
MONITORING USING A WINDOWS BOX
&
HANDLING A DELUGE OF NETWORK
DATA

Dinan Gunawardena
Microsoft Research Cambridge

Overview

 Windows Network Stack Overview

 Network Monitoring Scope

 Windows Monitoring Tools

 Additional Windows Monitoring Infrastucture

 Managing a large network Capture

2

Monitoring using a
Windows box

3

If you remember only one
slide 
Task Suggested Windows Approach

Figure out what is going on locally with
your network interface

Run NetMon or Ethereal
(both freely available on the web)

Experiment with / write a Ethernet
based protocol

Start with Windows Filterering
Platform (WFP) code samples at
http://MSDN.microsoft.com or
RawEther sample (PCUSA.com)

Do network I/O in a Windows driver Try using Windows Sockets Kernel
(WSK) http://MSDN.microsoft.com

Capture all the traffic on a subnet /
Enterprise network

Learn about router monitor ports and
consider writing your own WFP /
NetMon SDK / WinPCAP capture
program (start with the existing
sample code)

Write network code for Windows Download the Windows Driver Kit
(WDK) from Microsoft.com

4

http://msdn.microsoft.com/
http://msdn.microsoft.com/

NetMon Demo

5

Windows XP Network
Stack
Overview

NDIS
NDIS Intermediate

Mode (IM) Driver

NDIS Miniport

NIC

Sockets Applications (unmanaged)
MyApp.EXE

Windows Sockets
(Winsock2.DLL)

User
Mode

Kernel
Mode

Sockets Applications
(managed C#,VB.NET etc)

MyDotNetApp.EXE

System.NET

TCP/IP.SYS
(IP v4)

6

TCP/IPv6.SYS
(IP v6)

NDIS Intermediate
Mode (IM) Driver

Winsock
TCP/IP stack
NDIS – Network Device
Interface Specification
TDI – Transport Data
Interface
IPv6 and IPv4
System.Net

TDI

Windows Vista Network Stack
Overview

NDIS Miniport

NDIS

NDIS Intermediate
Mode (IM) Driver

NIC

Sockets Applications (unmanaged)
MyApp.EXE

Windows Sockets
(Winsock2.DLL)

User
Mode

Kernel
Mode

Sockets Applications
(managed C#,VB.NET etc)

MyDotNetApp.EXE

System.NET

TCP/IP.SYS
(IP v6 and IP v4)

7

Windows Socket Switch

Winsock Kernel (WSK)
(MyNetService.SYS)

Windows Filter Platform Application
MyNetMonitor.EXE

WFP

Winsock
TCP/IP stack
NDIS – Network Device Interface
Specification
IPv6 and IPv4
WFP – Windows Filtering Platform
WSK – WinSock Kernel
System.Net

Transport Data Interface 1
(TDI)

 Transport Data interface (TDI)
 “Transport Drivers” e.g. TCP/IP and Kernel-mode users of

transport drivers e.g. Windows Sock2 Kernel Mode Provider

TCP/IP
(IP v6 and IP v4)

User
Mode

Kernel
ModeTDI Driver WSK Driver

Winsock Service
Provider

HTTP.SYS

Transport Data Interface 2
(TDI)

 TDI Providers : NDIS (Network Device Interface
Specification) protocol drivers (aka "Transport
Drivers")
provide base implementation of network protocols
e.g. TCP/IP.
 Lower edge TDI providers interface with packet-oriented

NDIS miniport drivers that communicate over the physical
network

 Upper edge TDI providers interact with their clients using
the TDI interface.

 TDI Clients These are kernel-mode drivers that use
the networking services of a TDI provider
 A TDI client of Tcp can initiate or accept TCP connections

and send or receive stream data within the kernel

WinSock Kernel (WSK)1

 Simple to use, Winsock2-like interface
in kernel mode
 Supercedes TDI

TCP/IP
(IP v6 and IP v4)

User
Mode

Kernel
ModeTDI Driver WSK Driver

Winsock Service
Provider

HTTP.SYS

WinSock Kernel (WSK) 2

 Improve scalability and efficiency by improving on
the performance and memory limitations of previous
Network Programming Interfaces (NPI).
 For example, WSK has improved socket creation

performance and a smaller memory footprint per socket
than past NPIs.

 Easy to port existing TDI clients to WSK.
 Components such as http.sys (kernel mode HTTP handler)

within Windows Vista have ported from TDI to WSK with
ease

 Supports IPv4 and IPv6

 Handles transport discovery, load/unload and other
intricacies

Windows Filtering Platform
(WFP) Architecture

3rd party IDS

3rd party parental
control

3rd party anti-virus

C
allo

u
t m

o
d

u
les

user

kernel

Filtering Engine

Base Filtering Engine
(BFE)

WFP APIs

Network Layer

Transport Layer

Forward Layer

IPsec

Stream Layer

TDI/WSK

ALE

Firewall Application AV Application

12

WFP Layers

Layers Data Representations

Protocol specific RPC, IKE

Stream/Data Layer Datagram and streams

ALE (Application Layer
Enforcement) Layers

Control events

Transport Layer TCP/UDP

IP Packet Layer Network layer traffic and local fragments

Forward Layer Forwarded traffic

ICMP ICMP error packets

Discard Discarded/dropped packets
13

Benefits of WFP

 WFP can filter and secures (works with IPSEC)
network traffic

 WFP supports both IPv4 as well as IPv6 traffic

 Integrated with hardware Offload capabilities
in Windows Vista

14

Extending WFP with Callouts

 A callout extends the capabilities of WFP

 Callouts can be registered at all layers

 Each callout has a unique GUID

 Callouts are used for

 Deep Inspection

 Packet Modification

 Stream Modification

 Data Logging

 Boot time security

For More Info:

 WFP development white paper

 http://www.microsoft.com/whdc/device/network/WFP.mspx

Filtering
Model

Code Example 1
#include <fwpmu.h>

/// Creating a session and opening a handle to the engine

FwpmEngineOpen0(…);

FwpmTransactionBegin0(); /// Begin Transaction

FwpmSubLayerAdd0(…); /// Add a Sublayer

/// Add a Filter

FWPM_FILTER0 blockFilter; FWPM_FILTER_CONDITION0 tcpCondition;

blockFilter.layerKey = FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4;

blockFilter.action.type = FWP_ACTION_BLOCK;

blockFilter.filterCondition = &tcpCondition;

tcpCondition.fieldKey = FWPM_CONDITION_IP_PROTOCOL;

tcpCondition.matchType = FWP_MATCH_EQUAL;

tcpCondition.conditionValue.uint8 = 0x06; /// TCP

FwpmFilterAdd0(…, &blockFilter, …);

Code Example 2 –Custom Callouts

/// Callout function: classify called whenever there is data to be

processed by callout

VOID NTAPI classifyFn(

IN const FWPS_INCOMING_VALUES0 *inFixedValues,

IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,

IN OUT VOID *layerData, IN const FWPS_FILTER0 *filter,

IN UINT64 flowContext, OUT FWPS_CLASSIFY_OUT0 *classifyOut);

/// calloutKey holds the GUID that uniquely identifies the callout

typedef struct FWPS_CALLOUT0_ {

GUID calloutKey; UINT32 flags;

FWPS_CALLOUT_CLASSIFY_FN0 classifyFn;

FWPS_CALLOUT_NOTIFY_FN0 notifyFn;

FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;

} FWPS_CALLOUT0;

// Add a new Callout

FwpmCalloutAdd0(…, (FWPM_CALLOUT0*) callout, …);

// Register a Callout with the filtering engine

FwpsCalloutRegister0(…, (FWPS_CALLOUT0 *) callout, …);

Network Monitoring Scope

 Level of Capture
 IP/Ethernet
 Captures all the data of higher layers

 At End System
 IP SEC mitigation, load balancing etc.

 Non-aggregate
 Don’t want to limit what you can do with the data

 Unfiltered traffic
 Some security issues

 Not covered
 Capture at Network Infrastructure (e.g. NetFlow)
 Non-software solutions

19

Windows Monitoring Tools

 NetMon2 – custom filters…

 Ethereal (/ Tethereal) WinPCap – source available, buffering / perf issues

 www.SysInternals.com tools: TDI Mon, TCPView

 Custom Tools- rolling your own 

 User Mode (trade-off: simple programming environment for performance)

 Raw Sockets: TCP limitations (an aside)

 NDIS UIO - In Windows Dev Kit (WDK) pull up NDIS packets to User Mode used by Wireless
Zero Config user mode service – source available in WDK

 RawEther – (PCUSA.com) Send/Receive NDIS packets from User Mode – source available

 Kernel Drivers

 Network Device Interface Specification (NDIS) common interface to NIC drivers

 Intermediate Mode (IM) e.g. Firewalls - Passthru driver sample

 MiniPort e.g. NIC drivers, SCSI miniport (lowest level wrapper for a class of drivers)

 Vista: Better to use WinSock Kernel (WSK) / Windows Filter Platform (WFP)

20

http://www.sysinternals.com/

Event Tracing for Windows
(ETW)

 Many, many system
components wrapped
 TCP/IP connection

establishment etc.
 OS Context Switches
 Disk IO events
 IIS (web server) events
 ... And many more

 Use PerfMon if you just
want to understand local
performance
 e.g. How long is the disk write

queue

Event Tracer Timestamp Information
•ETW time of the event
•process ID under which the event occurs
•thread ID under which the event occurs
•user-mode CPU time
•kernel-mode CPU time

21

Additional Windows Monitoring
Infrastucture

 NETIO debug

 New Vista TCP/IP stack internal debugging

 Link Status Events OIDs (Object IDentiers)

 WFP subsumes much of this

 Native WiFi

 IEEE 802.11 upper MAC functionality, lower MAC
and PHY management + Windows STA / AP
service

22

Handling a deluge of
network data

23

Managing a large network
Capture
(6TB of data in 14 days, 300 Hosts, 3 Capture
PCs, 3 Cisco SPAN ports, 50+ backup tapes)

 Hardware requirements

 Software Requirements

 Meta Data

 Privacy Issues

 Security

 Manpower Issues

 Post Processing

24

Hardware requirements
 CPU / Chassis

 RAM – don’t want it swapping!
 CPU – capturing should not be too CPU intensive
 KVMs – multiple capturing PCs, single console...

 Network Interface
 Speed – 1000Mbps NIC even if network is 100Mbps
 Offload support – CPU cost
 Load balancing / redundancy – helps deal with bursts, failures
 Interrupt Moderation... But issues with timestamps in packets

 Storage
 Reliability – RAID 5
 Capacity
 Performance – multi disk arrays, eSATA, Firewire –Perf not at cost of Reliability
 Backup – offsite / disaster proof / reliable

 Router/Network infrastructure
 SPAN / Monitor ports
 Fibre taps
 Router performance impact

25

Software Requirements

 Reliability

 Soak test

 Dry runs

 Test sample output

 Performance

 Test under load – bursts, sustained loads

 Turn-off Anti-Virus, search indexing service etc.

 Time Sync – NTP etc

 Important for merging data sets

26

Meta Data

 DNS / WINS

 Zone transfer records

 DHCP data

 Router config / Network config

 Maintenance scheduling

 Back-up this meta-data

 It is as, if not more important than the captured
data 

27

Privacy Issues

 Personally Identifiable Information (PII) and
Legal concerns

 Implications: may only be able to capture packet
headers

 IP Packet payload discard

 How much can you discard

 Capture snap length may limit usefulness of data

 Anonymising IP 5-tuple

 Depending on how paranoid you have to be

28

Security Issues

 Access control to captures

 Acceptable Usage Policy (AUP)

 Physical security of storage

 Dealing with encryption

 Publishing concerns

29

Manpower Issues

 Managing capture is 24x7 job

 Automation

 Backup monitoring personnel

 Outages happen

30

Post Processing

 Make copies before post processing / discarding data

 Process...

1. Raw -> backup

2. Validity check

3. Correct broken files

4. De-duplicate data

5. Process for packet data + generate NetFlow-like records

 Lastly… Make meticulous notes
 Time of events
 Nature of logging – network info / configuration
 Put processing scripts/tools (& results!) under revision control

31

© 2006 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not
be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Questions?

Code Example 1
Copyright (c) Microsoft Corporation. All rights reserved.

…

#include <fwpmu.h>

/// Creating a session and opening a handle to the engine

HANDLE engineHandle = 0;

FWPM_SESSION0 session;

ZeroMemory(&session,sizeof(session));

session.displayData.name = L"Snipit Session";

session.displayData.description = L"Session created by

Snipit.exe";

status = FwpmEngineOpen0(0,

RPC_C_AUTHN_DEFAULT,

0,

&session,

&engineHandle);

/// Begin Transaction

FwpmTransactionBegin0(engineHandle);

Code Example 2
/// Add a Sublayer

FWPM_SUBLAYER0 sublayer;

ZeroMemory(&sublayer,sizeof(sublayer));

UuidCreate(&sublayer.subLayerKey);

sublayer.displayData.name = L"Snipit Sublayer";

sublayer.displayData.description = L"Sublayer added by

Snipit.exe";

sublayer.weight = 1;

status = FwpmSubLayerAdd0(engineHandle, &sublayer, 0);

…

Code Example 3
/// Add a Filter

FWPM_FILTER0 blockFilter;

ZeroMemory(&blockFilter,sizeof(blockFilter));

FWPM_FILTER_CONDITION0 tcpCondition;

ZeroMemory(&tcpCondition,sizeof(tcpCondition));

UuidCreate(&blockFilter.filterKey);

blockFilter.displayData.name = L"Snipit TCP block filter";

blockFilter.displayData.description = L"Filter added by

Snipit.exe";

blockFilter.layerKey = FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4;

blockFilter.action.type = FWP_ACTION_BLOCK;

blockFilter.subLayerKey = sublayer.subLayerKey;

blockFilter.numFilterConditions = 1;

blockFilter.filterCondition = &tcpCondition;

tcpCondition.fieldKey = FWPM_CONDITION_IP_PROTOCOL;

tcpCondition.matchType = FWP_MATCH_EQUAL;

tcpCondition.conditionValue.type = FWP_UINT8;

tcpCondition.conditionValue.uint8 = 0x06; /// TCP

status = FwpmFilterAdd0(engineHandle, &blockFilter, 0,

&blockFilter.filterId);

Code Example 4 –Custom Callouts
/// Callout function: classify called whenever there is data to be

processed by callout

VOID NTAPI classifyFn(

IN const FWPS_INCOMING_VALUES0 *inFixedValues,

IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,

IN OUT VOID *layerData, IN const FWPS_FILTER0 *filter,

IN UINT64 flowContext, OUT FWPS_CLASSIFY_OUT0 *classifyOut);

/// calloutKey holds the GUID that uniquely identifies the callout

typedef struct FWPS_CALLOUT0_ {

GUID calloutKey; UINT32 flags;

FWPS_CALLOUT_CLASSIFY_FN0 classifyFn;

FWPS_CALLOUT_NOTIFY_FN0 notifyFn;

FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;

} FWPS_CALLOUT0;

// Add a new Callout

DWORD WINAPI FwpmCalloutAdd0(HANDLE engineHandle, const

FWPM_CALLOUT0* callout, PSECURITY_DESCRIPTOR sd, UINT32* id);

// Register a Callout with the filtering engine

NTSTATUS NTAPI FwpsCalloutRegister0(IN OUT void *deviceObject,

IN const FWPS_CALLOUT0 *callout, OUT OPTIONAL UINT32

*calloutId);

Windows Network
Stack
Overview

 Winsock

 TCP/IP stack

 NDIS – Network Device Interface
Specification

 IPv6 and IPv4

 WFP – Windows Filtering Platform

 WSK – WinSock Kernel

 System.Net

 Http.sys + WinHttp / WinINet

 QoS

 IPSec

TCP/IP.SYS
(IP v6 and IP v4)

NDIS

NDIS Intermediate
Mode (IM) Driver

NDIS Miniport

NIC

Windows Socket Switch

Sockets Applications (unmanaged)
MyApp.EXE

Windows Sockets
(Winsock2.DLL)

User
Mode

Kernel
Mode

Sockets Applications
(managed C#,VB.NET etc)

MyDotNetApp.EXE

System.NET

37

