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Abstract

Active learning (AL) is a framework that attempts to reduce the cost of annotating
training material for statistical learning methods. While a lot of papers have been
presented on applying AL to natural language processing tasks reporting impressive
savings, little work has been done on defining a stopping criterion. In this work,
we present a stopping criterion for active learning based on the way instances are
selected during uncertainty-based sampling and verify its applicability in a variety
of settings. The statistical learning models used in our study are support vector
machines (SVMs), maximum entropy models and Bayesian logistic regression and
the tasks performed are text classification, named entity recognition and shallow
parsing. In addition, we present a method for multiclass mutually exclusive SVM
active learning.

Key words: active learning, SVMs, text classification, NER

1 Introduction

One of the most important issues when applying statistical learning techniques
is the creation of training material. However, manual annotation involves a
substantial amount of human effort and becomes the main bottleneck when
attempting new tasks or porting existing techniques to new domains. For
example, the recent interest in the biomedical domain required the creation
of annotated datasets such as GENIA (Kim et al., 2003) in order to allow
existing methods to be evaluated and new ones to be developed.

In order to overcome the lack of annotated material, methods were developed
that either take advantage of extant resources (Morgan et al., 2004) to cre-
ate training material automatically, or use some seed patterns and iteratively
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bootstrap a classifier (Agichtein and Gravano, 2000). However, such methods
have limitations in their performance and their applicability.

A different approach to this issue is the use of active learning (AL) (Cohn
et al., 1994; Seung et al., 1992). In this framework, the supervised classifier
selects the instances that are likely to be the most informative to train on.
Then the selected instances are annotated by a human, added to the training
material of the classifier and the loop is repeated. This is in contrast with the
traditional method of annotating randomly selected material, referred to as
random sampling. Active learning has been used successfully in many tasks
with a variety of classifiers. Examples include text classification using support
vector machines (Tong and Koller, 2001) and parse selection using log-linear
models (Baldridge and Osborne, 2007). In most cases, the savings in annotated
instances compared to random selection used were substantial.

An issue that has not been studied extensively is the definition of an active
learning stopping criterion. In most cases, the experimental setup consists
of a set of candidate training instances and a test set used to evaluate the
performance achieved. The savings achieved are commonly reported as the
percentage of the candidate training instances selected during active learn-
ing to achieve the same performance as when using all the available training
instances, or as the difference in performance between active learning and ran-
dom selection for a given amount of annotation. This however implies that all
the candidate training instances are annotated in advance. In a more realistic
setting, active learning would stop when the desired performance level has
been reached (Li and Sethi, 2006). Still, at least a test set has to be annotated
in advance in order to measure the performance, which is a difficult and expen-
sive process involving human effort and is exactly what we aim to minimize
with active learning. Ideally, we would like to have a way of terminating the
active learning process without having to use a pre-annotated dataset.

This paper presents a stopping criterion for active learning based on obser-
vations on the nature of the selections made and the behaviour of statistical
learning methods. Section 2 contains a brief introduction to active learning.
Section 3 describes the stopping criterion suggested and Section 4 presents
experiments that demonstrate its applicability in a variety of tasks and sta-
tistical learning methods. In Section 5 we introduce a method to perform
mutually exclusive multiclass SVM active learning and we present results on
named entity recognition and shallow parsing. Finally, Section 6 discusses our
results and related work and Section 7 concludes suggesting future work.
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2 Active learning

In the active learning framework, the statistical learning model iteratively
selects the instances on which it is going to be trained on. In the widely used
pool-based approach 1 , we start with a small labelled training set L and a
large pool of unlabelled data U . In each round, a model is trained on L and it
is used in order to select a batch b of instances from U which are considered
to be informative. These are annotated by a human, added to L and the loop
is repeated.

The main point of differentiation among the various active learning algorithms
is the method of assessing the informativity of an instance. The two most
popular active learning methods used in NLP are uncertainty-based sam-
pling (Cohn et al., 1994) and query by committee (Seung et al., 1992). In
uncertainty-based learning, the instances selected to be annotated are those
on which the classifier is least certain of their classification. The assumption is
that instances which are harder to classify are more useful to train the classifier
on. The uncertainty of the classifier is commonly estimated using the entropy
of its output in the case of probabilistic models. For non-probabilistic ones,
the classification margin is used, as in the case of support vector machines
(Tong and Koller, 2001; Schohn and Cohn, 2000; Campbell et al., 2000). The
algorithm for uncertainty-based sampling appears in Figure 1:

Input:
seed labelled data L, unlabelled data U ,
batch size b
Initialization:
Train a model on L
Active Learning Loop:
Until a stopping criterion is satisfied:

Apply the trained model classifier on U
Rank the instances in U using the uncertainty of the model
Annotate the top b instances and add them to L
Train the model on the expanded L

Fig. 1. Active Learning using uncertainty-based sampling

In query by committee, a committee of classifiers is trained on L, then applied
to the instances of U and those which result in the highest disagreement
among the classifiers are considered to be the most informative. Common
ways of estimating the disagreement are the vote-entropy (Argamon-Engelson
and Dagan, 1999) and the Kullback-Leibler divergence (Pereira et al., 1993;

1 Baram et al. (2004) contains a detailed overview of various active learning ap-
proaches.
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McCallum and Nigam, 1998; Becker and Osborne, 2005). In this work, we will
concentrate on uncertainty-based sampling.

3 Towards a stopping criterion

An obvious stopping criterion for active learning would be to measure the
performance of the trained classifier on an annotated dataset and terminate
the procedure when the performance ceases to improve or when it improves
at a non-satisfactory rate. However, this might not be ideal. Apart from the
costs involved in creating a test set, there is also the risk that it might not be
representative of what can be learnt from the pool of unlabelled data. This is
likely to occur because the annotated dataset is probably going to be much
smaller than the pool due to its creation cost. Therefore, using the performance
on an annotated dataset as a stopping criterion could be misleading, since
it is possible that informative instances from the pool would not affect the
performance on that particular dataset.

Ideally, we would like to terminate active learning when there are no informa-
tive instances left in the pool, unless the budget for annotation is exhausted
first. Since measuring the performance on an annotated dataset is expensive
and not necessarily appropriate, we focused on using the confidence of the
classifier. The latter is expected to increase as we add more instances to the
training data, since the classifier obtains more information about the task.
However, adding instances to the training data that contradict the informa-
tion gathered already by the model, would cause the confidence to drop, since
existing features become weaker cues for classification. For example, assume
that we want to classify documents according to whether they are related to
finance or not. The token “bank” is likely to be an indicative feature to such
documents, however it can be found in non-financial documents as well with
its alternative sense (as in the “river bank”). Adding non-financial documents
that contain this token to the training data of a classifier is likely to reduce
the strength of the feature, while there are probably more indicative features
for non-financial documents, such as “river” that would cover such cases.

During uncertainty-based sampling, the instances added are those on which
the classifier is most uncertain. The classifier is expected to be uncertain on
instances that are dissimilar to the ones that it has been trained on. These
are unlikely to contradict the knowledge gathered already by the classifier,
because this would mean that the classifier would have been able to make a
confident (not necessarily correct) prediction. Progressively, the classifier ac-
cumulates a larger training set to learn from and its confidence increases with
its performance. Eventually, the instances left unlabelled in the pool are such
that the classifier is confident of their label because they are covered by the
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ones already added to the training set. At this point, the sampling process can
only select instances that do not contribute novel information to the classifier
because they are similar to the ones already included in its training set. Inter-
estingly, if the labels obtained for those instances contradict the predictions
of the classifier then they become evidence against the information gathered
in earlier rounds. As a result, the confidence of the classifier either remains
at the same level, or it drops in the case that contradictory instances are
encountered.

A point that needs further explanation is how instances from the pool can
contradict what has been learnt already, assuming that we are dealing with a
well-defined task and that they are not annotation inconsistencies. When per-
forming a natural language processing task, we represent the instances with
a feature set that is limited compared to the human background knowledge
about the task. For example, the standard “bag of words” document represen-
tation used in text classification ignores word order information. Moreover, the
statistical models themselves have their own limitations which do not allow
them to “explain” the differences between instances. For example, linear ker-
nel SVMs assume that the classes in the data are linearly separable. For these
reasons, it is very likely that a statistical model given a feature representation
cannot “explain” all the instances in a dataset, which therefore appear contra-
dictory and reduce its confidence. As a consequence, we expect the confidence
of the classifier to exhibit a rise-peak-drop pattern during uncertainty-based
sampling.

In order to estimate the confidence of the classifier we apply it on a separate
dataset. The latter does not need to be annotated, only feature extraction
needs to be performed. Estimating the confidence of the classifier on a partic-
ular dataset involves the same risk as evaluating the performance on it, since it
might not be representative, therefore it could be misleading. However, unlike
performance evaluation, we don’t need the dataset to be annotated and since
the feature extraction is automatic we can obtain a big dataset which would
minimize this risk.

In practice, after each round of uncertainty-based sampling we run the clas-
sifier over a separate, large dataset and estimate its confidence. When the
confidence of the classifier drops, this suggests that the statistical model -
given the feature representation used- cannot take advantage of the remaining
instances in the pool of unlabelled data. It must be stressed here that while
further annotation from the current pool would not benefit the model in ques-
tion, a new pool could contain useful instances. Also, even if the model used
cannot take advantage of more instances from the current pool, a stronger
model with a better feature representation possibly could. Therefore, the re-
maining instances should be considered redundant only for the given model
and feature representation. Further support for this is provided by the work
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of Baldridge and Osborne (2004), who found in their experiments that reusing
material selected during active learning with a different classifier and/or fea-
ture representation is not very effective and can yield worse results than ran-
dom selection.

4 Experiments

In this section we present active learning experiments in which we examine
the applicability of the stopping criterion suggested in the previous section. In
the subsections that follow, we discuss the statistical learning models used and
the text classification and named entity recognition experiments performed.

4.1 Uncertainty-based sampling using Support Vector Machines

Support vector machines (SVMs) (Vapnik, 1995) are a state-of-the-art statis-
tical learning model. They have been used successfully in a variety of tasks,
including text classification (Joachims, 1998b) and handwritten digit recog-
nition (LeCun et al., 1995). A training dataset D comprising of two classes
{−1, +1} is projected to a (possibly) higher dimensional space and a max-
imum margin separating hyperplane is found between the two classes. The
separating hyperplane is defined by a set of datapoints {x1, ..., xn} and their
labels {y1, ..., yn} which are the support vectors. Each of these datapoints is
assigned a weight a1, ...an. The projection to the higher dimensional space is
performed using a suitable kernel function K(xi, xj), which allows the calcu-
lations to take place in the original dimensional space. During classification,
the test datapoints are classified according to the side of the separating hy-
perplane on which they are found to lie. For a datapoint x, this is performed
using the following function:

f(x, a) = sign(
n∑

i=1

yiaiK(x, xi) + b) (1)

The sign of the weighted sum of the inner products of the datapoint with the
support vectors denotes the class. Its absolute value is the distance (margin) of
the datapoint from the separating boundary. This should not be confused with
the probability estimates that can be obtained from other statistical learning
models. It ranges from 0 to ∞ and most importantly, the margins yielded by
different SVM models are not comparable with each other because different
datasets and/or kernel functions define different spaces.
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The choice of the kernel function defines the space in which the data is pro-
jected and it is very important because it affects the shape of the separat-
ing hyperplane to be discovered. For example, the simple and widely used
linear kernel function, K(xi, xj) = xi · xj, can only define linear separat-
ing hyperplanes. However, non-linear kernel functions such as the Gaussian
(K(xi, xj) = e−γ‖xi−xj‖2) can discover more complex hyperplanes, which in
turn can result in better classification performance (Burges, 1998). The su-
perior performance of the Gaussian kernel in particular has been verified by
various authors (Joachims, 1998b; Keerthi and Lin, 2003). However, they are
slower to train and parameter optimization is required (normally performed
through cross-validation on the training data) in order to obtain good per-
formance, which are the main reasons why they have not been adopted more
widely in NLP. On the contrary, linear kernel SVMs can be implemented to
run much faster and the parameters can be set quite efficiently without cross-
validation, as in SVM-Light (Joachims, 1998a).

The standard way of performing uncertainty-based sampling is by using the
entropy of the class distribution of the classifier over each instance as a measure
of uncertainty. However, as mentioned earlier, SVMs do not yield probabilis-
tic output, but a decision margin (Eq. 1). Tong and Koller (2001), Schohn
and Cohn (2000) and Campbell et al. (2000) independently presented a way
of performing uncertainty-based sampling with SVMs. They used the deci-
sion margin of the classifier as an indication of its uncertainty in classifying a
particular instance. The assumption is that the closer a datapoint lies to the
separating hyperplane, the more informative it is going to be. In each round,
the instances of the pool of unlabelled data are ranked according to the mar-
gin yielded by the SVM classifier and a batch of the top-ranked instances is
selected for annotation.

It is worth noting that the probabilistic outputs that can be obtained by
fitting a sigmoid function (Platt, 1999) would not change the ranking of the
instances in the pool of unlabelled data, since the probability estimate of an
instance being positive increases monotonically with the decision margin. Tong
and Koller (2001) presented an extension to the selection method described
in this section, which while it is more efficient, requires training an SVM
classifier twice for each instance in the unlabelled pool and therefore can be
very expensive.

4.2 Text classification experiments

In the experiments of this subsection we used the Reuters RCV1-v2 corpus
(Lewis et al., 2004) to perform text classification (TC). We used the files pro-
vided in the on-line appendix 12 which contain 804,414 documents, tokenized,
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stemmed and with the stopwords removed. We sorted them according to their
publication date (older to newer) and we kept the oldest 20% of them as our
training pool in our experiments. The first 100 documents of the training pool
were used as seed labelled data in order to initiate the active learning process.
The remaining 80% of the documents were used as our test set. We think that
since the dates of the documents are available, a chronological split is a more
realistic setup than a random split.

We used the SVMlight implementation of SVMs (Joachims, 1998a) in order
to build a binary classifier for the most popular topic of the corpus CCAT,
which contains 381,327 documents. Following Lewis et al. (2004), we per-
formed feature weighting using Cornell ltc (Buckley et al., 1994), which is a
variant of TF-IDF weighting. Two active learning runs were performed, with
1% (1607 documents) and 0.1% (160 documents) of the training pool added
to the training data in each round. The results using the linear kernel with
default parameters are presented in Figure 2.
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Fig. 2. Graphs for the performance (left) and the confidence (right) of linear kernel
SVMs for the class CCAT of RCV1.

The left graph presents a typical comparison of the performance curves dur-
ing active learning versus random selection. The performance during AL rises
faster, especially when fewer instances are selected in each round. The per-
formance during random sampling increases at a slower rate, reaching 94%
F-score when 90% of the data are used, as opposed to 29% during AL with
1% of the data added in each round and 17% with 0.1% of the data is added.
The performance of the classifier using all the available data is 94.05%.

The right graph presents the confidence curves for these runs. The confidence
of the SVM classifier was estimated as the sum of the decision margins for the
instances of the test set. As expected, during active learning the confidence
curves exhibit a rise-peak-drop pattern. The peak coincided with the flattening
of the performance curve (at about 20% of the data being used), confirming
the applicability of the criterion. While it might have been more appropriate
to terminate active learning earlier than that since the performance gains after
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10% are limited, one should keep in mind that, as suggested in Section 3 the
test dataset might not necessarily contain instances that could test what can
be learnt from the pool. Reducing the batch size leads to faster fulfillment of
the stopping criterion since the classifier can assess the informativity of the
unlabelled instances more frequently. During random selection the confidence
curve follows the performance curve, which is expected since instances contra-
dictory to the knowledge gathered already by the model are added at a steady
rate.

It is also worth noting that the stopping criterion is satisfied before the max-
imum performance is reached. However, the performance loss is rather small
compared to the savings in annotation. In the experiments using linear kernel
SVMs (Figure 2), assuming that we would terminate active learning when 20%
of the data has been used (this is when a consistent drop in performance is
observed), the performance achieved is 93.98%, which is lower than the max-
imum performance achieved (94.08%). However, to achieve the latter, 51% of
the data has to be annotated, i.e. 31% of the data has to be annotated in
order to gain 0.08% in F-score. Refreshing the pool of unlabelled data with
new and potentially more informative instances is likely to yield higher gains.

Using the same experimental setup, we ran experiments using the Gaussian
kernel provided in SVM-Light. As mentioned in Section 4.1, the Gaussian ker-
nel requires optimization of its parameters in order to yield good results, which
is usually performed using cross-validation on the training set. Ideally, in our
active learning experiments the parameters should be optimized in each round
using the respective training data. However, this would have been prohibitively
expensive. Therefore, as a compromise, we performed cross-validation using
a sample of 5,000 randomly selected documents from the training pool (ap-
proximately 3% of the total available) for parameter estimation using the grid
search procedure provided in the LIBSVM toolkit (Chang and Lin, 2001). We
used the parameters found throughout all our experiments with the Gaussian
kernel. We performed active learning adding 1% of the unlabelled pool in each
round, as well as random selection for comparison.

The curves in the left graph of Figure 3 demonstrate the efficiency of uncertainty-
based sampling using Gaussian kernel SVMs. During active learning with
Gaussian kernel SVMs, 94% F-score is achieved using 11% of the data (com-
pared to 29% with linear kernel SVMs), while during random selection it is
achieved using 31% of the data. Near maximum performance (94.5% F-score)
is achieved using 20% and 78% of the data respectively. For comparison, us-
ing linear kernel SVMs active learning reached 94% F-score using 29% of the
available data.

It must be noted that the performance of Gaussian kernel SVMs in the initial
rounds (until 5% of the data has been used) is better using random selection
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Fig. 3. Graphs for the performance (left) and the confidence (right) for Gaussian
kernel SVMs for the class CCAT of RCV1.

than adding 1% of the data using uncertainty-based sampling. Campbell et al.
(2000) suggested that random selection can be better than uncertainty-based
sampling in the initial stages because the selecting model is not trained on
enough data. Given that our seed data is small and from a restricted time
period it is unlikely to provide good coverage of the data, so this is very likely
to be the case in this experiment. In order to verify this claim, we reduced the
number of instances selected in each round to 0.1% of the pool and the effect
of non-optimal initial selections was alleviated. After selecting 1% of the pool
in batches of 0.1% the F-score achieved was 91%, compared to 90.5% during
random sampling. It is worth mentioning that Gaussian kernel SVM active
learning adding 0.1% of the pool in each round achieved 94% F-score using
only 8.2% of the data.

Concerning the confidence curves in the right graph of Figure 3, we observed
the same rise-peak-drop pattern that was exhibited in the linear kernel SVM
experiments (right graph of Figure 2). Of interest is the observation that dur-
ing AL, the confidence of the Gaussian SVM model starts dropping later than
that of the linear kernel (25% compared to 20%), confirming the expectation
that since it can identify more complex boundaries it can take advantage of
more data.

In order to verify that the cause of the drop in the confidence is the addition
to the training data of instances contradicting the knowledge already gathered
by the classifier, we tried to estimate the amount of contradictory information
added in each round. We considered that contradictory information is added
each time an instance whose label was predicted incorrectly by the classifier
is selected to be added to the training data. An indication of the amount of
the contradictory information added by each instance is considered to be the
margin by which it is classified by the classifier divided by the average margin
of the classifier in that round. This was deemed necessary as the confidence of
the classifier changes in each round, resulting in the margins themselves not
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being comparable since the more confident the classifier becomes, the larger
the margins on the incorrect predictions will be, thus concealing the effect of
the actual contradictory information added by the instances themselves. To
estimate the total amount of contradictory information added in each round,
we summed the contradictory information contributed by all the incorrectly
predicted instances selected in each round. This can be summarized in the
following equation:

Contradictory information(t) =
∑
i∈it

| f t(xi) |
| f t(x) |

(2)

Where t is the round, it is the list of instances selected for annotation in round
t whose label was predicted incorrectly by the classifier, f t(xi) is the decision
margin of the classifier that round for instance xi and | f t(x) | is the average
decsion margin of the classifier in that round.
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Fig. 4. Measuring the amount of contradictory information added in each round for
the linear (left) and the Gaussian (right) kernel.

In Figure 4 we calculated in each round the sum of the margins on the in-
stances chosen for annotation whose label was predicted incorrectly by the
SVM classifier, divided by the average margin of the classifier over the in-
stances of the test set. The higher this is, the more information contradictory
to what has already been learnt is being added in that round. The graphs
present curves for active learning and random selection using linear (left) and
Gaussian (right) kernel. In both cases, it is observed that during random selec-
tion, the amount of contradictory information added in each round is roughly
the same, suggesting that the contradictory information is evenly distributed
throughout the experiment, which is expected since there is no bias in the
selection. In the case of active learning though, the contradictory information
added in each round is very little initially and it rises in the following rounds,
causing the drop in the confidence. In later rounds, the amount of contradic-
tory information added in each round drops substantially. This confirms the
prediction of Section 3, that during AL the classifier initially avoids contra-
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dictory instances by selecting those on which it is most uncertain, but later
on it is forced to select them and add them to its training data, thus reducing
its confidence.

We tried to see if this result was related to the number of support vectors.
However, in all our experiments the number of datapoints identified as support
vectors during training increases in each round until it reaches a plateau, albeit
more quickly during active learning compared to random selection.

4.3 Effect of class distribution

In the text classification experiments of Section 4.2, following the experimen-
tal setup of Tong and Koller (2001) and Schohn and Cohn (2000), who used
the most popular classes in the Reuters-21578 dataset and obtained similar
results for all of them, we used the most popular class of the RCV1 dataset. In
order to investigate how SVM active learning behaves (and the applicability
of the stopping criterion suggested) in the case of very imbalanced tasks, we
applied it using the linear kernel to one of the least frequent classes in the
dataset, C16, which contains 1,920 documents (0.2% of the total documents).
The results presented in Figure 5 show that AL is much more efficient than
random selection, which is essentialy due to the fact that AL selects almost all
of the (few) positive instances in the initial rounds. It must be noted however
that the maximum performance reached is 50% in F-score, far lower than the
performances achieved in the experiments for the class CCAT. The rise-peak-
drop pattern in the confidence is not exhibited as distinctly as in the previous
experiments. As explained in Section 3, the satisfaction of the stopping crite-
rion depends on the existence of instances in the pool that contradict the ones
already added to the training data. If there are very few instances from one
class, then it becomes less likely to find contradictory instances because the
data for that class is very sparse and most of its instances are selected in the
initial rounds. As a result, most instances can be added to the training data
without contradicting the model built already.

4.4 Experiments with other classifiers

In order to verify the applicability of the stopping criterion with statistical
learning models other than SVMs, we performed binary text classification
experiments with Bayesian logistic regression (BLR) (Genkin et al., 2006)
and maximum entropy (Berger et al., 1996). Logistic regression models are of
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Fig. 5. Graphs for the performance (left) and the confidence (right) for linear kernel
SVMs for class C16 of RCV1.

the form:

p(y = +1|β, x) =
exp(xβT )

1 + exp(xβT )
(3)

Where y ∈ {+1,−1} is a binary class label, x is the feature vector represen-
tation of the instance to be classified and β is the feature weight vector which
is learnt from the training data. In Bayesian logistic regression, a prior dis-
tribution on β is used. In order to perform uncertainty-based sampling using
Bayesian logistic regression we followed Schein and Ungar (2004) who used the
entropy of the class distribution predicted by the classifier for each instance 2 .
Maximum entropy models are of the form:

p(y|x) =
1

Z(x)
exp(

k∑
i=1

λifi(x, y)) (4)

Where y is the class label (does not need to be binary), x is the feature
representation of the instance to be classified, Z(x) a normalization factor,
fi(x, y) are binary functions over the instance representing the features and λi

are their respective weights. As in the case of BLR, uncertainty-based sampling
was performed by selecting the instances with the highest entropy over the
class distribution predicted by the classifier.

The software used for the Bayesian logistic regression experiments was BBR 3 .
We optimized the parameters using the –autosearch option provided using
3000 randomly selected instances. For the maximum entropy experiments, we

2 In the same work, the authors also suggest that uncertainty-based sampling is
inferior to other active learning approaches when used with BLR. However, this is
not the focus of this work.
3 http://www.stat.rutgers.edu/ madigan/BBR/
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used the toolkit developed by Zhang Le 4 . We set the maximum number of
iterations to 500 in order to allow the parameters to convergence and the
Gaussian penalty variance was set to 5.0 in order to avoid overfitting.

We performed the same text classification task as in Section 4.2 (RCV1 dataset,
chronological split, CCAT class). In order to estimate the confidence of the
classifier, we used the average of the entropies over the predictions on the test
set. Since for binary classification tasks entropy is in the range of [0,1] and
higher values indicate lower confidence, we used 1 − entropy(x) in order to
be able to compare the curves directly with the ones of the margins produced
by the SVM classifiers, in which higher margins indicate higher confidence.
As in the previous experiments, 1% of the pool of unlabelled instances was
added in each round of active learning and random selection was performed
for comparison.
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Fig. 6. Graphs for the performance (left) and the confidence (right) of Bayesian
logistic regression for class CCAT of RCV1.
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Fig. 7. Graphs for the performance (left) and the confidence (right) of maximum
entropy for class CCAT of RCV1.

In the graphs of Figures 6 and 7 we can see the performance and the confi-
dence curves for the BLR and the maximum entropy classifiers respectively

4 http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
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during active learning and random selection. A first observation in both sets
of experiments is that with a subset of the data selected with uncertainty-
based sampling higher performance is achieved than with the whole dataset.
In the case of BLR, the maximum performance achieved during active learning
was 93.36% F-score at 20% of the data while the performance using the whole
dataset was 92.75% F-score. In the case of maximum entropy the phenomenon
was less pronounced, the highest F-score being 93.88% at 22% of the data and
93.65% F-score respectively. The same phenomenon was observed to a lesser
extent in the SVM experiments of Section 4.2. The maximum performance
achieved during AL with linear kernel SVMs was 94.08% F-score, while the
performance achieved using all the data was 94.05%. Using Gaussian kernel
SVMs, these performances were 94.65% and 94.64% respectively. Schohn and
Cohn (2000) observed the same phenomenon in their active learning experi-
ments with linear kernel SVMs and the Reuters-21578 dataset and attributed
it to the noise from inconsistent annotation. While this is likely to be true to
a certain extent, the consistency of the phenomenon suggests that it is related
with the way data is selected during uncertainty-based sampling. As explained
in Section 3, in the early stages uncertainty-based sampling avoids instances
that contradict the knowledge gathered already by the classifier. Training on a
smaller but unambiguous dataset (given the statistical learning algorithm and
the feature representation), apart from resulting in higher confidence, could
also achieve higher performance. However, further work is needed to verify
this.

The confidence curves in the right graphs of Figures 6 and 7 confirm the
applicability of the stopping criterion suggested in Section 3, since during
uncertainty-based sampling a rise-peak-drop pattern is exhibited. In the case
of BLR, a consistent drop starts when 20% of the data has been selected,
which coincides with the peak of the performance. In the case of maximum
entropy, a consistent drop starts when 30% of the data has been selected.
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Fig. 8. Measuring the amount of contradictory information added in each round for
Bayesian logistic regression (left) and maximum entropy (right).
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In Figure 8 we plotted the amount of contradictory information added in each
round during active learning and random selection for BLR and maximum
entropy. As performed in Section 4.2 for the SVM classifiers, the amount of
contradictory information contributed by each instance classified incorrectly
was measured as the confidence over that instance divided by the average con-
fidence of the classifier in that round. The calculation was the same in each
round as in Equation 2, withe the only difference that since BLR and maxi-
mum entropy are probabilistic models and the task is binary, the confidence
of the classifier was estimated as 1− entropy(x) of the class distribution pre-
dicted instead of the decision margin which was used for SVMs. As with the
SVM classifiers, it can be observed that initially the amount of contradictory
information added during active learning in the early rounds is very little and
it rises afterwards causing the drop in the confidence of the classifier. On the
contrary, for random sampling it is evenly distributed. The fluctuation ob-
served in the final rounds of active learning of BLR (Figure 8, left graph) is
due to the fact that the model has become very confident and at that point it
predicted the large majority of instances correctly or incorrectly in alternate
rounds.

4.5 Named entity recognition experiments

In order to test the wider applicability of the stopping criterion suggested, we
performed further active learning experiments with named entity recognition
(NER). For this purpose, we used the data from the CoNLL 2003 shared
task (Tjong Kim Sang and De Meulder, 2003), in which four entity types
had to be recognized by the systems. Since the SVM active learning method
described in Section 4.1 deals with binary classification task, we transformed
the multiclass NER task into a binary one. We performed this by collapsing
all the entity classes into a general entity class, thus reducing the task to
classifying the tokens as being part of a named entity or not. The resulting
dataset has a skewed class distribution, since 85% of the tokens do not belong
to an entity. The sizes of the training and the test set are 203,621 and 51,362
tokens respectively.

The SVM classifier built uses simple lexical features, such as capitalization, the
presence of digits and/or punctuation marks, as well as suffixes. Also, we used
the part-of-speech tags (provided by the organizers) and the tokens themselves
as features. In our experiments, we randomly chose 1% of the training data as
seed data and the rest was used as the pool of unlabelled data. We used the test
set provided by the task organizers to evaluate the performance measuring the
F-score achieved. In each round, using the method described in Section 4.1,
we chose a batch of tokens to be added to the training data. As with text
classification, we used two different batch sizes, adding 1% and 0.1% of the
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pool data in each round and performed random sampling. Also, we tracked
the confidence of the classifier by measuring the average margin on the test
set. The results appear in Figure 9.
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Fig. 9. Graphs for the performance (left) and the confidence (right) for linear kernel
SVMs on NER.

The gains from applying SVM active learning to NER are impressive. When
1% of the pool selected in each round, the classifier achieves 90.7% F-score
using 5% of the data, and when 0.1% of the pool selected in each round only
3% is needed for this level of performance. During random sampling, 32% of
the data is required. Similar encouraging results were reported by Shen et al.
(2004). The rise-peak-drop pattern of the confidence during active learning was
observed as well (bottom graph of Figure 9), therefore the stopping criterion
suggested in Section 3 is applicable. It is reasonable to expect that this should
be the case in most natural language tasks, since the inherent ambiguity of
natural language is very likely to generate instances that to a certain statistical
model seem to be contradictory. Similar results were obtained using Gaussian
kernel SVMs.

Comparing these results to those on text classification, an interesting point
is that random selection seems to be less efficient for NER than it is for text
classification and conversely, that active learning seems to be more beneficial
in the case of NER. These differences can be attributed to the complexity of
the annotation unit considered in each case. In text classification, a document
represented using bag-of-words, even if randomly selected, is likely to contain
some useful information for the classifier, since it is unlikely that all its words
would have been encountered in the training data, especially in the early
stages. In NER though, it is more likely to encounter the same or very similar
tokens which do not contribute to the performance of the classifier. As a result,
active learning, by selecting tokens on which the classifier is uncertain, is able
to make more informative selections.

At this point it must be noted that there is always the risk that a misleading
and/or noisy seed set or some misguided selections in the initial rounds can

17



lead to incorrect separation boundaries, as well as non-optimal satisfaction of
the stopping criterion. As observed in the case of the SVM active learning for
NER adding 0.1% of the training data in each round, the confidence of the
classifier drops temporarily without having exhausted the dataset. It is there-
fore advisable to allow for a consistent drop in the confidence to be observed,
before considering the stopping criterion fulfilled.

5 Multiclass SVM active learning

In the experiments of Section 4.5 we applied active learning combined with
support vector machines to a reduced version of the named entity recognition.
The impressive results obtained motivated us to explore the possibility of
tackling the multiclass task. We consider as multiclass tasks those in which
each instance is assigned to exactly one class and the number of available
classes is larger than two. An example of such a task is text classification on the
20 Newsgroups dataset (Lang, 1995), as opposed to the Reuters RCV-1 (Lewis
et al., 2004) where each document can have multiple labels and so the task
is commonly treated as a series of binary classification tasks. In the following
sections, we briefly discuss multiclass SVM classification and we introduce a
method for performing uncertainty-based sampling in this scenario.

5.1 Multiclass SVM classification

Support vector machines in their standard formulation are binary classifiers.
Their success motivated researchers to investigate extensions that would allow
multiclass classification with this model. Several methods have been presented
for this purpose. The most popular of them decompose the multiclass task to
several binary classification ones for training and combine the output of the
binary classifiers during testing. A popular strategy for achieving this is the
one-against-all scheme, in which for each class a separate classifier is trained
against the rest of the data. During testing, the class whose classifier has the
largest positive margin is selected (Vapnik, 1995). Another strategy is the
one-against-one scheme in which binary classifiers are trained for each pair of
classes and during testing voting among the classifiers takes place to decide
on the class (Hsu and Lin, 2002). Other strategies involve error-correcting
codes (ECOC) in order to reduce the multiclass task to binary ones (Rennie
and Rifkin, 2001). It has was observed though that the performance of the
combined multiclass classifier is more dependent on the performance of the
binary ones, rather than the strategy used to combine them (Rennie and
Rifkin, 2001).
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5.2 Uncertainty-based sampling with multiclass SVMs

In order to perform uncertainty-based sampling, we used the one-against-all
scheme described in Section 5.1. The choice was made due to its simplicity
in implementation, as well as the fact that the scheme uses the margins of
the classifiers directly for its decisions. For the purpose of uncertainty-based
sampling, we need to define a measure of uncertainty for the decisions of
the multiclass SVM classifier, which in turn will be used to select instances
for labelling. In the one-against-all scheme, the class whose classifier has the
largest positive margin is selected. To estimate the confidence of the classifier
we used an idea from Schapire et al. (1997). They define the confidence of a
multiclass classifier as the difference between the weight assigned to the correct
label and the maximal weight assigned to any of the other labels. In order to
adapt it to multiclass SVMs and be able to use it during active learning we
had to make two alterations. First, since during active learning the correct
labels are not available for the pool instances at the time they are selected
for annotation, we consider the label decided by the one-against-all classifier
instead. Second, we considered the margins of the classifier as the weights
of the labels. More formally, given an instance x and an ensemble of binary
SVM classifiers with decision functions fi(x, ai) as defined in Equation 1, the
confidence of the multiclass classifier c(x) is:

i = argmaxifi(x, ai)

j = argmaxj 6=ifj(x, aj)

c(x) = fi(x, ai)− fj(x, aj) (5)

The way the confidence is estimated in Equation 5 assigns higher confidence
to instances for which one binary classifier yields a large positive margin and
all the others large negative margins. It is also worth noting that it reduces
the confidence on instances for which there are more than one binary classi-
fiers yielding positive margins, as well as when none of the classifiers yields a
positive margin. The resulting estimate is always positive, ranging from 0 to
∞ and the higher the value the higher the confidence. As with the margins
yielded from binary SVMs, these estimates are not comparable across differ-
ent datasets and/or kernels. For uncertainty-based sampling, in each active
learning round we select the instances with the lowest confidence c(x).

5.3 Experiments

For the multiclass SVM active learning experiments two tasks were used,
named entity recognition (Tjong Kim Sang and De Meulder, 2003) and shallow
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parsing (Tjong Kim Sang and Buchholz, 2000). In both cases, the implemen-
tation of SVM-Light with linear kernel and the default parameters were used
in order to build multiclass classifiers using the one-against-all scheme. In each
round, we measured the average confidence of the multiclass SVM classifier
over the instances of the test set using Equation 5.
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Fig. 10. Graphs for the performance (left) and the confidence (right) for the multi-
class SVM classifier during active learning for the CoNLL-2003 NER task.

In Figure 10 we present the graphs for the performance (left graph) and confi-
dence (right graph) of the multiclass SVM classifier during uncertainty-based
sampling for the NER task. The experimental setup was the same as in the Sec-
tion 4.5, except for the fact that the classes (person, location, organization and
miscellaneous) were considered independently 5 . The savings achieved were
substantial, reaching 80% F-score at 20% of the data used during uncertainty-
based sampling using the method introduced in Section 5.2. The same per-
formance level during random selection was achieved using 90% of the data.
Also, the stopping criterion is applicable, even though there were fluctuations
in the rise-peak-drop pattern. These can be attributed to the fact that the
selections made in each round during AL take into account all the binary clas-
sifiers. Therefore, it is very likely that for a given binary classifier only some
of the selections in each round will be informative for it. As a consequence,
the pattern is not exhibited as distinctly as in the case of binary classification.

The purpose of shallow parsing, as defined by Tjong Kim Sang and Buchholz
(2000), is to divide text into syntactically related non-overlapping groups of
tokens (chunks). In our experiments, we used the data from the shared task
of CoNLL 2000 6 . The sizes of the training and testing set are 211,727 and
49,389 tokens respectively. Each token belongs to one syntactic category, such

5 The B-entity tags were used only for the first token of an entity immediately
following a token of a different entity of the same class. As a result, they are very
rare so we merged them with their respective I-entity tags in order to reduce the
running time of our experiments.
6 http://cnts.uia.ac.be/conll2000/chunking/
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as verb phrase (VP) or noun phrase (NP). The corpus is annotated using
the IOB tagging scheme and there are 11 syntactic categories, resulting in
23 classes. The number of instances in each class varies significantly, from 1
instance for the I-LST class to more than 63,000 instances for the I-NP class.
In accordance with the shared task, we evaluated the performance measuring
the F-score. Following Kudoh and Matsumoto (2000) who used SVMs for this
task, the tokens themselves and their respective part-of-speech tags (which
were provided by the organizers) from a 5-token window were used as features.
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Fig. 11. Graphs for the performance (left) and the confidence (right) for the multi-
class SVM classifier during AL for shallow parsing.

In the experiments shown in Figure 11, 1% of the training set randomly se-
lected was used as initial training data and the rest was used as the pool of
unlabelled data. Two runs were performed, one with active learning as de-
scribed in Section 5.2 and one with random selection. In each round, 1% of
the pool was added to the training data of the classifier. As the left graph
demonstrates, during active learning the learning curve of the classifier is far
steeper than during random selection. In particular, having used 10% of the
data, the F-scores achieved were 91.33% and 87.85% respectively. The rise-
peak-drop pattern of the confidence (right graph) is exhibited during active
learning, but like in the case of the multiclass NER experiments there are
fluctuations. Therefore, in practice a consistent drop in the confidence should
be allowed in order to avoid premature termination.

6 Related Work - Discussion

The stopping criterion suggested in this paper requires a consistent drop in
the confidence of the classifier for its fulfillment. Defining what constitutes a
consistent drop, i.e. the number of rounds and/or the rate of drop compared
to the maximum confidence reached is not straightforward. They are likely to
depend on the task and the dataset used and in particular on the differences
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between instances that cannot be resolved by the combination of statistical
model and feature representation used. For example, in the experiments with
the imbalanced dataset (Section 4.3), the drop in the confidence was much
slower than in the case of the balanced dataset of the experiments of Sec-
tion 4.2. However, such differences are unlikely to be known beforehand when
the dataset is unlabelled.

In practice, an operational stopping criterion based on our experiments would
be to stop annotating when the confidence of the classifier drops for a few
consecutive rounds. While there is no guarantee that this would always be the
ideal stopping point since it could be a local maximum of the confidence curve,
in our experiments the longest drop in the confidence of the classifier that oc-
cured before its global maximum was reached lasted two consecutive rounds 7 .
Terminating the annotation when the confidence drops for three consecutive
rounds yields the results of Table 1. Nevertheless, further investigation of this
issue is an interesting direction for future work.

experiment stopping perf. at max perf

point stopping point

CCAT, linear, 1% 20% 93.98% 94.08%

CCAT, linear, 0.1% 15.2% 94% 94.08%

CCAT, Gaussian, 1% 25% 94.58% 94.62%

C16, linear, 1% 6% 49.98 % 51.03%

CCAT, BLR, 1% 24% 93.25% 93.36%

CCAT, MaxEnt, 1% 34% 93.79% 93.88%

NER, linear, 1% 9% 91.77% 92.31%

NER, linear, 0.1% 5% 91.51% 91.96%

NER-multi, linear, 1% 28% 80.24% 80.28%

chunking, linear, 1% 24% 91.40% 91.53%
Table 1
Stopping points and the performances achieved for the AL experiments of this paper.

An obvious way to estimate the performance and/or the confidence of the
classifier would be to use the resulting labelled dataset after each round of
AL. However, a dataset selected in this fashion is likely to contain only hard
instances, especially if the active learning selection is successful (Baram et al.,
2004). Using it for confidence estimation during active learning in particular
would not be appropriate because in each round new instances are added with
different difficulty.

7 In the experiments of Section 4.5 when selecting 0.1% of the instances in each
round and in the NER experiments of Section 5.3
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Several active learning stopping criteria that do not require a labelled dataset
have have been proposed in the literature. Schohn and Cohn (2000) suggest
that data labelling should cease when there are no instances in the pool that
lie closer to the separating hyperplane than the support vectors that define it.
In our experiments, with linear kernel SVMs applied to text classification for
the Reuters RCV1-v2 CCAT class and adding 1% of the pool to the training
data in each round, using this criterion we would stop after having added 24%
of the available data. Applying the stopping criterion suggested in this paper
we would have terminated active learning when 20% of the data has been used.
The performance would have been roughly the same, approximately 94% in
F-score. In the case of binary NER adding 1% of the pool in each round,
the criterion of Schohn and Cohn (2000) is fulfilled at 11% of the data and
the performance at that point was 91.83% in F-score. While both criteria are
satisfied at roughly the same point, the stopping criterion of Schohn and Cohn
(2000) is based on an observation specific to binary SVM classifiers which
restricts its applicability. Our criterion is based on an observation on how
uncertainty-based sampling selects the data and the nature of the data itself,
therefore it can be generalized beyond SVMs. Campbell et al. (2000) suggested
the same criterion adding a subsequent evaluation step on a randomly selected
and manually labelled dataset, in which a human uses the evaluation to judge
whether the performance of the classifier is satisfactory.

More recently, Zhu and Hovy (2007) suggested stopping when the entropy of
each selected unlabelled instance is below a certain threshold and the classifier
can predict the labels of these instances correctly. However, it is not straight-
forward how to specify the value for the entropy threshold. Also, the entropies
vary according to the number of classes and in tasks in which the latter is
not constant (for example in parse selection), they cannot be used directly.
Moreover, if we consider non-probabilistic classifiers, the margins are not com-
parable for different classifiers and/or datasets and therefore it is unlikely that
a certain threshold value would be applicable in all cases. We attempted to ver-
ify this stopping criterion in our experiments with Bayesian logistic regression
which is a probabilistic method (Section 4.4) but it proved to be ineffective
because there were no rounds in which the labels of all the selected instances
were predicted correctly. In the case of the SVM classifier with the linear ker-
nel (Section 4.2), this condition of the criterion was fulfilled only after 96% of
the data has been annotated, which is much later than the 20% point at which
we would stop using the stopping criterion suggested in this work. A possible
reason for this is that the batch size used in our experiments was significantly
larger (1607 instances compared to 10 in the experiments of Zhu and Hovy
(2007)) and it is less likely that the classifier can predict the labels of all the
instances in the batch correctly.

In other related work, Tomanek et al. (2007) conducted active learning ex-
periments using the query by committee approach and they found that the
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disagreement rate between the classifiers of the committee can be used as a
stopping criterion. In particular, they suggest that annotation should cease
after the point at which the classifiers of the committee stop disagreeing. We
could not apply this criterion in our experiments, since we concentrated on
using a single classifier to select data using uncertainty based sampling. Shen
et al. (2004) performed active learning with SVMs for multiclass named entity
recognition. In their work, they considered criteria other than uncertainty in
the way they selected instances. However, they trained independent classifiers
for each entity class, therefore not attempting mutually exclusive multiclass
classification.

Another related issue is the reusability of the data. Baldridge and Osborne
(2004) found in their experiments that reusing material selected during active
learning with a different classifier and/or feature set is not very effective and
can yield worse results than random selection. However, recent findings by
Tomanek et al. (2007) show that reusability is feasible to a certain extent.
While our work does not deal with this issue directly, the definition of a
stopping criterion minimizes the potential cost of annotating data that is not
reusable.

Concerning the named entity recognition and shallow parsing experiments, it
must be noted that selecting tokens independently of each other is unlikely to
be a realistic simulation of how a human annotator would deal with the task,
since in many cases the context is needed to determine the class of a token. We
used this experiment in order to test the applicability of the stopping criterion.
Hachey et al. (2005) suggest that sentences are a more realistic annotation unit
for NER. The choice of annotation unit and the way the annotation cost is
estimated would affect our experiments, as shown in Ngai and Yarowsky (2000)
and Baldridge and Osborne (2007), and it is an interesting direction for future
work. Another issue related with the NER and shallow parsing tasks is that in
recent years the use of sequential models such as Conditional Random Fields
(Sutton and McCallum, 2006) has become the standard approach employed.
Testing the applicability of of the stopping criterion suggested in this work
with such models exceeds the scope of this work. It is worth pointing out that
the selections made by the current selection model using SVMs could not be
used to train sequential models because the latter require sentences completely
annotated as training material. This observation supports the concerns about
the reusability of the data expressed by Baldridge and Osborne (2004).

Finally, another issue related to our work is how active learning selections
affect the performance of the human annotators, which is directly related to
estimating the actual cost of annotation. Baldridge and Osborne (2004) mea-
sured the number of decisions made by the humans to select the correct parse
in their experiments with parse selection. Hachey et al. (2005) studied the in-
teraction of active learning with the inter-annotator agreement on the selected
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instances and observed that the instances selected with active learning are
harder to annotate, resulting in annotation inconsistencies and noisy training
data. In Ngai and Yarowsky (2000) it was shown that the performance of the
trainable system correlates strongly with that of the annotator who created
the training data used.

7 Conclusions - Future Work

The main contribution of this paper is the definition of a stopping criterion
for active learning using uncertainty based sampling which does not require
annotated data. We verified its applicability in two NLP tasks (text classifi-
cation and named entity recognition) using suppport vector machines (with
linear and Gaussian kernel), maximum entropy models and Bayesian logistic
regression. Such a stopping criterion can be very useful when applying statis-
tical NLP techniques to new domains where there is a paucity of annotated
material. In addition, we presented a method for performing uncertainty-based
SVM active learning for multiclass tasks using the one-against-all formulation
and its efficiency was demonstrated in two tasks, named entity recognition and
shallow parsing. Also, the applicability of the stopping criterion suggested was
verified in these experiments.

Future work should study the relation of the stopping criterion with the
reusability of the data, which is a very important issue. In particular, it would
be of interest to study the conditions under which data annotated during ac-
tive learning can be reused efficiently. Moreover, it would be interesting to
see if a similar stopping criterion could be applicable in the case of domain
adaptation. Finally, experiments employing human annotators are of interest
in order to assess the results of active learning more realistically.
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