OPERATING SYSTEM AND FILE SYSTEM MONITORING :
A COMPARISON OF PASSIVE NETWORK MONITORING WITH FULL
KERNEL INSTRUMENTATION TECHNIQUES

BY

ANDREW W. MOORE

A THESIS SUBMITTED IN FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTING

DEPARTMENT OF ROBOTICS AND DIGITAL TECHNOLOGY

M O N A S H
UNIVERSITY

1995



(© Copyright 1995
by
Andrew W. Moore



Contents

List of Tables vi
List of Figures vii
Abstract viil
Acknowledgements X
1 Introduction 1
1.1 System monitoring . . . . . . . ... Lo 1
1.2 Kernel instrumentation . . . . . . .. ... oo 2
1.3 Passive network monitoring . . . . . .. ... o L oL 3
1.4 Work performed . . . . . . . ... o 4
1.5 Thesis organisation . . . . . . . ... L oo 5

2 Background 8
2.1 The UNIX filesystem . . . . . . . . .. ... . oL 8
2.1 Files . oo oo 8

2.1.2 Filestructures . . . . . . ... 10

2.1.3  The vfs/v-node interface . . . . . ... ... ... 10

2.2 NFS o 12
2.2.1 NFS protocol . . . . .. .. 14

2.2.2 0 SErver . ... 17

223 Client . . .. o 17

2.2.4  NFS file references . . . . . . .. ..o 17



2.3 File system operations . . . ... ..o 18

2.3.1 Theblock cache . . . . . . .. ... oo 19

2.4 Operating system monitoring . . . . . . .. .. ... oo 21
2.4.1 Benchmarks and load generators. . . . .. ... ... ... ... 23
242 Logfiles . . . . .o 25
24.3 Snap-shots . . . . . ..o 25
2.4.4  Network monitoring . . . . . .. ... . Lo oL 26
2.4.5 Kernel instrumentation . . . . .. .. ..o 28
2.4.6  Specialist hardware . . . . .. ..o o000 31

3 Related Research 32
3.1 Data from system-monitoring research . . . .. ... ..o 32
3.1.1 Typesofdata . . .. ... ... . 33
3.1.2 The open-close session . . . . .. .. .. ... .. 33

3.2 Prior system monitoring research . . . ... .. L0000 35
3.2.1 Benchmarks and load generators. . . . .. ... ... .. .. .. 35
3.2.2 Systemlogs . . . . ... 38
3.2.3 Snmap-shots . . . . .. .o 39
3.2.4  Network monitoring . . . . . .. .. ... L. 40
3.2.5  Kernel instrumentation . . . . . ... ... 000000 41
3.2.6  Specialist hardware . . . . .. ... L o000 44

3.3 Research using system monitoring results . . . . ... .. ... 45
3.3.1 Trace-driven research . . . . . . . .. .. ... L. 45
3.3.2  Characteristics and conclusions . . . . . ... ... ... .. .. 46

4 Kernel Instrumentation 47
4.1 Objectives . . . . . . . L A7
4.2 The design of full kernel instrumentation . . . . ... .. ... ... .. 47
4.3 A kernel instrumentation implementation . . . . . .. .. ... 48
4.3.1 Trace system control . . . . . .. .. ..o L. 49

i



4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

In-line instrumentation . . . . .. .. L0000
Activities snoopertraces . . . . . .. ...
Additional information created by snooper. . . . . . .. .. ..
Data generated by Snooper . . . .. .. ...
Program execution . . . . . ... ... oL

Off-line processing . . . . . . . .. oo

5 Network Monitoring

5.1 Objectives . . . . . . . L

5.2 Network monitoring . . . . . . .. ... L

5.3 A network monitoring implementation . . . .. ... o000

5.3.1
5.3.2
5.3.3
5.3.4

Network monitoring and data extraction . . . .. .. ... ...
Data filtering, data translation and NFS/RPC call processing
Data check-pointing and compression . . . . . .. .. .. .. ..

Post-processing . . . . .. ... Lo

5.4 Implementation restrictions . . . . . . ... L oL

5.4.1
5.4.2
5.4.3
5.4.4

Network packet capture mechanism drawbacks . . . . . . .. ..
Restrictions in available data . . . . . . . .. .. .. ... ...
nfstrace restrictions . . . . . . . . . .. ...

Local versus remote file system performance . . . . . .. .. ..

6 Comparison of Monitoring Techniques

6.1 Introduction . . . . . . . . .

6.2 System traffic . . . . ..o

6.3 File system transactions . . . . . ... ..o

6.4 Systemusers. . . . . ...

6.5 Files

6.6 File open-close sessions . . . . . . . ..o o

i1

67
67
63
70
71
72
75
76
83
83
87
88
90



7

6.7 Results from rpespy/nfstraceonly . . .. .. ... ... .. L. 113
6.7.1 Network . . . . . . . .. 113
6.8 Results from snooperonly . . . . . .. ... oL Lo 115
6.8.1 Process information . . . . . . .. ... o000 116
6.9 Summary . ... ... e 117
6.9.1 rpcspy/nfstraceproblems . . . .. ... ... ... 119
Improving passive network monitoring 121
7.1 Improving rpcspy . . . . o o o oot e 121
7.1.1 Limitations of rpecspy . . . . . . . ... L. 121
7.1.2  Improvements to rpcspy . . . . . .. ..o L 122
7.2  Limitations of nfstrace . . . . . . . . . ... 123
7.3 Improvements to nfstrace. . . . . . . . .. ..o oL 124
7.3.1 nfstrace treats the creation of a file as two separate open-close
SESSIONS  © v v v e e e e e e e e e e 124
7.3.2  Underestimation of the number of open-close sessions . . . . . . 124
7.3.3 nfstraceis unable to observe logical data transfer . . . . . .. 126
7.3.4 nfstrace has no record of open-close sessions that transfer no
data at the logical level . . . . .. ... ..o 128
7.3.5 nfstrace has no record of open-close sessions that transfer both
read and writedata . . . . ..o oo oo 129
7.3.6 The nfstrace method used for summation of read operations
and write operations can result in transferred data not being
counted . . ... 130
7.3.7 The method used for estimating the purpose of an NF'S getattr
transaction is simplistic . . . .. ... L oo 130
7.3.8 nfstrace does not estimate the contents of a client cache. . . . 131
7.3.9 nfstrace is unable to detect short open-close sessions . . . . . . 131
7.4 A block cache simulator for nfstrace . . . . . . . .. ... ... ... 132
7.4.1 Block cache operation . . . . ... ... 000 133

v



7.4.2 A block cache simulator design . . . . . .. ... ...

7.5 SUMMATY . . o o v o e e e e

8 Conclusion
8.1 Summary comments . . . . ... Lo

.2 Tuture work . . . . . . .

A Glossary

Bibliography

140
141
142

144

148



List of Tables

W DN =

NFScalls . . .. o 15
Snooper trace record types and data fields . . . . .. ... 57
Modified Andrew Benchmark results for non-instrumented and instru-

mented kernel . . . ... Lo oL 66
rpcspy trace record types and data fields . . . . . ... o000 75
NF'S transactions and the related system calls . . . . .. ... ... .. 81
Traffic breakdown . . . . . . . . ... oo 84
Modified Andrew Benchmark results for local and remote disks . . . . . 92
Data transterred . . . . . . ... oL 96
Remote file system breakdown . . . . . . .. .. .00 0L 98
File system data operations . . . . . . ... .. ... L. 99
Number of users and quantity of data transferred per user . . . .. .. 101
Comparison of average file size per file system . . . . . . ... ... .. 103
Number of different files per file system . . . . . ... ... ... .. .. 105
Open-close sessions . . . . . . .. . . Lo 106
Open-close session types by file system . . . .. . .. ... ... .. .. 107
Open-close session file systems by type . . . . . . .. .. ... ... .. 109
Total NFS read/write breakdown to server . . . . . . ... ... .. .. 113
NFS transaction breakdown . . . . . . .. ... o000 0oL 115
Total file server results . . . . . . .. ... oL 116
Average time for phases of process lifetime . . . . . . .. ... ... . 117

vi



List of Figures

O 0 =1 O Ot = W N =

DN DD = b e e e e e e
[l eI eRENe SHEE N SN e > NG SIS OUEE NI )

22
23
24
25
26
27
28
29

Block based file transfer and storage . . . . ... ... .. 0L 9
A single file system tree. . . .. ..o L oo 10
A single, composite file system from several file systems . . . . . . . .. 11
A block diagram of a typical NFS client and server layout. . . . . . .. 13
Relationship between NFS and RPC . . . . .. .. ... ... ... .. 16
Flow of actions for local disk data . . . . . . .. ... ... ... ... 19
Flow of actions for NFSdata . . . . . ... ... ... ... ... .... 20
An illustration of system monitoring . . . . . . .. ... .. 24
Network monitor system . . . . . . . .. ... 0oL 27
Various types of open-close sessions . . . . . . . .. ... .. ... ... 34
kernel instrumentation in an operating system . . . . .. .. .. .. .. 51
Ordering in open-close sessions . . . . . . .. ... ... 62
The passing of a file ID from a process to its child.. . . . . . .. .. .. 62
Program execution as file open-close sessions . . . . . . ... .. .. .. 63
The flow of a read request on an NFS client . . . . . ... ... .. .. 78
Packet loss versus Ethernet utilisation . . . .. ... .. ... ... .. 85
Processed NFS transactions versus Ethernet utilisation . . . . . .. .. 86
Various open-close sessions with block activity . . . . .. .. .. .. .. 89
Open-close sessions as generated by nfstrace . . . . ... ... .. .. 91
Data flow between a user program and an NFS file system . . . .. .. 94

Read and Write transfers as recorded by kernel instrumentation and

network monitoring . . . . . ..o L Lo 97
Distribution of number of different files accessed versus file size . . . . . 104
Distribution of the number of open-close sessions versus the duration . 110
Alternate Read-Write data transfer rate . . . . . .. .. ... ... .. 110
Data transferred . . . . . . ... . 111
File sizes . . . . . . . . 112
Process lifetimes . . . . . . . .. .. 118
The nfstracetimeout . . . . . . . . .. .. .. ... ... ....... 125
nfstrace timeout versus number of open-close sessions . . . . . .. .. 126

vii



Abstract

System monitoring is the process by which information about computer systems and
users of those systems is collected. It is carried out typically to assist in improving
the operation of current systems and to aid in the development of future computer
systems. This thesis compares and contrasts two system-monitoring techniques: full
kernel instrumentation, where information is obtained through the placing of instru-
mentation code into the computer’s operating system (kernel), and passive network
monitoring where data associated with one or more computer systems attached to a
network are extracted by monitoring the communications traffic exchanged by those
computers with others on the network.

In order to achieve this comparison and the contrast of the two system-monitoring
techniques, two such systems were implemented, operated in tandem and the results
then compared. A kernel-instrumentation system was ported from an earlier revision
of the UNIX operating system to a more up-to-date version. This involved devel-
oping a working knowledge of the kernel system in general and the development of
programs to process the records generated by the kernel instrumentation into a format
that could be then be compared with the passive network monitoring system. The
passive system was substantially complete as received although some support software
was written. Processing software also had to be written for summarising the records
of each technique and for producing a comprehensive analysis of the trace record. An
understanding of the rule base of the post-processing software was achieved by thor-
ough investigation including instrumentation and trial operation. A simplified cache
simulator was constructed which, although it could not be integrated into the passive

network monitoring software, aided in an understanding of the cache system.

viii



Full kernel instrumentation has been a popular technique because of its compre-
hensive nature but it suffers, among other things, from the necessity to have the kernel
source-code available, from the need to make changes to the system being monitored
and from the impact it can have on that system. In contrast, passive network monitor-
ing can be conducted in a non-invasive, platform-independent manner which involves
no changes to the operation of the monitored machine. Passive network monitoring has
the potential to be used in place of full kernel instrumentation for many tasks, and even
though it was unable to give results comparable with full kernel instrumentation in all
cases, it is able to give good predictions of many values when compared with those
derived from full kernel instrumentation. This was particularly true in areas related to
the writing of data. This thesis also notes discrepancies between the result from the
two system-monitoring methods and discusses ways in which those discrepancies can

be reduced or eliminated.

X



Acknowledgements

Firstly, I would like to thank my parents, Alan and Dorothy Moore, and my brother,
Nicholas, for their endless and unwavering love and encouragement. Mere words cannot
begin to express my appreciation and love.

I could not have had a better combination of mentors than my supervisors, Tony
McGregor and Jim Breen, They are both true and steady friends who willingly give
their time and guidance.

This thesis would have been at least different and, perhaps, impossible without
access to a number of programs. The starting point of this thesis was when Matt Blaze
made the original rpcspy/nfstrace suite of software available to me. He then passed
on changes and additions as well as words of advice and encouragement. I am more
than grateful to him.

Songnian Zhou and Chris Siebenmann gave me access to the original snooper code
and gave unstintingly of their time to answer many questions and to offer advice.
Michael Dahlin willingly assisted me by supplying changes his work group had made
to rpcspy/nfstrace. My thanks to you all.

[ am grateful to Randy Appleton, Mary Baker, Charles Briggs, Dan Eaves, Rick
Floyd, Simon Hill, Rick Macklem, John Ousterhout, Alan Rollow and Margo Seltzer
for unhesitatingly giving of their enthusiasm, sought-after papers, ideas and the con-
firmation that the work of this thesis was worthwhile.

I owe an eternal debt to the staff of the Department of Robotics and Digital Tech-
nology and to the users of the machines used for testing for putting up with crashing

clients and low performance networks.



My thanks to Andrew Lysikatos for organising access to the Hewlett Packard net-
work analyser and to Kathy Ching for giving so much of her time to assist in obtaining
the much-needed source code which made this thesis possible.

I extend thanks to my friends, in particular Michelle Judson, Cameron Blackwood,
Rik Harris and Chris Beecroft, for making the past years both interesting and enjoyable
and to Cameron and Chris for proof-reading.

Finally, special thanks to Ralphe Neill, who willingly read through and commented

on early revisions of this thesis.

xi



Chapter 1

Introduction

1.1 System monitoring

System monitoring is indispensable for the development and refinement of computer
systems. Systems monitoring is also important in providing assistance in the day-to-
day operations of the systems. It is only through system monitoring that it is possible
to quantify changes in the operation of a system or to determine how well a new
implementation meets its specifications.

Workload statistics, such as the average amount of data a user transfers in a given
time are important factors when evaluating both current and future systems. Differ-
ences in such values, occurring when older studies are compared with more current
ones, can indicate the reasons for such changes and allow meaningful projections of
future trends. For example, a projection of the amount of data transferred per user in
a given time can then be used for determining minimum required network-bandwidths
and disk transfer rates.

The original AT&T UNIX [81] operating system and its descendants [52] are widely
used, particularly in research and educational establishments, and have been the sub-
ject of many systems-monitoring studies. In recent years, the area of distributed sys-
tems has grown rapidly and distributed operating systems based upon UNIX or on
a UNIX-style framework have become common. A widely-used system which allows
distributed file access is the Network File System (NFS) [87]. There have been rela-
tively few studies of NFS but they have had a wide impact because of the system’s

popularity.



1.2. KERNEL INSTRUMENTATION

In this thesis, a method of analysing distributed systems, passive network monitor-
ing, is compared with full kernel instrumentation and the results of each system are
compared. Similarities and differences in the data are noted and discussed. Dispari-
ties between the two systems are analysed and explained, and methods by which the
results of passive network monitoring can be made to parallel more closely those of

kernel instrumentation and achieve greater accuracy are outlined.

1.2 Kernel instrumentation

A common method of system monitoring involves the instrumentation of the operating
system. Operating system instrumentation or kernel instrumentation requires the in-
stallation of extra instructions into the kernel to record desired information about the
operation of the kernel and the services it provides.

However, kernel instrumentation has a number of drawbacks, as seen in following

list (adapted from Mogul et al. [65]):
e code which is to reside in the kernel is difficult to write and debug,
e kernel source-code is not always available,

e cach time an error is found, the kernel must be recompiled and the machine

rebooted,
e crrors in the kernel code are likely to cause system crashes,

e functionally-independent kernel modules may have complex interactions over

shared resources,

o kernel-code debugging cannot be done during normal machine operation; specific
development time must be scheduled, resulting in inconvenience for users sharing

the system and odd work hours for system programmers,

e sophisticated debugging and monitoring facilities available for developing user-

level programs may not be available for developing kernel code.

Page 2




1.3. PASSIVE NETWORK MONITORING

A particular set of kernel instrumentation will suit only one version of a specific
operating system. Each operating system and each version of each operating system
requires specific code to be written for it.

It is common for the results of kernel instrumentation to be recorded by the in-
strumented machine. This might be difficult in an environment of networked machines
which did not have local disks. Kernel-instrumentation data would have to be collected
from many machines simultaneously when monitoring a distributed system and each
machine might have to be equipped with a local disk. Furthermore, the collection
of kernel instrumentation data on the machine instrumented will change the results

themselves.

1.3 Passive network monitoring

In many cases, the statistics collected by kernel instrumentation may also be collected
satisfactorily using passive network monitoring.

Use of distributed systems has increased in popularity in recent years. The reasons
for this are, firstly, the cost of high performance workstations and memory components
has decreased, and high-speed computer network technologies are now widely available
at moderate cost. Additionally, the interactive service obtained from large centralised
computer services is often of poor quality with long, unpredictable response times,
restricted user interfaces and difficulty in configuring hardware and software to users’
needs. Finally an increasingly diverse range of applications and facilities is required
by users. As a result of this, the option of using a network of many smaller, more
powerful workstations sharing common file systems and printing resources has become
more popular than the installation of a single large computer resource.

Because of these developments, distributed systems are in increasingly common
use, and with an increasingly common usage, there has developed a need to monitor
distributed systems. Distributed systems are not as easily monitored using traditional
techniques of kernel instrumentation, this is because problems such as the complexity

in monitoring, in a distributed system each machine needs to be instrumented and the

Page 3




1.4, WORK PERFORMED

trace information must be collected from each machine and then the traces from each
machine synchronized together. Additionally, kernel instrumentation has drawbacks
associated with needing access to the operating system source-code and the need to
instrument the source-code itself.

As a result of having many vital activities conducted over a local network, passive
network monitoring, a method of monitoring distributed systems, can often be used
in place of kernel instrumentation. Passive network monitoring has many advantages
over kernel instrumentation such as the fact that no modifications to the operation of
the distributed system are required. It is independent of the hardware on which the
distributed system is based and of the operating system itself, and can collect data
synchronously and simultaneously about every machine on a particular network, with
the collection being independent of the machines being monitored.

While there are drawbacks to passive network monitoring, in particular a potential
lack of accuracy, this thesis seeks to demonstrate that it can be a valid alternative to
kernel instrumentation for certain system-monitoring work. Additionally, the current
drawbacks of passive network monitoring can be removed to provide greater accuracy
and utility, and to yield a system that could replace kernel instrumentation in many
areas. The passive network monitoring system analysed in depth is designed to re-
port information about NFS-based distributed file systems, although passive network

monitoring can be used for the instrumentation of any network-based system.

1.4 Work performed

In order to achieve this comparison and contrast of the two system monitoring tech-
niques, two such systems were implemented, operated in tandem and the results then
compared.

A kernel instrumentation system was ported from a version developed for an older
revision of the UNIX operating system, into a more up-to-date UNIX revision. This

port involved developing a working knowledge of the kernel system in general and

Page 4




1.5. THESIS ORGANISATION

the installation and updating of the instrumentation system itself. During this de-
velopment, unresolved problems in the original implementation were also dealt with,
including a mutual exclusion problem in data-recording. An additional, substantial,
part of the kernel instrumentation system was the development of program code to
process the records generated by the instrumentation system into a format that could
be then be compared with the passive network monitoring system.

The passive network monitoring system was substantially complete as received,
although an amount of enhanced software was added. In particular, software was
written to assist in the management of the large amount of data potentially produced;
this software incorporated check-pointing and compression routines. An understanding
of the rule base of the post processing software (nfstrace) was achieved by thorough
investigation including instrumentation and trial operation. The relationship between
network utilisation and passive network monitoring efficiency was also determined.

For both systems an extended period was spent ensuring the correct operation of
each technique. This was principally done through trial operation, particularly in a
controlled environment.

In order to compare and contrast the two monitoring methods, processing software
was written to summarize the records provided by each technique and to produce
comprehensive analyses of the trace records. This software also required extensive
assessment to ensure correct operation.

In developing a plan of improvements that could be made to the passive network
monitoring system, a simplified cache simulator was constructed. While not able to be
integrated into the passive network monitoring software (nfstrace), this system aided
in an understanding of the cache system and was a valuable tool in the development

of the cache simulator concept.

1.5 Thesis organisation

The rest of this document is organised as follows.

Chapter 2 provides background information about approaches to the monitoring of

Page 5




1.5. THESIS ORGANISATION

operating systems, with particular reference to passive network monitoring and kernel
instrumentation techniques. The chapter also provides background material on aspects
of operating systems in general and NFS-based distributed file systems in particular.

Chapter 3 discusses the place of system-monitoring research and discusses various
studies categorised by the monitoring techniques used. Additionally, this chapter dis-
cusses research that has used the results of other system-monitoring studies. By looking
at work following from system-monitoring studies seeking to show that a significant
contribution of system-monitoring research is the further research opportunities it may
reveal. Finally, this chapter discusses certain concepts specific to the monitoring of
operating systems and file systems in particular, such as the file open-close session.

In Chapter 4 the implementation of full kernel instrumentation is outlined. The
full kernel instrumentation system snooper is discussed with particular reference to
the modifications required to port the software to the required system. The methods
used to transform the results of snooper into an appropriate format are also discussed,
along with the effects the snooper modifications had on the monitored system.

The passive network monitoring system, rpcspy/nfstrace, is outlined in Chap-
ter 5. This chapter discusses the operation of the passive network monitoring system,
the relationship between its two principal components and the impact passive network
monitoring may have on a monitored system.

Chapter 6 presents and analyses the results of a comparison of the kernel instrumen-
tation and passive network monitoring implemented on a single machine instrumented
with both systems. The comparison is based on measures commonly used in systems-
monitoring research such as the amount of data a user transfers in a given time, the
duration of an open-close session and the total amount data transferred by a computer
system in a given time. This chapter establishes the areas of shortcoming in the passive
network monitoring implementation and the divergence in the results.

Chapter 7 discusses changes that can be made to improve the accuracy of nfstrace

and decrease the difference in the results obtained by each monitoring system. The

Page 6




1.5. THESIS ORGANISATION

chapter then discusses future possibilities for system monitoring using the passive net-

work monitoring technique.

Chapter 8 presents a summary of the results and findings of this thesis and discusses
potential future work both to extend the comparisons made for this thesis and the

future uses of passive network monitoring.

Page 7




Chapter 2

Background

2.1 The UNIX file system
2.1.1 Files

The UNIX operating system and its derivatives have the file as their basic construct [81,
52]. A file can be any collection of data. It could be the text of a thesis or the machine
instructions of a program. A directory is a file containing reference information about
the location of other files.

Associated with a file is the data it contains and an index node (usually referred to
as an i-node). An i-node contains information about the file such as which user owns
it, its size, where on the disk the file’s data is located, when the file was last accessed,
etc.

Figure 1 shows the relationship between a buffer of data (buffer), at the user level,
the system block buffers and the physical disk sectors (sector 1 and 2). The sector is
the smallest working unit of the physical device. All operations involving the physical
device must involve sequential runs of data of this size. The block cache of the UNIX
system also works in sequential bytes of data of this size. In this diagram a user buffer
is shown to be part of a file. That file extends over four disk sectors. The user’s buffer
of interest (buffer) extends over two of these sectors.

Although a user may wish to change only a single byte on a disk, the underlying
hardware can read and write only in integral units of physical storage, sectors. The

system must, therefore, read the sector containing the byte to be modified, replace the



2.1. THE UNIX FILE SYSTEM

user: write(fd buffer,cnt)

buffer (buffer):

| cnt ‘

l l

| |

logical file(fd) : | |

| |

? |

system buffers: i i

(from file block cache)

logical file blocks: 0 1 2 3 ‘

Figure 1: This figure shows the relationship between a buffer of data, at the user level,
the system block buffers and the physical sectors of the disk.

affected byte and write the sector back to the disk.

Processes may need to read data in sizes smaller than a disk block. The first time a
small read is required from a particular disk block, that block will be transferred from
the disk into a kernel buffer. Successive reads of parts of the same block then usually
require only copying from the kernel buffer to the memory of the user process.

Multiple small writes are treated similarly. A cache buffer is allocated when the
first write to a disk block is made and succeeding writes to parts of the same block are
then likely to require only copying into the kernel buffer with no disk /0.

In addition to providing the abstraction of arbitrary alignments of reads and writes,
the block-buffer cache reduces the number of disk I/O transfers required by accesses to
the file system. System-parameter files, commands and directories are read repeatedly
so their data blocks are usually in the buffer cache when they are needed. The kernel
does not need to read them from the disk every time they are requested.

The situation is more complicated in the case of cached writes. The data on the disk

will be incorrect and data will be lost if the system crashes while data for a particular

Page 9




2.1. THE UNIX FILE SYSTEM

block is in the cache and has not yet been written to disk. (Critical system-data, such as
directories, are written synchronously to disk to ensure file system consistency). Block
writes are forced periodically for dirty buffers, to alleviate this potential problem of

data loss.

2.1.2 File structures

UNIX organises files into tree structures called file systems. Figure 2 shows a single

file system. The single file system has an inverse tree structure.

/

et /bin

/home/sam
/bin/ls /bin/cat

/home/fred /homdj oan

Figure 2: A single file system tree.

UNIX enables file systems to be grafted together to form (from the user’s perspec-
tive) large tree-structures of files. The user need not know on which disk a file is
physically located to be able to access that file. Figure 3 shows how several, different
file systems can be grafted together into a single tree structure. File system 2 is mounted
onto file system 1. The directory /home/joan is referred to as the mount point of file
system 2. The resulting composite file-system tree is shown as file system 3.

Under UNIX, there are a number of different types of file systems supported. For
example, a file system could be located on local disk drives, CD-ROMs or on a remote
system, accessed via networks using a network based file system such as the Network
File System (NFS). As a result, file systems grafted together as in Figure 3 may be of

different types as well as residing on different disks or parts of disks.

2.1.3 The vfs/v-node interface

In order to implement various types of file systems under UNIX without requiring

users to modify their programs, or make substantial changes to the operating system

Page 10




2.1. THE UNIX FILE SYSTEM

letc
/work

/games

/home/sam

/bin/ls /bin/cat Iwork/paper  /work/thesis

/homeljoan J/
1. 2.

/bin

/home/fred

[etc

/home/sam
/bin/ls /bin/cat

/home/fred /home/joan

/home/joan/work .
/home/joan/games

/home/joan/work/paper  /home/joan/work/thesis

3.

Figure 3: File system 2 is grafted onto file system 1, to form the composite tree shown
as file system 3.

itself, Berkeley Software Distribution (BSD) and variants of UNIX, often BSD-derived,
such as SunOS and Ultrix use the vis/v-node system. vfs, which stands for virtual file
system, combined with the v-node, a virtual i-node, enables the operating system to
perform a generic set of operations on a particular file independently of the type of
file-system upon which it resides.

Prior to the introduction of the vfs/v-node system, the contents of an i-node were
identical whether in memory or on disk. With the introduction of the v-node, additional
data were added to the structure when in memory, making the v-node a super version
of the i-node. In this thesis there will also be reference to the term g-node; this is the
Digital Ultrix term for a v-node. Ultrix also refers to the virtual file system, vfs, as the
generic file system or gfs. A g-node or v-node can be considered equivalent. In turn,
both a g-node or v-node can be considered as super i-nodes.

Using the vfs/v-node interface, the kernel directs commands to an appropriate, file-

system-specific part of the operating system. When a request is made on a particular

Page 11




2.2. NFS

file the kernel will use regular file-system operations to access that file if that file is on
a file system which is local to the user. For a file on a networked file system the kernel
will use network operations for its access.

In the NFS, a server makes file systems available for use by users on client machines.
A machine is said to be a client of another if it mounts a file system physically located
on other machine. The file system requests are passed through a network from the
client to the server. The server then performs the requested operation and returns the
result to the client. For example, in a read operation performed on the client, the read
operation would be transferred to the server. The operation would be processed by the
server and the results returned to the client.

Figure 4 depicts how the client and server communicate through the network. The
server performs the operations on its local file system that were requested by the client
in exactly the same manner as they would have been if they had been requested by
users on the server itself. The client is shown with a local file system in addition to
the connection to the server although such a file system is not a necessity for a client.

Remote Procedure Call (RPC) and the eXternal Data Representation (XDR) are
used in the communications of the NFS client and server [55, 54]. They are discussed

more fully in Section 2.2.1.

2.2 NFS

The following section describes the NFS. Much of this information has been drawn
from NFES Implementation by Sandberg et al. [87], the NFS:Network File System Pro-
tocol Specification by Nowicki [70] and Overview of the Sun Network File System by
Walsh et al. [112].

The NFS protocol, as well as the standards for Remote Procedure Call (RPC) [55]
and eXternal Data Representation (XDR) [54] were developed by Sun Microsystems.
To enable a wide-scale implementation and use of this system, Sun Microsystems made
these standards publicly available, and has made available to operating system devel-

opers a reference implementation of the NFS system.

Page 12




2.2. NFS

Client Server
System Calls System Calls
visiv-node visiv-node
Loca Filesystem |NFS Filesystem Server Routines| |Local Filesystem
RPC RPC
XDR XDR
UDP/TCP UDP/TCP
IP IP

v

A

Network

Figure 4: A block diagram of a typical NFS client and server layout.

The design goals for NFS included:

e machine and operating system independence: while NFS was designed
under UNIX, it should be (and has been) implementable under most operating

systems,

e malfunction recovery: an objective of NFS was to minimise the difficulty of

recovering from a server or client maltfunction,

e UNIX file semantics to be maintained on clients: that is, to maintain
transparent access to UNIX machines, clients must maintain UNIX file system

semantics,

e reasonable performance: NFS would not become commonly used if existing
networking utilities were faster to use. NFS was expected to be no slower than

about 80% the speed of a local disk.

These goals lead to the design of a stateless distributed file system. By stateless it is

Page 13




2.2. NFS

meant that every request made of an NFS server is totally self-contained (idempotent)

and repeatable.

2.2.1 NFS protocol

The NFS protocol [70] uses the Sun Remote Procedure Call (RPC) mechanism [55].
The use of the RPC system insulates NFS from the intricacies of server-client com-
munications, data formats and communications reliability, thus allowing it to deal
exclusively with file-system-related matters.

An RPC call is synchronous and, as a result, the RPC call will block until it can
be completed. A function run from a remote machine will wait for the results to be
returned from the remote machine before resuming program execution. This results in
an RPC call behaving like a local procedure call and, with a few important exceptions
such as handling machine-specific parameters, can be treated as such.

Statelessness has important advantages for crash recovery. In a state-oriented Dis-
tributed File System (DFS), a server crash would mean the loss of all information
about the state of files which clients may have been accessing. It is for this reason that
elaborate, crash-recovery protocols are established for servers to recover information
about the DFS’s state before the crash. This, of course, adds to the complexity to the
overall distributed system.

NFS is stateless, each procedure call must contain all the information (parameters)
necessary to complete a call. Additionally, the server does not keep track of any past
requests. This results in uncomplicated crash recovery. When a server crashes, a client
resends NFS requests until a response is received. The server itself does no crash
recovery specifically for NFS. Sandberg et al. note that a client would not be able to
tell the difference between a server that had crashed and recovered, and a server that
was slow to respond.

Table 1 shows the NFS system calls. While most file system operations are rep-
resented here, notable omissions include open and close. The changes introduced by

state-oriented operations such as open and close are kept on the client only, such

Page 14




2.2. NFS

null() | do nothing.
lookup() | returns a new file handle and attributes for the named file in
a directory.
create() | creates a new file handle.
remove() | removes a file from a directory.
getattr() | returns file attributes.
setattr() | set a file’s attributes (permissions, owner, etc).
read() | returns a number of bytes from a particular offset into a file.
write() | writes a number of bytes at a particular offset into a file.
rename() | renames a file.
link() | creates a hard link on the remote file system.
symlink() | creates a symbolic link on the remote file system.
readlink() | reads the string associated with the symbolic file name.
mkdir() | creates a new directory.
rmdir() | removes an existing directory.
readdir() | returns a number of bytes of directory entries from
a particular directory.
statfs() | returns information about a file system.

Table 1: NFS file system calls

state-oriented operations are not sent on to the server. As a result, when these opera-
tions occur on a client, there is no specific associated NFS activity between client and
server.

For NFS to provide transparent, remote access to file systems it must also be in-
dependent of system-architecture issues. The eXternal Data Representation (XDR)
standard was designed to facilitate communication between computers that use dif-
ferent data representations. This standard overcomes the differences between the way
data is represented on different computer architectures. For example, computers can
vary in the way each represents the concept of an integer such as varying the order
and the number of bits, octets, etc. XDR has specifications for common building
blocks from which other values can be created including integers, character strings and
floating-point numbers. By using XDR, complex data structures can be machine and
language independent.

An NFS call has a related pair of messages; a request and the response (either

acknowledged or declined). Each of the messages (a pair for each of the system calls in

Table 1) has arguments and returns parameters appropriate to their particular function.

Page 15




2.2. NFS

For example, the read request message passes arguments relating to a file’s identifica-
tion, where the data is to be read from (an offset into the file) and the amount of data
to be read. The read reply message contains (in the success case) the attributes of
the read file, as well as the data. Because each RPC operation can have only 8 Kbytes
of data associated with it, a read (or a write, etc.) request for more than 8 Kbytes of

data is broken (by NFS) into two or more RPC requests.

Client Server
read(fd, buffer,20000)
E—— .
read from fd:0 = [S?Zggg]zfd-o read from fd:0
t0d:8192 = ’ — = tofdB192
return a buffer
return abuffer f 8192 by
return a buffer < of 8192 bytes = ° vies
of 8192 bytes _ E E
c c
redfromiggtos | O x © read from fd:8193 ]
o i o 5 o —= ofdi63 read from fd:8193
IS tofd16384 I(;) = I(;) : TTT=> tofd16384
[= jo}
= o} = o) reumabuffer return a buffer
return a buffer o O | of8192 bytes of 8192 bytes
of 8102bytes = —— % %
read fromfd16385 = read from fd:16385 read from fd: 16385
to d:20000 TTTT=> 10fd:20000 — =~ t0d:20000
return a buffer
return a buffer of 3616 bytes
-
return abuffer << of 3616 bytes
- ofblebytess <=
return 20000 bytes
Operating System RPC RPC Operating System
. Communications between
(NFSclient) (NFS server)

client and server

Figure 5: This figure shows how a single operating system request, too large to traverse
the RPC layer, is segmented and reassembled by NFS for processing by RPC.

Figure 5 shows this relationship between RPC and NFS more clearly. The NFS
interface will, as required, segment a request into manageable pieces (8 Kbytes in this
example). These requests are received by the server which, in turn, sends back the
results. The NFS interface will then reassemble the replies and return this data to the
user via the operating system. Both the requests and replies travel via a communica-
tions system. The common communications system used is the Unreliable Datagram
Protocol (UDP) [78] or, more recently ([56, 100]), the Transmission Control Protocol
(TCP) [77]. Each of these then use the Internet Protocol (IP) [76]. The UDP and TCP
communications layers may each fragment/de-fragment the packet from the previous

layer but this process is not shown in Figure 5.

Page 16




2.2. NFS

2.2.2 Server

As has already been stated, the NFS server is stateless. When serving requests, the
standard implies that an NFS server must commit any modified data to stable storage
before returning results. For a UNIX system this means that requests which modify the
file system must flush all modified data to disk before returning from the (RPC) call.
As a result, for a write call both the data blocks of the file and the block containing

the i-node must all be flushed if there have been any modifications [87].

2.2.3 Client

The client side provides the transparent interface to NFS. For transparent access to
remote file systems to function, the locations of files must be independent of the file
naming structure. In NFS, the remote server’s hostname is looked-up once when the
file system is mounted. However, the disadvantage is that remote files are not available

to the client until the mount is done.

2.2.4 NFS file references

From the perspective of the client, each v-node individually identifies a particular file.
The v-node contains enough information to determine which type of file system a file
is on, for example: a local disk, a local CD-ROM or on a file system of a specific NF'S
server.

For NFS, the v-node references a structure called a filehandle which is always pro-
vided by the server and used by the client. From the client’s perspective the filehandle
information is opaque; the client is not required to decode the contents of the filehan-
dle. The file handle can contain whatever information the server requires to identify
an individual file, e.g. which the system the file is on. The filehandle implemented in
UNIX also contains a reference to the file itself (typically the i-node of the file on the
server’s file system) and a generation counter to ensure that the client is referring to
the correct version of the server’s file. Thus, the filehandle forms a unique identification

of the file that can be used by both the server and client.

Page 17




2.3. FILE SYSTEM OPERATIONS

2.3 File system operations

A system call is the interface between a user’s program and the operating system. It
is the means by which a user’s program can perform file system operations such as
writing data into files, creating directories, etc.

We will take the read system call as an example. This routine, which will read
a nominated number of bytes from a particular file. This call forms the front-end of
a set of operations that access the desired file. Once the appropriate data has been
retrieved, the read routine places it into the buffer nominated by the user.

In order to read data from a file residing on a local UNIX file system, the kernel will
gather up the read operands from the system call and pass them to the generic read
interface. These are then passed to the local file system (called UFS, for UNIX File
System although most commonly the BSD Fast File System (FFS) [60]) read routines.
The appropriate type of file-system-read routine is automatically determined because
it is part of the information denoting the file.

As a result of each file being made up of a number of blocks, the UFS-specific read
routine will process each of the blocks that makes up the data to be read. If the block
size is 8 Kbytes and the read request is 20 Kbytes this could involve up to four blocks:
two complete blocks and one partial block at each end. The UFS read routine first
checks if the block from which it wants data is already in a system buffer. If it is, the
data are copied into the buffer space nominated by the user.

Figure 6 shows the flow the kernel will follow to obtain a block of data. For this
particular read operation, the block resides on a local disk.

In comparison, Figure 7 shows the flow the kernel will follow to obtain a block
of data from a file residing on an NFS server. The system cache is checked for the
required data. If it is not found, the data is read from the server. If the data is in the
cache, and the cache copy is recent, this is returned to the user. If the data is in the
cache and the copy was not made recently, a check is made with the server to ensure
the copy held in the cache is the latest available. This check will result in either the

cache copy being supplied (if it is the latest available). Or it will result in a new copy

Page 18




2.3. FILE SYSTEM OPERATIONS

(=

ufs read

Isthe
block
in cache
already

No

read block of data
from disk into cache Yes

return block of data from
cache to the user

Figure 6: A chart of the flow of actions required in returning a block of data to the
user. In this case the block resides on a local disk.

replacing the client’s cache copy and this data will, in turn, be supplied to the user.

2.3.1 The block cache

As explained in Section 2.1.1, the block cache improves the performance of disk related
activities. In addition to buffering up pending write operations and saving data from
previous read operations, the block cache implementation in UNIX also performs a
read-ahead to improve performance.

Read-ahead is a technique where the operating system will read the next block
to the one actually requested into cache in anticipation of it being required in the
immediate future. Numerous studies on caching have found that file accesses tend to
be sequential and the possibility of consecutive blocks being accessed in a file is very
high [73, 8, 98, 109]. As a result, read-ahead is a very effective technique for improving
performance.

The write-behind, where modified blocks of data are not immediately written to the

Page 19




2.3. FILE SYSTEM OPERATIONS

read

nfs_read

Isthe
block
in cache

aready
?

Has the
cache copy
of this block
been checked
recently ?

No

!

get the attributes of
the file on the server

Yes
Isthe
No cached copy
<~ upto
date

read block of data ?

from server into cache

Yes

return block of datafrom
cache to the user

Figure 7: A chart of the flow of actions required in returning to the user a block of
data from a file residing on a networked file system (NFS).

Page 20




2.4. OPERATING SYSTEM MONITORING

disk drive, has an advantage in distributed systems, apart from increasing the speed
of clients, as programs that write data no longer do so synchronously with the disk.
Write-behind also decreases the activities of the server and the communications traffic
between server and client. However, the write-behind facility of the buffer cache has a
disadvantage in a distributed system. Modifications made to a file by one client will not
be visible to another client reading the file. In order to minimise the amount of time
during which clients will access incorrect data, and also to minimise the chances of data
loss due to write-behind, NFS uses a modified write-behind technique. In NFS. the
closing of a file forces any unwritten data associated with that file to be synchronised
with the server’s disk.

The existence of the block cache does result in a difference in operations between the
logical operations of users requesting data from the cache and the blocks themselves
being written to and read from the file systems. An example of this is that two
consecutive read operations on a particular file (for example, by a program executed two
times in succession) may involve the complete reading of the data into the cache only
once with that data being available for the second set of requests without additional

disk access.

2.4 Operating system monitoring

This section will broadly cover the different techniques of system monitoring; the fol-
lowing chapter will cover particular methods and work derived from these methods in
more detail.

System monitoring is increasingly important for the evaluation of operating systems.
Examples of the uses of system monitoring include assisting in the assessment of an
operating systems performance, or the validation of a particular sub-system, e.g. the
correct implementation of an NF'S server.

Modern operating systems have grown in size and complexity resulting in consid-
erable difficulty building an understanding of the complete system. In the past, an

operating system may have been understood by the study of the program code used;

Page 21




2.4. OPERATING SYSTEM MONITORING

in a modern operating system this code may be many hundreds of thousands of lines
of code, and the code itself may not be readily available for proprietary and copyright
reasons. As a result, system monitoring is often considered necessary to reveal aspects
of the system and users’ behavior, and to provide information on how to the improve
performance of existing systems as well as assisting in the design of future systems.
There are four aspects that system monitoring must address in its design and im-
plementation for it to be useful. These aspects, which may conflict with each other,

are listed below in a summary adapted from Zhou et al. [117]:

e Comprehensiveness: a monitor system must provide enough correct informa-
tion for a complete picture to be built up from the data captured. For example,
the monitoring of file system should give information on all aspects of the usage of
the file system and not only the operations resulting from one particular activity

Oor user.

o Flexibility: ideally, a monitor system should be able to satisfy different moni-
toring needs. It should be able to trace the whole computer system, parts of the

computer system, the actions of a particular user and of a particular program.

e Minimal Impact: the use of a monitoring system should involve minimal
changes to the computer. In system monitoring it is most important that the
system being monitored has the same behavior as when it is not being monitored.
Minimising the changes required for monitoring has the additional advantage of
reducing the chance of errors being introduced into the operation of the system

being monitored.

e Convenience of Analysis: the output of the system monitoring, in its final
form, should be of use to the researcher. Ideally the output of the analysis
should require little or no post-collection processing. For example, complex cross-
correlation of trace records should, if required at all, be only a single task required

just once at the end of the trace.

Page 22




2.4. OPERATING SYSTEM MONITORING

System monitoring often takes two broad, interrelated forms: gathering information
about the system itself, and gathering information about the behavior of the users of
the particular system.

For some forms of system monitoring, such as kernel instrumentation or network
monitoring where the machines are monitored in situ, the users can be considered to
be load generators, using and causing the machines to behave in particular ways, the
characteristics of which are being collected by the system monitor. This method can
reveal the behavior of a system when in normal use. In this way the monitoring of oper-
ating systems involves extracting behavior of a system and commonly this information
reflects the behavior of the users.

Several different techniques are used to monitor operating systems in general and, of
particular interest in this study, the file system. In Figure 8 several system-monitoring
techniques are illustrated. Shaded regions represent the area each system monitoring
technique involves. A technique such as network monitoring has its access restricted
to the data in the network, while kernel instrumentation could potentially involve any

part of the operating systems kernel.

2.4.1 Benchmarks and load generators

Load generators refer to a type of program which exists to generate a load on a system.
Commonly a load generator recreates the behavior of one or more users by duplicating
the operations of the users. In this way a load generator could be built to operate at
a high level, duplicating the exact commands a user has executed (e.g. 1s, make, cp)
or can operate at a lower level, simulating the logical operations. An example of this
would be opening a file and reading or writing to it, as a simulation of using an editor.

Because an artificial load generator commonly seeks to recreate the behavior pat-
terns of users, the building of such load generators makes use of the behavior of users
that have been previously monitored. As an example of the use of previous studies, it
was noted that the use of small files is common in UNIX [73, 8, 88] so a benchmark
might be designed to replicate this characteristic by dealing with a large number of

small files.

Page 23




2.4. OPERATING SYSTEM MONITORING

benchmar ks &
| oad generators

System call stubs

[} [}
I I
[} I
I I
[} I
I I
[} I
I I
[} I
! 1
1 Local Filesystem Block Cache NFS Filesystem | ! ker nel
: rinstrunment ati on
! RPC I
! Device Driver I
: XDR :
! UDPITCP !
! IP '

1 I
IR Operating System Kernel ———x——— .

net wor k
Network nmoni t ori ng

Figure 8: An illustration of several system monitoring techniques. Shaded areas
represent the scope each technique can potentially access.

Load generators take a number of forms. For example, a load generator might be
timed over its operation and the time taken can then be used to compare the same load
generator running in different environments, thereby comparing the environments. This
sort of load generator is usually termed a benchmarking program. Another example
would be where the load generator tests several different types of operations. In this
way, the load generator is exercising different alternatives, perhaps testing a wide set
of operations on a file system.

The uses of benchmarks in particular and load generators in general include:
o testing the performance of a machine before and after modifications,

o testing a new implementation of an operating system attempting all operations

to ensure they are functional,

e imposing an artificial load on a system, commonly a number of loads together

are used to stress-test a system.

Page 24




2.4. OPERATING SYSTEM MONITORING

2.4.2 Log files

Log files are records of information collected for such activities as auditing and resource
control. Log files can give potentially valuable information about the operation of the
system and the activities of users. They provide the basis for useful studies even though
commonly kept for other purposes and containing only the simplest of information.

Commonly used log files include:

System logs which commonly record information at a user level; which users were

logged in and how long were they logged in are typical contents of user logs.

Program accounting logs which keep records on which programs are executed on
a system, how much time was used by a particular program, how much memory
was used, how many disk accesses were made, who ran the program, how long

the program ran, etc.

Miscellaneous logs, such as the recording of old files as they are moved from sec-

ondary to tertiary storage.

Each log can help characterise the behavior of users and the particular usage a

machine has had.

2.4.3 Snap-shots

Taking a snap-shot of the system is the process of making a static copy of the required
information at a specified time. Such a snap-shot might be taken regularly, perhaps
hourly, so that the differences between two (or more) successive snap-shots may be
compared. As an alternative, a snap-shot may be taken only a single time. Such data
could be used to give such things as average file size on the system at that moment.
A snap-shot requires little interference in the overall operation of the operating
system. Typically, data can be collected for a snap-shot using tools built with user
programs that require no alterations to the system, or, more-rarely, with special tools.

However, such studies, particularly of the file system, are best done on a quiescent

Page 25




2.4. OPERATING SYSTEM MONITORING

system so as not to be perturbed by changes (deletions, creations, file-moves and so
on) during the collection of the data.

Snap-shots are most often made from the user level and, because of this, similar
information can be collected, with the same user tools, from a wide variety of operating-
system implementations.

Taking snap-shots as a form of ongoing system monitoring does have one major
drawback; it cannot be performed continuously. It gives only a static picture of the
system at any one time. The result is that using this technique will tend not to reveal
short-term trends. This may not be a problem in studies of long-term trends but
taking snap-shots is not considered an appropriate technique where there is need for

information over the shorter term.

2.4.4 Network monitoring

With the common use of networks for distributed-computing environments, computer
interconnectivity has become as important to a computer system as more-traditional
components such as disk drives and CPUs. In distributed-computing environment the
communications channel can be carrying disk traffic or inter-process communications
traffic, monitoring the network between machines not only reveals information about
the communications itself, but other activities of machines, for example, file system
operations and the communication of processes. As a result of this, network monitoring
has become a useful technique by which the activities of network-attached systems can
be monitored.

Local area computer networks (LAN) are commonly Ethernet [61] or [EEE 802.3 [2]*
based but other network types are also in common usage [3, 4, 44].

The popularity of LANs has led to large numbers of people using computer net-
works as part of their daily work. The networks could be providing users with access
to remote printing services or remote computer access, but particularly with UNIX
systems, networks also commonly provide access to central file servers. In more ad-

vanced distributed systems, networks are the communications channel for the sharing

!Ethernet and IEEE 802.3 refer to two related but slightly different LAN standards.

Page 26




2.4. OPERATING SYSTEM MONITORING

of processor load as well as more elaborate network-based file systems.

In many local network systems, communications traffic is easily accessible. All in-
formation passed using the cable is available for anyone with the appropriate tools to
intercept and monitor. On a segment of an Ethernet-based network (to which many
computers may be connected) the network can carry only one packet from any com-
puter at a time. The communication between the machines is forced into a linear time
sequence. All data packets are consecutive and no network event can occur simultane-
ously with another.

Figure 9 shows a network monitoring system connected to a network used by other
computers. If the network monitor can extract the communications traffic between
other machines, the monitor can record this information and process it either then or

later, by analysing information from the communications between the other systems.

8 8

\ \ \ | eee Local disk for

| | = spy record
| Client % Server

Figure 9: A network monitor system connected to a local area network can monitor
and record the conversations between other machines that use the same network to
communicate.

At one stage, such a network monitor would have been specially built for the task
but modern workstations have been shown to be effective as network monitors [63].
They also often have the capacity to do rudimentary processing of the captured data
in real-time.

This thesis discusses the use of network monitoring for gaining information about
a distributed file system, although a network monitor could intercept communications
of any sort passing through the appropriate network. The level at which a network
monitor program can intercept communications between machines is shown in Figure 8.

As shown in this figure, the network monitor will typically record the results to local

Page 27




2.4. OPERATING SYSTEM MONITORING

disk, rather than generate extra communications traffic to be monitored, by sending
the results to remote disk.

Network monitoring does place several requirements on the system it is monitoring.
First, the information of interest (for example, communications traffic in a distributed
file system) must pass via the network. This means that passive network monitoring
would be of no use for the monitoring of file-system operations between a machine and
disks attached directly to it because the operations between the machine and its disks
would not pass through the network.

Secondly, network monitoring relies completely on the ability to derive the appro-
priate information from the communications traffic between machines on the network.
For NFS, this is the communications traffic between clients and a file server. However,
in the case of an NFS-style file system, not all of the actions that occur on a client will
cause operations on the network. In particular, the use of a cache to increase perfor-
mance in a file system will filter requests from a client to the server so a network-based
monitor will not be able to record these requests. The use of processing heuristics
based around the particular protocol used across the network is needed to make in-
formed estimates on when the cache was used. This becomes necessary in situations
when all that was sent across the network was a test to ensure that the contents of the
cache were correct.

The network-monitoring technique has the particular advantage of being non-in-
trusive on the operation of other equipment (other systems being monitored). This
includes both the recording of data from the network and allowing the recording of
logs and so on to occur on a machine that is independent of the monitored systems.

An additional advantage of network monitoring is the simultaneous collection of
information about potentially many different clients and servers. Any machine that

uses the network may have data about it collected.

2.4.5 Kernel instrumentation

Kernel instrumentation consists of inserting extra code into parts of an operating sys-

tem to collect and record statistics or more comprehensive data about the operation

Page 28




2.4. OPERATING SYSTEM MONITORING

of the kernel.

Figure 8 shows the scope of kernel instrumentation. As the diagram indicates,
kernel instrumentation could potentially record information about any operation of
the operating-system kernel.

There are two commonly-used techniques for kernel instrumentation: a full instru-

mentation and use of kernel variables.
Full kernel instrumentation

For full kernel instrumentation, the instrumentation code is inserted into every part
of the kernel that performs a function of interest. Such instrumentation is usually
complex and involves adding code to many different parts of the kernel. An example
of the variety of areas that may require modification is the reading of blocks from a
file. Not only does the read system call cause blocks to be read from a file, but in some
circumstances the write system call can cause this to occur also. Additionally, the
virtual memory system on occasion needs to be able to read blocks from executable
files. As this example demonstrates, even a seemingly easy example can be more
complicated than it first appears.

Kernel code is limited by the fact that it is in the kernel, i.e. it must be crafted
specially not to impact heavily on either the size or time-constraints placed on the
kernel. It is also difficult to debug because every potential change to the system
can, cause the system to crash, often without warning and sometimes without enough
information to easily track the source of the error.

Kernel instrumentation also has a serious lack of portability. The instrumentation
designed for one particular version of the operating system is not fitted easily to the
kernel of another operating system. Indeed, it is often not even fitted easily to another
version of the same operating system. Kernel instrumentation also presupposes access
to the source-code for the kernel of a particular operating system. Such source-code is
often difficult to obtain being restricted by high prices, non-disclosure agreements or
simple lack of availability.

Owing to an effort by kernel-instrumentation implementors to minimise the impact

Page 29




2.4. OPERATING SYSTEM MONITORING

of the monitoring system on the machine, the post-processing phase of a kernel trace
can be both time consuming and complex. This process often involves the matching of
records, for example, open and close records, to calculate the duration of file activity.

Finally, kernel instrumentation involves the careful management of the data gen-
erated by the trace mechanism itself. The data collection can, if poorly implemented,
skew the results and change the operation of what is being monitored.

A full kernel-tracing system can suffer from the very characteristic that makes it so
advantageous, that is, the sheer volume of generated data can quickly overwhelm local
resources.

Despite these problems, kernel instrumentation has the potential to give an exact
record of what occurred in the kernel of a system and, as a result, is commonly used

when high precision is required.
Kernel variables

What has been termed kernel variables refers to the placing in the kernel of various
variables. These variables record the activity of various parts of the kernel, for example,
the number of times a page was found in the cache or the number of times a read system
call occurred. These variables are often used in the development phase of the kernel
and this extra instrumentation has simply never been removed. The most common
method of using this form of information is to have a user process regularly obtain the
values stored in the various variables and collect them in a file for later analysis.

Because such variables were placed in the kernel during its development, they might
be of little use because they do not give the information that is needed. They might be
incomplete (a read counter without a write counter), or little understood. Additionally,
there is often no easy way to find out about their existence.

Access to the kernel source-code is required if kernel variables and variables are to
be added or modified and, as has been mentioned above, kernel source-code is often
unavailable. In such cases, this form of instrumentation relies totally on any pre-
existing variables. Kupfer [50], in discussing various kernel instrumentation available

in the Berkeley UNIX 4.2BSD kernel, comments on the ease with which various kernel

Page 30




2.4. OPERATING SYSTEM MONITORING

values and the user programs that use them can become useless, incorrect or failure-
prone, serving no useful purpose as a result.

Kernels instrumented in such a way do have a major advantage over other tech-
niques, as the variables can be accessed easily by user programs.

Often the amount of data involved with kernel variables is small enough that the
collection and storage is a modest or trivial problem. However, like kernel instrumen-
tation, it is possible for the action of accessing and recording results to skew the values
we wish to measure. As an example, if a program collecting statistics about the ac-
tivity of the file system records its data to disk too often, it will quickly dominate the

statistics it is collecting.

2.4.6 Specialist hardware

Specialist hardware is equipment designed specifically to collect information about a
particular aspect of a machine, e.g. disk transfers; it could be attached to the same
interface as the disk drive and all instructions to the disk drive would then be recorded
by the specialist hardware. The data recorded by specialist hardware may well require
an immense post-collection processing task although that does depend greatly on what
is being monitored, how the specialist hardware performs this task and the nature of
the final record the specialist hardware records.

Specialist hardware is, by its nature, extremely task-specific. For example, an an-
alyser for a SCSI interface could not be adapted easily to any other task. Furthermore,
the design and debugging stages of specialist hardware could be most-complex unless
some type of modular, general-purpose equipment were used.

While having drawbacks that could be of great consequence, specialist hardware
can be fast and accurate. It can record difficult-to-measure values at the circuit and
interface level; measurements that might not be possible using another system mon-
itoring technique. Additionally, good design of the monitoring hardware could make
the system completely non-intrusive, introducing no changes at all to the system be-
ing monitored. A special-purpose network monitor could also be considered in this

category.

Page 31




Chapter 3
Related Research

This chapter examines the reasons for analysing the performance of operating-systems
and how such needs directly motivate research into obtaining information on operating
systems.

The first section discusses the types of data that system monitoring can make avail-
able to researchers. The second section describes the desire for analysing operating-
systems with emphasis on how this research contributes towards the development and
refinement of existing systems. The third section discusses previous research conducted
using the techniques described in the preceding chapter. The final section covers briefly
several publications for which the authors have made use of the raw data, results and
conclusions of previous publications to assist in their own research.

The assessment of systems makes a significant contribution in the development of
new systems, as well as an important contribution in the process of refining existing
systems. In addition, system monitoring can usefully contribute to a system’s effective
day-to-day operation. In the development and redevelopment of systems a substan-
tial number of studies have been performed, and while most studies are not directly
comparable, the variety of studies has meant the development of a number of different

monitoring methods.

3.1 Data from system-monitoring research

System-monitoring produces information that is either used and interpreted by the

original researchers or made available for others to work with.

32



3.1. DATA FROM SYSTEM-MONITORING RESEARCH

This data can be the characteristics of a group of users such as:
o the average and maximum number of users using a system in a given time,
o the average and maximum number of files read by a user in a given time,

o the average and maximum amount of data transferred by users in a given time,

or
o the average type of access users perform on a file.

or the data can be the characteristics of the system such as:
e the number of processes over a given time,

o the average lifetime of a process, or

o file-system information such as the average length of a file.

The data are then used by researchers, showing trends in user and system behavior

as well as identifying areas in which systems can be improved.

3.1.1 Types of data

There is a considerable variety in the types of data produced by researchers. Often
the data are tailored to answer a small group of questions but sometimes, the data can
be used by a number of different researchers. Data collected can include traces and
the results from those traces (in the case of trace-driven analyses), statistical analysis
of the user and system, or accurate timing information about accesses by software to

various hardware systems.

3.1.2 The open-close session

The open-close session has been a central concept in research of file systems [73, 8,
108, 117, 116, 58]. An open-close session is the access by one user to a file through one
particular program bounded by one set of open-close operations. If a program has a file

open n times simultaneously, it is considered that there are n simultaneous open-close

Page 33




3.1. DATA FROM SYSTEM-MONITORING RESEARCH

sessions. The open-close session bounds the read and write operations performed on
a file for a user. Thus an open-close session has a duration and a session record will
generally record the amount of data read from or written to a file.

The execution of a program can be considered to be bounded by the opening of
the program’s file at the beginning of execution and the closing of that file at the end
of execution. In this way the execution of a program can be considered to cause an
open-close session as well although, in this case, data are read from the file only during
the course of the execution.

Figure 10 shows a variety of open-close sessions. Case 1 could be the reading of
a demand-paged executable; initially data are read from the file and then, during the
course of the open-close session, more data are read as those pages are needed. Case 2
could be an example of a configuration file that is read once only and closed when the
program terminates. Case 3 could be an output file, first opened when the program
starts up and then, when the data are produced, written to and closed at program
completion. Case 4 could be a file being edited; it is first read by the editor and then,

when the changes had been made, written to disk and the file closed.

Open_ Open_ Open_ Open_
Read | Read | Read |
Read |
Time
Read |
Write |
Write | Write |
Close Close] Close] Close]

Casel Case 2 Case 3 Case4

Figure 10: A variety of open-close sessions with read, write or read /write activity.

The characteristics of open-close sessions tell us a great deal about the files on a
file system and the way users utilise those files. The average length of an accessed file

has been used in research on the optimum block size in the file system [73, 60, 43].

Page 34




3.2. PRIOR SYSTEM MONITORING RESEARCH

The length of time a file is accessed, that is the duration of the open-close session, has
been used in research related to the sizing of file caches and also to research on file-
lifetime [73, 8, 108]. The total quantity of data transferred in an average open-close
session is used in publications on cache characteristics in addition to simulations of
caches [98, 73]. A related measure, the number of open-close sessions transferring a
given amount of data, has also found use [58, 68, 24].

Open-close-session data can also reveal such information as the frequency-of-use of
files, the characteristics of file access (read-only vs. write-only vs. read-write accesses)
and the amount of data read from or written to files during the course of an open-close

session.

3.2 Prior system monitoring research
3.2.1 Benchmarks and load generators

The running of a benchmark or load generator on a machine to assess the machine’s
performance in various situations is a commonly-used technique of system monitoring.

These programs need to be repeatable, and thus cannot rely on the actions of a
single user. Instead, load generators and benchmark programs usually will attempt to
simulate the average or peak usage of a machine. In the case of a benchmark, the time
taken for the completion of a particular task helps in the assessment of the performance
of the machine.

While popular, benchmarks have inherent problems that are not easily circum-
vented. The first major problem is that the typical user profile on one machine can
differ from that on another machine. As a result, users of benchmarks must either de-
sign their own particular benchmarks for each system to be tested or use benchmarks
that do not exactly match the researchers’ requirements.

One way to overcome this problem partially is the development of standard bench-
marks that test several different commonly-used aspects of the system. In this way an
attempt can be made to exercise as many different aspects of operation as possible.

Despite this, benchmarks often fail to test enough aspects of a machine’s operation to

Page 35




3.2. PRIOR SYSTEM MONITORING RESEARCH

be a totally reliable measure of performance.

Secondly, a single run of a benchmark does not provide reliable results. Random
operations on a machine (tasks initiated by the operating system, other users, etc.),
in addition to the unknown contents of the machine’s caches, mean that the run time
of a single test can vary considerably. This problem is overcome by running such
benchmarks multiple times and averaging the various results.

The Andrew Benchmark, introduced in Howard et al. [42] tests five distinctly dif-

ferent parts of the operating system’s operation. These five phases are:

o MakeDir - Construct a target subtree that is identical in structure to the source

subtree.
e Copy - Copy every file from the source subtree to the target subtree.

e ScanDir - Recursively traverse the target subtree and examine the status of every

file in it but do not access the contents of any file.
o ReadAll - Scan every byte of every file in the target subtree once.
o Make - Compile and link all the source-code program files in the target subtree.

This benchmark has been used by others [82] without any changes, although Ouster-
hout [71] produced an improved version of the Andrew Benchmark (the Modified An-
drew Benchmark ov MAB) which suits simultaneous testing in varied operating system
environments. The major change is that, instead of compiling and linking code for
the host machine, a C compiler is included that compiles for an experimental target
machine called SPUR [41]. As a result, the same compiler is used on every machine
tested. MAB has been used in the research of Macklem [56] and Ousterhout [71].

Endo et al. [34] note the problems of benchmarks, particularly in reference to file
system testing. In Endo et al. problems of benchmarks are noted, including poor
scalability and the benchmark failing adequately to measure the file system. They

recommend a better benchmark, give outlines of the abilities such a benchmark should

Page 36




3.2. PRIOR SYSTEM MONITORING RESEARCH

posses, and additionally detail two methods of achieving this end, although at this
stage such a benchmark does not exist.

On a related issue, to address problems of benchmarks not being accurate simu-
lations of the user workload, Ebling and Satyanarayanan [32] implemented a system
that produces what they refer to as micro-models. A micro-model is a characterisa-
tion of a particular program. For example, the micro-model of a C compiler would
be the reading of a .c file, the reading of several .h files and the writing of a .o file.
Ebling and Satyanarayanan generated micro-models from short-term-trace data and,
using these short-term traces, they were able to characterise various operations. Other
micro-models were used to drive load generators which, as a result of the micro-models,
gave a better approximation of the actual load. Such techniques seem certain to figure
prominently in the future of benchmarks.

The microscopic-benchmarks of McGregor [59] were specifically intended to bench-
mark a single operation, such as a single read or write system call. The elapsed
time for a single operation can then be used as a parameter for the queueing system
throughout which that operation must pass.

Thekkath et al. [107] make use of a load generator to compare a new method of
simulation. The use of a load generator means consistent testing of the simulated model
can be compared with the original system on which the model is based. In this way,
benchmarks are used to validate aspects of the simulator’s usefulness and accuracy.

The creation and use of benchmarks is a popular technique for the comparison of
systems and changes to systems. The results of Howard et al., Ousterhout and Ebling
and Satyanarayanan among others [93, 113] lead to the introduction of new benchmarks
and new methods of creating benchmarks. Researchers have also used benchmarks to
compare the performance of different types of systems [69, 115, 31].

Benchmarks can also be used to show the change in performance on a system
that result from changes in policy or procedure, that is, the method or procedure
the system follows. Mogul [64] makes and measures the results of changes to the

update policy of UNIX which affects when dirty disk blocks are written from the

Page 37




3.2. PRIOR SYSTEM MONITORING RESEARCH

cache to disk. Cao et al. [19] use benchmarks to measure performance changes when
the policy for file caching is altered. Baker and Sullivan [7] also used benchmarks
to measure the performance of a system. In this case the measures were used to
ensure that modifications to the system to improve other aspects of its operation did
not degrade the systems performance too much. Workload generators have been used
to load a system with user-like jobs or with tasks that stress-test the system [91, 46].
Macklem [56] used combinations of benchmarks and load generators to give information
to assist in improving the NFS protocol. Additionally, benchmarks are common when
comparing major changes in a system. The implementation of a new type of file

system [84, 83, 82, 26] or a new type of object naming system [22].

3.2.2 System logs

System logs can give usable information about the operation of the system and activities
of users. In particular system logs can provide the basis for useful research even though
these logs are kept usually for other purposes (typically auditing).

Jensen and Reed [45] and Miller and Katz [62] investigate trends in file-migration
patterns by analysing logs of files moving from one level of storage to another. These
files are being typically moved into and out of a tertiary, mass-storage system (MSS).

Smith [97, 96] studied the movement of data sets associated with a particular editor
to develop an algorithm for automatically moving data into and out of MSS.

The use of particular system logs, as with check-pointing, most commonly involves
the analysis of long-term trends only. This was the case in the three cases cited above.

The use of system logs is usually highly restrictive and dependent solely on the
information logged. A researcher may not have any control over the contents of the
log. This situation is common where the log is designed for a particular purpose and
the researcher has no desire to change the log, or perhaps because of access rights is
unable to change the contents of the log.

However, there is one redeeming benefit: the logs themselves were generally not
created for the research but for other reasons such as auditing, billing, cross-checking

and error control. As a result, the researcher does not need to add significant workload

Page 38




3.2. PRIOR SYSTEM MONITORING RESEARCH

to the system or have any significant overhead having the information contained in the

logs made available.

3.2.3 Snap-shots

The ease with which benchmarks and system-log analysis can be done is comparable
only to the ease with which system snap-shots can be taken.

Irlam [43] collected information from a once-only snap-shot operation of over 1,000
file systems. This collection was made by the running of several user programs with
the results being collected and sent on for collation. These programs were able to
be run on any UNIX-based operating system without any special access to operating
system code. Irlam was able to obtain data easily from numerous sites in many, varied
environments; the only common requirement was that they run an operating system
with the appropriate user programs.

Snap-shots are suitable for use in long term research and, subsequently, the study
of file migration. Both Smith [96] and Strange [101] have used snap-shots in such a
study. A further study by Smith [98] uses a snap-shot with file-size and file-reference
data to provide information on driving a cache simulator.

A system snap-shot makes an excellent supplement to other techniques. Full kernel
instrumentation in association with a full snap-shot of the file system at the beginning
and end of the trace period can, with appropriate post-processing, provide an accurate
record of events on the system with knowledge of the state of the machine before
and after the trace. Such a combination can mean the trace monitoring output does
not need to be as comprehensive, reducing the size and potential impact of the full
kernel instrumentation. Floyd [36, 37] used a combination of trace-driven analysis and
snap-shots for a study on short-term file reference patterns.

Snap-shots do have one major drawback in that they can not be performed contin-
uously. They give only a static picture of the file system at any one time. The result
is that research such as that presented in Satyanarayanan [88] has filtered out all file
trends that take place in the period between the times when the snap-shots of the file

system are taken. This may not be a problem in research of longer-term trends but

Page 39




3.2. PRIOR SYSTEM MONITORING RESEARCH

the use of snap-shots is not an appropriate technique per se in research where there is

a need for shorter-term information.

3.2.4 Network monitoring

With the increasingly common use of networks for interconnecting computer systems,
network monitoring, a relatively new technique, has the potential to be a commonly
used monitoring method. Network monitoring takes two forms: firstly just the moni-
toring of the traffic of a communications network, useful for interpreting the make-up of
communications-traffic in a particular network and secondly, interpreting the traffic of
a communications network, useful in determining the operation of machines connected
to a communications network.

While the interpreting of communications traffic is still a technique in relative in-
fancy, there have been several research topics, particularly monitoring studies, per-
formed already. Investigations into the overall capacity of networks investigated, such
as that presented in Boggs et al. [17], is important when the efficiency of the com-
puter network can play a significant role in the performance of an attached machine.
Additionally, the work of Gusella [39] into the usage of these networks can assist in
the planning for future networks. Gusella recorded the header information of every
Ethernet network transaction (packet) over a given time period and later processed
that data off-line. In this way, a partial trace of the operations on the network was
made.

In 1990, Mogul [63] argued that workstations could make efficient monitors of lo-
cal networks. They had the required combination of CPU power, memory size and
network-interface-speed to enable them to efficiently collect and process network data
in real time. Several years ago the monitoring of computer networks required compli-
cated, expensive, specially-built equipment. Of course, such equipment still has a place
in the analysis of the increasingly-faster computer networks becoming available.

Two facilities available on many common computers are Sun’s Network Interface
Tap (NIT) [103] and Digital’s packetfilter [65, 27]. These facilities allow user pro-

grams to access and record data passing through the network directly. Before the

Page 40




3.2. PRIOR SYSTEM MONITORING RESEARCH

availability of such facilities, packages such as that written by Barnett and Molloy [10]
had to be written specifically for the Ethernet interface a particular machine possessed.

With the increased capacity of workstations, researchers now need not limit them-
selves to capturing all (or part) of the raw data that traverses the network and inter-
preting it at a later stage. Because of the capacity of networks (Ethernet has a raw
capacity of 10Mb/s), the sheer quantity of data does not easily allow for a raw trace
of the network contents (difficult to store). Programs such as rpespy [11, 12], built on
the Sun and Digital network monitoring facilities mentioned above, do some processing
and interpretation of incoming data to reduce the quantity of information ultimately
recorded.

Blaze, who constructed the rpcspy system of reference [11, 12], has used it to
good effect for the monitoring of a network based around a large file server. His
research results have also been used in several other publications [39, 10, 15, 16, 13].
Dahlin et al. [24] used the rpcspy tools to characterise file-system load in a distributed
system. The results of this research have then been used to justify the building of a
new style of distributed file system, xFS [120]. Anderson [1] used rpcspy to analyse
the distribution of traffic across different file systems and to theorise on better use of
local disks in a networked file system.

The non-intrusive nature of network monitoring and the ability to easily analyse
the activity of a whole network simultaneously will mean an increase in the quantity

and variety of research using this technique.

3.2.5 Kernel instrumentation

Much system-monitoring research has used kernel instrumentation but there is a broad
delineation between those performing full instrumentation and those using kernel vari-

ables available at the user level.
Full kernel instrumentation

The accurate and comprehensive nature of kernel instrumentation makes it a popular

choice when kernel instrumentation is possible. The accuracy of kernel tracing is an

Page 41




3.2. PRIOR SYSTEM MONITORING RESEARCH

important benefit and the ability to get fine resolution on the timing of system calls was
used in Griffioen and Appleton [38]. Zhou et al. [117] detail a full kernel instrumenta-
tion package called snooper, which is designed to be a low-overhead, system-call-only
recording package. This paper also details interesting findings including information
on data-transfer rates to and from file systems, the durations of various operations and
process-lifetimes in the traced system.

A common use for full kernel instrumentation is to generate data that can then
be used in trace-driven analysis of the operating system and file system. Ouster-
hout et al. [73] use full kernel tracing to give characteristics of the file system as well as
data to drive a cache simulator. Smith [98] makes use of this method to drive file cache
simulations. Bozman et al. [18] used kernel instrumentation to generate data used to
characterise file reference behavior and drive a simulation of file reference behavior.

Several publications with instrumented kernels have been done on distributed sys-
tems. Several of these were done with the Sprite distributed system [72]. Baker et al. [8]
presented not only the characteristics of the distributed file systems (and how its char-
acteristics had changed when compared with a previous paper [73]), but also used the
trace of the study to investigate how effective the caches were in a distributed file sys-
tem. Welch [116] further performed a related study on the same distributed file system
to analyse the effectiveness of cache consistency models in use. Additionally, in the
same distributed file system, Welch [114] used a tracing system to look at the impact of
changes in this system including the use of the number of client-server transactions per
second as one of his comparison metrics. Makaroff and FEager [58] use kernel instru-
mentation to record physical-block information to show differences between systems
performing different tasks such as the clients and servers of a distributed file system.
Others have used kernel instrumentation to gain specific information about a machine.
Ruemmler and Wilkes [86] were interested particularly in the disk’s active data set.
Li [53] instrumented MS-DOS machines to gain information about augmenting cache
behavior in those systems.

Mummert and Satyanarayanan [67, 99] detail a distributed-system kernel tracing

Page 42




3.2. PRIOR SYSTEM MONITORING RESEARCH

facility. In this facility, machines will forward their tracing results onto a central
machine for storage. In this way some aspects of kernel instrumentation, such as the
need to write large local trace files, are modified. This system exchanges the workload
which would be incurred in the local recording of large trace-logs for the overhead of
sending the data through the network to the logging host. This facility uses agents
in the clients of a distributed system to periodically send trace records to a collection
unit. Such a system has the effect of passing the problems of trace-data volume to the
collector, a machine that would not necessarily be among those being traced. Kistler
and Satyanarayanan [48] and Kistler [49] have used this technique to aid research into
a new file system design.

Kernel instrumentation has been combined with other techniques to provide addi-
tional information. Floyd and Ellis [37] combined kernel instrumentation with the use
of benchmarks in a study on file reference patterns. Floyd [36] combined this technique
with the use of snap-shots to study shorter-term file references. In 1989, Cheriton and
Mann [22] used kernel instrumentation in combination with benchmarks in a study
on an improved naming service for distributed systems. Endo et al. [34] discusses a
method of kernel tracing involving intercepting the communications between kernel
components. For example, the tracing of the cache buffer would involve the intercep-
tion of all information exchanged by this kernel component with the rest of the system.
Such a method depends upon a highly modular kernel system, however, Endo et al.
present this method as a facility in an already highly modular kernel design.

Kernel instrumentation is both popular and effective if its drawbacks can be over-

come.
Kernel variables

The use of kernel variables often provides easy access to information in the kernel from
the user level. UNIX system programs such as ps use such variables for the information
they generate. In addition, the remote collection of kernel values is possible. A simple
example of this is the rwho daemon service [28]. This daemon periodically broadcasts

onto the network a packet of data containing information about the status of the

Page 43




3.2. PRIOR SYSTEM MONITORING RESEARCH

machine and the users on that machine. While the rwho daemon is a simple example,
Kupfer [51] shows the use of remote instrumentation for the collection of comprehensive
data from kernel variables.

Spasojevic and Satyanarayanan [67, 99] mention the collection of an elaborate activ-
ity summary when a main trace system fails and then, at a suitable time, sending this
summary to a collection agent. In this way their distributed data collection does not
fail to collect any results even during a time when clients are unable to communicate
with the collection agent. In 1988, Bach and Gomes [5] used kernel variables to show,
among other things, that an operating system spends the most of its time dealing with
file-system operations. Macklem [57] makes use of kernel variables to assess the per-
formance of a new implementation of NFS. This is a good example of variables which
have been placed into the kernel during development remaining available to anyone
using derivatives of the implementation (unless, of course, the variables are removed
deliberately).

Owing to the ease with which kernel-variable data can be collected, such information
has been used in a variety of research, either as a primary or a secondary mechanism

for supplying information.

3.2.6 Specialist hardware

Specialist hardware is often used during the development of other hardware. Emer and
Clark [33] and Clark et al. [23] used specialist monitoring hardware to characterise the
performance of particular CPUs. Such techniques would have common usage during
the development cycle of such hardware but, because of the specific purpose for which
such hardware must be built, wider applications are often not possible. Shand [92],
however, used general-purpose equipment to design a hardware monitor. The result
was that his hardware monitor could be adapted to monitor not just the system it
was designed for but also other systems of similar architecture. Shand used hardware
instrumentation to study the operation of a machine running UNIX and was able to
give accurate, short-duration timing of events as well information on other aspects

of the operating system such as task preemption and Direct Memory Access (DMA)

Page 44




3.3. RESEARCH USING SYSTEM MONITORING RESULTS

handling.

The use of specialist hardware is uncommon for systems monitoring because of
the investment that would have to be made in time and effort to get such a system
operational. However, with the application of general-purpose equipment such as that

in Shand’s study, more reports done using this technique will become available.

3.3 Research using system monitoring results

In addition to publications that have incorporated their own system monitoring, a
considerable number of researchers have used the results of others, commonly the traces

of a full kernel instrumentation analysis, for use in their own work.

3.3.1 Trace-driven research

Considerable research has used the trace data collected by other authors for use in
their own work. This is a major benefit of trace analysis. Once the original data set
has been collected, dependent on its coverage, the trace may potentially be reused in
other work.

The data used in Ousterhout et al. [73] is re-used in Thompson [108] in a follow-on
study of the effects of file deletion.

The data from Baker et al. [8] has been used by Shirriff and Ousterhout [94] for a
name and attribute caching study. The Baker data was again re-used in Baker et al. [6]
and Baker [9] for a proof-of-concept study involving changes to hardware support for
caches.

Blaze and Alonso [16, 15, 14] and Blaze [13, 11] all make use of common sets of
data gained with the rpcspy tool [12].

While details are not given on exactly what traces are used, Ebling and Satya-
narayanan [32] used traces to develop their micro-models for incorporation into high-

accuracy load generators.

Page 45




3.3. RESEARCH USING SYSTEM MONITORING RESULTS

3.3.2 Characteristics and conclusions

In the tradition of citation, many papers also use information from previous papers to
assist in the justification (or refutation) of ideas. As a result, research into operating
systems can quickly gain momentum through the structured use of a results from
several sources.

Baker et al. [8] uses results from Ousterhout et al. [73] for comparison as a follow
on study covering similar ground. In this way Baker et al. have been able to show
interesting trends in growth of systems between the two publications by comparing
two related sets of results. Conclusions and the system characterisation documented
in Ousterhout et al. [73] is used in Davies and Nicol [25], Floyd and Ellis [37] and
Reddy and Banerjee [80]. This further work uses such values as the basis for workload,
prospective, measured and simulated respectively. Ramakrishnan and Emer [79] use
Zhou et al. [117] among others for examples of characteristics from which mathematical
simulations are then built. Carson and Setia [20, 21] use the results of Ousterhout et al.,
Baker et al. and Smith [98], among others, to define and refine models they are devel-
oping. Thompson [110] uses the results of Ousterhout et al. and Smith [98, 96], among
others, in an analysis of cache designs and a more general study of caching. Thompson
also uses the work of Zhou et al. and results from his own previous studies [109, 108]
in this work. Hartman and Ousterhout [40] use the conclusions of Ousterhout et al.
and Baker et al. to justify the need for a new system and to assist in defining the
characteristics the new system should possess.

As can be seen by this small snap-shot of workload, system-monitoring research
has been extremely important both for the raw data it generates and the results and

conclusions that are drawn from that data.

Page 46




Chapter 4

Kernel Instrumentation

This chapter describes the kernel instrumentation performed in this study.

4.1 Objectives

As discussed in Chapter 3, a system-monitoring procedure can be required to provide
information about the computer and operating system being monitored, in addition to
the activities of the users of that computer. This information, as it relates to studies

of the file-system, includes:

o the average or maximum amount of data an average user will require in a given

time,
o the average or maximum time a file is used, or
o the average amount of data in a file.

Full kernel instrumentation gives us the ability to accurately and comprehensively

record this information, directly from the kernel, as the events occur.

4.2 The design of full kernel instrumentation

As discussed in Section 2.4.5 there are a number of methods of kernel instrumentation.
One of these methods, full kernel instrumentation, through the insertion of instru-
mentation code into an operating system, has the potential to generate comprehensive

traces of information about a monitored system and its users.

47



4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

However, full kernel instrumentation, as previously mentioned, does involve a siz-
able complexity in programming. A kernel for Ultrix 4.3a is made from approximately
1300 files, and has a total of approximately 720,000 lines of code. Implementing a
full kernel instrumentation system, snooper, required changes or additions to 48 files
involving approximately 1,600 lines and the addition to four new files which results in
2,750 extra lines of kernel code.

An additional complexity relates to the use of a kernel instrumentation system.
Snooper is based on a set of modifications to the Ultrix 4.3a operating system. To make
these modifications, the source-code is needed. To obtain operating system source-code
it is necessary to obtain a licence from the vendor (Digital in this case) and also a licence
from AT&T. The second licence is necessary because most commercial implementations
of UNIX, such as Ultrix, are built around the original AT&T implementation, and
incorporate some of its code. As a result source-code for the two operating systems must
be sought, and because these are not common, their purchase can be time consuming

and in some circumstances, expensive.

4.3 A kernel instrumentation implementation

The kernel instrumentation this thesis uses is the snooper package. The package was
originally implemented by Siebenmann and Zhou [95] for Ultrix version 3.3. Snooper
is a set of kernel instrumentation routines for the recording of information about log-
ical file operations, physical-block operations, process execution and termination, etc.
The snooper package also instruments parts of the virtual memory system, however
as this does not have direct relevance to this thesis, it will not be discussed further
here. The snooper package is based upon the package of the same name described
in Zhou et al. [117] which, in turn, has its ancestry in the package used by Ouster-
hout et al. [73] to perform their study of the UNIX 4.2BSD file system.

It was required that the snooper package operate with Ultrix 4.3a, the latest version
at the time. Due to differences in the various versions of the operating systems, the

code can not be copied simply from one kernel system to another or from the Ultrix 3.3

Page 48




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

implementation to Ultrix 4.3a. These code changes involved accommodating differences
in the flow of the kernel code itself. Code changes were needed to be able to handle
new data structures and accommodate changes in the usage of older data structures.

To ensure the correct operation of the new kernel, a suite of programs was written
that would comprehensively test the modified kernel code.

The implementation of snooper under Ultrix 4.3a consists of four parts:

1. the mechanism for activating and deactivating the trace system, and the mecha-

nism for changing tracing files during the course of a trace,
2. instrumentation of the various kernel components,
3. trace buffer management and synchronisation, and
4. off-line processing software.

The implementation of these parts in snooper is described in the following sections.

4.3.1 Trace system control

Modifications to the snooper system involved building two extra system calls to allow
user-level control software to have access to the snooper code. The first of these system
calls, strace, allows a user-program to activate the trace system. The arguments for
straceinclude the name of the file to trace to and an indication of which kernel systems
should be traced. By passing the strace system-call a NULL in place of the trace file,
the trace system is signalled to shutdown.

The second of the system calls, straceserver, does not take any arguments or
perform any direct function for the user program. It is a control point over the trace
facility for emptying the trace buffers into the trace file. Typically, a part of the
monitoring program will become a daemon program. This daemon program will make
an straceserver call which will not complete unless the tracing system is deactivated.
The daemon program can then be stopped, restarted or have its priority changed, just
like any other process, thereby controlling directly the overhead introduced into the

system by the transfer of trace buffers into the trace file. Such access to certain kernel

Page 49




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

functions is quite common and is used to control programs such as the NFS server
programs [102].

In snooper, the trace buffers are managed as a ring. A routine (getroom) allocates
and fills successive buffers in a buffer pool. As each buffer is filled, a flag is set as an
indicator that the buffer should be flushed. If buffer space cannot be allocated, the
trace record is dropped (and a counter is incremented tracking the number of dropped
records). The straceserver call will look for and flush successive full buffers to disk
continually and reset the appropriate flag when a buffer is free again.

The getroom routine uses buffers but cannot wait for straceserver. This is
because straceserver may depend on kernel activities that are being traced and
getroom, being critical in the trace code, may be called from one of those traced oper-
ations. An example is where getroom is being called to trace a record due to a buffer
flush. The straceserver code can also cause a buffer to be flushed. As a result, this
system as implemented is deadlock-free, but getroom will discard all trace records if
straceserver should stop operating.

A mutual-exclusion problem was recognised in the porting of snooper to Ultrix 4.3a.
This problem is related to the point in the trace system where the trace system output
is changed from one file to another. The kernel tracing system may be required to
change trace files at any time. When a particular trace file is growing too large, the
output can be switched to a new file so that the old file can be dumped onto tape to
free disk-space. However, without appropriate programming, there is a possibility that
the straceserver process, unaware of the file changeover, can attempt to write data
to the old file using an invalid or uninitialised file-reference. This situation exists partly
because there are two different processes at work; one changing the output file and one
dumping the current file. The UNIX system can cause the process changing the output
file for the trace data to be suspended in the middle of its activity and signal the record-
dumping process to continue. The result is straceserver (the record dumper) will
attempt to use a file reference that is in an indeterminate state which will, typically,

cause the operating system to crash.

Page 50




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

A busy-wait lock is not acceptable in the kernel because, at this level, it would
place an unnecessary overhead on the kernel and possibly change the system’s behavior.
Instead, to give a mutual-exclusion lock that was not overly-consuming of resources a
Peterson’s-solution-style lock [75] was implemented as part of the port of snooper to
Ultrix 4.3a. The result of using this lock is that it is possible that the straceserver
process may spend more of its time temporarily suspended and, thus, unable to dump
the contents of buffers to the trace file. However, this risk of trace-data loss occurs

only at trace-file changeover.

4.3.2 In-line instrumentation

Full kernel instrumentation involves the coding of trace pointsinto the kernel. At these
trace points, data are recorded about what is occurring. In Figure 11 we can see that
kernel instrumentation can (potentially) capture information about every operation

performed by user programs.

System call stubs

ker nel
i nstrunment ati on

RPC
XDR
UDP/TCP
IP

Device Driver

I
I
|
I
|
I
|
:
I
! Local Filesystem Block Cache NFS Filesystem
I
I
|
I
|
I
|
I
|
|

Operating System Kernel

Network

Figure 11: All levels of an operating system, showing the point at which kernel in-
strumentation information is extracted.

An example of instrumented system calls is the seek operation, which changes the

point at which data are read from or written to a file. The following code fragment

Page 51




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

is from lseek, showing the snooper instrumentation in that system call. The addi-
tional code required for the tracing system is surrounded by #if define(STRACE) and
#endif STRACE. This tracing code will cause the seek_trec function to be activated
each time a program successfully uses the 1seek function call. The tracing function

seek_trec could then record information about the seek operation.

if ((where < 0) && ((vp->v_mode & VFMT) == VFREG)) {
u.u_error = EINVAL;
return;

}

ret = VSEEK(vp, where); /* actual Seek command */

if (u.u_error) {

u.u_error = EINVAL;

where = -1;
} else {
if (ret) {

u.u_error = EOPNOTSUPP;
return;

}

#if defined(STRACE)
if ((trace_flags & TRACE_SYSCALL) && strace_vnode(vp))
seek_trec(vp, (u_long) fp->f_offset, (u_long) where,
uap—->sbase, start_time);

#endif STRACE

smp_lock(&fp->f_1k, LK_RETRY);

fp->f_offset = where;

smp_unlock(&fp->f_1k);

A decision must be made when setting up an implementation of kernel instrumenta-
tion as to what is to be traced. In the snooper system only regular files are traced for
logical operations. For the block-tracing component, snooper will trace all operations

that involve the use of blocks.

Page 52



4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

4.3.3 Activities snooper traces

The system calls which snooper will trace include creat, truncate, open, close,
read, write and seek. All of these operations are at the logical level and are carried
out only on regular files. Additionally, snooper instruments the delete and rename
system calls to allow the names of existing files to be traced as they are changed. The
system calls mkdir, rmdir, chdir, mount and umount are traced to allow information
on changes in the directory structure to be recorded. Completing the list of system-
call operations which snooper traces are exec, fork and exit. These records can
then be used to give information about which programs caused which particular open
and close calls as well as chasing parent/child-process chains. It is also possible to
reconstruct open-close sessions where the opening of a file is in a parent process and
the close operation occurs in a child process.

All read and write operations involving blocks are traced by snooper. Potentially
these could include operations involving tape units or raw disk devices but, in practice,

block activities are related exclusively to file data on a diskless client.

4.3.4 Additional information created by snooper

In order to give a form of unique file identification, snooper generates and assigns
unique file-identification numbers (file IDs). The unique identification of files is impor-
tant for the various operations on a particular file to be linked together and for any
meaningful analysis to be conducted. An ideal approach to file identification is to use
the pathname of the file. However, the pathname of a file is difficult or impossible
to obtain during a trace without causing substantial overhead on the traced system.
Additionally, a file can potentially be deleted and the file name reused.

Another alternative is to use the file’s i-node number. However, while the i-node
number is unique for a particular file system it is not unique across file systems. Fur-
thermore, an i-node is potentially reused when a file is deleted and recreated.

The first time a file is processed by a file routine (read, write, open, close, and

so on) a flag in the i-node is tested and set if it is not set already. Additionally, the file

Page 53




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

is given a file ID which is recorded in the i-node allowing it be identified by snooper
the next time it is seen. The file IDs are consecutively-assigned integers and are used
internally by snooper as the names of files.

FEach snooper transaction is also identified by the process ID (PID) that caused
it. This means that each of two different processes holding open the same file can be
uniquely identified.

As a result of these two different forms of identification, every set of logical oper-
ations on a file by a process, (starting with an open and ending with a close) can be
separated.

File IDs are associated only with logical operations such as read, open, write and
not with block operations.

Snooper cannot easily identify when a process has the same file open a number
of times simultaneously. In the off-line processing phase all the operations of the
simultaneous open-close sessions are considered to be part of one open-close session.

More details on how open-close sessions are determined is given in Section 4.3.7.

4.3.5 Data generated by Snooper

Snooper collects a copious amount of data from the various file system operations.
Table 2 shows the fields for each record type. The trace file is binary to ensure compact

data and quick transfer of records from each trace stub to the trace buffer.

Page 54




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Record Type

Data fields

open/creat

record type, open mode, reference count, pathname statistics,
real time, CPU time, last-modify time, last-access time, g-
node number, g-node generation number, file 1D, file size at
open, parents g-node number, parents device number, device
number, process ID (PID), User ID (UID), file type, duration

of operation, filename

close

record type, reference count, real time, CPU time, g-node
number, g-node generation number, device number, file ID,
file size at close, process 1D (PID), User ID (UID), file type,

duration of operation

read /write

record type, reference count, duration of operation, real time,
CPU time, file ID, offset into file, bytes read/written, process
ID (PID), User ID (UID), file type

seek

record type, seek base, duration of operation, real time, CPU
time, file ID, old offset into file, new offset into file, process

ID (PID), User ID (UID)

ftrunc/trunc

record type, duration of operation, real time, CPU time, g-

node number, g-node generation number, device number, pro-

cess ID (PID), User ID (UID)

delete

record type, pathname statistics, duration of operation, real
time, CPU time, last modify time, last access time, g-node
number, g-node generation number, file size at deletion, de-

vice number, parents g-node number, parents device number,

process 1D (PID), User 1D (UID), filename

continued on next page

Page 55




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Record Type

Data fields

rename

record type, duration of operation, real time, CPU time, last
modify time, last access time, g-node number, g-node gener-
ation number, device number, old parent g-node number, old
parent device number, new parent g-node number, new parent

device number, old filename, new filename, process ID (PID),

User ID (UID)

exec

record type, pathname statistics, duration of operation, real
time, CPU time, g-node number, g-node generation number,
device number, file size, parent g-node number, parent device
number, text size, data size, stack size, filename (last compo-

nent), process ID (PID), User ID (UID)

vfork /fork

record type, child process 1D, duration of operation, real time,
g-node number, g-node generation number, device number,
text size, data size, stack size, process ID (PID), User ID
(UID)

exit

record type, duration of operation, real time, process ID
(PID), User ID (UID), text size, data size, stack size, CPU
time used in user mode, shared text size, shared memory
size, unshared data size, unshared stack size, page reclaims,
page faults, swaps, block input operations, block output op-
erations, messages sent, messages received, signals received,

voluntary context switches, involuntary context switches,

rmdir/mkdir

record type, pathname statistics, duration of the operation,
real time, CPU time, g-node, g-node generation number, de-

vice number, directory size, parent g-node number, parent

device number, process ID (PID), User ID (UID), filename

continued on next page

Page 56




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Record Type | Data fields

chdir | record type, pathname statistics, duration of the operation,
real time, CPU time, new directory g-node number, new direc-
tory g-node generation number, new directory’s device num-
ber, old directory g-node number, old directory number g-
node generation number, old directory device number, parent
g-node number, parent device number, process ID (PID), User

ID (UID), new directory’s filename

mount /umount | record type, duration of the operation, real time, CPU time,
process ID (PID), User ID (UID), mount flags, max transfer
size, optimal transfer size, block size, file system type, total
number of i-nodes, total number of free i-nodes, total number
of 1Kbyte blocks, total number of free 1Kbyte blocks, total
number of user consumable 1Kbyte blocks, minimum size in
bytes before paging, major/minor devices, root mapping from

exports, file system’s root file path name, device’s path name

block read/write | record type of block read/write, why the block read/write
happened, cache hit, device block’s file is on, size of 1/O re-

quest, duration of the operation, real time, process ID (PID),

g-node to which this block belongs, number of the block

Table 2: Snooper trace record types and data fields

4.3.6 Program execution

When a program is executed, the exec system-call will cause the program header to
be read from the beginning of the executable file. The header of an executable file
contains additional information about the size and position of the executable code,
data and stack segments as well as checksums to ensure the integrity of the file. The

exec system-call will then transfer control for that process to the executed program

Page 57




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

based on the contents of the header.

Some executable programs start with a special number which is used to indicate
the type of the program. If no such special number is present, as is the case with most
script files, the exec system-call will cause /bin/sh command interpreter or another
program (if given) to be executed.

There are two different ways to treat executable programs:

Pure: pure executables are loaded into memory completely by the exec call. These
programs are typically small, and it is expected that all parts of the program
file could be referenced during execution. In most systems, pure executables are

rare, most executables being of the demand-paged type.

Demand-paged: demand-paged executables are not fully loaded immediately into
memory. Only a small amount of the program is loaded, the exec call will then
transfer control to the program components loaded and will force the loading
of pages of information from the program file as the information in the pages
is needed. This method minimises the amount of memory needed to load a

particular program.

The early implementations of NFS introduced a modification to the way some exe-
cutable files were loaded to improve NFS performance [87]. Demand-paged executables
did not benefit from the file system performing read-ahead because pages of the exe-
cutable are frequently accessed from the file in a non-sequential fashion. The solution
implemented was to cause small, demand-paged programs to be treated as if they were
pure executables. This meant that all pages for the program were loaded into memory
from disk at the start instead of being demand-paged during the course of execution.
The result was improved performance because of the ability to take better advantage
of read-ahead and the elimination of the demand-paging overheads for that particular
class of executable. An additional improvement was the use of fill-on-demand clus-
tering to group small page-in requests resulting from demand paging into one large
one. Fill-on-demand clustering is a method used by the memory manager for the pre-

paging of data. When a page fault occurs, the page-fault handler attempts to read in

Page 58




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

the desired page along with adjacent pages on either side of the page for which the
fault occurred. These changes have now been incorporated into most modern UNIX
operating system versions.

The loading of pages by a demand-paged executable is performed by the virtual
memory manager, so there is no logical read operation associated with the loading.
Instead, virtual-memory page-faults will cause calls to the paging routines to get data
from the file as required. As a result for page-on-demand executables, snooper will
give much lower values for logical bytes read than the reads actually required for the
execution of the file. There is some difficulty in instrumentation of the virtual memory
system because a number of virtual memory management modules are in use; including
the swapping and paging sub-system. Because these routines are critical to the kernel’s
operation, instrumentation could potentially cause massive performance degradation.
The virtual memory routines were considered to be outside the scope of this study.

As determined from the Ultrix exec source-code, the header (the first 76 bytes)
will always have an associated logical-read operation. However, there will be no other
logical traffic associated with the loading of the program file unless the executable is
either a pure executable or smaller than a given size threshold (256 Kbytes by default).
The reading of data from the program file is done via special routines in the virtual
memory system. These routines access directly the vfs/v-node read routines bypassing
the logical read operation all together. The result is the snooper system collects an

incomplete record of file accesses for a program file that is being executed.

4.3.7 Off-line processing

The data which snooper creates are placed into data-files in a format that is both time
and disk-space efficient but which is far from being user-friendly. Off-line processing is
necessary to extract and summarise the required information and, because information
about sessions of open-close events is particularly desirable, a majority of the off-line
processing of snooper data involves the creation of open-close session records.

A trace-record formatting program (based on one present in the original snooper

tools) was used to turn the binary data-file into a human-readable text file listing

Page 59




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

every transaction in the raw log. This was to allow the development of processing tools
that can read the text files allowing faster tool development. The off-line processing
tools have been written mostly in the Perl programming language [111] with occasional

recourse to the C programming language [47] when this offered an easier alternative.
The trace record formatting program generates a line for each transaction. A sample

output record may be:
B | 2118298 | 26742 | 0 | -10495 | 8301 | O | 8192 | FileF | Li | Rf | Hit |

In this first case we have a block-level operation with a block-read at time 2118298, by
process ID 26742, owned by UID 0, of the file with inode 8301 on device -10495. The

read was of the first 8 Kbytes of the file. It was file data from a remote disk and was

in the system’s local cache (Hit). Another sample entry may be:

rd | 2118302 | 26742 | 0 | 117 | 521 | 0 | 1271 | 4 |

In the second entry we have a logical-level read at time 2118302, by process ID 26742,
owned by UID 0 and reading from the beginning of the file (0 offset), 1271 bytes. The
snooper-allocated file ID is 521. The other numbers in this entry (117 and 4) are
timing values and of no interest to us for this thesis.

As mentioned above, block entries do not have file IDs associated with them. This
was a design decision taken by the original authors of snooper to reduce the amount
of data the snooper system generates and the overhead of information in every block
entry.

For the purposes of processing snooper data, open-close events need to be clearly
defined. This is needed because there are numerous special cases for which an open-
close record must be created. Open-close sessions can be considered to be summaries
of the trace output, tabulating things such as duration of the open-close, the amount

of data transferred, the size of the file when it was closed and so on.
A sample single line (shown over two lines for convenience) of the output from the

off-line processing software follows:

2179130 | 4 | 26747 | 526 | O | -10495:8284 |

79t o lolol2lo0loloOolOolOl Ol 791 | 791 | op-cl

Page 60




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

For this example, the session occurred at a time of 2179130 and took 4 milliseconds.
Process ID 26747 (a process of User ID 0) opened and closed file ID 526 where the file
ID refers to i-node 8284 on device -10495. A total of 791 bytes was read from the file
(logically), 2 blocks were read from a locally-cached copy of the file. Finally, the file
was 791 bytes long when opened and 791 bytes long when closed. The op-¢l indicates
all parts of the open-close record were located. The other zeroes indicate no bytes were
written, no blocks were read directly from the file (rather than the cache copy) and no
blocks were written to the file either.

This record can then be used to give information about the average and maximum
size of files accessed, the duration of open-closes, the amount of data transferred, the

number of blocks in cache, the number of blocks written and so on.
Creating open-close sessions

There are several cases to be handled for the creation of an open-close record. We will
go through each of the cases which the off-line processing software needed to be able
to reconstruct.

Figure 12 shows various open-close sessions including sessions as they cross the
beginning and end of the trace period. A regular open-close session where both open
and close system calls occur during the trace period is illustrated by Case 1. Case 2
and Case 3 illustrate situations where either the open or the close operations were not
recorded as they did not occur during the trace period. Case 4 illustrates the situation
where neither the open or the close occurred during the trace period.

Figure 13 shows an additional complication to the process of creating open-close
sessions from the trace records. This situation occurs when a parent process opens a
particular file and its child process closes the file. The main complication is to which
process are the file operations to be attributed. Should the off-line processing software
consider this to be two sets of operations and subsequent sessions? For these situations
where a file open-close is broken across two processes, a simplification was introduced
to reduce the complications of off-line processing; all operations that the child and

parent perform are added together to create a single open-close session record. This

Page 61




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Open .

Open .
Trace begins
Open _
Time
Open _
Close |
Close |
Trace ends
Close : Close

Casel Case 2 Case 3 Case4

Figure 12: Various ordering of open-close operations that occur during the course of
tracing.

simplification was made on the basis of several observations. Firstly, it was noted this
occurrence of an open file descriptor being passed to a child did not occur often, 18
times over the whole trace period. Secondly, it was also noted that while the file was
open for several processes, the majority of data, (all data in 16 cases), was transferred
by one process only. Finally, when compared with passive network monitoring, the
open-close sessions have no process related information in them. As the comparison
between monitoring systems was on the basis of open-close sessions, independent of

the processes responsible, this simplification seemed satisfactory.

Open _
Time

Parent Process
Child Process

Close |

Figure 13: The passing of a file ID from a process to its child. This complicates the
open and close sessions as the open occurred in the parent process and the close occurs
in the child process.

Page 62




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Section 4.3.6 discussed inaccuracies that result from the method by which executa-
bles are loaded and inadequacies in the snooper instrumentation in this regard. In
addition to those difficulties discussed, forming open-close sessions for the execution of
programs adds additional complexity.

Figure 14 shows two situations where the initial loading of an executable from the
file system in preparation for execution is considered to be an open-close session. Case 1
shows the case where a process is forked and then subsequently execs a particular
program. Case 2 shows the case where one process execs another program over the
top of itself. In each case the close is simulated for the end of that particular program’s
life, whether that program exited or another program was subsequently executed. An
open is simulated at the time data is first read from the file. The kernel does not use
the open system call to open files for execution but it does generate read system-calls
to read data from the file. These reads are then logged by the tracing system. For the
fork-exec and exec-exec situations illustrated in Figure 14, the size of the file can be

determined from information in the exec system call.

fork/vfork _ previous exec _
first read first read Time
exec |
exec |
exec/exit | "Close" exec/exit | "Close"
Casel Case 2

Figure 14: The two situations where the loading (paging) of files from disk for execution
is considered an open-close session. Case 1 shows the case where a process is forked
and then subsequently executes a particular program. Case 2 shows the case where
one process will execute another program over the top of itself.

An objective of the off-line processing software was to sum the number of block reads
and writes caused by each open-close session as well as the number of bytes logically
read from or written to the file. However, because of the block cache implemented
in UNIX, these logical operations may not have a one-to-one agreement with block

operations nor will the block operations occur at the same time as the logical read or

write, as the block cache is being used to minimise real disk activity. The result is that

Page 63




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

some logical activities might not cause physical activities until many seconds later.
These characteristics further complicate the requirements of the off-line processing
software.

An additional issue was that the snooper block records do not contain file IDs for
the particular block on which an operation occurred, making the matching of logical
and block level operations difficult. This situation was alleviated by there being certain
records that allowed the matching of pairs of file IDs and device, g-node and g-node
generation. Such operations which had both values present were open and close. Un-
fortunately, there were still a number of situations where this important mapping could
not be established, such records were matched by hand.

The off-line processing software made use of a file containing mappings from file
ID to device, g-node and g-node generation. This file was formed following a first
pass by the processing software. The first pass would display all sets of open-close
sessions for which there were no block records and open-close sessions for which there
were no logical operations (open/close/read/write). By comparing these entries with
the original trace dump, a mappings file was created to give the links between the
unknown pairs of file IDs and device, g-node and g-node generation.

The off-line processing software bases the duration of sessions (the time from the
open to the close) upon the time of the open and close when they were available. For
the unusual situations shown in figures 12 and 14 above, the duration of sessions was
based on the first and last operation (logical or block) recorded by the trace package
on that particular file. The situation described in Figure 13 required the off-line
processing software to keep track of which parents produced which children so that
these cross-generation open-close sessions could be matched together to generate a

single, open-close session record.
Off-line processing implementation

The off-line processing software took records from the trace file and generated open-
close session records which were then used in the analysis described in Chapter 6

for the comparison of the full kernel instrumentation and passive network monitoring

Page 64




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

techniques.

The implementation, in the Perl language, of the off-line processing software is
about 1000 lines. Each element (counter) of the output open-close session record is
treated as an array item. These arrays were indexed by either file ID or a combination of
device/g-node/g-node-generation. The data base [104] extensions to Perl were used to
limit the in-memory sizes of arrays. Because some block activity occurs after the logical
operation that caused it (blocks to be written caused by logical writes will sometimes
not occur until the file is closed), there is a potential for records to cause data to be
added to a particular open-close session record well after the logical operations had
finished. This meant the trace records needed to have been parsed a considerable time
after the last logical operation on the file in order to catch all block operations.

The off-line processing of the trace data, for a trace of 24 hours, took over 130
hours of CPU time, on a high-end workstation (Digital 2100 Server Model A500MP)
to process 1.2 million records produced by the kernel trace system into 12 thousand
open-close session records. It was determined that a great deal of time in processing
the off-line processing phase was needing to search and match certain record types

together.

4.3.8 Impact

The impact of the snooper system can be measured in a number of different ways such
as the complexity of development, as mentioned in Section 4.2 or the speed changes to
the machine we consider in this section.

A large concern in the development of kernel instrumentation is the effect on the
performance of the system. If there is a degradation of system performance of a system,
there is the possibility of altering the behavior of the system itself and that of the users.
In order to assess the effect of the instrumentation on the kernel speed, the Modified
Andrew Benchmark (MAB) of Ousterhout [71] was used. This benchmark was run
under several different configurations of the machine’s kernel and the mode of the test
— these results are presented in Table 3. The results presented are an average of 10

consecutive tests. Before each test run, a single MAB was run to place the local block

Page 65




4.3. A KERNEL INSTRUMENTATION IMPLEMENTATION

Regular kernel | Snooper kernel | Snooper kernel
(inactive) (active)

Phase 1 3.0 (0.0) 3.3 (0.8) 3.4 (0.5)
Creating directories
Phase II 18.9 (0.3) | 19.9 (0.6) | 22.2 (0.7)
Copying each file
Phase III 17.3 (0.8) | 17.7 (1.8) | 18.9 (1.0)
Recursive directory stats
Phase IV 15.3 (0.5) | 16.0 (0.5)] 17.1 (0.3)
Scanning each file
Phase V 146.8 (2.0) | 148.9 (1.8) | 160.1 (2.9)
Compiling and linking
Total 201.3 205.8 221.7

Table 3: Results from running the Modified Andrew Benchmark for a non-instrumented
kernel, for a snooper kernel without tracing enabled and for a snooper kernel perform-
ing tracing. All values are in seconds — values in parenthesis are standard deviations.

cache into a consistent state. For these tests the file systems of the machine are located
on a central NFS server. However, for all the runs performed with snooper operating,
the trace file was recorded on disks local to the test machine.

The results indicate that the difference between the regular kernel and the instru-
mented kernel with snooper inactive are relatively small, when compared to overall
benchmark times, and are due to the extra code in each system call that tests if the
snooper system is inactive. It is interesting to note that even such a small number of
additional instructions to perform add so significantly to the overhead of the system,
4.5 seconds over the total benchmark.

The largest difference, though, is between the inactive and active instrumented
kernel. The additional overhead of logging activities into trace buffers, logging trace
results to disk and buffer management have added approximately 10% of overhead to
the system. In real terms this is a difference of over 20 seconds between the regular

kernel and the active snooper kernel.

Page 66




Chapter 5

Network Monitoring

This chapter describes the network monitoring performed for this thesis. The network-

monitoring system captures and processes NFS traffic between clients and server.

5.1 Objectives

Passive network monitoring can collect much of the information full kernel instru-
mentation is currently used to collect; such data as the number of active users on a
system, the amount of data transferred to and from disks, which files are being ac-
cessed. However, a great deal of system monitoring information used by researchers is
based on records of sessions delimited by the opening and closing of files. The kernel-
instrumentation data was processed into such records. For network monitoring to be
used as a replacement for full kernel instrumentation, the ability to generate such an
open-close session record is required. This ability should give comparable information
about the data transferred, the amount of data in a particular file and so on. With
such open-close-session records we can then study the system in all aspects that would
have been done using kernel instrumentation. Thus giving the ability to calculate such

things as:
o the average or maximum amount of data transferred per file, in a given time,
o the average or maximum time a file is used, or

o the average amount of data in a file.

67



5.2. NETWORK MONITORING

Using network monitoring much of this information must be inferred from the trans-
actions which are observed. This chapter discusses the processes used for inferring

open-close sessions from network traffic.

5.2 Network monitoring

Network monitoring, if done by a independent machine, can gain information about two
communicating systems without impacting on their work or changing their behavior.
Network monitoring does not require any changes to the system(s) being monitored
and allows the simultaneous monitoring of multiple machines. However, network mon-
itoring relies on there being suitable, useful information passing through the network.
Without enough useful information, network monitoring may not be able to estimate
satisfactorily what has occurred on a particular client.

With the network-based file systems in use or under development, such as NFS [87],
Sprite [72] and Andrew File System (AFS) [66, 42], clients require many or all file-
system operations to be done through the network. Because the network will be car-
rying all file-system traffic between clients and server, network monitoring can collect
and interpret this data to give information on the file operations which clients are
performing.

Network monitoring of distributed file systems gives access to information about
physical blocks as they are read from and written to the server by clients. Additionally,
there is a great deal of other information exchanged between client and server which is
related to directory operations and cache consistency that enable users of this technique
to estimate the operations clients have performed.

Network monitoring must rely exclusively on information present in the communi-
cations between client and server. It is generally not possible, nor desirable, to add
additional information to this communication stream. As a result, network monitoring
requires that the procedure for processing the incoming data incorporates a specific
knowledge of the type of communications used and can make use only of what data

are available in the communications channel.

Page 68




5.2. NETWORK MONITORING

In the case of NFS, the post-processing software must estimate operations on the
client using not only the reading and writing of data from the server but also the
other messages used to co-ordinate client caches and obtain directory information.
Knowledge of the type of communications system (in this case, the details of NFS) can
be considered to be a main requirement in effective network monitoring.

To perform network monitoring, a researcher requires a machine that can interface
with the network and capture all data traversing it. Network monitoring can now be
performed by today’s faster workstations with the appropriate software. Typically, such
a network-monitoring machine will be a workstation using software based around the
Network Interface Tap (NIT) [103] packet capture mechanism from Sun Microsystems
and the packetfilter [27] capture mechanism from Digital. The machine will record
data from the network to a local disk. In a number of cases the workstation has
sufficient power to perform some rudimentary processing of the data which can reduce
the amount needing to be saved to disk.

Because the distributed file system used in this study is NF'S, which uses RPC [55]
for each transaction, the network monitor need look only for the two parts of the
RPC exchange; the request and the reply. This is a considerable advantage over, for
example, monitoring the stream of characters to a terminal. In a terminal’s character
stream, each character must be collected and the full stream reassembled to gain any
understanding.

Additionally, RPC uses XDR [54] to allow communications between machines that
do not share common hardware or operating-system software. Because of this, a net-
work monitor can be any particular type of machine from any vendor, running any
operating system. A Sun workstation can monitor a network of Digital machines be-
cause the type of data on the network is independent of the hardware or operating
system of the machine that generated it.

In order to generate the desired open-close sessions from the monitoring of NIF'S
traffic between client and server, the network monitor must process collected data

following its capture.

Page 69




5.3. ANETWORK MONITORING IMPLEMENTATION

First and foremost, the network monitor must filter the traffic of interest from the
data captured from the network. In this situation only RPC transactions pertaining
to NFS are of interest. Each individual RPC request or reply can be made-up of a
number of Ethernet packets and a whole RPC request or reply will be retransmitted
if it was partially lost in transit. Data to be discarded includes repeat copies of the
same transaction as well as the parts of the RPC transaction that are not relevant to
the monitoring (typically the data payload of NFS read and write transactions). The
request and reply of each RPC transaction must be matched together and incomplete
transactions (presumably retransmitted) must be discarded.

The network monitoring system must process the NFS transactions and estimate
from them the open-close sessions that have occurred on the clients of the distributed

file system.

5.3 A network monitoring implementation

The implementation carried out in the present study consists of four parts:
1. network monitoring and data extraction,
2. data translation, filtering and NFS/RPC call processing,
3. data check-pointing and compression, and
4. post-processing.

The network monitoring software implementation used in this study is a toolkit
made up from two parts: rpcspy and nfstrace. This toolkit was implemented by
Blaze [11] to enable network monitoring of a large distributed file system based upon
NFS [11, 15, 16, 13]. Additionally, work of others [24, 1] has been based on measure-
ments taken using rpcspy and nfstrace. The software is designed to operate on any
machine that supports the Sun NIT capture mechanism or the Digital packetfilter

capture mechanism. rpcspy collects network traffic, extracts NFS/RPC requests

Page 70




5.3. ANETWORK MONITORING IMPLEMENTATION

and replies, matches these requests and replies and constructs concise one-line-per-
transaction records. nfstrace provides post-processing, creating open-close session
records from the trace records generated by rpcspy.

It was required that the rpcspy/nfstrace operate with Ultrix 4.3a or SunOS 4.1.
The software needed no modification to operate on the systems used, having been
designed in a similar environment. nfstrace was modified to give duration informa-
tion on the length of open-close operations. Both rpcspy and nfstrace were modi-
fied to give additional data in the trace, in particular some file-attribute information.
nfstrace was augmented with a view to finding information about its method of op-
eration and to be able to evaluate the open-close identification heuristics it uses.

Additionally, a time-stamping compression filter was written to reduce the quantity
of data generated by rpcspy. This filter was also able to change output files, either

after a given amount of time or a given quantity of data (number of lines).

5.3.1 Network monitoring and data extraction

As mentioned previously, the rpcspy utility is built upon either the Sun NIT capture
mechanism or the Digital packetfilter capture mechanism. These facilities provide
user-level software access to raw data packets traversing the network to which the
system is attached.

In each of these mechanisms the user configures what type of data is to be extracted
from the network and which hosts on the network this data could have come from (this
could be set to all hosts). The device will return packets that satisfy this filter into a
buffer.

It is assumed by the network capture mechanisms (NIT and packetfilter) that
the buffer will be emptied continuously by the user’s program. If the incoming queue
of data overflows the buffer the extra data is discarded.

rpcspy configures the incoming network interfaces to accept any IP [76] packets
from all hosts on the local network and then expects the network interface to pass

these incoming packets to it.

Page 71




5.3. ANETWORK MONITORING IMPLEMENTATION

5.3.2 Data filtering, data translation and NFS/RPC call pro-
cessing

After receiving data from the network interface, rpcspy uses a series of filters, transla-
tors and algorithms to piece the NF'S transactions together. rpcspy filters the incoming
packets, accepting only those packets that are from the internet user datagram protocol
(UDP) [78]. It then filters the packets again, selecting only those destined for the NFS
service port on the assumption that these are NFS packets. This NFS data is then
translated from XDR [54] format into a data-format suitable for the local machine to
process.

Once the data are in the required format, rpcspy checks the RPC header and if
the packet is a reply to a previously recorded request the pair are matched together
and processed. If the packet is a new request it is queued in a list of requests pending
replies.

Once the RPC request and reply have been paired they are processed according to
the type of NFS transaction the RPC request /reply is carrying. Each NFS transaction
has data of interest extracted and a transaction record is recorded along with a time
stamp of when the transaction was complete.

An example pair of RPC transactions is printed below. These are hexadecimal
dumps of the two Ethernet packets that make up a particular RPC transaction. In

this case, the transaction is to get the attributes of a particular file.

An RPC request (transmitted using UDP/IP on Ethernet):

0000 08 00 2b 24 34 2b 08 00 2b 1c 26 24 08 00 45 00 | ..+$4+. . +.&.. .E.
0010 00 94 a6 38 00 00 ff 11 79 fb 82 c2 4a d4d7 82 c2 | ...8....y...J...
0020 4a c9 03 ff 08 01 00 80 Ob b4 Of 90 &8 6b 00 00 I Joooooat. k..

0030 00 00 00 00 00 02 00 01 86 a3 00 00 00 02 00 00 |

0040 00 01 00 00 00 01 00 00 00 30 2f 4b ac e9 00 00 | 0/K....
0050 00 18 62 75 73 6d 61 6e 2¢ 72 64 74 2¢ 6d 6f 6e | ..busman.rdt.mon
0060 61 73 68 2e 65 64 75 2e¢ 61 75 00 00 00 00 00 00 | ash.edu.au......

0070 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 |

0080 00 00 04 15 00 00 02 00 00 00 02 3d 3b 52 02 00 | =;R..




5.3. ANETWORK MONITORING IMPLEMENTATION

00920 00 00 02 3d 3b 52 00 00 00 00 00 00 00

00a0 00 00

and the matching RPC reply:

0000

0010

0020

0030

0040

0050

0060

0070

0080

08

00

4a

00

00

00

20

00

ab

00

Tc

a7

01

00

07

00

02

a7

2b

48

08

00

00

00

ff

2e

2f

1c

7

01

00

00

00

ff

a7

4b

26

00

03

00

00

00

ff

11

83

9d

00

ff

00

00

00

ff

ae

de

08

ff

00

00

00

00

00

00

00

00

11

68

00

00

00

00

01

03

2b

a7

36

00

00

00

00

be

ab

24

ccC

79

00

02

00

02

35

a7

34

82

Of

00

00

00

00

2f

2b

c2

90

00

00

00

00

4b

08

4a

e8

00

41

02

15

83

00

00

6b

00

ed

00

04

de

00

45

82

00

00

00

00

00

00

00

00

c2

00

00

00

00

00

03

| =R..........
|

| +.&...+$4+ . .E
| JIH......... J

[ J...... héy. ..k
| o
| A..
| o
| o
| e 5/K.

| /K.

After the network capture mechanism and rpcspy have filtered the transaction

and rpcspy has reconstructed the particular NFS operation, rpcspy would record this

transaction as (shown here on three lines for clarity):

793488611.244329 | daneel.rdt.monash.edu.au | busman.rdt.monash.edu.au.0 |

getattr | "131500000200000036b514020200" |

ok, {040755, 0, 1024, 0x2, 785561935.347853 }

Table 4 shows the NFS transactions and data fields recorded by rpcspy. Several

transactions such as root and writecache are typically not used in NFS implementa-

tions although rpcspy can process them because they are part of the NFS standard.

Page 73



5.3. ANETWORK MONITORING IMPLEMENTATION

Transaction Type

Data fields

null

real time, server, client, transaction type, user ID

getattr

real time, server, client, transaction type, user ID, NFS file

handle, call status, file attributes

setattr

real time, server, client, transaction type, user ID, NFS file

handle, requested attributes of file, call status, new attributes

of file (at the end of the call)

root | real time, server, client, transaction type, user 1D
lookup | real time, server, client, transaction type, user ID, NFS file
handle of directory, file name (to be looked up), call status,
NF'S file handle for file name, attributes of the file name
readlink | real time, server, client, transaction type, user 1D, NFS file
handle of link, call status, contents of symbolic link
read | real time, server, client, transaction type, user ID, NFS file
handle, offset, number of bytes to read, call status, number of
bytes actually read from the file at the given offset
writecache | real time, server, client, transaction type, user 1D
write | real time, server, client, transaction type, user ID, NFS file
handle, number of bytes to write, call status, attributes of the
file at the completion of the write
create | real time, server, client, transaction type, user 1D, NFS file
handle of directory, file name, call status, NFS file handle of
created file, attributes of created file
remove | real time, server, client, transaction type, user 1D, NFS file

handle of directory, NFS file handle of file to remove, call

status

continued on next page

Page 74




5.3. ANETWORK MONITORING IMPLEMENTATION

Transaction Type | Data fields

rename | real time, server, client, transaction type, user 1D, NFS file
handle of source directory, NFS file handle of file to be re-
named, NF'S file handle of destination directory, NFS file han-

dle of file destination, call status

link | real time, server, client, transaction type, user ID, NFS file
handle of source file, NFS file handle of destination directory,

file name of destination file, call status

symlink | real time, server, client, transaction type, user ID, NFS file
handle of destination directory, file name of the symlink to be

created, target of symlink, attributes for symlink, call status

mkdir | real time, server, client, transaction type, user ID, NFS file
handle for destination directory, file name of new directory,

file attributes for new directory, call status

rmdir | real time, server, client, transaction type, user 1D, NFS file
handle of target directory, file name of directory to remove,

call status

readdir | real time, server, client, transaction type, user 1D, NFS file

handle of directory, call status

statfs | real time, server, client, transaction type, user ID

Table 4: rpcspy transaction types and data fields

5.3.3 Data check-pointing and compression

Monitoring a network can generate a considerable amount of data. A program like
rpcspy, even condensing the data to the extent that it does, can generate several
megabytes of data in less than ten minutes of monitoring a moderately-busy network.
Consequently there is a potential for running out of storage space on the monitoring

machine. A solution is to checkpoint and compress the output and, if possible, to

Page 75




5.3. ANETWORK MONITORING IMPLEMENTATION

change file names to allow previous records to be copied to tape.

A compression and check-pointing filter was written, which was option-driven to
change to a new file either after a given amount of time or a given number of lines of
input. This filter was able to incorporate the current time into the name of the file for
easy identification of the sequence of log files. Also the filter could, if required, gener-
ate compressed output using the standard compress utility in UNIX which routinely
obtained a 4:1 compression ratio. This compression and check-pointing filter makes

the data output from rpcspy more manageable.

5.3.4 Post-processing

The post-processing of the rpcspy data is done by the utility nfstrace.

NF'S has no explicit open or close transaction, so this piece of software must piece
together open-close sessions from the NFS transaction log of rpcspy using a heuristic
based on the operation of NFS. nfstrace makes an estimation of open-close sessions
that have caused the NFS transactions to occur. Partially, this relies on consistency in
NFS implementations, that is, for every open system call (independent of whether the
file is to be read to and/or written from or just accessed) an NFS getattr transaction
is generated.

However, open-close sessions to read or write data handle the data itself in sig-
nificantly different ways, although it should be noted the write transaction case is
easier to handle, because the cache does not have as dominant an effect on the write
operations. As a result, much of the special case handling nfstrace must do applies

only to NFS read transactions.
NFS write

When a user on an NFS client writes data to a file, it will either be written directly to
the server or be written to the server at the close of the file on the client. This means
that during an open-close session on a client, writes are synchronous with the server
during that session. By the time the open-close session has ended, all data written by

the client into the file will have been carried over the network.

Page 76




5.3. ANETWORK MONITORING IMPLEMENTATION

Because of this, a program such as rpcspy will see these writes as one or more NF'S
write transactions. The result is the write system-call will be written to the file as an
NF'S transaction. However, if only a partial block was written, the write will not occur
until the block is full, a periodic operation occurs, causing modified data blocks to be

written to disk (commonly each 30 seconds) or the file is closed.
NF'S read

When a user on an NFS client requests data from a file, this data will either be available
locally, in the cache of the client or it will need to be read from the server.

Figure 15 shows the flow of a read request on an NFS client. The shaded boxes
indicate operations that can be recorded by the rpcspy program.

This flow diagram shows how the cache-consistency model of NFS works.

o If a particular block is not present in the cache of the local client, it is retrieved

from the server. In this case rpcspy will see a read transaction occur.

o If a particular block is present in the cache of the client but the cache copy has
not been checked recently, the client will perform a getattr transaction. The
getattr transaction will return the time and date of the file on the server. The
client can now check the cache copy of the file; if it is older than copy of the file

on the server, the cache copy is out of date.

e If the cached copy on the client is out of date, the client will remove it from
memory and force a new copy to be read from the server. In this case rpcspy

will see a getattr transaction followed by a read transaction.

o If the cached copy on the client is not out of date, the client will not need to
obtain a copy from the server, and returns data from the cached block on the
server to the user. In this case rpcspy will see a getattr transaction used by

the client to check and confirm the validity of the cached copy of this file.

e If the cached copy on the client has been checked recently the client will not check

with the server in any way. In this case rpcspy will not see any transactions

Page 77




5.3. ANETWORK MONITORING IMPLEMENTATION

read

nfs_read

Hasthe
cached copy

of this block
been checked
recently

get the attributes of
the file on the server

Isthe
cached copy

up to

read block of data
from server into cache

return block of datafrom
cache to the user

Figure 15: The flow of a read request on an NFS client. The shaded boxes indicate
operations that can be recorded by the rpcspy program.

Page 78




5.3. ANETWORK MONITORING IMPLEMENTATION

between client and server.

It is important to note that rpcspy will not be able to detect the read operation if the
block to be read is already in memory, the cached copy has been checked recently and

it was up to date when last checked.
nfstrace open-close sessions

Although rpcspy generates a large amount of data (an entry corresponding to each
transaction), nfstrace only uses a small number of transactions in its analysis: the
NFS read, write, setattr, getattr and lookup transactions.

The heuristic used by nfstrace is important because nfstrace must identify the
open-close sessions which have occurred. Blaze designed nfstrace using several pre-
miss; the primary one is that NFS is consistent in its operations when a file is opened.
A getattr transaction on the file is performed for every open system-call and then the
read or write system-calls will cause combinations of NFS read, write, setattr and
getattr transactions.

The heuristic nfstrace uses is best described by the conditions under which it
will record an open-close session record. These conditions are used by nfstrace to

conclude that particular client has closed the file; as shown in the following list.

1. If the previous operation on a particular file was more than a given time ago,
this will cause an open-close session record to be generated for the previous
operation(s). An access to the file with an NFS getattr, setattr, read or

write transaction all reset this timer.

2. If the current transaction is a setattr and there were previous data transfers
from read or write transactions, or the previous transaction occurred more than

two seconds previously.

3. The current transaction is a setattr and size of the file is being set to zero, yet

some data were previously written to the file.

4. The current transaction is a read and there was previously a write on the file.

Page 79




5.3. ANETWORK MONITORING IMPLEMENTATION

5. The current transaction is a read to the first byte of the file and that byte has

been accessed previously.

6. The current transaction is a write and there were previous data transfers from
read or write transactions or the previous transaction occurred more than two

seconds previously.

7. The current transaction is a write to the first byte of the file and that byte has

been accessed previously.

The recording of an open-close session record will reset all counters and flags, such
as the amount of data transferred and whether the first byte has been accessed.

From these rules it is apparent that nfstrace will be unable to correctly interpret
several situations. For example, nfstrace will be unable to detect open-close sessions
where the file is open for both read and write operations, such as a database file. It
will not correctly interpret the situation where data is written to the first block of a
file a number of times; each time the first block is rewritten, nfstrace will consider
this to be the start of a new open-close session on the same file. These cases are more
extensively discussed with the presentation of results in Section 6.9.1 and in Chapter 7
in which a discussion of ways these rules can be refined to improve the results nfstrace
is given.

Table 5 indicates which system calls in Ultrix 4.3a cause NFS getattr, setattr,

read and write transactions to occur.

NFS Transaction | System call

write | In unusual circumstances (an open-close session on the client
where the cache is disabled) the write system-call will directly
cause NFS write transactions, otherwise the NFS transaction

will not occur until an 8 Kbyte file block is filled (writing to

the file in 8 Kbyte blocks).

continued on next page

Page 80




5.3. ANETWORK MONITORING IMPLEMENTATION

NFS Transaction | System call

Either the fsync or sync system-calls will cause any outstand-
ing blocks to be written to the file server which results in NFS

write transactions for those blocks.

read | the read system-call will cause an NFS read transaction in
some circumstances (as described above in Section 5.3.4)

the write system call (counter-intuitively) can cause an NFS
read transaction if the amount of data to be written for a
particular block is less than the size of a block. This is because
the NFS write operation can write to the server only in units

that are integral multiples of the block size.

setattr | The fchmod, chmod, fchown, chown, utimes, sync, fsync,
truncate and ftruncate system calls will all cause NFS

setattr transactions.

getattr | The NFS getattr transaction is used for getting directory in-
formation as well as cache consistency, so it may be caused by
the unlink, creat, close, fsync, access, stat and lstat
system calls in addition to being caused by the read system

call.

Table 5: A table of the NFS transactions and the system

calls that can cause their occurrence.

A comparison of the heuristic for nfstrace and the causes of certain NFS transac-
tions reveals the behavior of nfstrace when processing records from the Ultrix NF'S
implementation. For the rule-base used in nfstrace it can differentiate only between
read and write open-close sessions. nfstrace will be unable to determine if a file was
both read from and written to in the same session; instead it will infer that two separate

sessions have taken place.

Page 81




5.3. ANETWORK MONITORING IMPLEMENTATION

Some of the rules used by nfstrace do not seem intuitive. However, rules such as
those surrounding the setattr transaction mean that nfstrace can, in this example,
interpret correctly a truncate system call on a pre-existing file. If a pre-existing file
is truncated when it is opened, any previous transactions involving that file will be
recorded.

During the development of the rules used in the heuristic for nfstrace, Blaze did
not have access to kernel level tracing of the systems he wished to monitor. He used
a simple benchmark incorporating the 1s, cp, touch and wc programs to develop and
evaluate new rules. The 1s is particularly important because it will cause numerous
NFS getattr transactions which can potentially be interpreted as read operations.

Blaze found that after several hours of operation, nfstrace was able to detect 100%
of the writes, 100% of the uncached reads and 99.4% of the cached reads. Blaze then
concludes that cached read operations were over-reported by 11%, even though the
1s command was 50% of the benchmark activity. Blaze reflected that, while it was
encouraging to obtain this level of accuracy from the system, it was not conclusive.
He suggested that the particular workload of the tests cases may have been misleading

nfstrace in unanticipated ways.
nfstrace output

nfstrace will take the transaction log of rpcspy and generate an open-close session

log. A sample entry from this log is show below (shown on two lines for clarity):

787451296.297919 | 3.299941 | read |

daneel:15150000bd100100ef35ff6005f8 | alquist.2015 | 0 | 864

For this entry at time 787451296.297919, user ID 2015 on the machine alquist read
file 15150000bd100100ef35ff6005£8 from the server daneel. The read transaction
was of 864 bytes and nfstrace considers the whole file was read from the contents of
the client cache. This session lasted 3.299941 seconds.

Such open-close session records enable us to give information such as estimations of

the durations of open-close sessions and the amount of data potentially accessed and

Page 82




5.4. IMPLEMENTATION RESTRICTIONS

transferred in that time. By generating this information researchers are able to use
rpcspy and nfstrace as tools for system monitoring. The tools are suited particularly

to the simultaneous monitoring of many machines in a distributed file system.

5.4 Implementation restrictions

While the rpcspy/nfstrace system was able to give results comparable to kernel in-
strumentation (Chapter 6), there were, sometimes significant, differences in the results
of the two systems.

rpcspy has three major drawbacks. The first relates to restrictions in the network
interface supplied for a particular machine. The second drawback is related to the
restricted information available to rpcspy at the time of operation. Finally, rpcspy
depends on the insecure, unencrypted data of the RPC transactions to be carried over
the network to which the rpcspy machine is attached. As a result, rpcspy cannot be
as easily used to extract passive network monitoring information from networks using
secure RPC implementations such as transmitting RPC using Kerberos [100]. This
limitation is not easily overcome.

Additionally, nfstrace has limitations in its implementation. Primarily these are
able to be improved, as discussed in Chapter 7, however several, such as the amount
of information available to nfstrace are not easily altered. The limitations of the

rpcspy/nfstrace system is discussed in the following sections.

5.4.1 Network packet capture mechanism drawbacks

The rpcspy/nfstrace tools depend heavily on the ability of the network interface of
the machine on which they are being run to capture all traffic passing through the
network. Packet-loss by the network interface does not have a linear relationship with
network utilisation. The network interface will not lose data when utilisation is low.
However, data loss will increase as utilisation increases to a point beyond which it will
be unable to accept any increase in the data-transfer rate and the amount of data it

can process will flatten out no matter what the utilisation beyond that point.

Page 83




5.4. IMPLEMENTATION RESTRICTIONS

Protocol type Sub-protocol | Types of packet | Packet size %
Internet Protocol (IP) 67 | UDP  36.9 NFS 155 | 24.7
1500 | 12.2

TCP  30.1 (all) 80 | 15.1

192 | 9.0

1272 | 6.0

Novell Netware (IPX) 33 - - 155 | 19.8
768 | 13.2

Table 6: A breakdown of the traffic mixture used for testing rpcspy response to Eth-
ernet utilisation

A study was performed to quantify the potential data loss of rpcspy and to cali-
brate the network interface rpcspy uses. To perform these tests satisfactorily, a net-
work analyser capable of full utilisation measurements on Ethernet was required. A
Hewlett Packard Internet Advisor Model J2522A was used both to perform measure-
ments and to generate artificial loads on the network. The packetfilter mechanism
used was in a DECstation 3100 running Ultrix 4.3a, the NIT mechanism used was
in a Solbourne SC2000 (a machine compatible with the Sun Sparcstation 2) running
SunOS 4.1.3.

Tests of rpcspy, where the network was loaded artificially, used the traffic break-
down in Table 6 which was based on an analysis of the network over several 24-hour
periods.

The packetfilter facility of Ultrix offers some configuration options. In particular,
the size of the packet buffer, where packets processed by packetfilter are placed for
collection by the user process, can be set. The NIT mechanism in SunOS does not offer
this configurability. The default configuration and an optimum (largest configurable
buffer size) for packetfilter in addition to the NIT mechanisms are compared in
Figure 16. This figure shows the percentage of unprocessed Ethernet packets versus
Ethernet network utilisation. It is apparent that not only are the characteristics of the
NIT mechanism poor beyond 10% utilisation but that the packetfilter mechanism
did not demonstrate the same level of loss until utilization was close to 50%. The
packetfilter mechanism showed no loss until over 15% utilization, a stage by which

NIT mechanism loss was close to 25%.

Page 84




5.4. IMPLEMENTATION RESTRICTIONS

100

Packetfilter (default) ——
Packetfilter (optim.) -----
* NI

80

70

60

50

40

Total packets unprocessed (%)

30

20

10

0 10 20 30 40 50 60 70 80
Ethernet Utilization (%)

Figure 16: A comparison of Ethernet utilisation versus packet loss for various worksta-
tion Ethernet interfaces. packetfilter default and optim(um) are two configurations
of the Ethernet packet capture facility of the Digital DECstation, NIT is the Ethernet
capture facility in Sun Microsystem’s SunOS.

A significant issue in rpcspy is the combination of processing overhead on the client,
which is imposed by the need of rpcspy to match RPC transactions, and the packet-
loss characteristics of the Ethernet interface which rpespy is using. Figure 17 shows
the number of NFS transactions versus Ethernet utilisation. The Ethernet utilisation
in these tests is almost purely NFS traffic. By using NFS traffic exclusively we are
able to establish the maximum number of NFS transactions each rpcspy system is
able to process in a given time period. The Hewlett Packard test equipment recorded
the actual number of NFS transactions that occurred over this time. For this test the
packetfilter was left in the default configuration.

The test shows that each system has a maximum number of packets it can process.
The NIT-SunOS system is limited to processing about 175 NFS transactions per second.
The default configuration packetfilter-Ultrix combination appears to be limited to
processing approximately 260 NFS transactions per second. It is important to note this

was a stress-testing of the rpcspy and that such NFS loads were not a characteristic of

Page 85




5.4. IMPLEMENTATION RESTRICTIONS

the network to which these machines were connected. From the figures in Table 6 we
can see that 36% of the total Ethernet traffic is from NFS. It would not be true to say of
this 36% that half of the number of NFS Ethernet packets would be the count of NFS
transactions. Such a simplification would not allow for there being incomplete NF'S
transactions (the loss of the request or reply in a transaction) nor would it allow for
NFS transactions that required more than one pair of network packets (transactions
where the data payload required two or more Ethernet packets). In each of these
cases rpcspy does not need as much processor time as if it had had a complete NF'S
transaction. As a result, the test network operating at 12% utilisation could mean less
than 72 transactions per second in a mixed load with a variety of NFS traffic rather

than the 200 transactions per second that Figure 17 stress-test indicates.

NFS transactions recorded versus ethernet utilization

acketfilter ——
300 P L—
Hewlett Packard -~
250 ]
=}
c
o
(5]
[}
2]
g 200
=}
(]
B
S 1 A S SRR
Q
o
0 150
c
i)
c
©
[%2)
j
©
= 100
(]
LL
z
50
0
0 2 4 6 8 10 12 14 16 18

Ethernet utilization (%)

Figure 17: The number of NFS transactions versus FEthernet utilisation for the NIT
and packetfilter capture mechanisms. Results from a network analyser recording no
packet loss is also given (Hewlett-Packard).

The exact cause of such data loss is not certain but it could result from limitations
in the hardware of the network interface and/or limitations in the software of the packet
collection and filtering mechanism.

This characteristic is unfortunate. It is during the time when the network is busiest

Page 86




5.4. IMPLEMENTATION RESTRICTIONS

that utilisation across a distributed file system will be potentially highest. Because
there is potential for rpcspy based tools to lose data about transactions at busy times,
studies such as file sharing, a situation that would be more likely to occur at busier
times, would be affected adversely.

Such drawbacks could be potentially overcome by the use of faster workstations
with faster hardware network interfaces. However, this may not be as easily solved if
the problem is due principally to a poor software implementation in either the network
packet capture mechanism (NIT/packetfilter) or rpcspy.

While this characteristic loss does exist, it is significant only above about 10%
utilisation for the packetfilter mechanism. Boggs et al. [17] comment that most
Ethernet loads are well below 50%, close to 5% of the network capacity and the network
on which measurements were taken supports this observation with a maximum load

over 24 hours of no greater than 18%.

5.4.2 Restrictions in available data

rpcspy is restricted in the information to which it has access; it must work with only
the information which is carried within the network. Because of this, rpcspy cannot
determine such information as which process is responsible for a particular transaction.
Additionally, rpcspy cannot differentiate between two different process accessing the
same file. The only differentiation rpcspy can make are those of file, user and machine.
The result of this is that if a particular user is simultaneously accessing a file with two
different programs rpcspy might misinterpret the transactions that result. An example
of where this might occur is when a user is simultaneously editing a source file and
compiling that source file.

The reason for this alteration of behavior is that the cache will make the two
different sets of logical operations seem to be, typically, the same set of block operations.
What rpcspy estimates has happened depends on the actual transactions that occur
across the network. For the same set of operations, slight changes in timing will cause
different transactions to occur across the network. As a result, it would be difficult to

deduce what rpcspy would report in such instances.

Page 87




5.4. IMPLEMENTATION RESTRICTIONS

5.4.3 nfstrace restrictions

nfstrace interprets rpcspy data and estimates the open-close sessions that caused
the NF'S transactions rpcspy has traced. As discussed above, this means nfstrace
depends heavily on rpcspy collecting all available data from the network.

nfstrace can suffer errors as a result of misinterpreting NFS transactions or be-
cause information has been omitted from the NFS transactions. Also nfstrace has
implementation-imposed restrictions. For example, it is unable to identify open-close
sessions were data is both read from and written to the file. Baker et al. [8] found
open-close sessions that involved data read from and written to the file accounted for
1% of all transferred bytes and 1% of the number of open-close sessions. Such an esti-
mation would indicate misinterpretation but it would not cause a dramatic impact on

results. It is, however, worth noting.
Errors of misinterpretation

nfstrace will interpret some transactions incorrectly. As can be seen in Table 5 a
number of different operations can be responsible for an NFS getattr transaction
occurring. nfstrace assumes that a getattr transaction has occurred in relation to a
block being read from the file cache. However, there is a potential for the getattr to
have been caused by a program such as 1s getting information about the files or even
by the deletion of a file.

nfstrace has the potential to interpret the write system-call incorrectly. This is
because of the nature of write which performs all block transactions in the modulus of
the block size. For an existing file, the remainder of a partial block write must be read
first. There is a potential for nfstrace to incorrectly misinterpret this as a separate
read-session on the file.

nfstrace uses an heuristic based on accesses of the first byte of a file. Although
most file accesses (90% according to Ousterhout et al. [73] ) will be read sequentially
from the file system, there is a potential for nfstrace to misinterpret up to 10% of

file accesses. Additionally, because nfstrace considers that access to the first byte

Page 88




5.4. IMPLEMENTATION RESTRICTIONS

is a good indicator of a new open-close session, there is potential for nfstrace to
incorrectly assess an open-close session where the data are read or written a multiple

number of times.
Errors of omission

nfstrace depends heavily on the information supplied to it through the NFS trans-
actions. Because of the lack of an open or close operation in NFS, nfstrace must
attempt to derive open and close operations from the other NFS transactions that
occur.

Figure 18 shows a number of open-close sessions with their associated read/write

operations. The same figure shows a set of typical, related block activities.

Open_ Open_ Open_ Open_
Read | Block Read Read | Block Read Read | Block Read
Read | Block Read
| Block Read Time

Read |

Write |

| Block Write
Write | Write |
Close | Close] Closel Block Write  Close | Block Write

Casel Case 2 Case 3 Case 4

Figure 18: A variety of open-close sessions with read, write or read/write activity, also
shown is a typical set of related block activity.

Case 1 shows a typical open-close session consisting of a number of read operations.
The corresponding block operations could be caused directly by the read or could be
the result of a kernel read-ahead operation. As a result nfstrace might consider this
session to have taken less time than it actually did because all the block operations
were finished very early in the session even though another read occurred much later
in the session.

Case 2 shows a simpler open-close and read although the same problem exists.

nfstrace might consider this session to have taken a very small amount of time when

Page 89




5.4. IMPLEMENTATION RESTRICTIONS

compared with the length of the total open-close session operation.

Case 3 shows an open-close session where data are written to a file. Delays in the
writes themselves occurring because of write-behind policies mean that nfstrace could
easily misinterpret the length of time taken by this open-close session.

Case 4 shows an open-close session where both a read and a write have occurred.
nfstrace will see the corresponding transactions and interpret this is an open-close
session of reading and another open-close session of writing.

These errors make a very broad assumption that in all four cases the data of the
blocks read from or written to the file caused exactly one read or write transaction
to occur over NFS. If this simplification is removed, the number of different possible
misinterpretations increases many times. Exactly what nfstrace will interpret de-
pends on what transactions (if any) occur as a result of each operation. An example
might be Case 3: for the initial open system-call the client will often cause a getattr
transaction to occur. nfstrace may misinterpret this as being another operation, in
this case most likely a read that was a successful cache-hit of a file that will towards
the end of the open-close session have data written to it.

Another example is Case 1 If this file had been accessed recently by a program on
the client, the file will be in the cache of the client. If the access was recent enough,
no transactions, not even a getattr for cache consistency, will be caused. As a result
nfstrace would not even see this session occur.

Figure 19 shows that the block operations upon which nfstrace’s record will be
based do not necessarily correspond with the logical open and close operations in an

open-close session.

5.4.4 Local versus remote file system performance

The whole operation of rpcspy and nfstrace depends on file-system traffic of interest
passing through the network. In quite recent times there has been a tendency for
machines to have large disks supplied with them [24], but before that, there had been
a trend towards the centralisation of disk resources. This, after all, is one reason that

distributed file systems have become so popular. In the test environment, machines

Page 90




5.4. IMPLEMENTATION RESTRICTIONS

_ Open_, _ Open,, Op
Read | Block Read ] R%Block Read __
Read | Block Read J; Clo J; nfstrace open-
| Block Read .
Read | close session

Op
Write| ] R%Block Read W I real open-
| Block Write Clo close session
Write
Close J Close | Block Write
Casel Case 2 Case3

Figure 19: Several open-close sessions as generated by nfstraceare compared with the
actual open-close session that occurred. The open-close session generated by nfstrace
depends heavily on the type of NFS transaction each block access will invoke.

have small local disks principally for swap space and for the /tmp and /var/tmp file
systems. However, with /tmp and /var/tmp transactions going to the local file system,
no NFS transactions are generated and rpcspy cannot capture the transactions so
nfstrace cannot interpret them.

This seemed unsatisfactory because these open-close sessions were potentially of
great importance. The /tmp and /var/tmp file systems generally contain short-term
temporary files so it could be expected that these file systems contain a significant
percentage of the small-duration open-close sessions. This seemed a reasonable as-
sumption given that the traffic to these file systems is commonly temporary files from
editors and compilers.

A solution used for this study is to move the /tmp and /var/tmp file systems to a
remote disk. This means the transactions can be captured and nfstrace can interpret
this data. Because this move was desirable, it was important to establish the impact
on performance of moving the file system from local to remote disk would have.

Table 7 shows variations in the performance of the Modified Andrew Benchmark
(MAB) with various disk configurations. A typical user would find their work closest
to the second test with the test done on a remote disk and with the machine having
a local /tmp and /var/tmp file systems. The difference between this and the machine

with remote /tmp and /var/tmp file systems was less than 7% of time over all the tests,

Page 91




5.4. IMPLEMENTATION RESTRICTIONS

which seemed an acceptable impact.

Local test | Remote test | Remote test
/tmp//var/tmp location Local Local Remote
Phase 1 2.9 (0.5) 4.4 (0.8) 3.0 (0.0)
Creating directories
Phase II 4.5 (0.7) | 15.0 (0.5)| 18.9 (0.3)
Copying each file
Phase III 152 (0.6) | 159 (0.8)| 17.3 (0.8)
Recursive directory stats
Phase IV 4.5 (0.7) | 15.3 (0.8) | 15.3 (0.5)
Scanning each file
Phase V 128.8 (0.4) | 138.1 (1.0) | 146.8 (2.0)
Compiling and linking
Total 175.9 188.7 201.3

Table 7: Results from running the Modified Andrew Benchmark on a system with
combinations of a remote and local disk. Firstly with the test to the local disk, with
local /tmp and /var/tmp file systems, then with a test to remote disk with local /tmp
and /var/tmp file systems and lastly a test to remote disk with remote /tmp and
/var/tmp file systems. All values are in seconds, values in parenthesis are standard

deviations.

Page 92



Chapter 6

Comparison of Monitoring
Techniques

6.1 Introduction

This chapter compares and contrasts two system-monitoring techniques. The rpcspy/
nfstrace passive network-monitoring tools are compared with the snooper kernel
instrumentation package. In particular, the results from snooper are used as a baseline
against which the accuracy of the results of rpcspy/nfstrace can be compared.

The comparisons of snooper and rpcspy/nfstrace have been done by using si-
multaneous traces of a single machine over a 24-hour period. The trace of this machine
was performed from 11:00 a.m. Monday, 12th of December, 1994, until 11:00 a.m. the
following day. The machine traced was a Digital DECstation 3100 configured with
20Mbytes of memory, running Ultrix 4.3a. This machine was configured with a local
disk for virtual memory swap activities. The rpcspy trace was recorded to local disk
so as not to perturb the results with extraneous network activity. During the 24-hour
period, a loss of 1.5% of total Ethernet traffic was recorded giving a loss of 0.6% of
NF'S transactions from the total recorded trace.

The nfstrace post-processing tool uses a heuristic (described in Section 5.3.4) that
incorporates a timeout used to determine how long an open-close session will last. The
value is user-selectable but the default value of 135 seconds was used throughout the
analysis described in this chapter.

Figure 20 shows the relative instrumentation points of snooper and rpcspy. The

93



6.1. INTRODUCTION

differences in the points of instrumentation lends to differences in the types of informa-
tion available to each system. Of particular note is the fact that snooper can record
information about file operations between the user program and the kernel, whereas
the file-operations rpcspy can record are those between the kernel and the remote file
system. A major difference between these sets of communications traffic is that rpcspy
can record only operations that were not able to be serviced by the client’s block cache,
as the cache will prevent many data requests from ever going to the NFS level. In par-
ticular, the cache will prevent most consecutive accesses to the same file from becoming
duplicate NFS requests, and many short-duration file accesses may never have their

associated data transferred at the NFS level.

System call stubs

ker nel
i nstrunment ati on

L ocal Filesystem Block Cache NFS Filesystem
RPC
Device Driver
XDR
UDP/TCP
IP

Operating System Kernel

net wor k

Network noni t ori ng

Figure 20: The data flow between a user program and an NFS file system. Instrumen-
tation points for kernel instrumentation (snooper) and network monitoring (rpcspy)
are indicated. This diagram compares the difference in the information available to
each system. In particular, one instrumentation point, snooper, is before the cache
and the other, rpcspy is after the cache.

This ability to filter transactions associated with duplicated access to the same file-
data and those associated with short-duration files is one of the design objectives of
caches [73, 98, 8]. The cache is intended to filter file-system transactions from needing

to be sent to the file system. The cache performance of a system is related directly

Page 94




6.2. SYSTEM TRAFFIC

to the system’s overall performance because so much of a system’s operation is tied

directly to file tasks and thus to the performance of the cache [71].

6.1.1 Excluded data

Due to the problems noted in Section 4.3.6, all file transactions associated with the
reading of executable files by either the snooper or rpcspy systems were removed
from the trace data before processing. It should be noted the problems associated
with executable files stem from a shortcoming in the snooper instrumentation, not
the rpcspy/nfstrace system. Records pertaining to the snooper trace file itself were
removed from the output records during the processing stage.

While the removal of all execution transactions may seem to change the results
presented, the remaining data still permitted a satisfactory comparison of the two
monitoring systems and that the amount of potential comparison-error which would
be introduced due to the inclusion of incomplete execution records by snooper was not
justified. Additionally, file system traffic resulting from the loading of executable files
was excluded from previous studies such as Ousterhout et al. [73] and Baker et al. [§]

for the same reasons.

6.2 System traffic

The characteristics of the total file-system communications traffic are commonly-used
measurements. In the case of diskless workstations, the measurements are important
for insuring that the networks have adequate transport capacity and that the servers of
diskless workstations have adequate service capacity. In any sort of workstation such
values define the required capacity for disk interfaces, as well as being used in cache
and bus design [117, 80, 73, 8, 85].

A comparison of communications traffic to and from the file system at the logical
level, and of the communications traffic at the rpcspy network level, are not strictly
comparable, as each set of measurements was made on a different side of the cache.

However, one of the objectives of nfstrace was to estimate operations that occurred

Page 95




6.2. SYSTEM TRAFFIC

Particular interval snooper | nfstrace
measurement length (bytes) (bytes)

Total data transferred 86,644,530 | 46,967,724
Average data transferred 10 seconds 10,028 5,436
Peak data transferred 5,120,000 | 5,048,320
Average data read 7,468 2,590
Peak data read 5,120,000 | 3,914,935
Average data written 2,560 2,846
Peak data written 5,120,000 | 5,048,320
Average data transferred 10 minutes 601,698 326,165
Peak data transferred 19,028,550 | 17,015,414
Average data read 448,103 155,387
Peak data read 10,427,845 | 7,144,164
Average data written 153,595 170,777
Peak data written 8,600,705 | 9,289,091

Table 8: The total data transferred for the system. Peak and average values for 10
second and 10 minute intervals are also given.

at the user level by analysing the data communications traffic between client and server
and the transactions used by the client to ensure the contents of the cache are up to
date. As a result, while rpcspy/nfstrace cannot generate information on exactly
what data were transferred between the user programs and the file system (including
the NFS file-system routines and the block cache), it can calculate the exact amount
of data transferred between the NF'S file system and NFS server.

Table 8 gives a summary of results for the comparison period. It is immediately
apparent that for total data-transfer values, there is a major difference in the value
nfstrace estimates for the total data transferred when compared with snooper. They
differ by a factor of 1.7. From these results it is equally apparent that over the course of
a long term analysis (24 hours) results for peak values and write data are comparable
for the two systems.

Peak values display this characteristic because they typically involve data that is not
suitable for long term storage in the cache because it is too large or too volatile [73, 8, 98]
and that this characteristic is independent of the particular load a machine is under [71].
As a result, the similarity between transferred data, particularly peak values, would

remain across any sample taken. In comparison, values for the total quantity of data

Page 96




6.2. SYSTEM TRAFFIC

transferred over time is not similar. The difference between snooper read averages
and nfstrace values is not surprising. The client cache will eliminate successive NF'S
transactions for reading data from the NFS server and as a result, nfstrace cannot
record the data transfer that had occurred at the logical level.

Figure 21 shows plots of data transferred over time as recorded by snooper and
rpcspy/nfstrace. Heavy data transfer, particularly heavy writing activity, between
7am and 1lam is due to the testing of image encoding algorithms (by another re-
searcher) on this machine requiring the reading and writing of large image files.

Read data transferred over day (10 minute samples)

10 Mbyte shoopler read ——
” nfstrace read -----
g 8 Mbyte H
% 6 Mbyte H !
g !
o 4 Mbyte it
£ | ‘ |
@' 2 Mbyte /\J /‘\ ‘
0 Mbyte f~I+" NS = - e B

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00
Time of day

Write data transferred over day (10 minute samples)

10 Mbyte Shooper write ™
nfstra¢e write ----
g 8 Mbyte
@
E 6 Mbyte
g
» 4 Mbyte
[
S,

0 Mbyte \ ot A /\"
11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00
Time of day

Figure 21: Read and Write transfers as recorded by kernel instrumentation (snooper)
and network monitoring (nfstrace). A quiescent system from 19:00 until 7:00, the
machine is busy during the daylight hours.

The graph of read-data shows an example of the difference between data gained
from snooper instrumentation and that available to nfstrace. Periodic accesses by
automatic jobs account for the regular communications traffic logged during the 19:00
to 07:00 period. Because this communications traffic involves the regular execution
of programs, commonly with little other file-system activity, the cache of the client
contains all the software and associated data files to be used on these regular occasions.

The result is that approximately 300 Kbytes of logical data are read each 30 minutes

Page 97




6.3. FILE SYSTEM TRANSACTIONS

File System Function and Contents

/ root file system, also includes /var and /tmp. Top-level
file system containing temporary directories and logging
directories.

/usr contains standard software distribution, in addition to li-

braries and include files for the current system.
/var/spool/mail | contains each users’ mail file.

/usr/local contains locally installed software.
/usr2 home directories for a group of users.
/packages contains commercial software packages and collections of

project specific data (in this case image data).

Table 9: A breakdown of the file systems of the study and their respective functions.

at the snooper level, but rpcspy records negligible read-activity between client and
server over the same period.

The reason nfstrace is not as accurate for records of raw data transfer is because
NF'S transactions do not contain significant information about blocks read from the
cache of the client. The only specific read data available to rpcspy about data transfers

that occur is when data are read by the client from the server’s disks.

6.3 File system transactions

As discussed in Section 2.1.2, each file system is used typically for a particular purpose.
For example, one file system contains the user’s directories, another file system contains
executable files for the system, etc. The DECstation analysed in this study did not
have any local file systems, apart from that used to store trace data locally, and a local
swap disk. Table 9 lists the different file systems the client accessed over the trace
period and the tasks each file system served.

A breakdown of the type of data transferred to and from each file system can be
used to assist file system configuration decisions. Such decisions can include: which file
systems generates so much server traffic it should be locally attached to this machine
and how widely a particular file system is used. A breakdown of each file system’s
communications traffic is given in Table 10.

It is important to note that at the system-call level, as recorded by snooper, there

Page 98




6.3. FILE SYSTEM TRANSACTIONS

File System ‘ snooper rpcspy/nfstrace

total
/| 31,736,478 (36.63) | 5,863,351 (11.59)
/usr | 2,941,480 (03.39) | 1,446,003 (02.86)
/var/spool/mail | 4,385,788 (05.06) | 3,142,239 (06.21)
/usr/local | 1,455,692 (01.68) 965,364 (01.91)
/usr2 | 38,660,513 (44.62) | 35,251,413 (69.66)
/packages | 7,464,579 (08.62) | 3,934,663 (07.78)

read
/| 27,267,823 (42.26) | 2,853,302 (12.73)
/usr | 2,941,480 (04.56) | 1,446,003 (06.45)
/var/spool/mail | 3,836,074 (05.94) | 2,311,208 (10.32)
/usr/local | 1,455,692 (02.26) 965,364 (04.31)
/usr2 | 21,561,247 (33.41) | 10,895,621 (48.63)
/packages | 7,464,579 (11.57) | 3,934,663 (17.56)

write
/| 4,468,655 (20.20) | 3,010,049 (10.68)
/var/spool/mail 549,714  (02.49) 831,031 (02.95)
/usr2 | 17,099,266 (77.31) | 24,355,792 (86.38)

Table 10: Total data, read data and write data transferred per file system as measured
by snooper and rpcspy/nfstrace.

is a characteristic breakdown of these transactions. Of particular note is a very large
percentage of operations associated with the / partition. The large number of trans-
actions on this partition will have been potentially compounded because the /tmp and
/var/tmp directories resided on the / file systems. /tmp and /var/tmp can potentially
carry a large percentage of operations because temporary files are traditionally created
in this directory structure [108, 81].

Table 10 shows a moderate similarity between between the result from the two moni-
toring methods. Notable exceptions are traffic involving the / partition, and read-traffic
in general. While differences between values for read between snooper measurements
and those of rpcspy can be explained as resulting from the cache mechanism filtering
read requests between client and server, the read traffic for the / partition is particu-
larly pronounced. This difference is likely to result from a high usage of system files
located in the /etc directory being accessed, resulting in the corresponding cache en-
tries always being valid. Such examples are /etc/passwd: the list of users able to use

a system, /etc/hosts: a static table of the systems known to this client and for this

Page 99




6.3. FILE SYSTEM TRANSACTIONS

particular version of UNIX, /etc/fstab: a file listing the file systems that should be
mounted on this client.

The notable difference in the recorded quantities of read and write data for /usr2
is a reflection of the volatile nature of files on this file system. In particular, software

for image encoding was being developed and a cycle of
1. edit program
2. compile program
3. run program

will exist. This development cycle, during stage 1, results in source-code files being
written to the NFS server (and seen by rpcspy) but not necessarily read from the
NF'S server. During stage 2, in addition to the source-code files, libraries will be read
only once from the server and then may remain in the local cache while being used
repeatedly. Finally, during stage 3, while file transactions relating to the loading of
the executable file itself have been removed, this program takes as input a raw image
stream and outputs an encoded image stream. On consecutive runs the raw image
stream could have remained in local cache.

It should be noted that the ratio of read-to-write traffic already greatly favours the
write-traffic for /usr2 as measured with the snooper system but the cache activities,
filtering traffic, increase this ratio.

Significant differences between the amount of write traffic recorded by each moni-
toring system for both the /usr2 and /var/spool/mail file systems can be attributed
to the block cache needing to transfer data to and from the file system in block-sized
pieces. The result of this is that a modification of one byte in a file will result in the
writing of a whole block (8 Kbytes for these file systems) to the file system.

From this breakdown it is clear that, while activities on the / file system are re-
sponsible for a large percentage of logical file traffic, block caching seems to reduce
that quantity of data transfer by a factor of up to 6. By comparison, the /usr2 file

system is responsible for a higher quantity of data transfer and, in the development and

Page 100




6.4. SYSTEM USERS

‘ interval length ‘ snooper rpcspy
Number of active users
Maximum 10 minute 4 4
Average 1.6 2.2
Maximum 10 second 3 1
Average 1.0 1.0
Total bytes transferred per active user

Maximum 10 minute | 6,342,850 | 5,477,752
Average 263,535 109,820
Maximum 10 second | 5,120,000 | 5,048,320
Average 11,422 18,404

Table 11: The maximum and average number of active users over given intervals and
the total quantity of data transferred per active user in those intervals.

balancing of file systems, it would be important to establish whether this is a transient

condition or a regular trend for communications traffic for that particular file system.

6.4 System users

Table 11 presents several values related to the number of active users on the system
and the amount of traffic generated by them. Such tabulations have been made in a
number of previous studies and are useful in the estimation of the load a user may
impose on a system as well as the worst-case scenarios for this load.

The differences in Table 11 for the number of users are most likely the result of
snooper recording the real User ID (UID) associated with each logical operation and
rpcspy recording the effective User 1D associated each NFS transaction. This differ-
ence comes about because programs such as inetd (the internet service daemon) [29]
perform operations as one user and spawn programs that will run as another user. The
result is that counts of active users made through rpcspy/nfstrace usually differ by
a value of one when compared with the active user count from snooper.

Average-data-utilised per user indicates that cache-hit rates are, once again, absorb-
ing a substantial quantity of communications that would have occurred between each
user and the file system. It is interesting to note that the maximum values recorded
by each system are almost identical. This is most likely due to the transfer of large

amounts of data, causing the client’s cache to be quickly overrun with new data. As a

Page 101




6.5. FILES

result, only a minimal amount of data is cached at all during this time.

6.5 Files

As files are the common unit of data accessed on a file system, information about the
range of files accessed, as well as the working size of those files, enables developers to
determine the necessary size of file caches, to establish common working-set sizes and
to quantify other related measurements.

As had been mentioned earlier, the difference in the average file size for the / file
system was predictable. This will principally be a result of a large number of small,
system-related files not requiring access from the NFS system. The differences in other
values will have resulted from the caching of, and repeated accesses to, active files (even
if these files were active only for a short period of time). In this context, an active file
is one which is accessed one or more times.

Table 13 lists the number of different files recorded at the snooper, rpcspy and
nfstrace levels. At the rpcspy level, this is a count of every file that had a read
or write NF'S operation performed on it. The filtering characteristic of the cache is
obvious when comparing the number of files that had logical operations performed on
them at the snooper level with the number of files for which data was read from or
written to at the rpcspy level. Larger differences for the / file system will have been
as a result of accesses to the large number of regularly-accessed system files located
there. These files would be accessed often and be modified infrequently, as a result,
having a long cache life.

The results in this table show an area where the estimation method used by
nfstrace can generate discrepancies. nfstrace must estimate traffic to and from
files that have not caused any rpcspy read or write transactions. With the exception
of /var/spool/mail, nfstrace must estimate additional operations for files on each of
the five file systems. nfstrace has estimated extraneous operations on files of /usr2

and underestimated these operations for the other file systems, / in particular.

Page 102




6.5. FILES

File system | snooper | rpcspy/nfstrace

/ 43,378 227,880

/usr | 437,123 287,006
/var/spool/mail | 267,887 201,417
/usr/local 10,226 12,310
/usr2 42,713 46,067

/packages | 1,316,180 440,371

Table 12: A comparison of the average size for files accessed on each particular file
system.

As discussed in Section 5.3.4, nfstrace estimates operations on files from a com-
bination of NF'S read, write, setattr and getattr transactions. The estimates of
files which did not involve NFS read or write transactions would have resulted from
setattr or getattr operations. By using getattr transactions alone, there is poten-
tial for nfstrace to confuse getattr transactions caused by such operations as getting
a directory listing with those transactions being used to validate the contents of the
client cache.

In comparison, the graph of Figure 22, a normalised cumulative distribution of
the number of files of each size, shows that the estimation calculated by nfstrace
compares well with the results of snooper. The two significant differences between the
results of nfstrace and those of snooper which lead to disparities in the graph are
for the number of zero-length files and the number of files which were approximately
700 bytes in length.

In the first case, nfstrace is not able to generate accurate estimations of accesses
to various zero-length files and creates many more than actually existed. This may
most likely be due to nfstrace being unable to differentiate getattr transactions
for directories and getattr transactions being as a result of the opening of a zero-
length file. Files with a short life-span can present a problem to nfstrace. This is
because given a short enough life-span between file creation, the writing and reading
of data, and file deletion, no NFS read or write transactions may occur during the
open-close session. As a result nfstrace is not easily able to record data transfer

operations on files with a short life-span. In the second case, related case, nfstrace

Page 103




6.5. FILES

has underestimated the number of accesses to various files 700 bytes in length. In
addition to the reasons above, it is possible that nfstrace evaluates many of the 700-
byte file accesses as being zero-byte files accesses because of the block cache absorbing

the small-file transactions.

Cumulative distribution of the number of files of each file size
450 T

——snooper ——
el nfstrace ----

400 A

350

300

250 / !
200
150 /

100 = J

Number of files

50 b e -

1 10 100 1K 10K 100K M
Size of file (bytes)

Figure 22: Cumulative distribution of number of different files accessed versus file size.
From this graph we can deduce the number of times different files less than a given
size have been accessed. For example both techniques suggest that over 150 of the files
accessed are 1 kbytes in size or smaller. Note: the file size axis is logarithmic.

The following table, 13, gives a breakdown of the number of different files accessed
by the system during the measurement period. These values are consistent with the
hypothesis that nfstrace was unable to evaluate correctly accesses to zero length files.
The average file size for / would strongly confirm this, although the /packages results
run counter to this. This strong counter-example could be due to the unusual nature
of files on that particular file system: we note also that nfstrace results count one less
file for that file system; a single large file would have modified this average considerably.

While there are notable differences in each of Tables 13 and 12, the results from
them, in addition to those of Figure 22 show that nfstrace was able to give results

broadly comparable with those of snooper.

Page 104




6.6. FILE OPEN-CLOSE SESSIONS

File System snooper rpcspy nfstrace
/111 (24.89) | 68 ( )| 98 (22.37)
/usr | 10 (02.24) g8 ) ( )
/var/spool/mail 3 (00.67) 3 ) ( )
/usr/local | 49 (10.99) | 46 (11.59) | 48 (10.96)
(60.31) (67,76) (63.47)

(00.90) (00.76) (00.68)

/usr2 | 269 (60.31) | 269 278
/packages 4 (00.90 3
Total | 446 397 438

w

Table 13: A breakdown per file-system of the total number of different files accessed
during the trace period. The values in parentheses are each count as a percentage of
the total number of files.

6.6 File open-close sessions

The open-close session of a particular file is a concept around which a number of
measurements are based. A number of studies have used such measurements; examples
include file sharing, file utilisation and various cache studies [73, 8, 42, 48, 89, 6].

Such open-close session measurements include the length of time a particular file is
open, the amount of data accessed in that time, the amount of data potentially accessed
(the size of the file opened), what sort of open-close session was involved, was the file
opened to read and/or write operations, etc.

The number of open-close sessions as well as a breakdown of the relative types,
are tabulated in Table 14. The implementation of NFS under Ultrix includes the
synchronous writing of modified data blocks to the file system at the close of a file.
This means that nfstrace can only potentially miss write operations on files that
ultimately leave the file with zero length, for example, some sort of temporary file.
Read-only open-close operations have no such certainty. As a result, nfstrace will
not be able to generate results for reads on files that occur in close succession (where
the cache contents are still valid). Additionally, nfstrace may not correctly interpret
getattr NI'S transactions used to validate the cache. The result is nfstrace will
either miss some open-close sessions altogether, incorrectly interpret NFS transactions
as not being an open-close session, or incorrectly consider that the NFS transactions

from two or more separate open-close session are from the same open-close session.

Page 105




6.6. FILE OPEN-CLOSE SESSIONS

snooper nfstrace
read entries | 7442 (88.07) | 1749 (68.51)
write entries | 557 (06.59) | 804 (31.49)
read-write entries 35 (00.41) - -
null entries | 416 (04.92) - -
Total | 8450 2553

Table 14: The count of open-close sessions each monitoring system interprets. Addi-
tionally, a breakdown of these open-close sessions into read-only, write-only, read-write
and null open-close sessions is shown. A null session is where no data are read from
or written to the file (although the file was opened). Values in parentheses are the
percentage of the total number of files each type represents.

The larger number of writes recorded by nfstrace will certainly include the read-
write operations snooper recorded. nfstrace is unable to differentiate read-write
sessions and would consider each of such operations as a separate read and write session.
Null open-close sessions, where no data are transferred and the file is simply closed,
would not be able to be detected by nfstrace. Instead, nfstrace interprets any file
open, were that the only operation on a particular file, to be a reading of an unknown
amount of data from the client cache.

Because the borders between read and write operations cannot be determined accu-
rately, nfstrace will tend to collect successive open-close sessions together, interpreting
them as one longer open-close session. As a result of this, the average duration of the
open-close sessions reported by nfstrace may be higher than the durations reported
by snooper.

Tables 15 and 16, record the open-close sessions broken down by type of open-close
operation per file system basis, and by file system per operation. Firstly, Table 15
shows the full effect of the cache filtering, combined with nfstrace incorrectly in-
terpreting information available, causing open-close sessions to be removed. This is
especially the case for the / file system. The results for /var/spool/mail are a good
example of where nfstrace has misinterpreted the NFS getattr transactions as open-
close sessions because mail files are often checked for new mail resulting in getattr
transactions. By way of comparison, a better result is given for the /packages file

system. Files from this file system are unlikely to be able to be kept in cache for

Page 106




6.6. FILE OPEN-CLOSE SESSIONS

File System | session type snooper nfstrace
/ | read 6415  (90.33) | 818  (63.21)

write 354 (04.98) | 476  (36.79)

read-write 35 (00.49) - -

null 298 (04.20) - -

Jusr | read 123 (73.21) | 61 (100.00)

null 45 (26.79) - -
/var/spool/mail | read 18 (40.91) | 75  (91.46)
write 4 (09.09) 7 (08.54)

null 22 (50.00) - -

/usr/local | read 146  (100.00) | 100 (100.00)
/usr2 | read 731 (74.52) | 686  (68.12)
write 199 (20.29) | 321  (31.88)

null 51 (05.20) - -

/packages | read 9 (100.00) 9 (100.00)

Table 15: A breakdown of the open-close sessions on each file system by type of open-
close session. Values in parentheses are each type of operation as a percentage of the
open-close sessions on that file system.

long periods. The result is that nfstrace is able to give a better result for open-close
sessions because the NFS transactions for this file system were more complete.

Because the cache is removing the need for a large number of the read operations
to result in NFS transactions, the read:write ratio is closer to unity for the results of
nfstrace than the results of snooper. While this ratio is expected, even desirable, for
the measurements of data transferred, these values are incorrect for open-close sessions,
resulting in higher average data transferred per session and incorrect information about
the characteristics of the sessions.

However, while the ratios of the various types of open-close sessions produced by
nfstrace are not particularly close to those of recorded by snooper, adding the figures
for null sessions to the read open-close sessions improves the comparison for all file
systems except for /.

For Table 16, all write values are increased by nfstrace, particularly in the case
of /usr2. This error will partly be because nfstrace interprets the creation of any
file and any subsequent writing to that file as two separate write events. Additionally,
nfstrace can incorrectly interpret multiple writes to the same file as consecutive open-

close sessions. Because nfstrace interprets an access to the first byte of a file as the

Page 107




6.6. FILE OPEN-CLOSE SESSIONS

start of a new open-close session, nfstrace can interpret multiple writes into the same
location in a file as multiple open-close sessions on that file. As an example, this
situation can arise with the vi editor [30]. vi uses log files that check-point the edit
operations as they occur on the file, so vi can be continually writing small changes
to the log file. These collections of small writes will result in blocks being written
to the server and if there are a number of writes made to the first block, the first
block may be written to the server several times. Each time the first block is written
to the server nfstrace could potentially misinterpret the writing of data as separate
open-close sessions on the log file. It is worth noting that the actual number of extra
sessions is quite small and in comparison with values for all open-close sessions, will be
overwhelmed by the quantity of other open-close sessions (read sessions in particular).
However, for open-close sessions writing to a file, these extra open-close sessions can
be significant.

Some of these problems are as a result of the algorithms used by nfstrace. While
some assumptions have been made by nfstrace so as to produce an open-close session
record, this particular situation may be resolved with a more sophisticated nfstrace
algorithm.

The duration of an open-close session is important in determining the amount of
time a particular file is in use. This, in turn, is important in calculating the amount of
time files are shared between users and, in a distributed file system, between systems.
Figure 23 shows that duration of open-close sessions recorded by rpcspy will be
longer than those recorded by snooper. The longer open-close sessions that cause the
differences in average durations are likely to be a result of transactions that are part of
separate open-close sessions being interpreted as part of the same open-close session.

Additionally, the calculation of duration from NFS traffic means that lead and lag
times (times in which the file is open but no operation occurs) will be different from the
average length of the open-close session. These situations are represented graphically
in Figure 19, these figures show that the block operations upon which nfstrace’s

record will be based may not correspond with the logical open and close operations in

Page 108




6.6. FILE OPEN-CLOSE SESSIONS

File System session type snooper nfstrace
read 716415 (36.20) | 818 (46.77)
Jusr | 123 (01.65) | 61 (03.49)

/var/spool/mail 18 (00.24) | 75 (04.29)
/usr/local | 146  (01.96) | 100 (05.72)

Jusr2 | 731 (09.82) | 686 (39.22)

/packages 9  (00.12) 9 (00.51)

write 71 351 (6355) | 476 (59.20)
/var/spool/mail 4 (00.72) 7 (00.87)

Jusr2 | 199 (35.73) | 321 (39.93)

read-write / 35 (100.00) - -
null /| 298  (71.63) - -
Jusr | 45 (10.82) - -

/var/spool/mail | 22  (05.29) - -

/usr2 51 (12.26) - -

Table 16: A breakdown of the open-close sessions of each type, breakdown is by the
file system of the file. Values in parentheses are each file system’s operations as a
percentage of the open-close sessions of that type.

an open-close session.

Figure 24 graphs a comparison of the data-transfer rate as measured by snooper, as
per Figure 21, with the amount of data nfstrace estimates was potentially available
to the system, (an accumulation of the sizes of files accessed). While not directly
comparable, it is worth noting that the accumulation of the sizes of files is able to give
enough information to estimate with fair accuracy the trends of data transfer between
client and server.

Figure 25 shows a cumulative distribution of open-close sessions versus the amount
of data transferred. It is important to note that one reason that nfstrace differs so
significantly with snooperis that nfstrace was unable to detect the large percentage of
open-close sessions during which approximately 1 Kbyte was transferred. Additionally,
snooper results estimate that fewer than 500 of the open-close sessions transferred one
or zero bytes, whereas nfstrace results estimate those circumstances existed for more
than 1,000 of the sessions it recorded.

A primary reason nfstrace does not record the large number of sessions transferring
approximately 80, 750, 900 and 1,100 bytes is because those files are in the cache and

no data is transferred between server and client. This reason is strengthened by the

Page 109




6.6. FILE OPEN-CLOSE SESSIONS

Cumulative percentage of open-close operations against duration
100

— T snooper —

/ nfstrace -----

90 -

60 -

oS

% of open-close operations

30 F -

|
20 |
|

10

1ms 10ms 100ms 1s 10s 1min 10min 1Hr 10Hr
Duration

Figure 23: Normalised cumulative distribution of the number of open-close sessions
versus the duration. From this graph we can deduce the longest of the open-close
sessions for a given number of those sessions. For example, the snooper technique
records that 70% of the sessions have a duration of about 100 milliseconds or less.
Note: the duration axis is logarithmic.

Data over day (10 minute samples)

20 Mbyte
A snooper read(data transfered
| nfstrace read (filesize) ----
<15 Mbyte ' * (
[ n
S ‘ i i
210 Mbyte i fotd i
8 N o H v
s R A T ‘
2 5 Moyte byobod b i
N/ Vi [ R i RIS hoeTh I _ I |
& A H/\\%/} SR T S N T I VS A AT k AR R b
RA G LA, WA R R AR A R R E R A R
0 Mbyte M\AL 4 M\i/\g,‘l_ﬁm IUSATARR AR RATSARTI AW VAR
11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00
Time of day
Data over day (10 minute samples)
12 Mbyte
snooper write (data transferred

10 Mbyte nfstrace write:(filesize) ----
o i
o8 Mbyte '
o I
% 6 Mbyte '
e 1
g :
2 4 Mbyte H‘;
2 2 Mbyte /A‘ : J P

0 Mbyte DN\ TANIA | N A -

11:00 13:00 15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00
Time of day

Figure 24: These graphs compare the transfer rate measured with snooper, to the total
amount of data nfstrace has calculated the client has had access to in each file from
which it has read data. As a low-order approximation, these values are comparable
giving the same characteristics for data utilisation over time of the trace.

Page 110




6.6. FILE OPEN-CLOSE SESSIONS

files being of small size and stay in the cache, and that nfstrace gives trends similar
to those of snooper for other transfer values (even if the actual number of sessions is
greatly reduced).

Cumulative number of open-close operations against data transferred
9000 T

snooper ——
. +—— nfstrace -----

8000 L

~

7000

6000

5000

4000

3000

Number of open-close operations

2000

R e
1000 :

1 10 100 1K 10K 100K M
Data transferred (bytes)

Figure 25: Cumulative distribution of the number of open-close sessions versus the data
transferred for each open-close session. From this graph we can deduce the amount
of data transferred per open-close session for a given number of those sessions. For
example, the snooper technique records that over 7,000 sessions transfer about 1,100
bytes of data. Note: the data transferred axis is logarithmic.

The differences between snooper and nfstrace in Figure 26 have resulted from
nfstrace being unable to interpret frequent accesses to files of a certain length, in
particular, files which are 80, 750, 900 and 1,100 bytes in size. Accesses of such files
account for a large percentage of the overall open-close sessions for regularly-accessed
files but nfstrace is not recording an open-close session for them. This results in an
exaggeration in the graphs for the number of open-close sessions for common data-
transfer and file-size values. This situation is probably exacerbated by the inability of

nfstrace to record many of the open-close sessions in which no data transfer is made.

Page 111




6.6. FILE OPEN-CLOSE SESSIONS

Cumulative number of open-close operations against file size
9000 T

8000 S

7000

6000

5000

4000

3000 [

Number of open-close operations

2000 et

1000 i
J//(,//,_

1 10 100 1K 10K 100K M
File size (bytes)

Figure 26: Cumulative distribution of the number of open-close sessions versus the
size of the file accessed in each open-close session. From this graph we can deduce
the maximum size of files opened for each open-close session for a given number of
those sessions. For example, the snooper technique records that over 7,000 of the
sessions access files containing less than 1,100 bytes of data. Note: the file size axis is
logarithmic.

Page 112




6.7. RESULTS FROM RPCSPY/NFSTRACE ONLY

NFS transactions | payload data (bytes) | Average payload data

(%) (%) NFES transaction

Reads | 10,387 (61.73) | 26,502,065  (51.87) 2,681
Writes | 6,129 (38.27) | 24,591,581  (48.13) 4,012

Table 17: The above values are a count of all NFS read or write transactions as well
as all the data transferred in those transactions to or from the file server.

6.7 Results from rpcspy/nfstrace only

The combination of rpcspy and nfstrace may not currently be able to give accurate
information on open-close sessions and other logical levels of operations. However,
both these tools, particularly rpcspy, are able to give useful information about the
NF'S protocol, the utilisation of the network by a particular client, and server loads.
While a small amount of this information may be available from a particular ma-

chine, the most-accurate results are recorded from the network itself.

6.7.1 Network

In Table 17 a breakdown of the number of NFS transactions, data carried by those
transactions and the average amount of data per transaction are given. This set of
results is, like those presented previously, without executable file traffic. The very high
figure for the average amount of data per write transaction should be noted. It results
from write operations being performed in block-size unit or as close to block-size units
as possible.

In these results the amount of data read and written for a single client is almost
the same. This would lead to a conclusion that the performance of the client would
be as dependent on the speed of write operations as on read operations. This is not
the case in logical operations where the amount of data read commonly outstrips the
amount of data written to a file system by a factor of about 2.5 [73, 8].

A breakdown of the NFS transactions, as is given in Table 18, shows the type of
utilisation of the network by the client as well as highlighting potential problems. From
the table it is interesting to note that over 30% of the NFS transactions performed by

the client were getattr. While these transactions are not used exclusively for cache

Page 113




6.7. RESULTS FROM RPCSPY/NFSTRACE ONLY

consistency, the quantity of the transactions far outweighs any other. This would
imply that in comparison to read transactions, which account for only 6.8% of the
total number of transactions, there are over four times as many operations to check on
cache consistency than transactions that cause data to be placed into the cache.

In this particular breakdown a potential problem is highlighted. The number of
readlink transactions which are used to resolve symbolic links, is over 15% of the
total. According to an NFS performance guide produced by Sun Microsystems [105],
such a high figure may be adversely affecting performance, and reducing the number
of symbolic links will potentially improve performance.

In this way, information about the functioning of the NFS protocol can give in-
formation both about areas where any development would have best impact. In this
example, with a large utilisation of getattr, small improvements in its performance
will give potentially dramatic overall performance increases. Additionally, such intrin-
sic information can indicate potentially troublesome operational areas, in this case the
high percentage of readlink transactions.

With rpcspy there is potential for this technique to be used to collect information
about all machines communicating on a particular computer network. For example,
complete information about a file-server’s NF'S transactions could be collected from the
communications traffic of that particular server. Table 19 gives results similar to those
of Table 11 (results for a single machine), with the exception that these results have
been collected from all communications traffic with a particular server. This table has
two parts. The first part is based on the data exchanged between client and server.
While the second part is based on the NFS transactions exchanged with the server.
This table also provides an additional breakdown between both clients and users. The
results in this table have not had executable traffic removed, and thus it is not directly
comparable with results previously given. It is given as an indication of the unique
abilities of network-based monitoring.

Another difference between NFS transactions that carry data, read and write and

those that do not, such as getattr, is also given in Table 19. The number of client

Page 114




6.8. RESULTS FROM SNOOPER ONLY

NFS transaction | Total number (% of total)
getattr 45,902 (31.55)
lookup 27,214 (18.71)

readlink 22,159 (15.23)
statfs 12,861 (08.84)
readdir 10,109 (06.95)
read 9,886 (06.80)
write 6,129 (04.21)
remove 4,924 (03.38)
setattr 3,787 (02.60)
mkdir 693 (00.48)
rmdir 687 (00.47)
rename 434 (00.30)
create 352 (00.24)
null 339 (00.23)
link 11 (00.01)
root 0 (00.00)
writecache 0 (00.00)
Total 147618 -

Table 18: A breakdown of all NIF'S transactions to the file server.

machines and the number of users, transferring data to and from the server, differs
significantly from the number of different clients and users performing one or more
NFS transactions. This difference could result from a number of sources. Firstly,
clients may not need to collect data from the server if a local cache copy is available,
as a result the NFS transaction will be a getattr, transferring no data, the result
is that users on these machines do not need to retrieve data from the server that is
available in the client cache. The other reason for the difference could be that NFS
transactions will be triggered from clients when users do operations on the disk that
does not involve retrieving data. An example of this might be getting a listing of a

directory on the NFS server.

6.8 Results from snooper only

By virtue of snooper being a set of modifications to the kernel, there is potential for
snooper to collect any information about the operation of the kernel. This can include

information about processes, an aspect of machines that nfstrace will not be able to

Page 115




6.8. RESULTS FROM SNOOPER ONLY

From data transferred

Total number of users 41
Total number of clients 44

Maximum amount of data transterred by users | 339,668,438
Maximum amount of data transferred by clients | 379,519,630

Average amount of data transferred by users | 19,626,049
Average amount of data transferred by clients | 18,287,910

From NF'S transactions

Total number of users 101

Total number of clients 137

Maximum number of transactions by users 618,891
Maximum number of transactions by clients 317,547
Average number of transactions by users 10394.0
Average number of transactions by clients 7662.7

Table 19: A comparison of active users, maximum and average data transfers deter-
mined using both data transferred and NFS transactions. Results are further broken
down on the basis of per-user and per-client.

access as information describing the source process does not become part of the NFS

transactions.

6.8.1 Process information

The execution of a process goes through two distinct phases. In the first phase, the
process is created, using the fork system call, and the program to be executed is loaded
into memory. In the second phase, control is transferred to the new program using the
exec system call and finally the process will terminate with an exit system call.

Table 20 gives average times for each of these phases as well as the average time
taken between fork and exit, that is, the total lifetime of a particular process. It has
been noted that UNIX processes are, on average, short-lived [35, 52]. This is partially
because process creation has a low overhead and as a result processes have become a
resource that is highly used by operating systems developers.

Figure 27 shows a cumulative distribution of the time taken in each phase of the
process’s life. It is noteworthy that while more than 95% of processes have finished the
fork-exec cycle in less than half a second, 3% of processes take 10 seconds or longer

to have finished this phase. Also, 90% of processes take greater than 200 milliseconds

Page 116




6.9. SUMMARY

fork to exec | exec to exit | fork to exit
Average time in seconds 0.37 19.80 20.18
Maximum time in seconds 53.86 5,810.40 5,810.51

Table 20: The average time for phases of a process’s lifetime. The fork to exec time
covers the loading of a program. The exec to exit time covers the execution of the
program. The fork to exit times given are the total time taken for a process.

from fork to exit, yet 90% of processes take less than 10 seconds over this same time.

If we assume that open-close sessions of files are not restricted to processes with
any particular characteristics in regard to process lifetime, and that open-close sessions
that extend across two or more processes are relatively uncommon, then this process
life-limit would indicate the open-close session of a file was unlikely to be longer than
10 seconds in duration in 90% of cases. Such a result confirms that nfstrace may be
estimating incorrectly the occurrence and length of open-close sessions and, as a result,
will have the potential to incorrectly estimate the amount of data transferred for each
open-close session.

While the file traffic for programs executed was not included in these results, it
would indicate, from this result, that if the average open-close session (including file

traffic for executables) was included, the average duration would be closer to 10 seconds.

6.9 Summary

The preceding results show that, while the two set of results are not directly com-
parable, nfstrace is able to make a first order approximation of number of values
traditionally measured by systems such as snooper, such as the total 1/O transferred
by a machine or the quantity of data written. Additionally, other estimated values,
while imprecisely estimated by nfstrace in the current version, could potentially give
accurate enough results to be able to replace systems such as snooper outright in a
number of circumstances, such as measuring the number of active users per machine
or the distribution of file size compared with files accessed. Most discrepancies in the
interpretation by nfstrace when compared with results from snooper relate to the

identification of open-close sessions. Minimisation of these errors would improve the

Page 117




6.9. SUMMARY

Process lifetimes

100 P TS il Siuiuuinl MR
i AT fork fo execl —
jE exec to exit; ———+-
90 5 fork to exit; -+
80
/ /
70 /
//

@ 60 / 7
9]
[%]
[0}
(5]
] 50
o
k]
S 40

30 /

20

10

1ms 10ms 100ms 1s 10s 1min 10min 1Hr
Time

Figure 27: Cumulative distribution of the stages of process-life versus the time taken
in each stage. Most processes have two stages, the time taken between the fork and
exec system call when the executable is loaded, and the time taken between the exec
and exit system call when the executable is run. The time given as fork to exit is
the total amount of time taken for each process. From this graph we can deduce the
maximum time taken for an execution stage for a given percentage of processes. For
example these graphs show that about 65% of the fork-exec times of processes take less
than 100 milliseconds. Note: the time axis is logarithmic.

Page 118




6.9. SUMMARY

estimation of both open-close session duration and data-size results.

A number of the results collected by nfstrace are not comparable with those
collected by snooper, for example the amount of data transferred. While values for the
maximum data transferred and write operations can be compared, values affected by
significant caching (e.g. reading of data, particularly small amounts of data repeatedly
from the same file), will differ significantly.

In addition to measures which can be compared, the unique nature of both snooper
and rpcspy means that each has access to different types of information. Snooper,
as a piece of kernel instrumentation, is ideally suited to record information about
processes, an area from which network monitors are unable to retrieve information. In
comparison nfstrace is ideally suited to collecting information about all machines on a
particular network, including for example, all the traffic to a particular for server. These
differences mean each technique has a role to fulfil, but there is certainly potential for
network monitoring to be able to make measurements for which kernel instrumentation
has traditionally been used in the past.

Additionally, it is worth pointing out that the information rpcspy generates and
that nfstrace in turn uses, is not in error. The differences between nfstrace output
and that of snooper occur because nfstrace attempts to estimate the operations on
the user side of the cache, from the operations that occur on the file system side of
the cache. Improvements in the performance of nfstrace would come about from

improvements in this estimation process.

6.9.1 rpcspy/nfstrace problems

For nfstrace to be a more useful tool, the accuracy of its estimations needs to be
improved. There are a number of areas where nfstrace either makes errors or does
not have enough information with which to work.

Areas in which nfstrace can potentially be improved:

1. nfstraceincorrectly interprets the creation of a file to be two separate open-close

sessions.

Page 119




6.9. SUMMARY

2. nfstrace does not always correctly interpret getattr transactions. The result
of this is an overestimation of cached reads and an underestimation of open-close

sessions with no data transfer.

3. the method nfstrace uses for summing transfers together can result in spuriously

missing read or write transactions.

To a large extent these problems, particularly 2 and 3, are also a result of NFS
not making enough information available for nfstrace to be able to estimate the
operations that are occurring. The lack of data supplied by NFS also means nfstrace
acts as a filter removing short, consecutive, open-close read sessions. Such operations
are absorbed by the cache and as a result fine-grain sporadic operations are missed.

During this study, the recording of all Ethernet traffic by the rpcspy machine was
not possible (a loss of 1.5% was recorded). This implies a loss of 0.6% of the total
NFS transactions from the recorded trace, if we assume a ratio of NFS to non-NFS
traffic at the same ratio as was recorded during the testing of rpcspy network packet
capture mechanism (Section 5.4.1). While a source of potential error, this data loss
is overshadowed by the error introducing aspects of the operation of nfstrace. As
a result, while this error should not be discounted, it can be considered to have low

overall significance in the results.

Page 120




Chapter 7

Improving passive network
monitoring

In this chapter the discrepancies between results gained with rpcspy and nfstrace
and those gained by snooper (as shown in Chapter 6) are discussed. This chapter also
includes a discussion of methods by which the discrepancies can be reduced.

There are two distinct levels at which this suite of software operates: rpcspy collects
NF'S transactions from the network and nfstrace interprets the NFS-transaction trace
of rpcspy and generates a trace of open-close session records. Each of these two levels

is discussed separately.

7.1 Improving rpcspy
7.1.1 Limitations of rpcspy

rpcspy must be able to collect and pair enough NFS-transaction requests and replies
to enable accurate interpretation. Ideally, rpcspy should be able to record every NFS
transaction, but its ability to do so depends also on the Ethernet packet capture mecha-
nism of the machine on which it is operating. As was shown in Section 5.4.1, Figure 16,
neither of the Ethernet packet capture facilities rpcspy can use (the NIT mechanism of
SunOS and the packetfilter mechanism of Ultrix) are able to capture every Ethernet
packet beyond a particular level of Ethernet utilisation. In addition to this, rpcspy
has limits on the number of NFS transactions it can handle in a given time because it

has a significant amount of processing to perform in the matching of each transaction.

121



7.1. IMPROVING RPCSPY

The tapering effect of this processing is shown in Table 17.

As a result of these limitations, the performance of rpcspy is bound by the ability
of the Ethernet capture mechanism to collect all packets on the Ethernet network at
a given utilisation-level and on the performance of the rpcspy machine to process the

NFS transactions.

7.1.2 Improvements to rpcspy

In Section 5.4.1, a comparison revealed that the NIT Ethernet facility of SunOS offers
limited configurability as well as a higher packet loss, while the packetfilter facility
of Ultrix offers better configurability and higher performance (fewer lost packets). The
configurability of packetfilter, in particular the ability to increase the size of filter
buffers, gave a much better loss-characteristic for this system than the NIT based
implementation of rpcspy. Because rpcspy depends so critically on the characteristics
of the Ethernet packet capture mechanism facility for the equipment compared, the
selection of packetfilter is almost unavoidable.

Obtaining optimum performance from rpcspy also involves using a machine that
does not have other significant duties that would detract from its ability to process
NFS transaction information. For example, running rpcspy on the NFS server or
a workstation with a heavy workload would not give optimum performance results.
Ideally, the workstation used should be one dedicated to the task of collecting rpcspy
data, if only for the period of the trace. Additionally, it is a reasonable assumption that
the more powerful the workstation, the greater its ability to process NFS transactions.

While an rpespy configuration was not attempted on the newer workstations from
Digital or Sun Microsystems, both the improved performance of the workstations and
Ethernet capture mechanism would suggest potential improvement in the operation of

rpcspy on such machines.

Page 122




7.2. LIMITATIONS OF NFSTRACE

7.2 Limitations of nfstrace

Chapter 6 showed discrepancies between results of nfstrace and those collected by the
snooper kernel-instrumentation system. These discrepancies, listed in Section 6.9.1,
are a result of the lack of information available to nfstrace and of sometimes incor-
rect interpretation of this information by nfstrace. The misinterpretation is caused
by simplifications in the rule-base used by nfstrace, listed in Section 5.3.4, and inap-
propriate nfstrace parameters.

In nfstrace, a complicated relationship exists between each rule in the rule-base
it uses. As a result, the solution to a number of problems with nfstrace would
simultaneously solve or, in certain cases, complicate other observed discrepancies. The

listing below shows each major discrepancy or problem with nfstrace.

1. nfstrace treats the creation of a file as two separate open-close sessions.

2. Underestimation of the number of open-close sessions. This also means nfstrace
can overestimate the data transferred per open-close session, particularly in the

case of writes.
3. nfstrace is unable to observe logical data transfer.

4. nfstrace has no record of open-close sessions that transfer no data at the logical

level.
5. nfstrace has no record of open-close sessions that both read and write data.

6. The nfstrace method used for summation of read operations and write opera-

tions can result in transferred data not being counted.

7. The method used for estimating the purpose of an NFS getattr transaction is

simplistic.

8. nfstrace does not estimate the contents of a client cache. As a result nfstrace

will assume files in cache are being accessed when this is not the case.
9. nfstrace is unable to detect short open-close sessions.

Page 123




7.3. IMPROVEMENTS TO NFSTRACE

7.3 Improvements to nfstrace

In this section we will outline methods for improvements in each of the areas listed in

the previous section are outlined.

7.3.1 nfstrace treats the creation of a file as two separate
open-close sessions

This misinterpretation arises because nfstrace does not interpret NFS create trans-
actions at all. With the current algorithm, nfstrace processes the NFS getattr
transaction (a by-product of file creation used to get the attributes of the new file into
the client) and assumes that an open-close session involving a cache copy of the file
is taking place. nfstrace then interprets the NFS write transactions that typically
follow the creation of a file as a part of a different open-close session on that file.
While a modification to interpret the NFS create transaction would marginally
increase the complexity of nfstrace algorithm, the change would mean the correct
interpretation of the file-creation event. Such a change would also involve modifying
the interpretation of the getattr transaction caused by the creation of the file and
insuring, when appropriate, that operations writing data to the new file were also

treated as part of the same file-creation open-close session.

7.3.2 Underestimation of the number of open-close sessions

While the central reason for this underestimation, a lack of information from the NF'S
transactions, can not be solved easily, nfstrace does not always correctly interpret
the information it does have available.

Figure 28 illustrates the operation of the timeout in rpcspy. The timeout is used
by nfstrace to determine when a record for an open-close session should be generated.
It a new transaction occurs after a period greater than the length of the timeout since
the previous transaction it will be treated as the first transaction of a new open-close
session. In this way, the timeout-period represents the time between one open-close

session and the next session, on the same file, on the same client, by the same user.

Page 124




7.3. IMPROVEMENTS TO NFSTRACE

Open_ Open_ Open_ Time
Read | Block Read __ Read | Block Read __ Read | Block Read __
Close |
Open_
Read | Block Read
Close ] Read | Block Read
Close | Close |
Casel Case?2 Case 3 nfstrace

timeout

Figure 28: The operation of the nfstrace timeout in an open-close session. Case 1
shows the normal operation of the timeout, where an open-close session involves no
additional NFS transactions. Case 2 shows the situation where too-long a timeout will
cause the operations of two separate open-close sessions to be considered part of the
same open-close session. Case 3 illustrates the situation where a timeout is not long
enough and will typically cause the later NFS transactions to be considered as part of
a new open-close session.

Because this value is adjustable and the behavior of nfstrace depends critically
on the value of this timeout, the selection of this value is important. Unfortunately,
the appropriate value for the timeout is not easily calculated. The nfstrace software
uses a default value of 135 seconds (Blaze selected this value on the basis of his own
experimentation), but it is not difficult to conceive of circumstances where the timeout
might be inappropriate (in a network of significantly faster or slower machines for
example).

Figure 29 is a plot of the number of open-close sessions recorded by nfstrace
versus the timeout value. From this graph we can see that, under the current heuristic,
no timeout value would enable nfstrace to match the total number of open-close
session records generated by snooper. This graph also illustrates how characteristics
of the underlying NFS system manifest themselves in the trace data. The significant
steps at around 60 and 120 seconds are due to significant amounts of traffic, 60 and 120
seconds after blocks of a file have been read from the server. This traffic is most usually

getattr transactions being sent to validate the contents of the cache. Additionally, the

Page 125




7.3. IMPROVEMENTS TO NFSTRACE

large step from zero seconds results from nfstrace assuming each transaction (such
as a single NFS read, write or getattr transactions) as a single open-close session.

Open-close session records versus nfstrace timeout value
9000

8000

7000

6000

5000 h\

Number of open-close sessions

4000 L

3000

S S
—

2000
0 25 50 75 100 125 150 175 200 225 250 275 300
nfstrace timeout value (seconds)

Figure 29: The number of open-close sessions recorded by nfstrace versus the value
of the timeout nfstrace uses as part of its heuristic. nfstrace uses a default value of
135 seconds.

The number of open-close sessions is important because it affects values such the
average size of files and the amount of data transferred over a given time. However,
because data written to a file will almost always be seen as an NFS read transaction
and is independent of number of open-close sessions, simply changing this timeout
value to increase the number of open-close sessions could correct one of the values at

the expense of another.

7.3.3 nfstrace is unable to observe logical data transfer

nfstrace cannot collect actual data about logical data transfers because NFS trans-
actions do not contain this information. In the case of write operations, data are
committed to disk when a file is closed and the amount of data logically written is
nearly identical to the amount of data written to the file at the block level. However,

the use of the client cache means that the amount of logical-read traffic does not have

Page 126



7.3. IMPROVEMENTS TO NFSTRACE

a one-to-one relationship with the data read at the block level. The difference is de-
sirable because it improves the performance of the client machine and minimises the
workload placed on the communications network and server machine. However, to get
an accurate figure for logical file operations, a simple approach might be to modity
the amount of data transferred for read operations by some multiplier. The results
of Section 6.3 indicate that such a ratio would be around 2.8 : 1. This is broadly in
agreement with other file system cache study results [73, 8, 98, 108, 14, 58], most of
which consider the ratio 2.5 : 1 to be typical.

However, on closer inspection, the values in Table 10 show that while this average
might be true for traffic taken as a whole, it is not so on a file-system-by-file-system
basis. Using such a ratio as a multiplier is open to error because, as the results in Ta-
ble 10 indicate, the different requirements of a file system influence the data transferred
at the logical and block level for this file system as well as the ratio of the transferred
amount. As a result, the use of a multiplier derived from this sort of ratio depends
heavily on a similarity between the workload of the machine on which the ratio was
derived and the machine on which this value is to be used.

Such a technique has the advantage of simplicity and, depending on the accuracy
required, the use of a multiplier may be sufficient. However, it is worth noting that
in addition to changes in workload, changes in the amount of memory available for
caching can have a dramatic effect on the cache-hit ratio ([8, 73, 98]) and, because of
this, such modified results could easily, if accidently, be of little worth.

Another approach is to estimate the amount of data in the cache. This would,
at least, allow a user of nfstrace to estimate the amount of data that could have
potentially been accessed. nfstrace makes such an estimation which, currently, is
based on the size of the file thought to have been accessed. However, this is misleading
because in many cases, such as those involving executable or large data files, the whole
file might not be in the cache of the client computer. Furthermore, only part of the
file might be accessed. Using the file size will give at least a rough estimate of the

amount of data potentially available during an open-close session but will cause an

Page 127




7.3. IMPROVEMENTS TO NFSTRACE

overestimation of the amount of data accessed.

An improvement in the estimation of the amount of data in the cache of the client
would be for nfstrace to incorporate a simulator of the cached data. In this way,
nfstrace could make a more-accurate estimation of the amount of data potentially
transferred in an open-close session. The incorporation of a block cache simulator into
nfstrace would also assist in other areas where nfstrace reports results incorrectly
or where the results show a great discrepancy with those of snooper, this concept is

mentioned in more detail below.

7.3.4 nfstrace has no record of open-close sessions that trans-
fer no data at the logical level

Because nfstrace has no access to logical data, open-close sessions that transfer no
data will either appear as read open-close sessions with no data transferred or not
appear at all. This problem has no easy solution. However, it would be solved partly
by a better differentiation between programs such as 1s causing the stat system call
to invoke NI'S getattr transactions and the getattr transactions being used to check
the validity of the contents of cache or at the start of the open system call.

Blaze [11] found that the main cause of NFS getattr transactions was not related
to cache-consistency or to the opening of files, but was the 1s program itself. With
this information nfstrace may be able to handle, as a special case, NFS getattr
transactions that have occurred immediately following a request for the 1s or 1ls-
type programs rather than immediately assuming the NFS getattr transaction was
as a result of a cache-consistency check. This method has a number of potential
flaws and would involve pre-loading information about which programs were prone to
generate stat system calls (and thus NFS getattr transactions) so that nfstrace
could recognise them.

There is no easy way for nfstrace to detect with certainty any open-close sessions
that have had no logical data transfer. With the use of a block cache simulator,
nfstrace would at least be able to predict NI'S getattr transactions that did not

refer to blocks a client had in its cache. Additionally, combined with a better method

Page 128




7.3. IMPROVEMENTS TO NFSTRACE

of detecting spurious stat system calls, nfstrace may be able to better identify NF'S
operations as a result of open-close sessions and, thus, open-close sessions that have,

at least potentially, no data transfer at the logical level.

7.3.5 nfstrace has no record of open-close sessions that trans-
fer both read and write data

Because nfstrace has no access to logical data and a simple heuristic is used, open-
close sessions that cause data to be both read from and written to a file appear either
as a pair of open-close sessions (one for read operations and one for write operations)
or an open-close session is generated only for the write operations. The reason for this
second behavior, i.e. only one write open-close session for a file that has had data both
read from and written to it, is that the heuristic used by nfstrace attempts to cope
with the fact described in Section 6.6 that data transfers must be in block-sized units.
Consequently, even if only part of a block is being written, the block to be modified
must be read by the client before the modification can take place and the modified
block must then be written back.

An approach of the version of nfstrace Dahlin et al. modified for their study
([24]) would be to record when a file is truncated (the file is explicitly set to zero
length or the file has had no data transferred and the first operation is to write to
the first byte in the file) and then, regardless of what data was read from the file, the
open-close session would be treated as a write-only open-close session. In this way,
the complex special handling of blocks of a file read before they are written would
be more accurate and doubts about blocks read from the server being part of a write
operation would be removed. In all other cases where data is both read from and
written to a given file, nfstrace would consider the open-close session to be a read-
write session. This solution appears to be a good method by which read-write sessions

can be differentiated.

Page 129




7.3. IMPROVEMENTS TO NFSTRACE

7.3.6 The nfstrace method used for summation of read op-
erations and write operations can result in transferred
data not being counted

As mentioned above, nfstrace does not have a concept of a file being both read from
and written to during an open-close session. As a result, the heuristic nfstrace used
to calculate when a file was written to could cause previous NFS read transactions,
resulting from logical reads, to be included as part of the data transferred during the
write-only open-close session.

In combination with the suggestion to differentiate read-write open-close sessions
from write-only open-close sessions, nfstrace could be modified to record separately
the data read from and the data written to the server. In this way, post-processing
could enable the actual amount of data read or written to be determined instead of

the current system where the amount of transferred data is summed.

7.3.7 The method used for estimating the purpose of an NFS
getattr transaction is simplistic

As mentioned above, nfstrace uses a relatively-unsophisticated method to determine
whether an NI'S getattr transaction was used for cache validation or as a result of
another operation such as a stat system call. nfstrace does not keep track of the
contents of cache so it can make a prediction of whether an NIF'S getattr transaction
would be the result of cache validation only by assuming that previously-read cache
contents were being accessed. By incorporating a cache simulator, nfstrace would be
able to predict with more certainty whether an NFS getattr transaction was part of
a cache validation or as a result of another operation such as a stat system call.
nfstrace does combine the tracking of NFS lookup transactions, where a directory
entry is translated into a particular NFS file handle, to assist in eliminating spurious
NFS getattr transactions being handled as cache validation. This process is made
possible because the NFS lookup transaction is commonly part of the sequence of
calls when programs that display information about files (such as 1s) are executed.

However, the name-to-NFS-filehandle translation process, (causing the NFS lookup

Page 130




7.3. IMPROVEMENTS TO NFSTRACE

transaction) can result from many other causes. Theoretically, nfstrace could be
excluding some NFS getattr transactions from being considered as having been caused
by cache validation (such as at the opening of a file) because, as part of the opening
of a file, the name of the file had to be resolved into an NF'S file handle.

The incorporation of a cache simulator into nfstrace has the potential to help
minimise the misidentification of NF'S getattr transactions. This is a complicated
change and would also involve nfstrace collecting information about other operations

such as readdir, an operation which, like lookup, is used in the translation of name

to NFS-filehandle.

7.3.8 nfstrace does not estimate the contents of a client cache.

As mentioned above, nfstrace assumes that whenever a cache access is made the
whole of the file may have been transferred. Additionally, nfstrace may misinterpret
NFS getattr transactions as being for files in cache when that file was never cached

or when the cache entries had expired.

7.3.9 nfstrace is unable to detect short open-close sessions

Case 2 in Figure 28 illustrates a problem nfstrace may have when the operations of
two separate open-close sessions are close enough together so that nfstrace interprets
the operations to be part of a single open-close session. In the case where no NFS
transactions are generated for the second open-close session (perhaps due to caching)
there is no easy method by which nfstrace can be alerted to the second open-close
session and there is no way that nfstrace could generate an open-close session record
for it.

The other situation, where nfstrace interprets operations of the second open-
close session as part of the first open-close session, may be avoided easily. Currently,
nfstrace does attempt to do this. If the first byte of a file is (re)accessed, nfstrace
considers that to be the start of another open-close session. In this way, if data is
transferred as part of the second open-close session then nfstrace will potentially

record these transfers as a second open-close session. An improvement to this method

Page 131




7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACE

would be for nfstrace to include information on which blocks of a file have been
accessed so that it could differentiate blocks accessed once from those accessed a second
time. In this way nfstrace would interpret a second set of accesses to any blocks
in a particular file as the beginning of a new open-close session on that file. The
complication this method may introduce is where a file is not closed but the user
starts to re-read previously read data (although previous studies show this is relatively
uncommon) and instead a new open-close session will be started [73, 8].

Another case for nfstrace to handle is where the second open-close session causes a
single NI'S getattr transaction. nfstraceis not configured to interpret NIF'S getattr
transactions as a special case. If the transaction occurs within the timeout period,
as in case 3, it will be interpreted as being part of the first open-close session. If
it occurs outside the timeout period, nfstrace will consider it the start of a new
open-close session. It is unclear what the effect would be of changing nfstrace to
interpret all such single NFS getattr transactions as the start of a new open-close
session (independently of whether the timeout has ended). Such an assumption may
potentially improve the interpretation of transactions by nfstrace.

These two modifications, combined with the cache simulator mentioned above, have
the potential to improve the ability of nfstraceto record all open-close sessions, except
the case where no NFS transactions occur over the duration of the whole open-close
session. In the case of the Ultrix implementation of NFS, this is not as serious a
limitation as it would first appear. The open system call in Ultrix NFS will always
cause an NI'S getattr transaction. This means that all open-close sessions will cause

NF'S transactions in the Ultrix implementation.

7.4 A block cache simulator for nfstrace

The prospect of a cache simulator improving the performance of nfstrace lead to the
development of a proof-of-concept simulator. While not fully integrated with nfstrace,
this software served to prove that such a concept was feasible and did not add overly to

the complexity of the nfstrace system, while still giving the potential to improve the

Page 132




7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACE

accuracy of nfstrace results, reducing the divergence between those and the results
obtained by the kernel instrumentation system.

The cache simulator would be designed to supplement the nfstrace system and the
existing nfstrace rule-base (Section 5.3.4). A cache simulator would enable nfstrace
to be able to give accurate estimations of the data that may have been accessed in a par-
ticular open-close operation, as well as assisting nfstrace to be able to estimate better
when open-close operations do and do not occur. In this way, the simulator would be
driven with the NFS transactions that nfstrace uses, potentially by nfstrace itself.

Such a simulator could operate without explicit information about clients, using
various preprogrammed sizing parameters. However, for accurate operation, the simu-
lator should be preprogrammed with the size of caches of the clients and the number
of blocks each client cache can contain. The simulator will not be completely accurate
in its assumptions on what is in the client cache contents. This is because of a number

of factors:

e the initial state of a client’s cache is unknown,

e some file operations may not be visible as NFS transactions.

The first of these problems is addressed by starting the simulator in a known state.
Using the trace of NFS records from the time a client is powered up would be a solution
to this problem. The second problem is less easily solved and nfstrace suffers similar
interpretation errors with small files (Section 5.4.4). However, a cache simulator has a
greater ability to track the occurrence of read-only operations on any file, because the
cache simulator can track blocks that are still valid in the client cache, thus reducing

the magnitude of this error.

7.4.1 Block cache operation

The contents of a client cache are never explicitly removed. The removal process occurs
because the client requires other data to be in the cache, with blocks being removed on

the basis that these blocks have been the least-recently-used (LRU). From the perspec-

tive of the simulator, blocks would only be explicitly replaced following the occurrence

Page 133




7.4. A BLOCK CACHE SIMULATOR FOR NFSTRACE

of an NFS read write transaction. The decision on which block should be expired in
the simulator can be based on which block has been least recently accessed (expired)
and which block is oldest. FExact rules involving issues such as the replacement of
cache block entries with data from NFS write transactions require further investiga-
tion, however the NFS setattr and create transactions could potentially assist in
more accurate expiration of the cache for these block types. The NFS getattr and
setattr transactions (in combination with other NFS transactions such as create)

would cause the simulator to (re)validate the contents of the cache at any time.

7.4.2 A block cache simulator design

The proof-of-concept design was developed both as a supplement to increase the accu-
racy of nfstrace and as a trial to show the simulator is able to calculate such figures as
file and block sharing in the distributed file system without substantial post-processing.
This design was implemented in six files, about 3,000 lines, of C program code. This

design was implemented as follows:

o A list of NFS filehandle references was maintained which in turn, referenced client
entries. The client entries, in turn referenced all blocks of that particular file that
was currently contained in each cache. This design made the revalidation of cache
entries (on receipt of NFS getattr and setattr transactions) uncomplicated.
Also, in this way the number of copies of each file in each client cache could be

easily determined.

e Another list of clients was maintained, this in turn indexed the cached blocks, in
order of least recent usage and age. This list enabled simplified location of the

oldest cache blocks of a client so that these could then be replaced.

o An additional list of files, in turn referencing lists of the blocks that make up
each file, enabled counts to be maintained for the occurrence of blocks of a file

in each client’s cache. In this way block sharing across clients could be easily

established.

Page 134




7.5. SUMMARY

The trial simulator, while complete, requires extended testing against the kernel in-
strumentation system. In particular, such testing could validate the simulated contents

of a client cache against the real contents of a client cache.

7.5 Summary

Improvements of rpcspy will be achieved by using a high speed machine with a high-
speed, low-loss network interface to be dedicated to the task of data collection. The
improvements to nfstrace can not be stated quite as concisely. Smaller changes to

nfstrace include:
o adding the ability to interpret other significant NFS transactions such as create,

e using a simple ratio multiplier to obtain an estimate of data transfers at the

logical level,

e modification of nfstrace to keep information about file truncation giving the

ability to interpret file re-write events

e separately recording data read from and written to the server for all open-close

sessions,
e recording information on which blocks of a file have been accessed, and

o interpreting NFS getattr transactions that immediately follow a file being read

or written as another open-close session.

While some of these changes, such as the last item listed, would need to be tested to
ensure the resulting extra records were correct, others in the list would give immediate
improvement in the abilities of nfstrace.

More significant changes to nfstrace include

o pre-loading information about programs that cause stat system calls such as 1s,

e build a block cache simulator into nfstrace.

Page 135




7.5. SUMMARY

In order to pre-load information about commonly-used programs that cause stat
system calls, it may be necessary to profile the system prior to any significant tracing
activity. In most systems, commonly-used programs such as 1s could be expected to
generate potential problems and could be added by default. However, the need to
do a profiling operation would not only increase the complexity of passive network
monitoring but might also negate any advantage of network monitoring by potentially
requiring access to the machine being monitored. Another alternative, or addition, to
pre-loaded configuration information is for nfstrace to characterise programs such as
1s as it processes the NFS-transaction data. nfstrace would locate 1s type programs
by noting programs which, once executed, caused clusters of NFS lookup and getattr
transactions, typically for files sharing the same sub-directory. In this way, nfstrace
would be simultaneously processing the data and gaining enough information to locate
programs causing extraneous NFS getattr transactions thus improving the prediction
of 1s type programs during the course of the run.

The incorporation of a block-cache simulator into nfstrace offers the best potential
for increasing the accuracy of nfstrace. Unfortunately, several significant items of
information would be needed to recreate accurately the block cache of a client. These
would include the cache size on the client, the number of cache entries and the size of the
data blocks being transferred between client and server. Additionally, the programming
and testing of a cache simulator is not a simple task and because of resources used
(memory, etc.) would potentially mean nfstrace could not be run simultaneously
with rpcspy which is the recommended operating mode (in order to reduce output
data).

The addition of the simulator would mean that nfstrace would be attempting
to model a particular type of block cache. While there is a common ancestry for the
method used by block caches in UNIX and its derivatives, there are notable differences.
The introduction of such facilities as the demand-paging of executables, a facility noted
in Section 4.3.6, means the behavior of the caches of systems being monitored will differ,

sometimes dramatically. The result is that nfstrace may be required to incorporate

Page 136




7.5. SUMMARY

models for several different block-cache systems. While this would add to the complex-
ity of nfstrace, the common ancestry of block caches means much of the code used in
each simulator would be common to all. It is conceivable that such an nfstrace could
read a configuration file containing information on which cache method each client
was using. Without appropriate configuration information, nfstrace could assume
a particular model, perhaps the most common cache method used or the worst-case
simulator model.

Such a pre-loaded configuration file would also contain information about NFS
parameters such as cache and attribute timeouts, thereby assisting the accuracy of
the simulator. This information, on a file-system by file-system basis could also give
information about the characteristics of access to a file system, e.g. mail file systems
can potentially cause open-close sessions to be generated when none was, and so on.

A block-cache simulator would increase the accuracy of the open-close session pre-
dictions nfstrace makes and allow nfstrace to be used for other purposes. nfstrace
has the potential to simultaneously simulate the caches of all the machines on a network
so it could be used to study interactions between the caches of different machines. For
example, such a facility would enable a comprehensive study of block sharing among
NF'S clients.

An extension to nfstrace would enable it to keep track of information about the
directory systems in a distributed file system. Modifications to directory information
are written synchronously back to the server as the modifications take place, but the
directory information itself is cached on the clients. Because changes to the directory
information are written to the server synchronously, it is possible for nfstrace to
maintain an accurate simulation of the state of the file system. Additionally, nfstrace
could incorporate a directory-name cache simulator in the same style as a block-cache
simulator and be able to simulate the contents of this cache among many clients. As
in the case of a block-cache simulator, a directory-name cache would enable nfstrace
to be used to study interactions between the caches of the clients and track the history

of changes to the file system. The use of such a modification may enable a follow-up

Page 137




7.5. SUMMARY

study to Shirriff and Ousterhout’s work on name and attribute caching ([94]).

Many of the limitations in nfstrace, indeed, the very need for nfstrace to have to
estimate open-close sessions, are caused by the fact that this information about open
or close is not transmitted in the NFS protocol. Other distributed-system protocols,
such as Sprite [72] and the Andrew File System [42], transmit information related to
the state of files in the distributed file system. If nfstrace was modified to work
with such a state-oriented distributed system, the accuracy of nfstrace output could
potentially be as high as a full kernel instrumentation trace. The potential for accu-
rate rpcspy/nfstrace analysis of distributed systems should also hold true for any
distributed file system that transmits enough state information across the network.
This method even has the potential to work on theoretical distributed file systems,
such as xF'S [120, 24], which depart from a central file server model completely. It is
conceivable that during the development of such monitoring systems, methods based
on the passive monitoring of network traffic would become a primary tool for assisting
in the development and ultimately the management of such systems.

Another technique for increasing the accuracy of nfstraceis to add simulated state
operations to NFS. This would involve modifying the kernel of each client to output
extra NFS transactions for system calls such as open, close and seek. It would
not be necessary for the server to act on or even acknowledge these calls, however
the transmission of the extra information through the network would potentially give
nfstrace enough information to be able to establish when files were opened and closed.
Of course, such modifications are contrary to many of the concepts of passive network
monitoring, requiring modifications to perhaps many client machines. However, this
technique would maintain the benefit that the collection of the trace data would be
independent of the server and clients. It would impose no extra workload directly upon
them. This method of adding additional information to the communications traffic
between client and server, for the purposes of monitoring, was used in Baker et al. [8]

as one of a number of modifications they made to collect data for their work.

Page 138




7.5. SUMMARY

Distributed computer systems do not consist solely of distributed file systems. Sys-
tems such as Sprite [72], NOW [74, 118] and Amoeba [106] enable the migration of
processes among CPU elements (typically a CPU element is a computer workstation).
A monitoring method for such a system might involve monitoring the network’s in-
terconnecting processing elements and tracking the movement of the processes in the
same way that nfstrace monitors the movement of file data among workstations. In
this way, passive network monitoring has possible applications in areas other than just
the monitoring of distributed file systems. Any system with significant amounts of
information passing through an easily monitored communications network would lend
itself to this technique. Other distributed systems that may lend themselves to mon-
itoring in this way are the information services of the World Wide Web [119] or the

network based windowing system, X [90].

Page 139




Chapter 8

Conclusion

System monitoring is important in the development, refinement and operation of com-
puter systems in general and of operating systems in particular. Chapter 3 described
a number of methods of system monitoring and Section 3.3 illustrated how the results
of system-monitoring studies were commonly used in other studies on topics such as
cache simulation and user profiling. The results of such studies are used in the design
and implementation of new computer systems as well as in the refinement of computer
systems already in operation.

Chapter 4 discussed snooper, an implementation of full kernel instrumentation
able to give detailed, exact, comprehensive trace information about a system being
monitored. This exhaustive trace information is then processed into a record of file
open-close sessions. Such a system is able to detail any aspect of the operation of the
kernel such as logical or block-level file operations and details of processes. Because of
the ability of full kernel instrumentation to present such a wide overview of the system,
it has been the preferred method for system monitoring among system developers.

Chapter 5 described the rpcspy/nfstrace system. rpcspy/nfstrace is an im-
plementation of a passive network-monitoring system which is able to generate an
estimation of open-close sessions on files from NFS transactions exchanged between
client and server as observed by a trace machine. While passive network monitoring is
not able to replace full kernel instrumentation in every role, it can give useful first-order
approximations and has a potential for its accuracy to be increased. Additionally, pas-

sive network monitoring offers independence of the monitored systems and the ability

140



8.1. SUMMARY COMMENTS

to monitor many machines simultaneously.

A comparison of these two system-monitoring methods was the theme of Chapter 6.
In that chapter, results show that the passive network-monitoring implementation,
while unable to give results comparable with full kernel instrumentation in all cases,
was able to give good predictions of values derived from the full kernel instrumentation
in certain areas. This was particularly true of those areas related to the writing of
data. During this chapter we also established several areas of discrepancy between
the results of snooper and nfstrace. The chapter then covered areas where each
monitoring system was able to report information which was outside the capabilities
of the other. Finally, the areas of discrepancy between snooper and nfstrace were
summarised.

Chapter 7 covered comprehensively those areas where rpcspy and nfstrace had
either errors or significant discrepancies when compared with the results of snooper.
Solutions to each of the areas of discrepancy were then discussed. Additionally, it
was noted that passive network monitoring had the potential to give more accurate
information in a distributed file system with a greater amount of state information
transmitted through the monitored network and to be able to monitor other network

based systems.

8.1 Summary comments

In this thesis, system monitoring has been discussed as a significant part of the de-
velopment of computer systems. A common method of monitoring systems is to use
full kernel instrumentation, involving the modification of the source-code for the op-
erating system of the machine. Passive network monitoring can be a preferred choice
over kernel instrumentation for certain system monitoring work, particularly where the
source-code of the operating system is not available. Additionally, other advantages of

passive network monitoring can make it a preferred choice. These include:

e an independence of the collection of results from the machines being monitored

on the network,

Page 141




8.2. FUTURE WORK

e the ability to simultaneously monitor multiple machines on a network, the passive
network monitoring system requires no modifications to the operation of the

monitored systems, and

o the collection of data with passive network monitoring does not impact on the

machines being monitored.

Through the comparison of these two techniques, it is shown that passive network
monitoring is satisfactory, as a partial replacement for full kernel instrumentation.

In addition to this, passive network monitoring is non-invasive, platform indepen-
dent and has the ability to simultaneously monitor many network users. This gives it
the potential for use in many systems studies using a broader cross-section of machines.
Only through such a broad analysis can new systems be built based on information

gained from more than just test systems and theories.

8.2 Future work

Ideally, future work would broaden the base over which the comparison of the two
systems (Chapter 6) was made. The improvements could encompass both the inclusion
of all traffic types, instead of the restriction to only non-executable file traffic, and the
performing of the comparison on machines in a variety of operating circumstance. By
comparing over a variety of systems, any peculiarities of the load the test system was
placed under would be highlighted or, at least, minimised.

The logical extension of this work is the implementation of the suggestions in Sec-
tion 7.3. These improvements would also need to be tested in a manner similar to
the comparison of Chapter 6. For suggested improvements to nfstrace, it would be
important to ensure changes did not alter the algorithm in unexpected ways.

Using a more accurate nfstrace, a comprehensive analysis in the style of Quster-
hout et al. [73], Baker et al. [8], Howard et al. [42] and Spasojevic and Satyanara-
yanan [99] could be possible. Such an analysis would not only form an interesting

comparison and contrast with those studies but also enable data to be collected from

Page 142




8.2. FUTURE WORK

a variety of systems, rather than the traditional limitation to academic or research
installations.

A comparison of nfstrace with a similarly-designed RPC transaction processor
analysing other distributed file systems based upon RPC communications would give
an interesting point of comparison between NFS and those systems.

The incorporation of a cache simulator into nfstrace would offer the potential for
an increase in the accuracy of nfstrace estimations and the possibility for nfstrace
to be used to perform other system studies directly without the need for any exten-
sive results processing. Such a study could cover performance issues, while another
study could be made into the sharing of files and blocks among clients. In the case
of a performance study, the cache simulator could be used to establish relationships
between block lifetimes and cache effectiveness with the size of caches and timeout
characteristics of the NFS system.

As discussed in Section 7.5, a study into the utilisation of files and sub-directories,
including lifetimes, usage distribution, etc., would also be possible with a suitably-
enhanced nfstrace system. By combining such a modified nfstrace system with
data about the file system before and after the trace period, it would be possible for
nfstrace to accurately simulate and track operations on the directories of the file
system. Such a facility would allow studies into file-naming structures and the caching

of those structures in the style of Shirriff and Ousterhout [94].

Page 143




Appendix A

Glossary

block In a file system, a block is a unit of allocation. The file system allocates space

in block-size units, or in fragments of block-size units.

block cache/cache In operating systems, a block cache is an area of memory where
commonly used disk blocks are stored. The objective of a block cache is to min-
imize a machine’s need to access disk drives. In exchange, block caches will use

real memory, making it unavailable to the operating system or other programs.

child process A process that is the direct descendent of another process which created

it using the fork system call.

client A machine that requests services from a server. A client is usually unrelated
to a server: the only association with the server is through a communications

channel.

daemon A long-lived process that commonly provides a system-related service. A
characteristic of such a process is that it has no controlling user terminal; i.e. it

is a “background” process.

DMA /Direct Memory Access A hardware technique whereby the memory of a
machine may be accessed without involving any activities on the part of the
Central Processor Unit (CPU). This technique is commonly used for disk drives,
so that disk drive controllers can place data directly in memory, enabling the

CPU to continue doing other tasks.

144



dirty buffer blocks When a process changes the contents of a file, the cache will con-
tain these modified versions of disk blocks, known as called dirty buffer blocks.
The operating system must keep track of these blocks ensuring this data is ulti-

mately written to the disk.

disk block A disk block is a unit of allocation for the disk. The file system is allocated
in disk block-sized pieces or fragments of disk block size pieces. Commonly a disk

block is the same size as the sector size of the physical disk media in use.

Ethernet A 10Mb/s baseband communication technology for the interconnection of
computers in a local area network. Ethernet involves the use of a single broadcast
cable connecting all machines in a local area network. To communicate with each
other, machines send consecutive broadcasts onto the network for the receiving

station to record.

exec A system call in the UNIX operating system allowing a process to execute a
particular program. The exec system call has the effect of causing a process to
replace its current code, stack and data memory with those of a new program;

i.e. a new process is not created.

exit 1. The termination of a process in the UNIX operating system. 2. A system call

in the UNIX operating system allowing a process to terminate itself.

file A file is a basic construction in the UNIX operating system. It is a linear array of
bytes, it has at least one name (link) and it exists until all its names are deleted

explicitly.

file system A collection of files. In the UNIX operating system, a file system is, in

most cases, restricted to a single, physical, hardware device such as a disk drive.

filehandle A filehandle is an NFS construct by which an NFS server can uniquely
identify each file it makes available to NFS clients. An NFS client does not need
to decode the contents of a filehandle, a client only depends on it being a unique

reference to the file on the NFS server.

Page 145




fork A system call in the UNIX operating system allowing a process to create other

processes.

full kernel instrumentation Obtaining data about a computer system through the
placing of instrumentation code into the operating system (kernel) of the com-

puter system.

kernel A kernel is the central controlling program that provides basic operating-
system facilities. The UNIX kernel provides functions to access the file system,

creates and manages processes, and supplies communications facilities.

Is A UNIX command to list and generate statistics for files including access times,

ownership, etc.

mount 1. A UNIX command to make available a the data of file system from a
particular point in a pre-existing file system. 2. The action of splicing together
two separate file systems so that from the users perspective there appears to be

one larger file system.

mount point A mount point is the position (directory) in a file system under which a
mounted file system will be placed. For example, the /usr file system is mounted

upon the directory /usr.

Network File System/INFS Sun’s Network File System, a distributed file system
which is a de facto standard in the UNIX computer community for the sharing of
files between computers. Statelessness is central to the NFS mode of operation;
i.e. servers do not store state information about clients such as which files a
client has open. Additionally, all NFS transactions (between client and server)

are self-contained and repeatable (idempotent).

NFS transaction An NFS transaction is a self-contained pair of RPC operations; a

request and a reply.

NIT SunOS Ethernet packet filter. A software packet capture mechanism giving direct

access to Ethernet traffic.

Page 146




packetfilter Digital’s Ethernet packet filter. A software packet capture mechanism

giving direct access to Ethernet traffic.

parent process A process that is the direct ancestor of another process as a result of

creating the second process with the fork system call.

passive network monitoring Obtaining data about one or more computer systems
attached to a network by monitoring communications traffic exchanged by that

computer with others through the network.

PID /process ID In the UNIX operating system, a process identifier. An identifica-

tion of a process, unique for the lifetime of the process.

process A process is a basic construction in the UNIX operating system. In operating
systems, a process is a task or thread of execution. Each process is identified
independently and consists of program code, a data area and a stack area. These

components may be shared with other processes.
ps A UNIX command to print process-status statistics.

RPC Remote Procedure Call. A specification by which a client can request that a

service be performed by a server.

SCSI The Small Computer Systems Interconnect/Interface (SCSI) is an interface stan-
dard for connecting a computer and other devices via a fast, high-speed, parallel
interface. This interface is commonly used for connecting CD-ROM players, disk

drives and tape units to a computer system.

sector A sector is the smallest contiguous region on a disk that may be accessed with

a single I/O operation.

server A machine that provides services to another machine (client) via a communi-

cations channel.

synchronous I/O The appearance of an operation being synchronized with the cur-

rent process. In UNIX| read and write system calls are synchronous: The read

Page 147




and write system calls do not return until the operation has been completed. In
the case of the write system call, the data may not actually be written to the

final destination until some time later, for example, writing to a disk file.

system call A request by a user program to the operating system for some service to

be carried out.

UID/User ID In the UNIX operating system, a numerical identification assigned to
a user. Typically, such identifiers are assigned uniquely so that each user on a
system is assigned one User ID (although this need not always be the case). User
IDs are used in the control of resources such as file and directory access and

process control.

UNIX An operating system developed originally at the AT&T research laboratories
and finding popular usage in many research and educational establishments partly

because of the availability of source-code.

XDR eXternal Data Representation. A specification for the exchange of data in a

hardware-independent manner.

Page 148




Bibliography

1]

2]

[10]

ANDERSON, P. Effective Use of Local Workstation Disks in an NFS Network.
In USENIX LISA VI October 19-23, 1992 (October 1992), pp. 1-8.

ANSI. Carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications. IEEE, 1984. ANSI/IEEE Std 802.3 -
1985, ISO Draft International Standard 8802/3.

ANSI.  Token-Passing Bus Access Method and Physical Layer Specifications.
[EEE, 1984. ANSI/IEEE Std 802.4 - 1985, ISO Draft International Standard
8802/4.

ANSI. Token Ring Access Method and Physical Layer Specifications. 1EEE,
1984. ANSI/IEEE Std 802.5 - 1985, ISO Draft International Standard 8802/5.

Bacu, M., aAND GOMES, R. Measuring File System Activity in the UNIX
System. In EUUG Spring '88 (London, UK, April 1988), pp. 43-52.

BAKER, M., Asawmi, S., DEPRIT, E., OUSTERHOUT, J., AND SELTZER, M.
Non-Volatile Memory for Fast, Reliable File Systems. In Proceedings 5th Inter-

national Conference on Architectural Support for Programming Languages and
Operating Systems, October '92 (October 1992).

BAKER, M., AND SULLIVAN, M. Recovery box: Using fast recovery to provide
high availability in the UNIX environment. In USENIX Conference Proceedings,
Summer 1992 (San Antonio, TX, June 1992), pp. 31-44.

BAKER, M. G., HARTMAN, J., KUPFER, M., SHIRRIFF, K., AND OUSTER-
HOUT, J. Measurements of a Distributed File System. In Proceedings of the 13th

Symposium on Operating System Principles (Pacific Grove, CA, October 1991),
ACM, pp. 198-212.

BAKER, M. L. G. Fast Crash Recovery in Distributed File Systems. PhD thesis,
University of California, Berkeley, 1994. Also available as UCB:CSD technical
report UCB:CSD-94-787.

BARNETT, L., AND MALLOY, M. K. ILMON: A UNIX network monitoring
facility. In USENIX Conference Proceedings, Winter 1987 (Washington, D.C.,
1987), pp. 133-144.

149



BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

Braze, M. NFS Tracing by Passive Network Monitoring. In USENIX Con-
ference Proceedings, Winter 1992 (San Francisco, CA, January 1992), USENIX,
pp- 333-344. Also available as a Technical Report with the Department of Com-
puter Science, Princeton University.

BrLAZE, M. nfstrace network monitoring tool, January 1992. Availablity anony-
mous ftp ftp.uu.net:/networking/ip/nfs/nfstrace.shar.Z.

Braze, M. Caching in Large-Scale distributed file systems. PhD thesis, Princeton
University, January 1993.

Braze, M., AND ALONSO, R. Dynamic hierarchical caching in large-scale
distributed file systems. In USENIX Conference Proceedings, Summer 1991
(Nashville, TN, 1991), pp. 3-19. Also cs-tr-353-91, Computer Science Tech-
nical Report, Dept of Comp Sci, Princeton, NJ , Availability anonymous ftp
samadams.princeton.edu: “ftp/cstr/cs-tr-353-91.ps.Z.

Braze, M., AND ALONSO, R. Long-Term Caching Strategies for Very Large
Distributed File Systems. In USENIX Conference Proceedings, Summer 1991
(Nashville, TN, 1991), pp. 3-16.

Braze, M., AND ALONSO, R. Issues in Massive-Scale Distributed File Systems.
In USENIX File System Workshop, May 21-22, 1992 (Ann Arbor, MI, 1992),
pp- 135-136.

Boaas, D. R., MocguL, J. C.; AND KENT, C. A. Measured Capacity of
an Ethernet: Myths and Reality. Tech. Rep. 88/4, Digital Western Research
Laboratory, April 1988.

BozmanN, G., GHANNAD, H., AND WEINBERGER, E. A trace-driven study of
CMS file references. IBM Journal of Research and Development 35,5/6 (Septem-
ber/November 1991), 815-828.

Cao, P., FELTEN, E., AND LI, K. Implementation and performance of
application-controlled file caching. In First USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Monterey, CA, November 1994),
pp- 165-178.

CARSON, S., AND SETIA, S. Analysis of the periodic update write policy for
disk cache. [EEFE Transactions on Software Engineering 18, 1 (January 1992),
44-54.

CARSON, S., AND SETIA, S. Optimal Write Batch Size in Log-Structured File
Systems. In USENIX File System Workshop, May 21-22, 1992 (Ann Arbor, MI,
1992), pp. 79-92.

Page 150




BIBLIOGRAPHY

[22]

23]

[24]

33]

[34]

CHERITON, D., AND MANN, T. Decentralizing a Global Naming Service for
Improved Performance and Fault Tolerance. ACM Transactions on Computer

Systems 7, 2 (May 1989), 147-183.

CrLark, D. W., BannonN, P. J., AND KELLER, J. B. Measuring VAXS8800
Performance with a Histogram Hardware Monitor. In Proceedings of the 15th
Annual International Symposium on Computer Architecture (Honolulu, HI, May

1988).

DAuLiN, M. D., MATHER, C. J., WANG, R. Y., ANDERSON, T. E., AND
PATTERSON, D. A. A quantitative analysis of cache policies for scalable network
file systems. Tech. Rep. UCB:CSD-94-798, Department of Computer Science,
University of California, Berkeley, February 1994. Also appeared in 1994 ACM
SIGMETRICS Conference on Measurements and Modeling of Computer Systems,
Nashville, TN, May, 1994, pp 150-160.

Davies, N. A., AND NicoL, J. R. Technological perspective on multimedia
computing. Computer Communications 14, 5 (1991), 260-272.

DE JONGE, W., KAaasnoek, M. F., AND Hsien, W. C. The Logical Disk:
A New Approach to Improving File Systems. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (Asheville, NC, December 1993),

pp- 15-28.

DIGITAL. packetfilter - Ethernet packet filter, Ultrix 4.3a User Manual ed., 1987.
DIGITAL. rwhod(8c) - system status server, Ultrix 4.3a User Manual ed., 1987.
DIGITAL. inetd(8c) - internet service daemon, Ultrix 4.3a User Manual ed., 1992.
DIGITAL. vi(1) - screen editor, Ultrix 4.3a User Manual ed., 1992.

Douatlis, F., OusTERHOUT, J. K., KAASHOEK, M. F., AND TANENBAUM,

A. S. A Comparison of Two Distributed Systems: Amoeba and Sprite. Com-
puting Systems (Autumn 1991), 353-384.

EBLING, M. R., AND SATYANARAYANAN, M. Synrgen: An extensible file
reference generator. Tech. Rep. CMU-CS-94-119, School of Computer Science,
Carnegie Mellon University, February 1994. Also appeared in 1994 ACM SIG-

METRICS Conference on Measurements and Modeling of Computer Systems,
Nashville, TN, May, 1994, pp 138-149.

EMER, J. S., AND CLARK, D. W. A Characterization of Processor Performance
in the VAX-11/780. In Proceedings of the 11th Annual International Symposium
on Computer Architecture (Ann Arbor, MI, May 1984).

ENDO Y. ET EL. VINO: The 1994 Harvest. Tech. Rep. TR-34-94, Harvard Uni-
versity, Center for Research in Computing Technology, December 1994. Avail-
ability anonymous ftp das-ftp.harvard.edu:/techreports/tr-34-94.ps.gz.

Page 151




BIBLIOGRAPHY

[35]

[36]

[39]

[40]

[41]

[42]

[44]

[45]

[46]

[47]

[48]

FEDER, J. The Evolution of UNIX System Performance. ATE T Bell Laboratories
Technical Journal 63, 8 (October 1984), 1791-1814.

FrLovyp, R. Short-Term File Reference Patterns in a UNIX Environment. Tech.
Rep. TR-177, Department of Computer Science, University of Rochester, March
1986.

Froyp, R. A., AND ErLIS, C. S. Directory reference patterns in hierarchical
file systems. IEEE Transactions on Knowledge and Data Engineering 1, 2 (June

1989), 238-247.

GRIFFIOEN, J., AND APPLETON, R. Reducing file system latency using a
predictive approach. In USENIX Conference Proceedings, Summer 1994 (June
1994), pp. 197-207.

GUSELLA, R. A Measurement Study of Diskless Workstation Traffic on Ethernet.
IEEE Transactions on Communications 38,9 (September 1990), 1557-1568.

HARTMAN, J., AND OUSTERHOUT, J. Zebra: A Striped Network File System.
In USENIX Workshop on File Systems, May 1992 (May 1992), pp. 43-52.

Hirt M. D. ET AL. SPUR: A VLSI Multiprocessor. Tech. Rep. UCB-CSD-86-
273, Department of Computer Science, University of California, Berkeley, April
1986.

Howarbp, J., Kazar, M., MENEES, S.; NICHOLS, D., SATYANARAYANAN,
M., SIDEBOTHAM, R., AND WEST, M. Scale and performance in a distributed
file system. ACM Transactions on Computer Systems 6, 1 (February 1988), 51—
81.

IrraM, G. UNIX file size survey - 1993, April 18th, 1995. Available via the
World Wide Web http://www.base.com/gordoni/ufs93.html.

ITU. ISO 9314 - Fibre Distributed Data Interface. 1SO, 1989.

JENSEN, D. W., AND REED, D. A. File archive activity in a supercomputer en-
vironment. Tech. Rep. UTUCDCS-R-91-1672, Department of Computer Science,
University of Illinois at Urbana-Champaign, April 1991.

KertH, B. Perspectives on NFS file server performance characterization. In
USENIX Conference Proceedings, Summer 1990 (Anaheim, CA, 1990), pp. 267
277.

KERNIGHAN, B., AND RiTCcHIE, D. The C Programming Language. Prentice-
Hall, Englewood Cliffs, NJ, 1978.

KISTLER, J., AND SATYANARAYANAN, M. Disconnected operation in the coda
file system. ACM Transactions on Computer Systems 10, 1 (February 1992),
3-25.

Page 152




BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[57]

[58]

[59]

[60]

[61]

KisTLER, J. J. Disconnected Operation in a Distributed File System. PhD
thesis, School of Computer Science, Carnegie Mellon University, May 1993. Also
available as CMU technical report CMU-CS-93-156.

KuprER, M. D. An Appraisal of the Instrumentation in Berkeley UNIX 4.2BSD.
Tech. Rep. TR-CSD-85-246, Department of Computer Science, University of Cal-
ifornia, Berkeley, 1985.

KuPFER, M. D. Performance of a remote instrumentation program. Tech. Rep.
UCB-CSD-85-223, Department of Computer Science, University of California,
Berkeley, 1985.

LEFFLER, S. J., McKusick, M. K., KARELS, M. J., AND QUARTERMAN,
J. S. The Design and Implementation of the /.3BSD UNIX Operation System.
Addison Wesley, October 1990.

Li, K. Towards A Low Power File System. Tech. Rep. UCB:CSD-94-814, De-
partment of Computer Science, University of California, Berkeley, May 1994.

Lyon, B. XDR : External Data Representation Standard, June 1987. Network
Working Group Request For Comment (RFC) : 1014, Written in association with
DARPA and Sun Microsystems Inc.

Lyon, B. RPC : Remote Procedure Call Protocol Specification, April 1988. Net-
work Working Group Request For Comment (RFC) : 1057, Written in association
with DARPA and Sun Microsystems Inc.

MAcCKLEM, R. Lessons Learned Tuning the 4.3BSD Reno Implementation of
the NFS Protocol. In USENIX Conference Proceedings, Winter 1991 (Dallas,
TX, 1991), pp. 53-64.

MAckLEM, R. The 4.4BSD NFS Implmentation. Computer Systems Research
Group, University of California, Berkeley, 1993. from SMM:06-2.

MAKAROFF, D., AND EAGER, D. Disk Cache Performance for Distributed Sys-
tems. In IEEFE 10th International Conference on Distributed Computing Systems
(1990), pp. 212-219.

McGREGOR, A. J. PRIMON: The design and implmentation of a Primos Soft-
ware Monitor. Master’s thesis, Massey University, 1984.

McKusick, M. K., Joy, W. N., LEFFLER, S. J., AND FABRY, R. A Fast
File System for UNIX. ACM Transactions on Computer Systems 2, 3 (August
1984), 181-197.

METCALFE, R., AND BOGGS, D. Ethernet: Distributed Packet Switching for
Local Computer Networks. Communications of the ACM 19,7 (July 1976), 395-
404.

Page 153




BIBLIOGRAPHY

[62]

[63]

[64]

[65]

[68]

[69]

[71]

[72]

73]

MILLER, E. L., AND KaTZ, R. H. An Analysis of File Migration in a UNIX Su-
percomputing Environment. Tech. Rep. UCB-CSD-92-712, Department of Com-
puter Science, University of California, Berkeley, November 1985.

MogauL, J. C. Efficient Use of Workstations for Passive Monitoring of Local
Area Networks. Tech. Rep. 90/5, Digital Western Research Laboratory, May
1990.

MocguL, J. C. A better update policy. Tech. Rep. DEC-WRL-94/4, Digital
Western Research Laboratory, April 1994. Also appeared in Summer USENIX
Conference, Boston MA, June, 1994.

MocuL, J. C., Rasuip, R. F., AND AcciETTA, M. J. The packet-filter:
An efficient mechanism for user-level network code. In Proceedings of the 11th

Symposium on Operating Systems Principles (Austin TX, November 1987), ACM
SIGOPS.

MORRIS, J., SATYANARAYANAN, M., CONNER, M., HOWARD, J., ROSEN-
THAL, D., AND SmiTH, F. D. ANDREW: A distributed personal computing
environment. Communications of the ACM 29, 3 (March 1986), 184-201.

MUMMERT, L., AND SATYANARAYANAN, M. Long Term Distributed File Ret-
erence Tracing: Implementation and Experience. Tech. Rep. CMU-CS5-94-213,
School of Computer Science, Carnegie Mellon University, November 1994.

MUMMERT, L., WING, J., AND SATYANARAYANAN, M. Using belief to reason
about cache coherence. Tech. Rep. CMU-CS-94-151, School of Computer Science,
Carnegie Mellon University, May 1994.

NELSON, B., AND CHENG, Y.-P. How and Why SCSI is Better than IPI for
NFS. In USENIX Conference Proceedings, Winter 1992 (San Francisco, CA,
1992), pp. 253-270.

Nowicki, B. NFS : Network File System Protocol Specification, March 1985.
Network Working Group Request For Comment (RFC) : 1094, Written in asso-
ciation with DARPA and Sun Microsystems Inc.

OUSTERHOUT, J. K. Why Aren’t Operating Systems Getting Faster as Fast as
Hardware. USENIX Summer Conference June 11-15 (June 1990).

OusTERHOUT, J. K., CHERENSON, A. R., DouGLis, F., NELSON, M., AND
WELCH, B. The Sprite network operating system. IEEE Computer 21, 2 (Febru-
ary 1988), 23-36.

OusTERHOUT, J. K., DACosTA, H., HARRISON, D., KUNZE, J., KUPFER,
M., AND THOMPSON, J. A trace-driven analysis of the UNIX 4.2 BSD file
system. In 10th Symposium on Operating System Principles (Orcas Island, WA,

December 1985), ACM, pp. 15-24.

Page 154




BIBLIOGRAPHY

[74]

[75]

[76]

[36]

PATTERSON, D. A Case for Networks of Workstations: NOW. Paper to appear
in IEEE Micro. Presented at Hot Interconnects II and Principles of Distributed
Computing, August 1994.

PETERSON, J. L., AND SILBERSCHATZ, A. Operating System Concepts, world
student series edition ed. Addison-Wesley, Reading, Massachusetts, 1985, ch. 9,
pp. 332-333.

PosTEL, J. Internet protocol, September 1981. Written in association with
DARPA.

PosTEL, J. Transmission Control Protocol, September 1981. Written in associ-
ation with DARPA.

PosTEL, J. Unreliable datagram protocol, September 1981. Written in associa-
tion with DARPA.

RAMAKRISHNAN, K. K., AND EMER, J. Performance analysis of mass stor-
age service alternatives for distributed systems. [FEE Transactions on Software

Engineering 15, 2 (February 1989), 120-133.

REDDY, A. L. N., AND BANERJEE, P. An Evaluation of Multiple-Disk 1/O
Systems. [EEE Transactions on Computers 38, 12 (December 1989), 1680-1690.

Ritcuie, D. M., AND THOMPSON, K. The UNIX time-sharing system. Com-
munications of the ACM 17,7 (July 1974), 365-375.

RoseENBLUM, M. The Design and Implementation of a Log Structured File Sys-
tem. PhD thesis, University of California, Berkeley, 1992. Also available as
UCB:CSD technical report UCB:CSD-92-696.

RosenBLUM, M., AND OUSTERHOUT, J. K. The LFS Storage Manager. In
USENIX Conference Proceedings, Summer 1990 (Anahien, CA, June 1990),
pp- 31-44.

RoseENBLUM, M., AND OUSTERHOUT, J. K. The Design and Implementation of

a Log-Structured File System. In Proceedings of the 135th Symposium on Operating
System Principles (July 1991).

RUEMMLER, C., AND WILKES, J. UNIX disk access patterns. Tech. Rep.
HPL-92-152, Hewlett Packard Laboratories, December 1992. Also published in
the USENIX Winter 93 Technical Conference Proceedings, San Diego, CA, Jan
25-29, 1993 pp 405-420.

RUEMMLER, C., AND WILKES, J. A trace-driven analysis of disk working set
sizes. Tech. Rep. HPL-OSR-93-23, Operating Systems Research Department,
Hewlett-Packard Laboratories, April 1993.

Page 155




BIBLIOGRAPHY

[87]

[92]

[93]

[95]

[96]

[97]

(98]

[99]

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALsH, D., AND Lyon, B.
Design and Implementation of the Sun Network Filesystem. In USENIX Confer-
ence Proceedings, Summer 1985 (Portland, OR, June 1985), USENIX, pp. 119-
130.

SATYANARAYANAN, M. A study of file sizes and functional lifetimes. In Proceed-
ings of the 8th Symposium on Operating System Principles (1981), pp. 96-108.

SATYANARAYANAN, M. The Influence of Scale on Distributed File System De-
sign. IEEE Transactions on Software Engineering 18, 1 (January 1992), 1-8.

SCHEIFLER, R., AND GETTYS, J. The X Window System. ACM Transactions
on Graphics 5,2 (April 1986), 79-109.

SELTZER, M. File System Performance and Transaction Support. PhD thesis,
University of California, Berkeley, 1992. Also available as UCB:CSD technical
report UCB:CSD-93-741.

SHAND, M. Measuring system performance with reprogrammable hardware.

Tech. Rep. PRL-RR-19, DEC Paris Research Laboratory, August 1992.

SHEIN, B., CALLAHAN, M., AND WOODBURY, P. NFSSTONE: A Network File
Server Performance Benchmark. In USENIX Conference Proceedings, Summer

1989 (Baltimore, MD, 1989), pp. 269-275.

SHIRRIFF, K., AND OUSTERHOUT, J. A Trace-Driven Analysis of Name and
Attribute Caching in a Distributed System. In USENIX Conference Proceedings,
Winter 1992 (San Francisco, CA, 1992), USENIX, pp. 315-332. Availability

anonymous ftp cs.berkeley.edu: "ftp/papers/nameUsenix92.ps.Z.

SIEBENMANN, C., AND ZHOU, S. Snooper Users Guide. University of Toronto,
August 1993.

SMITH, A. Analysis of Long Term File Reference Patterns for Application to
File Migration Algorithms. IEEFE Transactions on Software Fngineering SE-7, 4
(July 1981), 403-417.

SMITH, A. J. Long term file migration: Development and evaluation of algo-
rithms. Communications of the ACM 2/, 8 (August 1981), 521-532.

SMITH, A. J. Disk cache - miss ratio analysis and design considerations. ACM
Transactions on Computer Systems 3, 3 (August 1985), 161-203.

SPASOJEVIC, M., AND SATYANARAYANAN, M. A usage profile and evaluation
of a wide-area distributed file system. Tech. Rep. CMU-CS-93-207, School of
Computer Science, Carnegie Mellon University, October 1993. Also appeared in
Winter USENIX Conference, San Francisco, CA, January, 1994.

Page 156




BIBLIOGRAPHY

[100] STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I. Kerberos: An Authenti-

cation Service for Open Network Systems. In USENIX Conference Proceedings
(Dallas, TX, 1988), pp. 191-202.

[101] STRANGE, S. Analysis of long-term UNIX file access patterns for application to
automatic file migration strategies. Tech. Rep. UCB-CSD-92-700, Department
of Computer Science, University of California, Berkeley, 1992.

[102] SUN MICROSYSTEMS. nfsd(8) - NES daemon, SunOS Reference Manual ed.,
1988.

[103] SUN MICROSYSTEMS. NIT(4) Network Interface Tap, SunOS Reference Man-
ual ed., 1988.

[104] SUN MICROSYSTEMS. dbm(3x) - database subroutines, SunOS Reference Man-
ual ed., 1993.

[105] SUN MICROSYSTEMS COMPUTER COMPANY, MOUNTAIN VIEW, CA. SMCC
NES Server Performance and Tuning Guide, November 1994. Part No. 801-7289-
10.

[106] TANENBAUM A., ET AL. Experiences with the Amoeba Distributed Operating
System. Communications of the ACM 33, 12 (1990).

[107] THEKKATH, C. A., WILKES, J., AND LAZOWSKA, E. D. Techniques for file
system simulation. Tech. Rep. HPL-92-131, Hewlett Packard Laboratories, Octo-
ber 1992. Also published as Technical Report 92-09-08, Department of Computer
Science and Engineering, University of Washington, Seattle, WA.

[108] THOMPSON, J. File Deletion in the UNIX System: Its Impact of File System
Design and Analysis, April 1985. Computer Science Division, EECS,University
of California, Berkeley CS 266 term project.

[109] THOMPSON, J., AND SMITH, A. Efficient (stack) algorithms for analysis of
write-back and sector memories. ACM Transactions on Computer Systems 7, 1

(February 1989), 78-117.

[110] THOMPSON, J. G. Elfficient Analysis of Caching Systems. PhD thesis, EECS,
University of California, Berkeley, September 1987. Also available as UCB/EECS
technical report CSD-87-374.

[111] WALL, L., AND SCHWARTZ, R. L. Programming perl. O’Reilly and Associates,
Inc., Sebastopol, CA, 1990.

[112] WaLsH, D., LyoN, B., SAGER, G., CHANG, J., GOLDBERG, D., KLEIMAN,
S., LyoN, T., SANDBERG, R., AND WEISS, P. Overview of the Sun Network
File System. In USENIX Conference Proceedings, Winter 1985 (Dallas, TX,
1985), pp. 117-124.

Page 157




BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

WaTsonN, A., AND NELSON, B. LADDIS: A Multi-Vendor and Vendor-Neutral
SPEC NFS Benchmark. In USENIX LISA VI October 19-23, 1992 (Long Beach,
CA, 1992), pp. 17-32.

WELcH, B. Naming, State Management and User-Level Extensions in the Sprite.
PhD thesis, University of California, Berkeley, 1990. Also available as UCB:CSD
technical report UCB:CSD-90-567.

WELcH, B. The File System Belongs in the Kernel. In 2nd USENIX Mach Sym-
posium, Nov 20-22, 1991 (November 1991), pp. 233-250. Availability anonymous
ftp ftp://sprite.berkeley.edu/papers/fs-in-kernel.ps.

WeLcH, B. Measured performance of caching in the Sprite net-
work file system. Tech. rep., Computer Science Department, Univer-
sity of California, Berkeley, July 1991. Availability anonymous ftp

ftp://sprite.berkeley.edu/papers/cache-performance.ps.

Zuou, S., DaCosTtA, H., AND SMmITH, A. J. A File System Tracing Package
for Berkeley UNIX. Proceedings 1984 USENIX Summer Conference Portland
Oregon June 12-14, (June 1985), 407-419.

The Berkeley NOW Project, April 18th, 1995. Available via the World Wide
Web http://now.cs.berkeley.edu/.

The World Wide Web, April 18th, 1995. Available via the World Wide Web
http://www.w3.org/.

xF'S : Serverless Network File Service, July 18th, 1995. Available via the World
Wide Web http://now.cs.berkeley.edu/Xfs/xfs.html.

Page 158




