
Using Functional Programming within an Industrial
Product Group: Perspectives and Perceptions

David Scott Richard Sharp
Citrix Systems UK R&D

Building 101
Cambridge Science Park
Cambridge CB4 0FY, UK
first.last@eu.citrix.com

Thomas Gazagnaire
INRIA Sophia Antipolis
2004 route des Lucioles

F-06902 Sophia Antipolis
Cedex, France

first.last@inria.fr

Anil Madhavapeddy
Computer Laboratory

University of Cambridge
William Gates Building

Cambridge CB3 0FD, UK
first.last@cl.cam.ac.uk

Abstract
We present a case-study of using OCaml within a large product
development project, focussing on both the technical and non-
technical issues that arose as a result. We draw comparisons be-
tween the OCaml team and the other teams that worked on the
project, providing comparative data on hiring patterns and cross-
team code contribution.

General Terms Human Factors, Languages, Management

Categories and Subject Descriptors D.2.m [Software Engineer-
ing]: [Miscellaneous]

; D.3.2 [Programming Languages]: Language Classifications—
Applicative (functional) languages

Keywords Industry, Functional Programming, Perceptions

1. Introduction
We present our experiences of using the programming language
OCaml within the Citrix XenServer product group. The case-study
is interesting for three reasons:

1. XenServer is deployed in over 40,000 companies worldwide,
often in mission-critical infrastructure, with the largest sin-
gle customer having more than 20,000 machines running
XenServer [13]. We are presenting a very “real-world” use of
functional programming.

2. It provides insight into the pros and cons of using OCaml for a
major systems software project.

3. The team that used OCaml was one of five teams working on
XenServer. This enables us to draw comparisons between the
OCaml team and other teams within the XenServer group.

We start with a brief background into the XenServer engineer-
ing group (§1.1) and the product (§1.2). Next we describe the au-
thors’ perspectives of using OCaml for the XenServer project, re-
flecting on both our technical experiences and the different reac-
tions within the company that we encountered regarding the use of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

a non-mainstream language for product development (§2). In the
remainder of the paper we present data that compares the OCaml
team with other XenServer teams, in terms of hiring patterns (§3)
and code contribution (§4). Finally, we examine other work in the
community (§5) and conclude (§6).

1.1 The XenServer Engineering Group
The XenServer engineering group is organised into five separate
engineering teams, each responsible for different software compo-
nents that comprise the XenServer product. There is a Hypervi-
sor/Kernel team, a Storage team, a Management Tools team (MTT),
a Windows Driver team and a User Interface team. Four of these
teams use “mainstream” languages (including C, Python and C#),
but the MTT use OCaml as their primary development language.

There are about 40 engineers in total within XenServer engi-
neering, including 10 full-time OCaml programmers in the MTT
who are responsible for extending and maintaining a code-base
that consists of approximately 130 KLoC of OCaml. The MTT
team’s components consume and provide interfaces and APIs to
those of all other teams; thus there is constant interaction between
the OCaml programmers and the rest of the development group.

1.2 The XenServer Product
Citrix XenServer is a managed virtualisation platform built on the
open-source Xen hypervisor [1], offering a range of additional
management features. Some of the features include:

Resource pools: The ability to create clusters of servers and
shared-storage that are managed as a unit. Virtual Machines
(VMs) can be moved between servers in the pool while contin-
uing to run [3].

High Availability (HA): The ability to restart VMs on other servers
automatically, if the server they were executing on fails. Clus-
ter fencing, required to preserve data integrity in the storage
layer [5], is provided in software by the XenServer manage-
ment tools.

XenAPI: An XML-RPC management API that provides the ability
to create resource pools and VMs, and configure all aspects of
the system.

XenCenter Management Console: A Windows GUI that allows
administrators to create and configure VMs and resource pools.

1.2.1 Architectural Overview
XenServer is based on a type-1 hypervisor [1], and is installed
straight onto the bare metal and booted directly from a server’s
BIOS. The hypervisor is the first component to be loaded and

takes control of CPUs, memory and interrupt mappings. Next,
it spawns a control domain—a small Linux VM that provides
system management services and provides physical device drivers
for networking and storage.

The main XenServer management process that resides in the
control domain is known as XAPI, because it is the service that
provides the XenAPI. The service’s primary responsibility is to lis-
ten to XenAPI calls (made over the network) and execute these re-
quests. In addition XAPI itself implements resource pools (dealing
with the distributed systems challenges that this entails), maintains
a durable, replicated persistent database of configuration data on
behalf of the resource pool and is responsible for high-availability
planning and failover1. The XAPI source code, consisting of ap-
prox. 130 KLoc of OCaml, is open source and can be freely down-
loaded under the LGPLv2 license2.

One of the defining characteristics of XAPI is that it communi-
cates with all major components of the system. On the one hand
it accepts connections from clients (e.g. the XenCenter GUI), per-
forming XenAPI requests on their behalf and providing access to a
variety of data-streaming services (e.g. remote-access to VM con-
soles, importing and exporting VM disk images). On the other
hand, XAPI interfaces with other software components within the
server, including the Xen hypervisor and the networking and stor-
age subsystems. This requires XAPI to use a variety of different in-
terfaces, including (i) calling into statically-linked C APIs to com-
municate with the Xen hypervisor and the Linux kernel; (ii) fork-
ing new processes to invoke vendor-specific storage scripts or other
shell commands; (iii) utilising a variety of different IPC mecha-
nisms, for example to communicate with subprocesses involved in
a live VM migration [3]; and (iv) performing protocol processing
functions over both TCP and Unix domain sockets to receive and
parse XenAPI requests.

Another property of XAPI is that it is highly concurrent. As well
as managing a number of long-running background housekeeping
threads, XAPI accepts and processes concurrent XenAPI requests
across multiple connections from multiple clients and deals with
communication between the multiple servers and shared storage
devices that comprise a resource pool.

2. Authors’ Perspectives
In this section we describe our perspectives of using OCaml within
the context of the XenServer project. We discuss why OCaml was
selected, describe the reactions within the company to using a non-
mainstream language for product development and relate some of
our technical experiences.

2.1 Selection of OCaml
The XenServer product did not start out within Citrix, but was
first conceived within a startup called XenSource. Citrix acquired
XenSource (and hence the XenServer team and product) in 2007.
There were a number of factors within XenSource that drove the
choice of OCaml and enabled the XAPI project to reach inception:

1. XenSource was staffed by a number of ex-researchers from the
University of Cambridge Computer Laboratory. Many of these
engineers had used OCaml before in a research environment
and believed that, for large projects, the OCaml language of-
fered significant productivity benefits over both traditional sys-
tems languages such as C, and dynamically typed languages,
such as Python [10].

2. As a startup, XenSource had a culture of innovation and risk-
taking. In this environment there were a number of influential

1 See http://community.citrix.com/x/O4KZAg
2 See http://www.xen.org/products/cloudxen.html

people within the company who supported the use of OCaml,
feeling that the risks of using a non-mainstream language were
worth taking in return for the efficiencies that the engineers
claimed it would bring.

3. XenSource had weak project governance within engineering.
Thus, even though there were many people within the company
who felt that using a non-mainstream language was not the right
decision, the OCaml project started anyway and quickly built
momentum as a grassroots effort.

These factors are all non-technical; they created the environment in
which a product-development initiative based on a non-mainstream
language could be seeded. But there were also technical reasons
why OCaml was chosen over other languages for the XAPI project:

1. Performance: XenSource engineers had used OCaml on previ-
ous projects and were confident that it could deliver the required
performance for the project [11].

2. Integration: OCaml’s low-overhead foreign-function interface
and existing Unix bindings facilitated the required interac-
tions with the myriad of software components that made up
the XenServer system.

3. Robustness: As a long-running service, XAPI must not crash.
This requirement made OCaml’s static type-safety and man-
aged heap very appealing, offering the potential to reduce run-
time failures due to type errors, memory leaks or heap corrup-
tion.

4. Compactness: there were plans for embedded versions of
XenServer on flash storage as small as 16MB. The relatively
simple OCaml run-time and compact native code output were
key to this requirement.

There were other languages that met the above criteria, the most
notable being Haskell. The primary reason for choosing OCaml
over Haskell was non-technical. The engineers involved in the
project had considerably more experience of using OCaml, and
using it reduced training costs (this being a luxury in a fast-paced
startup). Our previous experiences had also given us confidence that
the OCaml tool-chain would meet the project requirements.

2.2 Reactions within the company
Choosing OCaml for a product development project was a con-
tentious decision that created some heated debate within Xen-
Source. While the engineers in the MTT firmly believed that the
benefits of using OCaml outweighed the risks, others strongly be-
lieved that the risks of using a non-mainstream language for a major
product development project were simply too great. Specific risks
that were highlighted included:

1. We will not be able to hire OCaml programers quickly enough
to grow the team.

2. A large code base in a non-mainstream language will make
XenSource a less attractive acquisition target.

3. Other teams (staffed with programmers who don’t know OCaml)
will not able to work with the MTT because of “the language
barrier”.

4. The OCaml tool-chain may not be mature enough to support the
development of a complex system.

The MTT had enough experience of using OCaml to argue con-
vincingly that Risk 4 could be effectively mitigated. However, at
the time the XAPI project was initiated, there was no data avail-
able regarding Risks 1—3, so debate (although heated) made little
forward progress.

In hindsight, none of the risks above materialised. A year af-
ter work on XAPI started, Citrix paid $500M for XenSource, and
the technical due-diligence process performed during the acquisi-
tion made it very clear that a large chunk of XenServer was im-
plemented in OCaml. There were also no problems hiring OCaml
programmers (§3), and other teams were able to work very effec-
tively with the MTT (§4).

2.3 Technical experiences
We conducted a preliminary user study among the engineering
group, with a set of open-ended questions designed to elicit individ-
ual opinions. Overall, the MTT report positive experiences of using
OCaml on the XenServer project. Without exception, the engineers
within the MTT believe that developing XAPI in OCaml has been a
success, with the type system and automatic memory management
being the most widely cited benefits of the language. Engineers also
report that they “enjoy programming in OCaml”, particularly em-
phasising the fact that they believe OCaml allows them to express
complex algorithms concisely. There is also a shared belief within
the MTT that, overall, the choice of OCaml has enabled the team
to be more productive than they would have been had they chosen
a more mainstream language for the project (e.g. C++ or Python).
Note that Java and .NET-based languages were not included due
to the size of their runtime environments not being conducive to
the ‘compactness’ requirement (§2). These positive experiences are
backed up by internal test data and component defect levels that
demonstrate that the quality and performance of the XAPI compo-
nent is good.

However, despite the overall positive outcome, there have been
some technical challenges that relate to the choice of OCaml. These
challenges are not due to the OCaml language per se, but are
due to lack of available library support, the complexity of the
Foreign Function Interface (FFI) and the limitations of the OCaml
toolchain. We consider each of these issues in more detail in the
remainder of this section.

2.3.1 Lack of Library Support
We found that OCaml’s library support for common data struc-
tures and algorithms generally sufficient for our needs. However,
the lack of library support for common systems protocols was more
problematic. In particular we ended up having to write a pipelined
HTTP/1.1 server from scratch and handcrafting our own SSL so-
lution using separate stunnel3 processes to terminate and initiate
SSL connections, and communicating with these over IPC.

There were some open source HTTP and SSL OCaml libraries
available. However, at the time, the libraries that we evaluated were
not fully featured or robust enough to meet the requirements of the
XAPI project.

2.3.2 C Bindings
Writing C bindings was difficult and error-prone. Despite careful
code-review and a policy of “keeping things simple” (avoiding
references into the heap across the FFI, and avoiding use of call-
backs whenever possible) some bugs still crept through, creating
occasional XAPI segmentation faults that were hard to reproduce
and track down.

2.3.3 Lack of Tool Support
Our heavy use of threads and fork(2) made it impossible for us
to effectively use ocamldebug or ocamlprof. Instead we relied
on gdb and gprof directly against the compiled binary. This was
better than nothing, but the low-level nature of gdb made it hard to
relate the debugging output back to the OCaml source.

3 Universal SSL wrapper: http://www.stunnel.org

Likewise, the lack of high-level profiling data made perfor-
mance tuning harder than it should have been, and made it difficult
to track down memory leaks4.

2.4 Technical Lessons Learnt
Over the last four years of commercial OCaml development, we
have learnt several technical lessons regarding its use. Some of
these are outlined in this section.

2.4.1 Stability of Tools and Runtime
In the early days of XAPI development, we had no idea if the
OCaml runtime (e.g. the garbage collector) would be robust enough
to support long-running processes like XAPI that are required to
execute continuously for months at a time. We joined the OCaml
Consortium to offset this risk, providing us with a support channel
in case bugs arose.

However, it transpired that the OCaml runtime was remark-
ably stable. Our automated test system puts XAPI through 2000
machine-hours of testing per night, and also runs regular stress
and soak tests that last for weeks on end. Customers also run their
XenServers for several months at a time without restarting XAPI.
Despite all this testing, we have never had a single XenServer de-
fect reported from internal testing or from the field that can be
traced back to a bug in the OCaml runtime or compiler. (During de-
velopment we did once find a minor compiler bug, triggered when
compiling auto-generated OCaml code with many function argu-
ments, but this was already fixed in the development branch by the
time we reported it and so no interaction with the maintainers at
INRIA was required.)

2.4.2 The Right Style for the Right Job
OCaml allows for many programming techniques to be used in
the same codebase. XAPI takes full advantage of this fact, using
different programming styles to solve different problems:

Imperative Many of the lower-level modules of XAPI (e.g. those
that interface with the hypervisor and control domain kernel)
consist of step-wise, imperative code and look like type-safe C.
OCaml fully supports this style with language constructs such
as for/while loops and references.

Functional Although a good chunk of XAPI is unashamedly im-
perative, some of the higher-level aspects of the system are
functional in nature. For example the high-availability feature
requires algorithms for distributed failure planning. These algo-
rithms (e.g. bin packing) are implemented in a functional style.
One function of XAPI is to communicate with Xenstore. The
Xenstore service, which runs in the control domain, provides a
tuple-space that is used for co-ordination between VMs and the
XenServer management tools [7]. Xenstore exposes an asyn-
chronous event interface that is hard to use. XAPI abstracts
much of this complexity behind a straight-forward combinator
library that handles events via composable functions. For exam-
ple, consider the following code fragment:

wait_for (any_of [
‘OK, value_to_appear "/path1"
‘Failed, value_to_become "/path" v])

The expression value to appear "/path1" represents the
act of waiting for any value to become associated with key
"/path1". The expression value to become "/path" v

4 In a garbage collected language, like OCaml, memory leaks occur when
global references to objects are not cleaned up explicitly (e.g. if something
is added to a global hash-table and not subsequently removed).

represents the act of waiting for a specific value v to become as-
sociated with key "/path". The expression any of represents
the act of waiting for any one of a set of labelled options; in
this example the label ‘OK is used to represent a success case
and the label ‘Failed represents a failure case. Finally the
function wait for uses the Xenstore event interface, returning
either ‘OK or ‘Failed as appropriate.

Meta-programming XAPI has a distributed database that runs
across all the hosts in a resource pool, including failover and
replication algorithms. The OCaml code to interface with this
database and remote calls is all auto-generated from a succinct
specification and compiler. Similarly, all of the XenAPI bind-
ings to other languages (C, C#, Java) are generated from a sin-
gle data-model.

Object-oriented OCaml provides a comprehensive object system,
but it is not used in XAPI except in small, local cases. Although
we have nothing specific against using it, a compelling case
for introducing them has never emerged. Modules, functors
and polymorphic variants have been sufficient to date, and we
anticipate that first-class packaged modules (in OCaml 3.12+)
will further reduce the need for using objects.

2.4.3 Garbage Collect Everything
The automatic memory management that OCaml provides is a huge
improvement over using C, but we still frequently get leaks due to
mismatched allocation/deallocation of other limited OS resources,
such as file descriptors and shared memory segments. These are
usually only detected after automated stress testing detects the
failure since the code involved works fine during development.

Nowadays, we make an effort to abstract as many of the OS
resources as possible behind our own extensions to the standard
library.

3. Hiring Patterns
Despite concerns raised at the start of the XAPI project, the MTT
has had no difficulty in finding and hiring good OCaml program-
mers, and has been able to grow at a comparable rate to the other
XenServer teams that used mainstream languages. From October
2006 to April 2010, 12 engineers have been hired into OCaml-
programming positions (roughly a quarter of all XenServer engi-
neers hired over the period).

There are two interesting observations about the MTT’s hir-
ing patterns. Firstly, we found that posting on functional program-
ming mailing lists (including the OCaml List and Haskell Cafe) has
consistently generated good inflows of high quality candidates in-
terested in industrial functional programming positions. And, sec-
ondly, we have found that previous OCaml experience is not a pre-
requisite for hiring into OCaml-programming positions.

In fact, of the 12 engineers hired, only 2 had prior experience
of OCaml; the other 10 learnt OCaml after they started work at
XenSource or Citrix. Interestingly, having to learn OCaml did not
make a big difference to the training time of the new engineers:
the 10 engineers that did not know OCaml became productive at
about the same speed as the 2 engineers that did have prior OCaml
experience.

We believe that this is because, for a complex software product
like XenServer, getting to know one’s way around the various
code-bases and getting to grips with the architectural principles
of the wider system is a much more time consuming task than
learning a new programming language. The 10 engineers that did
not know OCaml were already highly proficient programmers who
had a solid grounding in data-structures, algorithms and computer
science more generally.

4. OCaml Code contribution
As described earlier (§1.1), the XenServer Engineering Group con-
sists of five teams of full-time software engineers, supplemented by
contractors. Each team is responsible for a different software com-
ponent. The source code for each component is stored in a num-
ber of version-controlled repositories using Mercurial [14]. Each
repository contains a complete historical record listing every code
change, when it was made, who made it and why. In this section
we will examine this historical record to identify and analyse which
teams contributed to which components. We shall use this data to
answer the question:

“Did the use of OCaml within the MTT prevent engineers
from other teams making significant contributions to the
XAPI project?”

For our analysis we shall focus on four components:

1. Management Console: a windows user-interface maintained by
the User Interface team;

2. Storage: a set of plugin modules to connect XenServer to back-
end storage arrays where VM disks are stored maintained by
the Storage team;

3. XAPI: the component which implements the XenAPI main-
tained by the MTT; and

4. Windows drivers: drivers required for high-performance VM
I/O, maintained by the Windows Driver team.

The components were chosen for the following reasons:

1. they were all created solely for the XenServer product unlike,
for example, the open-source Xen hypervisor that was created
as part of a research project a few years before the XenServer
product emerged;

2. they are all maintained by different teams; and

3. they all primarily use different programming languages (even
the XAPI code contains traces of C).

The following table gives approximate sizes and primary lan-
guage data for each component5:

Component Size Main Languages
XAPI 130kLOC OCaml
Windows Drivers 80 kLOC C, C++
Management Console 200kLOC C#
Storage 40 kLOC Python, C

The diagram in Figure 1 displays four bars, one for each com-
ponent in the analysis. The height of each bar indicates the total
number of individuals who contributed code to each component.
The bars are subdivided into sections, each one coloured to indi-
cate the team the contributor belonged to.

The diagram in Figure 2 displays four bars, one for each compo-
nent as before. The bars now represent the relative contribution size
from members of each team to each component. It is clear that, in
all cases, the team responsible for maintaining a component makes
the majority of contributions. However it is also clear that, in all
cases, members of other teams made contributions.

The size and colouring of the bar corresponding to XAPI in
Figure 1 clearly shows that the use of OCaml did not prevent
engineers from other teams making contributions. Furthermore, the
size and colouring of the bar corresponding to XAPI in Figure 2

5 The XAPI number excludes auto-generated OCaml code, the Windows
driver excludes header files as most are auto-generated, and the Manage-
ment Console excludes auto-generated XenAPI and Windows Forms code.

 0

 5

 10

 15

 20

 25

 30

 35

 40

xa
p

i
(o

ca
m

l)

W
in

d
o
w

s
D

ri
ve

rs
(C

,C
PP

)

S
to

ra
g

e
(p

yt
h

o
n

,C
)

M
a
n

a
g

e
m

e
n

t
C

o
n

so
le

(C
#

)

N
u

m
b

e
r

o
f

co
n

tr
ib

u
to

rs

Component (primary languages used)

Unknown

Windows Drivers

User Interface

Storage

Hypervisor/Kernel

MTT

Figure 1. The total height of each bar shows the total number
of unique contributors to each component. The color indicates the
proportion of contributors from each team.

clearly shows that these contributions were as significant (in terms
of size) as contributions made to other non-OCaml components.

5. Related Work
There are several groups using OCaml in industrial settings.
Jane Street Capital is a successful proprietary trading company
which uses OCaml for a wide range of tasks. In their experi-
ence report [12], they share several of our technical concerns with
OCaml: (i) generic pretty-printing facilities have to be addressed
via macros; and (ii) the lack of a wide range of community li-
braries for common tasks. Since their report, some of these aspects
have improved somewhat. OCamlForge provides a central place to
locate community libraries, and systems such as dyntype [8] and
deriving [16] make it easier to operate on generic values and types
without modifying the core OCaml tool-chain. Like them, XAPI
also does not use the OCaml object system much.

One concern we do not share is the lack of a multi-threaded
garbage collector. Since XAPI is not a CPU-intensive service, and
the control domain is limited to a single virtual CPU, the simplicity
and stability benefits of the existing collector exceed the more
complex concurrent alternative.

XenServer is not a hosted service, but a product that ships ex-
ternally to many customers. MLdonkey [9] was one of the earliest
(and for some time, the most popular) peer-to-peer client applica-
tions, written entirely in OCaml. We restricted our use of OCaml
to the server-side component of XenServer, and wrote the native
Windows client using C#.

We made some attempts to compile portions of the OCaml code
(e.g. the command-line interface) for Windows, but the lack of
robust libraries (particularly SSL) made it not worth the effort.
Since our decision in 2006, desktop programming using functional
languages has advanced considerably, as (i) Microsoft F# provides
full access to Windows APIs [15]; and (ii) web browsers can host
entire applications in Javascript, and be programmed in a functional
style [2, 6]. We have not yet built a client using these technologies,
however.

OCaml is traditionally popular as a compiler tool, and Frama-
C is an example of an industrial-grade static analysis product [4].

 0%

 20%

 40%

 60%

 80%

 100%

x
a
p
i

(o
ca

m
l)

W
in

d
o
w

s
D

ri
v
e
rs

(C
,C

P
P
)

S
to

ra
g
e

(p
y
th

o
n
,C

)

M
a
n
a
g
e
m

e
n
t

C
o
n
so

le
(C

#
)

C
o
n
tr

ib
u
ti

o
n
 f

ro
m

 e
a
ch

 t
e
a
m

Component (primary languages used)

Figure 2. Each coloured section indicates the size of contributions
to a component by a team, relative to the total contributions.

XAPI also has compilers written in OCaml to generate bindings
from an executable specification for more verbose languages like
C#, C, Java and Javascript. This helped keep the various XenAPI
clients synchronised with the server as it developed rapidly in the
early days.

6. Conclusions
The XAPI project is perceived as a success within XenServer engi-
neering. The MTT works effectively with other teams (i.e. without
any ‘language barrier problems’), engineers have been hired into
OCaml programming positions quickly and effectively and, techni-
cally, the XAPI component has shown itself to be stable and robust.

Although there were some drawbacks to using OCaml, namely a
lack of library support for common protocols (e.g. SSL, HTTP) and
a lack of tool support, engineers within the MTT believe that overall
OCaml has brought significant productivity and efficiency benefits
to the project. In particular, MTT engineers believe that OCaml has
enabled them to be more productive than they would have been had
they adopted one of the mainstream languages that would have met
the requirements of the project (e.g. C++ or Python).

Since the XAPI code-base was open sourced in mid-2009 it has
become possible for engineers beyond Citrix to work on the project.
It remains to be seen whether the use of OCaml will act as a barrier
to wider contribution, but based on our experiences reported in this
paper, we are hopeful that it will not. We are already seeing some
code submissions to the XAPI project from beyond Citrix and are
working with development partners and the research community to
encourage further contribution.

The source code can be obtained from http://xenbits.xen.
org/XCP/.

7. Acknowledgments
We thank Eleanor Scott, Richard Mortier, Jonathan Knowles, Yaron
Minsky, Tim Deegan, Jonathan Ludlam, Stephen Kell, Euan Har-
ris, our Citrix colleagues and the anonymous reviewers for their
feedback.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 164–177, New York, NY, USA,
2003. ACM Press.

[2] B. Canou, V. Balat, and E. Chailloux. O’Browser: Objective Caml on
browsers. In Proceedings of the 2008 ACM SIGPLAN workshop on
ML, pages 69–78, New York, NY, USA, 2008. ACM.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Symposium of Networked Systems Design and
Implementation, May 2005.

[4] P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson,
B. Monate, V. Prevosto, and A. Puccetti. Experience report: OCaml
for an industrial-strength static analysis framework. In ICFP ’09:
Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming, pages 281–286, New York, NY, USA, 2009.
ACM.

[5] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T. Talpey,
and M. Wittle. The Direct Access File System. In Proceedings of
the 2nd USENIX Conference on File and Storage Technologies, pages
175–188, Berkeley, CA, USA, 2003. USENIX Association.

[6] J. Donham. OCamlJS, July 2010. http://jaked.github.com/
ocamljs.

[7] T. Gazagnaire and V. Hanquez. Oxenstored: an efficient hierarchi-
cal and transactional database using functional programming with
reference cell comparisons. In ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming,
pages 203–214, New York, NY, USA, 2009. ACM.

[8] T. Gazagnaire and A. Madhavapeddy. Statically-typed value persis-
tence for ML. In Proceedings of the Workshop on Generative Tech-
nologies, March 2010.

[9] F. Le Fessant and S. Patarin. MLdonkey, a Multi-Network Peer-to-
Peer File-Sharing Program. Research Report RR-4797, INRIA, 2003.

[10] A. Madhavapeddy. Creating high-performance, statically type-safe
network applications. Technical Report UCAM-CL-TR-775, Univer-
sity of Cambridge, Computer Laboratory, Apr. 2006.

[11] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan.
Melange: creating a “functional” Internet. SIGOPS Oper. Syst. Rev.,
41(3):101–114, 2007.

[12] Y. Minsky and S. Weeks. Caml trading – experiences with functional
programming on Wall Street. J. Funct. Program., 18(4):553–564,
2008.

[13] T. Morgan. Citrix desktop virt soars in Q4, Jan. 2010. http:
//bit.ly/ciB74a.

[14] B. O’Sullivan. Mercurial: the definitive guide. O’Reilly Media, first
edition, 2009.

[15] D. Syme, A. Granicz, and A. Cisternino. Expert F#.
[16] J. Yallop. Practical generic programming in OCaml. In Proceedings

of the 2007 workshop on Workshop on ML, pages 83–94, New York,
NY, USA, 2007. ACM.

