D. A. A quantitative analysis of cache policies for scalable network�le systems. Tech. Rep. UCB:CSD-94-798, Department of Computer Science,University of California, Berkeley, February 1994. Also appeared in 1994 ACMSIGMETRICS Conference on Measurements and Modeling of Computer Systems,Nashville, TN, May, 1994, pp 150-160.[25] Davies, N. A., and Nicol, J. R. Technological perspective on multimediacomputing. Computer Communications 14, 5 (1991), 260{272.[26] de Jonge, W., Kaashoek, M. F., and Hsieh, W. C. The Logical Disk:A New Approach to Improving File Systems. In Proceedings of the 14th ACMSymposium on Operating Systems Principles (Asheville, NC, December 1993),pp. 15{28.[27] Digital. packet�lter - Ethernet packet �lter, Ultrix 4.3a User Manual ed., 1987.[28] Digital. rwhod(8c) - system status server, Ultrix 4.3a User Manual ed., 1987.[29] Digital. inetd(8c) - internet service daemon, Ultrix 4.3a User Manual ed., 1992.[30] Digital. vi(1) - screen editor, Ultrix 4.3a User Manual ed., 1992.[31] Douglis, F., Ousterhout, J. K., Kaashoek, M. F., and Tanenbaum,A. S. A Comparison of Two Distributed Systems: Amoeba and Sprite. Com-puting Systems (Autumn 1991), 353{384.[32] Ebling, M. R., and Satyanarayanan, M. Synrgen: An extensible �lereference generator. Tech. Rep. CMU-CS-94-119, School of Computer Science,Carnegie Mellon University, February 1994. Also appeared in 1994 ACM SIG-METRICS Conference on Measurements and Modeling of Computer Systems,Nashville, TN, May, 1994, pp 138-149.[33] Emer, J. S., and Clark, D. W. A Characterization of Processor Performancein the VAX-11/780. In Proceedings of the 11th Annual International Symposiumon Computer Architecture (Ann Arbor, MI, May 1984).[34] Endo Y. et el. VINO: The 1994 Harvest. Tech. Rep. TR-34-94, Harvard Uni-versity, Center for Research in Computing Technology, December 1994. Avail-ability anonymous ftp das-ftp.harvard.edu:/techreports/tr-34-94.ps.gz.Page 151

BIBLIOGRAPHY[35] Feder, J. The Evolution of UNIX SystemPerformance. AT&T Bell LaboratoriesTechnical Journal 63, 8 (October 1984), 1791{1814.[36] Floyd, R. Short-Term File Reference Patterns in a UNIX Environment. Tech.Rep. TR-177, Department of Computer Science, University of Rochester, March1986.[37] Floyd, R. A., and Ellis, C. S. Directory reference patterns in hierarchical�le systems. IEEE Transactions on Knowledge and Data Engineering 1, 2 (June1989), 238{247.[38] Griffioen, J., and Appleton, R. Reducing �le system latency using apredictive approach. In USENIX Conference Proceedings, Summer 1994 (June1994), pp. 197{207.[39] Gusella, R. AMeasurement Study of Diskless Workstation Tra�c on Ethernet.IEEE Transactions on Communications 38, 9 (September 1990), 1557{1568.[40] Hartman, J., and Ousterhout, J. Zebra: A Striped Network File System.In USENIX Workshop on File Systems, May 1992 (May 1992), pp. 43{52.[41] Hill M. D. et al. SPUR: A VLSI Multiprocessor. Tech. Rep. UCB-CSD-86-273, Department of Computer Science, University of California, Berkeley, April1986.[42] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan,M., Sidebotham, R., and West, M. Scale and performance in a distributed�le system. ACM Transactions on Computer Systems 6, 1 (February 1988), 51{81.[43] Irlam, G. UNIX �le size survey - 1993, April 18th, 1995. Available via theWorld Wide Web http://www.base.com/gordoni/ufs93.html.[44] ITU. ISO 9314 - Fibre Distributed Data Interface. ISO, 1989.[45] Jensen, D. W., and Reed, D. A. File archive activity in a supercomputer en-vironment. Tech. Rep. UIUCDCS-R-91-1672, Department of Computer Science,University of Illinois at Urbana-Champaign, April 1991.[46] Keith, B. Perspectives on NFS �le server performance characterization. InUSENIX Conference Proceedings, Summer 1990 (Anaheim, CA, 1990), pp. 267{277.[47] Kernighan, B., and Ritchie, D. The C Programming Language. Prentice-Hall, Englewood Cli�s, NJ, 1978.[48] Kistler, J., and Satyanarayanan, M. Disconnected operation in the coda�le system. ACM Transactions on Computer Systems 10, 1 (February 1992),3{25. Page 152

BIBLIOGRAPHY[49] Kistler, J. J. Disconnected Operation in a Distributed File System. PhDthesis, School of Computer Science, Carnegie Mellon University, May 1993. Alsoavailable as CMU technical report CMU-CS-93-156.[50] Kupfer, M. D. An Appraisal of the Instrumentation in BerkeleyUNIX 4.2BSD.Tech. Rep. TR-CSD-85-246, Department of Computer Science, University of Cal-ifornia, Berkeley, 1985.[51] Kupfer, M. D. Performance of a remote instrumentation program. Tech. Rep.UCB-CSD-85-223, Department of Computer Science, University of California,Berkeley, 1985.[52] Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman,J. S. The Design and Implementation of the 4.3BSD UNIX Operation System.Addison Wesley, October 1990.[53] Li, K. Towards A Low Power File System. Tech. Rep. UCB:CSD-94-814, De-partment of Computer Science, University of California, Berkeley, May 1994.[54] Lyon, B. XDR : External Data Representation Standard, June 1987. NetworkWorking Group Request For Comment (RFC) : 1014, Written in association withDARPA and Sun Microsystems Inc.[55] Lyon, B. RPC : Remote Procedure Call Protocol Speci�cation, April 1988. Net-work Working Group Request For Comment (RFC) : 1057, Written in associationwith DARPA and Sun Microsystems Inc.[56] Macklem, R. Lessons Learned Tuning the 4.3BSD Reno Implementation ofthe NFS Protocol. In USENIX Conference Proceedings, Winter 1991 (Dallas,TX, 1991), pp. 53{64.[57] Macklem, R. The 4.4BSD NFS Implmentation. Computer Systems ResearchGroup, University of California, Berkeley, 1993. from SMM:06-2.[58] Makaroff, D., and Eager, D. Disk Cache Performance for Distributed Sys-tems. In IEEE 10th International Conference on Distributed Computing Systems(1990), pp. 212{219.[59] McGregor, A. J. PRIMON: The design and implmentation of a Primos Soft-ware Monitor. Master's thesis, Massey University, 1984.[60] McKusick, M. K., Joy, W. N., Leffler, S. J., and Fabry, R. A FastFile System for UNIX. ACM Transactions on Computer Systems 2, 3 (August1984), 181{197.[61] Metcalfe, R., and Boggs, D. Ethernet: Distributed Packet Switching forLocal Computer Networks. Communications of the ACM 19, 7 (July 1976), 395{404. Page 153

BIBLIOGRAPHY[62] Miller, E. L., and Katz, R. H. An Analysis of File Migration in a UNIX Su-percomputing Environment. Tech. Rep. UCB-CSD-92-712, Department of Com-puter Science, University of California, Berkeley, November 1985.[63] Mogul, J. C. E�cient Use of Workstations for Passive Monitoring of LocalArea Networks. Tech. Rep. 90/5, Digital Western Research Laboratory, May1990.[64] Mogul, J. C. A better update policy. Tech. Rep. DEC-WRL-94/4, DigitalWestern Research Laboratory, April 1994. Also appeared in Summer USENIXConference, Boston MA, June, 1994.[65] Mogul, J. C., Rashid, R. F., and Accetta, M. J. The packet-�lter:An e�cient mechanism for user-level network code. In Proceedings of the 11thSymposium on Operating Systems Principles (Austin TX, November 1987), ACMSIGOPS.[66] Morris, J., Satyanarayanan, M., Conner, M., Howard, J., Rosen-thal, D., and Smith, F. D. ANDREW: A distributed personal computingenvironment. Communications of the ACM 29, 3 (March 1986), 184{201.[67] Mummert, L., and Satyanarayanan, M. Long Term Distributed File Ref-erence Tracing: Implementation and Experience. Tech. Rep. CMU-CS-94-213,School of Computer Science, Carnegie Mellon University, November 1994.[68] Mummert, L., Wing, J., and Satyanarayanan, M. Using belief to reasonabout cache coherence. Tech. Rep. CMU-CS-94-151, School of Computer Science,Carnegie Mellon University, May 1994.[69] Nelson, B., and Cheng, Y.-P. How and Why SCSI is Better than IPI forNFS. In USENIX Conference Proceedings, Winter 1992 (San Francisco, CA,1992), pp. 253{270.[70] Nowicki, B. NFS : Network File System Protocol Speci�cation, March 1985.Network Working Group Request For Comment (RFC) : 1094, Written in asso-ciation with DARPA and Sun Microsystems Inc.[71] Ousterhout, J. K. Why Aren't Operating Systems Getting Faster as Fast asHardware. USENIX Summer Conference June 11-15 (June 1990).[72] Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, M., andWelch, B. The Sprite network operating system. IEEE Computer 21, 2 (Febru-ary 1988), 23{36.[73] Ousterhout, J. K., DaCosta, H., Harrison, D., Kunze, J., Kupfer,M., and Thompson, J. A trace-driven analysis of the UNIX 4.2 BSD �lesystem. In 10th Symposium on Operating System Principles (Orcas Island, WA,December 1985), ACM, pp. 15{24. Page 154

BIBLIOGRAPHY[74] Patterson, D. A Case for Networks of Workstations: NOW. Paper to appearin IEEE Micro. Presented at Hot Interconnects II and Principles of DistributedComputing, August 1994.[75] Peterson, J. L., and Silberschatz, A. Operating System Concepts, worldstudent series edition ed. Addison-Wesley, Reading, Massachusetts, 1985, ch. 9,pp. 332{333.[76] Postel, J. Internet protocol, September 1981. Written in association withDARPA.[77] Postel, J. Transmission Control Protocol, September 1981. Written in associ-ation with DARPA.[78] Postel, J. Unreliable datagram protocol, September 1981. Written in associa-tion with DARPA.[79] Ramakrishnan, K. K., and Emer, J. Performance analysis of mass stor-age service alternatives for distributed systems. IEEE Transactions on SoftwareEngineering 15, 2 (February 1989), 120{133.[80] Reddy, A. L. N., and Banerjee, P. An Evaluation of Multiple-Disk I/OSystems. IEEE Transactions on Computers 38, 12 (December 1989), 1680{1690.[81] Ritchie, D. M., and Thompson, K. The UNIX time-sharing system. Com-munications of the ACM 17, 7 (July 1974), 365{375.[82] Rosenblum, M. The Design and Implementation of a Log Structured File Sys-tem. PhD thesis, University of California, Berkeley, 1992. Also available asUCB:CSD technical report UCB:CSD-92-696.[83] Rosenblum, M., and Ousterhout, J. K. The LFS Storage Manager. InUSENIX Conference Proceedings, Summer 1990 (Anahien, CA, June 1990),pp. 31{44.[84] Rosenblum, M., and Ousterhout, J. K. The Design and Implementation ofa Log-Structured File System. In Proceedings of the 13th Symposium on OperatingSystem Principles (July 1991).[85] Ruemmler, C., and Wilkes, J. UNIX disk access patterns. Tech. Rep.HPL-92-152, Hewlett Packard Laboratories, December 1992. Also published inthe USENIX Winter '93 Technical Conference Proceedings, San Diego, CA, Jan25-29, 1993 pp 405-420.[86] Ruemmler, C., and Wilkes, J. A trace-driven analysis of disk working setsizes. Tech. Rep. HPL-OSR-93-23, Operating Systems Research Department,Hewlett-Packard Laboratories, April 1993. Page 155

BIBLIOGRAPHY[87] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B.Design and Implementation of the Sun Network Filesystem. In USENIX Confer-ence Proceedings, Summer 1985 (Portland, OR, June 1985), USENIX, pp. 119{130.[88] Satyanarayanan, M. A study of �le sizes and functional lifetimes. In Proceed-ings of the 8th Symposium on Operating System Principles (1981), pp. 96{108.[89] Satyanarayanan, M. The In
uence of Scale on Distributed File System De-sign. IEEE Transactions on Software Engineering 18, 1 (January 1992), 1{8.[90] Scheifler, R., and Gettys, J. The X Window System. ACM Transactionson Graphics 5, 2 (April 1986), 79{109.[91] Seltzer, M. File System Performance and Transaction Support. PhD thesis,University of California, Berkeley, 1992. Also available as UCB:CSD technicalreport UCB:CSD-93-741.[92] Shand, M. Measuring system performance with reprogrammable hardware.Tech. Rep. PRL-RR-19, DEC Paris Research Laboratory, August 1992.[93] Shein, B., Callahan, M., and Woodbury, P. NFSSTONE: A Network FileServer Performance Benchmark. In USENIX Conference Proceedings, Summer1989 (Baltimore, MD, 1989), pp. 269{275.[94] Shirriff, K., and Ousterhout, J. A Trace-Driven Analysis of Name andAttribute Caching in a Distributed System. In USENIX Conference Proceedings,Winter 1992 (San Francisco, CA, 1992), USENIX, pp. 315{332. Availabilityanonymous ftp cs.berkeley.edu:~ftp/papers/nameUsenix92.ps.Z.[95] Siebenmann, C., and Zhou, S. Snooper Users Guide. University of Toronto,August 1993.[96] Smith, A. Analysis of Long Term File Reference Patterns for Application toFile Migration Algorithms. IEEE Transactions on Software Engineering SE-7, 4(July 1981), 403{417.[97] Smith, A. J. Long term �le migration: Development and evaluation of algo-rithms. Communications of the ACM 24, 8 (August 1981), 521{532.[98] Smith, A. J. Disk cache - miss ratio analysis and design considerations. ACMTransactions on Computer Systems 3, 3 (August 1985), 161{203.[99] Spasojevic, M., and Satyanarayanan, M. A usage pro�le and evaluationof a wide-area distributed �le system. Tech. Rep. CMU-CS-93-207, School ofComputer Science, Carnegie Mellon University, October 1993. Also appeared inWinter USENIX Conference, San Francisco, CA, January, 1994. Page 156

BIBLIOGRAPHY[100] Steiner, J. G., Neuman, C., and Schiller, J. I. Kerberos: An Authenti-cation Service for Open Network Systems. In USENIX Conference Proceedings(Dallas, TX, 1988), pp. 191{202.[101] Strange, S. Analysis of long-term UNIX �le access patterns for application toautomatic �le migration strategies. Tech. Rep. UCB-CSD-92-700, Departmentof Computer Science, University of California, Berkeley, 1992.[102] Sun Microsystems. nfsd(8) - NFS daemon, SunOS Reference Manual ed.,1988.[103] Sun Microsystems. NIT(4) Network Interface Tap, SunOS Reference Man-ual ed., 1988.[104] Sun Microsystems. dbm(3x) - database subroutines, SunOS Reference Man-ual ed., 1993.[105] Sun Microsystems Computer Company, Mountain View, CA. SMCCNFS Server Performance and Tuning Guide, November 1994. Part No. 801-7289-10.[106] Tanenbaum A., et al. Experiences with the Amoeba Distributed OperatingSystem. Communications of the ACM 33, 12 (1990).[107] Thekkath, C. A., Wilkes, J., and Lazowska, E. D. Techniques for �lesystem simulation. Tech. Rep. HPL-92-131, Hewlett Packard Laboratories, Octo-ber 1992. Also published as Technical Report 92-09-08, Department of ComputerScience and Engineering, University of Washington, Seattle, WA.[108] Thompson, J. File Deletion in the UNIX System: Its Impact of File SystemDesign and Analysis, April 1985. Computer Science Division,EECS,Universityof California, Berkeley CS 266 term project.[109] Thompson, J., and Smith, A. E�cient (stack) algorithms for analysis ofwrite-back and sector memories. ACM Transactions on Computer Systems 7, 1(February 1989), 78{117.[110] Thompson, J. G. E�cient Analysis of Caching Systems. PhD thesis, EECS,University of California, Berkeley, September 1987. Also available as UCB/EECStechnical report CSD-87-374.[111] Wall, L., and Schwartz, R. L. Programming perl. O'Reilly and Associates,Inc., Sebastopol, CA, 1990.[112] Walsh, D., Lyon, B., Sager, G., Chang, J., Goldberg, D., Kleiman,S., Lyon, T., Sandberg, R., and Weiss, P. Overview of the Sun NetworkFile System. In USENIX Conference Proceedings, Winter 1985 (Dallas, TX,1985), pp. 117{124. Page 157

BIBLIOGRAPHY[113] Watson, A., and Nelson, B. LADDIS: A Multi-Vendor and Vendor-NeutralSPEC NFS Benchmark. In USENIX LISA VI October 19-23, 1992 (Long Beach,CA, 1992), pp. 17{32.[114] Welch, B. Naming, State Management and User-Level Extensions in the Sprite.PhD thesis, University of California, Berkeley, 1990. Also available as UCB:CSDtechnical report UCB:CSD-90-567.[115] Welch, B. The File System Belongs in the Kernel. In 2nd USENIX Mach Sym-posium, Nov 20-22, 1991 (November 1991), pp. 233{250. Availability anonymousftp ftp://sprite.berkeley.edu/papers/fs-in-kernel.ps.[116] Welch, B. Measured performance of caching in the Sprite net-work �le system. Tech. rep., Computer Science Department, Univer-sity of California, Berkeley, July 1991. Availability anonymous ftpftp://sprite.berkeley.edu/papers/cache-performance.ps.[117] Zhou, S., DaCosta, H., and Smith, A. J. A File System Tracing Packagefor Berkeley UNIX. Proceedings 1984 USENIX Summer Conference PortlandOregon June 12-14, (June 1985), 407{419.[118] The Berkeley NOW Project, April 18th, 1995. Available via the World WideWeb http://now.cs.berkeley.edu/.[119] The World Wide Web, April 18th, 1995. Available via the World Wide Webhttp://www.w3.org/.[120] xFS : Serverless Network File Service, July 18th, 1995. Available via the WorldWide Web http://now.cs.berkeley.edu/Xfs/xfs.html.
Page 158

