
Biomedical event extraction from abstracts and full papers
using search-based structured prediction

Andreas Vlachos∗1 and Mark Craven2

1Computer Laboratory, University of Cambridge, UK
2Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA

Email: Andreas Vlachos∗- andreas.vlachos@cl.cam.ac.uk; Mark Craven - craven@biostat.wisc.edu;

∗Corresponding author

Abstract

Background Biomedical event extraction has attracted substantial attention as it can assist researchers in
understanding the plethora of interactions among genes that are described in publications in molecular biology.
While most recent work has focused on abstracts, the BioNLP 2011 shared task evaluated the submitted systems
on both abstracts and full papers. In this article, we describe our submission to the shared task which decomposes
event extraction into a set of classification tasks that can be learned either independently or jointly using the
search-based structured prediction framework. Our intention is to explore how these two learning paradigms
compare in the context of the shared task.

Results We report that models learned using search-based structured prediction exceed the accuracy of
independently learned classifiers by 8.3 points in F-score, with the gains being more pronounced on the more
complex Regulation events (13.23 points). Furthermore, we show how the trade-off between recall and precision
can be adjusted in both learning paradigms and that search-based structured prediction achieves better recall at
all precision points. Finally, we report on experiments with a simple domain-adaptation method, resulting in the
second-best performance achieved by a single system.

Conclusions We demonstrate that joint inference using the search-based structured prediction framework
can achieve better performance than independently learned classifiers, thus demonstrating the potential of this
learning paradigm for event extraction and other similarly complex information-extraction tasks.

Background

The term biomedical event extraction is used to re-
fer to the task of extracting descriptions of actions
and relations among one or more entities from the
biomedical literature. Since the scientific literature
contains a wealth of information about relationships
among gene products that is not contained in struc-
tured databases, there has been sustained interest
in developing methods that are able to automati-
cally extract these relationships of interest. In recent
years, there have been two community-wide shared
tasks focused on the semantically rich problem of

event extraction. The 2009 and 2011 BioNLP shared
tasks [1,2] involved extracting events composed from
a handful of different relation types of varying com-
plexity. In this article, we describe our submis-
sion to BioNLP 2011 shared task GENIA Task1
(BioNLP11ST-GE1) [3] and report on additional ex-
periments we have conducted.

In our approach, we decompose event extraction
into a set of classification tasks that can be learned
either independently or jointly using the search-
based structured prediction framework (SEARN) [4]
in a formulation we proposed in earlier work [5].

1

SEARN is an algorithm that converts the problem
of learning a model for structured prediction into
learning a set of models for cost-sensitive classifica-
tion (CSC). CSC is a task in which each training
instance has a vector of misclassification costs asso-
ciated with it, thus rendering some mistakes to be
more expensive than others [6]. Compared to in-
dependently learned classifiers, SEARN is able to
achieve better performance because its models are
learned jointly. Thus, each of these models is able to
incorporate features representing predictions made
by the other ones, while taking into account possible
mistakes made. Our intention is to explore how these
two learning paradigms compare with each other,
as well as with other approaches in the context of
BioNLP11ST-GE1. In addition to reporting results
using the official evaluation using F-score, we also
explore the range of precision and recall points that
are achievable by the two approaches. Moreover,
we demonstrate how we can adjust the trade-off be-
tween recall and precision under SEARN by using a
weighted loss function. Finally, we report on exper-
iments with the simple domain adaptation method
proposed by Daumé III [7], which creates a version
of each feature for each domain.

An early shared task in biomedical information
extraction was the Learning Language in Logic 2005
(LLL 2005) Genic interaction shared task [8], which
focused on protein-protein interactions (PPI). How-
ever, the datasets involved were rather small in size,
not allowing confident conclusions on system per-
formances. LLL 2005 was followed by the protein-
protein interaction pair subtask of BioCreative II [9].
In this subtask, the annotated datasets provided
were produced by gathering curated interactions
from relevant databases. This meant that there was
no text-bound annotation, thus making the appli-
cation and evaluation of existing NLP techniques
difficult, resulting in rather low performances. In-
dicatively, the best performance achieved was 29
in F-score, while many of the teams scored be-
low 10. More recently, the BioNLP 2009 shared
task (BioNLP09ST) on event extraction [1] focused
on a number of relations of varying complexity us-
ing a text-bound annotation scheme. The perfor-
mances achieved ranged from 16 to 52 in F-score,
suggesting improvements in task definitions, data
annotation and participating systems. Following
BioNLP09ST, the BioNLP 2011 shared task GE-
NIA Task1 (BioNLP11ST-GE1) [3] used the same
event extraction task definition as it predecessor, but

evaluated the submitted systems on event extraction
from both abstracts and full papers. It had 15 par-
ticipants with performances ranging from 11.80 to
56.04 in F-score.

Methods
Event extraction decomposition

Each event consists of a trigger and one or more
arguments. Nine event types are defined which
can be grouped in three categories, namely Sim-
ple, Binding and Regulation. Simple events include
Gene expression, Transcription, Protein catabolism,
Phosphorylation, and Localization events. These
have only one Theme argument which is a protein.
Binding events have one or more protein Themes.
Regulation events include Positive regulation, Neg-
ative regulation and Regulation and are the most
complex ones as they have one obligatory Theme
and one optional Cause, each of which can be ei-
ther a protein or another event, thus resulting in
nested events. The protein names are annotated in
advance and any token in a sentence can be a trigger
for one of the nine event types considered. Thus, the
task can be viewed as a structured prediction prob-
lem in which the output for a given instance is a
(possibly disconnected) directed acyclic graph (not
necessarily a tree) in which vertices correspond to
triggers or protein arguments, and edges represent
relations between them. In an example demonstrat-
ing the complexity of the task, given the passage
“. . . SQ 22536 suppressed gp41-induced IL-10 pro-
duction in monocytes”, systems should extract the
three nested events shown in Fig. 1d.

Figure 1 describes the event extraction pipeline
that is used throughout the paper. We assume that
the sentences to be processed are parsed into syntac-
tic dependencies and lemmatized. Each stage of the
pipeline has its own module to perform the classifica-
tion task needed, which is either a learned classifier
(trigger recognition, Theme/Cause assignment) or a
rule-based component (event construction).

Trigger recognition

In trigger recognition, the system decides whether a
token acts as a trigger for one of the nine event types
or not. Thus it is a 10-way classification task. We
only consider tokens that are tagged as nouns, verbs
or adjectives by the parser, as they cover the major-

2

SQ 22536 suppressed

Neg reg

gp41-induced

Pos reg

IL-10 production

Gene exp

(a) Trigger recognition

SQ 22536 suppressed

Neg reg

gp41-induced

Pos reg

IL-10 production

Gene exp

Theme

ThemeTheme

(b) Theme assignment

SQ 22536 suppressed

Neg reg

gp41-induced

Pos reg

IL-10 production

Gene exp

Theme

Theme

Cause

Theme

(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

(d) Event construction

Figure 1: The stages of our biomedical event extraction system.

ity of the triggers in the data. This task is similar to
word sense disambiguation, but it is simpler due to
the restricted domain. The main features used in the
classifier represent the lemma of the token which is
sufficient to predict the event type correctly in most
cases. In addition, we include features that con-
join each lemma with its part-of-speech tag. This
allows us to handle words with the same nominal
and verbal form that have different meanings, such
as “lead”. While the domain restricts most lemmas
to one event type, there are some whose event type
is determined by the context, e.g. “regulation” on
its own denotes a Regulation event but in “positive
regulation” it denotes a Positive regulation event in-
stead. In order to capture this phenomenon, we add
as features the conjunction of each lemma with the
lemma of the tokens immediately surrounding it, as
well as with the lemmas of the tokens it has syntactic
dependencies with.

Theme and Cause assignment

In Theme assignment, we form an agenda of can-
didate trigger-argument pairs for all trigger-protein
combinations in the sentence and classify them as
Themes or not. For each trigger-argument pair, a
binary classifier is used to determine whether it has
a Theme relation or not. Whenever a trigger is pre-
dicted to have a Theme argument, we form candi-
date pairs between all the Regulation triggers in the
sentence and that trigger as the argument, thus al-
lowing the prediction of nested events. Also, we re-
move candidate pairs that could result in directed
cycles, as they are not allowed by the task.

The features used to predict whether a trigger-
argument pair should be classified as a Theme are
extracted from the syntactic dependency path and
the textual string between them. In particular, we
extract the shortest unlexicalized dependency path
connecting each trigger-argument pair using Dijk-
stra’s algorithm, allowing the paths to follow either
dependency direction. One set of features represent
these paths and in addition we have sets of features

3

representing each path conjoined with the lemma,
the PoS tag and the event type of the trigger, the
type of the argument and the first and last lemmas
in the dependency path. The latter help by provid-
ing some mild lexicalization. We also add features
representing the textual string between the trigger
and the argument, combined with the event type
of the trigger. While not as informative as depen-
dency paths, such features help in sentences where
the parse is incorrect, as triggers and their argu-
ments tend to appear near each other.

In Cause assignment, we form an agenda of
candidate trigger-argument between the Regulation
class triggers that were assigned at least one Theme
and the protein names and the other triggers that
were assigned a Theme. For each trigger-argument
pair, a binary classifier is used to determine whether
it has a Cause relation or not. We extract features
as in Theme assignment, adding additional features
representing the conjunction of the dependency path
of the candidate pair with the path(s) from the trig-
ger to its Theme(s).

Event construction

In the event construction stage, we convert the pre-
dictions of the previous stages into events. If a Bind-
ing trigger is assigned multiple Themes, we choose to
form either one event per Theme or one event with
multiple Themes. For this purpose, we group the ar-
guments of each nominal Binding trigger according
to the first label in their dependency path and gen-
erate events using the cross-product of these groups.
For example, assuming the parse was correct and all
the Themes recognized, “interactions of A and B
with C” would result in two Binding events with
two Themes each, A with C, and B with C respec-
tively. We add the exceptions that if two Themes are
part of the same token (e.g. “A/B interactions”),
or the trigger and one of the Themes are part of the
same token, or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.

Finally, there are certain tokens such as “overex-
press” that are consistently annotated with a Simple
event type and a Regulation event type with the lat-
ter forming an event with the former as its Theme.
In the event extraction decomposition used, we pre-
dict one event type per token so it is not possible to
produce this event structure. Therefore, for the lem-
mas that have these additional Regulation events, we
generate them heuristically using a dictionary.

Structured prediction with SEARN

SEARN [4] forms the prediction of an instance s as
a sequence of T multiclass predictions ŷ1:T made by
a hypothesis h. The hypothesis consists of a set of
classifiers that are learned jointly. Each prediction ŷt
can use features from s as well as from all the previ-
ous predictions ŷ1:t−1. These multiclass predictions
are referred to as actions and we adopt this term in
order to distinguish them from the structured out-
put prediction of an instance. The number of actions
taken for an instance is not defined in advance but
it is determined as the prediction is formed.

The SEARN algorithm is presented in Alg. 1. It
initializes hypothesis h to the optimal policy π (step
2) which predicts the optimal action in each timestep
t according to the gold standard. The optimal action
at timestep t is the one that minimizes the overall
loss over s assuming that all future actions ŷt+1:T

are also made optimally. The loss function is de-
fined by the structured prediction task considered.
Each iteration begins by making predictions for all
instances s in the training data S (step 6). For each
s and each action ŷt, a cost-sensitive classification
(CSC) example is generated (steps 8-12). The fea-
tures are extracted from s and the previous actions
ŷ1:t−1 (step 8). The cost for each possible action
yit is estimated by predicting the remaining actions
y′t+1:T in s using h (step 10) and evaluating the cost
incurred given that action (step 11). Using a CSC
learning algorithm, a new hypothesis is learned (step
13) which is combined with the current one accord-
ing to the interpolation parameter β (step 14). In
order to interpolate between the learned hypotheses
and the optimal policy we draw a random number
between 0 and 1. If it is less than (1−β)iteration, then
we use the optimal policy. Otherwise, we use the
learned hypotheses which is a weighted ensemble of
the hypotheses learned in each iteration (hnew). The
weights are set according to the equation in step 13,
which results in hypotheses learned in earlier rounds
becoming less important their more recent counter-
parts.

In each iteration, SEARN moves away from the
optimal policy and instead uses the learned hypothe-
ses when predicting (steps 6 and 10). Thus, each
hnew is adapted to the actions chosen by h instead
of those of the optimal policy. When the dependence
on the latter becomes insignificant (i.e. the probabil-
ity of using the optimal policy becomes very small),
the algorithm terminates and returns the weighted

4

Algorithm 1 SEARN

1: Input: labeled instances S, optimal policy π, CSC learning algorithm CSCL, loss function `
2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1 . . . ŷT
7: for ŷt in h(s) do
8: Extract features Φt = f(s, ŷ1:t−1)
9: for each possible action yit do

10: Predict y′t+1:T = h(s|ŷ1:t−1, yit)
11: Estimate cit = `(ŷ1:t−1, y

i
t, y′t+1:T)

12: Add (Φt, ct) to E
13: Learn a classifier hnew = CSCL(E)
14: h = βhnew + (1− β)h
15: Output: policy h without π

ensemble of learned hypotheses without the optimal
policy.

The interpolation parameter β determines how
fast SEARN moves away from the optimal policy,
and as a result, how many iterations will be needed
to minimize the dependence on it. Dependence in
this context refers to the probability of using the
optimal policy instead of the learned hypothesis in
choosing an action during prediction. Conversely, in
each iteration, the features extracted (Φt in step 8)
become progressively dependent on the actions cho-
sen by the learned hypotheses instead of those of the
optimal policy.

The decomposition of structured prediction into
actions implies a search order. For some tasks such
as part-of-speech (PoS) tagging, there is a natural
left-to-right order in which the tokens are treated.
However for others, including the task tackled in this
paper, this ordering might not be appropriate. We
discuss this issue in the next section.

Structural information under SEARN is incorpo-
rated in two ways. First, via the costs that are es-
timated using the loss over the instance rather than
isolated actions, e.g. counting how many incorrect
PoS tags will occur in the sentence if a given to-
ken is tagged as noun. Second, via the features ex-
tracted from the previous actions, e.g. the PoS tag
predicted for the previous token can be a feature.
Note that such features would be possible in a stan-
dard pipeline as well, but during training they would
have to be extracted using the gold standard instead

of the actual predictions made by the classifiers, as
they would be extracted during testing.1

Finally, SEARN can be adapted to learn a
pipeline of independently trained classifiers. To
achieve this, β must be set to 1 so that there is
only one iteration, the features that are dependent
on previous actions must be removed, and the cost
for each action must be set to 0 if it follows from the
gold standard, or to 1 otherwise. This adaptation
allows for a fair comparison between SEARN and a
pipeline of independently learned classifiers.

Biomedical event extraction with SEARN

In this section we describe how we use SEARN to
learn the event extraction decomposition described
earlier. Each instance is a sentence and the hypoth-
esis learned in each iteration consists of a classifier
for each stage of the pipeline, excluding event con-
struction which is rule-based. For this purpose we
need to concretely define the way the prediction of a
structured instance is performed (step 6 in Alg. 1),
the optimal policy, and the method used to estimate
the cost for each action (steps 9-11 in Alg. 1).

SEARN allows us to extract structural features
for each action from the previous ones. During trig-
ger recognition, we add as features the combination
of the lemma of the token being classified and the
event types (if any) assigned to the previous and
the next token, as well as the event type assigned
to the tokens that have syntactic dependencies with

1It is possible to use cross-validation to train a pipeline on its own predictions, however this is rarely done in practice.

5

the token being classified. During Theme assign-
ment, when considering a trigger-argument pair, we
add features based on whether the pair forms an
undirected cycle with previously predicted Themes
(undirected Theme cycles are allowed in the task
definition but they are relatively rare), whether the
trigger has been assigned a protein as a Theme and
the candidate Theme is an event trigger (and the re-
verse), and whether the argument is the Theme of a
trigger with the same event type. We also add a fea-
ture indicating whether the trigger has three Themes
predicted already, as triggers with more Themes are
rare. During Cause assignment, we add features rep-
resenting whether the trigger has been assigned a
protein as a Cause and whether the candidate Cause
is an event trigger.

Since the features extracted for an action depend
on previous ones, we need to define a prediction or-
der for the actions. Ideally, the actions predicted ear-
lier should be less dependent on structural features
and/or easier so that they can inform the more struc-
ture dependent/harder ones. In trigger recognition,
we process the tokens from left to right since modi-
fiers appearing before nouns tend to affect the mean-
ing of the latter, e.g. “binding activity”. In Theme
and Cause assignment, we predict trigger-argument
pairs in order of increasing dependency path length,
assuming that, since they are the main source of
features in these stages and shorter paths are less
sparse, pairs containing shorter ones should be pre-
dicted more reliably. Trigger-argument pairs with
the same dependency path length are predicted ac-
cording to the order they were added to the agenda,
i.e. pairs with proteins as arguments are predicted
before those that have other triggers as arguments.
While we found this ordering of the actions to work
well in practice, it could be improved by taking into
account other properties of the trigger-argument,
e.g. how frequently we encountered its dependency
path in the training data.

The loss function sums the number of false pos-
itive and false negative events, which is the evalua-
tion measure of the shared task. The optimal pol-
icy is derived from the gold standard and returns
the action that minimizes the loss over the sentence
given the previous actions and assuming that all fu-
ture actions are optimal. In trigger recognition it re-
turns either the event type for tokens that are trig-
gers or a “No trigger” label otherwise. In Theme
assignment, for a given trigger-argument pair the
optimal policy returns Theme only if the trigger is

recognized correctly and the argument is indeed a
Theme for that trigger according to the gold stan-
dard. In case the argument is another event, we re-
quire that its Themes have been recognized correctly
as well. In Cause assignment, the requirements are
the same as those for the Themes, but we also re-
quire that at least one Theme of the trigger in the
trigger-argument pair to be considered correct. Con-
sequently, if a trigger is predicted with the wrong
event type, the optimal policy would not assign any
Themes to it in order to avoid the false positive event
it would incur. These additional checks are imposed
by the task definition, under which events must have
all their elements identified correctly. While the
could reduce recall as the optimal policy avoids pre-
dicting some Theme edges, it allows the algorithm
to learn how to minimize the losses incurred due to
its own wrong decisions.

Cost estimation

Cost estimation (steps 6-12 in Alg. 1) is crucial to the
successful application of SEARN. In order to high-
light its importance, consider the example of Fig. 2
focusing on trigger recognition.

In the first iteration (Fig. 2a), the actions for the
sentence will be made using the optimal policy only,
thus replicating the gold standard. During costing,
if a token is not a trigger according to the gold stan-
dard (e.g. “SQ”), then the cost for all actions is
0, as the optimal policy will not assign Themes to
a trigger with incorrect event type. Such instances
are ignored by the cost-sensitive learner.

In the second iteration (Fig. 2b), the optimal
policy is interpolated with the learned hypothesis,
thus some of the actions are likely to be incorrect.
Assume that “SQ” is incorrectly predicted to be a
Neg reg trigger and assigned a Theme. During cost-
ing, the action of labeling “SQ” as Neg reg has a
cost of 1, as it would result in a false positive event.
Thus the learned hypothesis will be informed that
it should not label “SQ” as a trigger as it would as-
sign Themes to it incorrectly and it is adapted to
handle its own mistakes. Note that the costs for the
other actions for that token remain 0, assuming that
the learned hypothesis would not assign Themes to
“SQ” if it is predicted to be Gene exp, Pos reg or
No trigger . Similarly, the action of labeling “pro-
duction” as Neg reg in this iteration would incur a
cost of 6, as the learned hypothesis would assign a
Theme incorrectly, thus resulting in 3 false negative

6

SQ 22536 suppressed

Neg reg

gp41-induced

Pos reg

IL-10 production

Gene exp

Theme

Theme

Cause

Theme

token No trigger Gene exp Pos reg Neg reg
SQ 0 0 0 0
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 3

(a) First iteration (optimal policy only)

SQ

Neg reg

22536 suppressed

Neg reg

gp41-induced

Pos reg

IL-10 production

Neg reg

Theme

Theme

Cause

ThemeTheme

token No trigger Gene exp Pos reg Neg reg
SQ 0 0 0 1
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 6

(b) Second iteration (interpolation)

Figure 2: Prediction (top of each panel) and cost sensitive examples for trigger recognition actions (bottom
of each panel) in the first two SEARN iterations.

and 3 false positive events. Therefore, the learned
hypothesis will be informed that assigning the wrong
event type to “production” is worse than not predict-
ing a trigger.

The interpolation between the optimal policy
and the learned hypothesis is stochastic, i.e. in each
iteration beyond the first one the actions are taken
either by the optimal policy or by the learned hy-
potheses, as described in the section “Structured
prediction with SEARN”. Therefore, the cost esti-
mates obtained in steps 10 and 11 of Alg. 1 vary
according to the mistakes made by the learned hy-
pothesis, thus affecting the cost estimates obtained.
In order to obtain more reliable estimates, one can
average over multiple samples for each action by re-
peating steps 10 and 11 of Alg. 1. However, the
computational cost is effectively multiplied by the
number of samples.

A different approach proposed by Daumé III [4]
is to assume that all actions following the one we are
costing are going to be optimal and use the optimal
policy to approximate the prediction of the learned
hypothesis in step 10 of Alg. 1. In tasks where the
learned hypothesis is accurate enough, this has no
performance loss and it is computationally efficient
as the optimal policy is deterministic. However, in
event extraction, the learned hypothesis is likely to
make mistakes, thus the optimal policy would not
provide a good approximation to it. In the example
of Fig. 2, this approach would not alter the costs
between the two iterations, as the optimal policy
would avoid assigning Themes to incorrectly recog-
nized triggers, thus the learned hypothesis would not
be informed of its mistakes.

In step 11 of Alg. 1, the cost of each action is esti-
mated over the whole sentence. While this allows us

7

to take structure into account, it can result in costs
being affected by a part of the output that is not re-
lated to that action. This is likely to occur in event
extraction, as sentences can often be long (more than
100 tokens) and contain disconnected event compo-
nents in their output graphs. For this reason we use
focused costing [5], in which the cost estimation for
an action takes into account only the part of the out-
put graph connected with that action. For example,
in Fig. 2 the cost estimation for “SQ” will ignore the
events in the first iteration, while it will take them
into account in the second one. Seen differently, fo-
cused costing results in more reliable cost estimates
than the standard costing (for a given number of
samples) by reducing the number of actions taken
into account.

CSC learning with passive-aggressive algo-
rithms

The SEARN framework requires a multiclass CSC
algorithm to learn how to predict actions. This al-
gorithm must be computationally fast during param-
eter learning and prediction, as in every iteration we
need to learn a new hypothesis and to consider each
possible action for each instance in order to construct
the cost-sensitive examples.

Daumé III et al. [4] showed that it is possible
to use any binary classification algorithm in order
to perform multiclass CSC. This is achieved by re-
ducing multiclass CSC to binary CSC using the
weighted all-pairs algorithm [10] and in turn reduc-
ing CSC to binary classification using the costing
algorithm [11]. The main drawback of this approach
is that it relies on multiple subsamplings of the train-
ing data, which can be inefficient for large datasets
and many classes. Zadrozny et al. [11] observed that
it is more efficient to incorporate the costs in the loss
of the classifier when possible. This can be relatively
straightforward in binary problems, but not in the
multiclass ones.

With these considerations in mind, we implement
a multiclass CSC learning algorithm using the gen-
eralization of the online passive-aggressive (PA) al-
gorithm for binary classification [12]. For each train-
ing example xt, the K-class linear classifier with K

weight vectors w
(k)
t makes a prediction ŷt and suf-

fers a loss `t. In the case of multiclass CSC learn-
ing, each example has its own cost vector ct. If the
loss is 0 then the weight vectors of the classifier are
not updated (passive). Otherwise, the weight vec-

tors are updated minimally so that the prediction
on example xt is corrected (aggressive). The up-
date takes into account the cost of the mistake and
the aggressiveness parameter C, which allows the al-
gorithm to handle noisy data. Crammer et al. [12]
describe three variants to perform the updates which
differ in how the learning rate τt is set for each exam-
ple. In our experiments we used the variant named
PA-II with prediction-based updates. Initial exper-
iments showed little difference in accuracy between
the variants, which is in agreement with the obser-
vations reported by Crammer et al.

The full algorithm is presented in Alg. 2. Since
we are operating in a batch learning setting (i.e. we
have access to all the training examples), we perform
multiple rounds and average the weight vectors ob-
tained, as in the averaged perceptron [13]. Further-
more, since online learning depends on the order of
the training examples but our data does not have
a temporal aspect, we shuffle the examples in the
beginning of each round.

Results
In this section we compare the event extraction ac-
curacy achieved by the system based on indepen-
dently learned classifiers (henceforth independent)
versus the accuracy achieved by the system learn-
ing classifiers under SEARN. The purpose of these
experiments is to assess the benefits of joint learning
under SEARN. In the results reported below, we fol-
low the dataset split of BioNLP11ST-GE1, namely
800 abstracts and five full articles for training, 150
abstracts and five full articles for development, and
260 abstracts and five full articles for testing. To
put these results in a wider context, we also com-
pare against the other systems that participated in
BioNLP11ST-GE1.

For both independent and SEARN the aggres-
siveness parameter of PA and the number of rounds
in parameter learning are set by tuning on 10% of the
training set. For SEARN, we also set the interpola-
tion parameter β to 0.3 and use 12 iterations. Thus,
in the final iteration the probability of using the op-
timal policy is (1− 0.3)12 ≈ 0.01. These parameters
were tuned in preliminary experiments using the de-
velopment data. For syntactic parsing, we use the
output of the re-ranking parser [14] adapted to the
biomedical domain [15], as provided by the shared
task organizers in the Stanford collapsed depen-

8

Algorithm 2 Passive-aggressive CSC learning

1: Input: training examples X = x1 . . . xT , cost vectors c1 . . . cT ≥ 0, rounds R, aggressiveness C
2: Initialize weights w

(k)
0 = (0, ..., 0)

3: for r = 1, ..., R do
4: Shuffle X
5: for xt ∈ X do
6: Predict ŷt = argmaxk(w

(k)
t · xt)

7: Receive cost vector ct ≥ 0
8: if c

(ŷt)
t > 0 then

9: Suffer loss `t = w
(ŷt)
t · xt − w(yt)

t · xt +

√
c
(ŷt)
t

10: Set learning rate τt = `t
||xt||2+ 1

2C

11: Update w
(yt)
t+1 = wt + τtxt

12: Update w
(ŷt)
t+1 = wt − τtxt

13: Average wavg = 1
T×R

∑T×R
i=0 wi

dencies with conjunct dependency propagation [16].
The use of this publicly available resource allows for
easy replication of our experiments. Lemmatization
is performed using morpha [17]. No other knowledge
sources or tools are used. A pre-processing step we
perform on the training data is to reduce the multi-
token triggers in the gold standard to their syntac-
tic heads. This procedure simplifies the task of as-
signing arguments to triggers and, as the evaluation
variant used allows approximate trigger matching, it
does not result in performance loss.

Table 1 reports the Recall/Precision/F-score
achieved by independent and SEARN in each stage,
as well as the overall performance on the develop-
ment set. SEARN obtains better performance on
the development set by 6.75 F-score points. The
difference is more pronounced on the more complex
Regulation events where SEARN achieves 41.36 ver-
sus 29.13. Table 2 contains detailed results per event
type and class. Note that while the trigger classi-
fier learned with SEARN overpredicts (its precision
is 29.78), the Theme and Cause classifiers maintain
relatively high precision with substantially higher re-
call as they are learned jointly with it. As triggers
that do not form events are ignored by the evalu-
ation, trigger overprediction without event overpre-
diction does not result in performance loss.

The results on the test dataset using SEARN are
46.67/61.63/53.12 (Recall/Precision/F-score) which
would have ranked fourth in the shared task, 2.92

F-score points below the best performing ensemble
system FAUST [18].2 On the same dataset, the in-
dependent system achieves 33.45/67.87/44.82, which
while it would have ranked eighth in the shared task
(out of a total of 15 participants), it is 8.3 F-score
points below the result achieved with SEARN. In
the full papers part of the corpus, our approach us-
ing SEARN would have ranked second with 52.98 F-
score points, slightly below the best reported perfor-
mance at 53.14 by UMass [20]. While a direct com-
parison between learning frameworks is difficult due
to the differences in task decomposition and feature
extraction, we hypothesize that the superior perfor-
mance of these systems is partly due to learning how
to construct Binding events, while our approach uses
heuristics for this task. However, it is possible to
model Binding event construction with a classifier
and learn it jointly with SEARN, which we leave for
future work.

Evaluation at varying recall-precision curves

In the previous section we evaluated the accuracy of
the event extraction systems discussed using F-score,
which by default favors balanced precision and recall
scores. While SEARN achieves a better F-score than
independent, it is important to note that they op-
erate at different precision levels, with independent
being substantially more precise at 69.39% versus
59.60%. Therefore it is reasonable to ask whether

2These numbers are higher than the ones we reported earlier [19]. This is because we discovered a bug in the loading
of the training instances that resulted in ignoring many of them. Our original submission labeled UWMadison achieved
42.56/61.21/50.21 (Recall/Precision/F-score).

9

Table 1: R(ecall)/P(recision)/F(-score) on the development dataset. Each row reports the results for each
stage of the event extraction decomposition, with the last row containing the overall event extraction per-
formance.

independent (R/P/F) SEARN (R/P/F)
trigger 52.82 66.76 58.98 83.65 29.78 43.92
Theme 46.23 79.03 58.34 63.63 71.82 67.48
Cause 15.16 58.49 24.08 31.79 49.06 38.57
Event 35.68 69.39 47.12 49.15 59.60 53.87

SEARN achieves higher F-score simply because it
operates at lower precision, thus if it was forced
to operate at the same precision this would result
in lower recall (and therefore F-score) than the one
achieved by independent. In other words, the ques-
tion we ask is whether SEARN learns more than a
good set of thresholds for the classifiers used at each
stage of the event extraction decomposition.

In this section, we explore the behavior of the
two systems by adjusting the scores returned during
prediction by the classifier used at each stage. In
particular, we alter the score returned by the classi-
fier for the negative class of each stage (No Trigger
for trigger recognition, No Theme for Theme assign-
ment and No Cause for Cause assignment) by a pa-
rameter that can be either positive, thus resulting in
over-generation, or negative, thus resulting in under-
generation. Each stage has its own parameter, thus
each experimental run is defined by a set of three
parameter values. Altogether, we investigated 1,000
sets of parameter values for both systems, the results
of which we evaluate on the development data.

The results of Figure 3 demonstrate that SEARN
achieves better recall than independent at all pre-
cision levels. In particular, at 69% precision (the
precision of the independent system on this dataset
reported in the previous section), SEARN achieves
44% recall versus 36%. This is also the case at
even higher precision levels. For example, SEARN
achieves 29% recall at 80% precision, compared to
13% by independent. Finally, these observations are
confirmed at the other end of the precision-recall
trade-off. For example, at 20% precision SEARN
achieves 54% recall compared to 43% by indepen-
dent. Thus we confirm that the improved predictive
accuracy of SEARN is not only due to adjusting clas-
sification thresholds, but also due to generating ap-
propriate training examples and learning structural
feature weights.

Controlling the trade-off between recall and pre-
cision

In the previous section we adjusted the trade-
off between precision and recall in order to ob-
tain a more complete comparison between classifiers
learned with SEARN and classifiers learned indepen-
dently. The ability to adjust this trade-off is of in-
terest to users of event extraction systems, as they
frequently need to adapt the behavior of a system to
particular needs. For example, if a system is going
to be used to populate a knowledge base whose users
are not expected to verify its contents, then preci-
sion is more important than recall. Conversely, if it
is going to be used by users to navigate through the
biomedical literature and recover rarely mentioned
facts about proteins, then recall is more important
than precision. Similar observations were made in
the context of biomedical named entity recognition
by Carpenter [21].

As described earlier, the results reported in the
previous section were obtained by evaluating the ef-
fect of 1,000 sets of parameter values to adjust the
classification scores at each stage. It is important to
note that the effect of these values is not straightfor-
ward to anticipate, as it is difficult to predict how the
classifiers for each stage will interact with each other.
For example, it is impossible to know in advance how
to adjust the Theme assignment classifier if we ad-
just the trigger recognizer to over-generate. Further-
more, in the case of complex classification pipelines,
the effect of each parameter can be hard to predict,
e.g. while over-generating Causes is expected to in-
crease recall since it results in more events predicted,
it could also have the opposite effect, as it can change
correctly extracted Regulation events that do not
have such arguments into incorrect ones. These is-
sues are visible in the results of Figure 3, where for
each recall level there is a range of precision values
obtained by each system, some of them well below

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60

Pr
ec

isi
on

Recall

independent
SEARN

Figure 3: Recall-precision points resulting from different parameter values for independent and SEARN.

the best one or even 0.

In order to choose the best set of parameter val-
ues at various precision levels, it is customary to use
a development set, as done in order to report the
results in the previous section. However this is not
always desirable, as it requires part of the available
annotated data to be withheld for this purpose and
thus not used for training. Furthermore, the proce-
dure to find the parameter values that result in the
desired trade-off between recall and precision must
be repeated each time there is a change in the event
extraction system.

Instead of adjusting classification scores, it is
possible under SEARN to adjust the trade-off be-
tween precision and recall via the loss function `
used to estimate the cost of each action (step 11 in
Algorithm 1). In our approach, as described in the
section “Biomedical event extraction with SEARN”,
the loss function is the sum of the numbers of false
positives and false negatives. Therefore, in order to
learn a system with higher precision, we multiply the
number of false positives with a positive weight, and
conversely, in order to learn a system with higher re-
call we multiply the number of false negatives with
a positive weight.

The results obtained using SEARN with differ-
ent weights on false positives and false negatives are
shown in Figure 4. In each experiment, one of these
weights was kept to 1, while the other one was set
to 21...6, thus resulting in 12 experiments in total.
It can be observed that in all cases the trade-off
achieved is a reasonable one, i.e. favoring preci-
sion over recall never results in the latter becom-
ing prohibitively low, as well as the reverse. This
demonstrates that the classifiers learned jointly un-
der SEARN are adapted to each other in order to
adjust the balance between precision and recall. The
benefits of this method are more pronounced at the
higher recall levels, for example it obtains 54% recall
at 41% precision, while the same recall was possible
only at 18% precision in the previous section. Fur-
thermore, while the trade-off achieved at high preci-
sion levels is not always as good as the one obtained
by adjusting the scores of the classifiers directly, it is
never substantially worse. Most importantly, using
weights on false positives and false negatives in the
loss function is very stable and thus it can be used
without a development set.

11

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
P

re
c
is

io
n

Recall

Figure 4: Recall-precision points obtained for SEARN using different weights for false positives and false
negatives.

Experiments with domain adaptation

BioNLP11ST-GE1 evaluated event extraction on ab-
stracts and full papers. While the annotation guide-
lines used were the same, full papers are likely to
contain richer vocabulary and linguistic phenomena
than the abstracts. Since we have annotated data
for both we decided to address this task as a super-
vised domain adaptation problem. We experimented
with the domain adaptation method proposed by
Daumé III [7], which creates multiple versions for
each feature by conjoining it with the domain label
of the instance it is extracted from (abstracts or full
papers). For example, during trigger recognition,
the feature representing the lemma of a token be-
comes three features: the original lemma feature, a
lemma feature for the abstracts domain and a lemma
feature for the full papers domain. For each token,
only two of these features will be active, according
to the domain of the sentence the token is found in.
For example, if the token is found in a sentence of
an abstract, only the original lemma feature and the
abstracts domain lemma feature will be active.

In our experiments, this simple domain adapta-
tion method improved the accuracy of the classi-
fiers trained under SEARN by 0.5 F-score points on
the development and 0.41 F-score points on the test
set, mainly by improving accuracy on the abstracts
while preserving the already high accuracy on the
full papers. This improvement is due to the domain-
specific versions of the features that allow the flexi-
bility to model the particularities of each domain in-
dependently. This version of the system would have
ranked third overall with 53.53 F-score points, and
second if we do not take the best-performing ensem-
ble system FAUST [18] into consideration. Table 3

contains detailed results per event type, event class
and domain. In the regulation events that are more
difficult to extract it would have ranked third over-
all and in the regulation events of the full papers it
would have ranked first with 42.45 F-score points,
1.89 points better than the best-performing ensem-
ble system FAUST. We hypothesize that the rela-
tively limited impact of domain adaptation is due to
the sparse features used in the stages of the event ex-
traction decomposition, which become even sparser
using this domain adaptation method, thus render-
ing the learning of appropriate weights for them
harder.

Conclusions

We presented a joint inference approach to the
BioNLP11ST-GE1 event extraction task using
SEARN which converts a structured prediction task
into a set of CSC tasks whose models are learned
jointly. Our results demonstrate that SEARN
achieves substantial performance gains over indepen-
dently learned classifiers using the same features at
all precision levels. Furthermore, we suggested an ef-
ficient method to adjust the trade-off between recall
and precision under SEARN in order to accommo-
date different usage scenarios. Finally, we were able
to improve our performance further using a simple
domain adaptation method in order to handle the
differences between abstracts and full papers. In the
course of our experiments, we reported the second-
best event extraction results by a single system.

12

Author’s contributions
AV wrote the code and ran the experiments. Both
authors were involved in designing the approach and
writing the manuscript.

Acknowledgements
The authors were funded by NIH/NLM grant R01
LM07050. We would like to thank the BioNLP shared
task organizers for providing the infrastructure and the
data. Most of the work reported in this paper was un-
dertaken while the first author was employed by the Uni-
versity of Wisconsin-Madison.

13

References
1. Kim JD, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview

of BioNLP’09 Shared Task on Event Extraction.
In Proceedings of the BioNLP 2009 Workshop Compan-
ion Volume for Shared Task 2009:1–9.

2. Kim JD, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsu-
jii J: Overview of BioNLP Shared Task 2011.
In Proceedings of BioNLP Shared Task 2011 Work-
shop, Portland, Oregon, USA: Association for Compu-
tational Linguistics 2011:1–6, [http://www.aclweb.org/
anthology/W11-1801].

3. Kim JD, Wang Y, Takagi T, Yonezawa A: Overview
of the Genia Event task in BioNLP Shared Task
2011. In Proceedings of the BioNLP 2011 Workshop
Companion Volume for Shared Task 2011.

4. Daumé III H, Langford J, Marcu D: Search-based
structured prediction. Machine Learning 2009,
75:297–325.

5. Vlachos A, Craven M: Search-based structured pre-
diction applied to biomedical event extraction.
In Proceedings of the Fifteenth Conference on Compu-
tational Natural Language Learning 2011.

6. Domingos P: MetaCost: a general method for mak-
ing classifiers cost-sensitive. In Proceedings of the 5th
International Conference on Knowledge Discovery and
Data Mining 1999:155–164.

7. Daumé III H: Frustratingly Easy Domain Adapta-
tion. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics 2007:256–263.

8. Nédellec C: Learning Language in Logic - Genic
Interaction Extraction Challenge. In Proceedings of
the Learning Language in Logic 2005 Workshop at ICML
2005.

9. Krallinger M, Leitner F, Rodriguez-Penagos C, Valencia
A: Overview of the protein-protein interaction an-
notation extraction task of BioCreative II. Genome
Biology 2008, 9(Suppl 2):S4.

10. Beygelzimer A, Dani V, Hayes T, Langford J, Zadrozny
B: Error limiting reductions between classification
tasks. In Proceedings of the 22nd International Confer-
ence on Machine Learning 2005:49–56.

11. Zadrozny B, Langford J, Abe N: Cost-Sensitive Learn-
ing by Cost-Proportionate Example Weighting. In

Proceedings of the 3rd IEEE International Conference on
Data Mining 2003:435–442.

12. Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer
Y: Online Passive-Aggressive Algorithms. Journal
of Machine Learning Research 2006, 7:551–585.

13. Collins M: Discriminative training methods for hid-
den Markov models: theory and experiments with
perceptron algorithms. In Proceedings of the 2002
Conference on Empirical Methods in Natural Language
Processing 2002:1–8.

14. Charniak E, Johnson M: Coarse-to-fine n-best pars-
ing and MaxEnt discriminative reranking. In Pro-
ceedings of the 43rd Annual Meeting on Association for
Computational Linguistics 2005:173–180.

15. McClosky D: Any domain parsing: Automatic do-
main adaptation for natural language parsing.
PhD thesis, Department of Computer Science, Brown
University 2010.

16. Stenetorp P, Topić G, Pyysalo S, Ohta T, Kim JD, Tsu-
jii J: BioNLP Shared Task 2011: Supporting Re-
sources. In Proceedings of the BioNLP 2011 Workshop
Companion Volume for Shared Task 2011.

17. Minnen G, Carroll J, Pearce D: Applied morphological
processing of English. Natural Language Engineering
2001, 7(3):207–223.

18. Riedel S, McClosky D, Surdeanu M, McCallum A,
D Manning C: Model Combination for Event Ex-
traction in BioNLP 2011. In Proceedings of the
BioNLP 2011 Workshop Companion Volume for Shared
Task 2011:51–55.

19. Vlachos A, Craven M: Biomedical Event Extraction
from Abstracts and Full Papers using Search-
based Structured Prediction. In Proceedings of the
BioNLP 2011 Workshop Companion Volume for Shared
Task 2011:36–40.

20. Riedel S, McCallum A: Robust Biomedical Event Ex-
traction with Dual Decomposition and Minimal
Domain Adaptation. In Proceedings of the BioNLP
2011 Workshop Companion Volume for Shared Task
2011:46–50.

21. Carpenter B: LingPipe for 99.99 % Recall of Gene
Mentions. In Proceedings of the 2nd Biocreative Work-
shop 2007.

14

Table 2: Detailed results on the development data using independently learned classifiers and SEARN

independent SEARN
Event Type/Class Recall Precision F-score Recall Precision F-score
Gene expression 67.02 85.20 75.03 73.43 78.88 76.06
Transcription 34.81 90.16 50.23 48.73 70.00 57.46

Protein catabolism 69.57 94.12 80.00 69.57 76.19 72.73
Phosphorylation 71.17 86.81 78.22 81.08 90.91 85.71
Localization 62.69 80.77 70.59 71.64 77.42 74.42

Simple (TOTAL) 62.64 85.66 72.36 70.49 78.95 74.48
Binding 28.42 63.10 39.19 40.21 62.24 48.86

Simple+Binding (TOTAL) 54.02 81.78 65.06 62.86 75.67 68.67
Regulation 14.04 44.57 21.35 32.19 37.90 34.81

Positive regulation 22.02 55.00 31.45 40.24 46.42 43.11
Negative regulation 20.38 48.73 28.74 35.46 50.61 41.70
Regulation (TOTAL) 20.26 51.81 29.13 37.63 45.91 41.36

TOTAL 35.68 69.39 47.12 49.15 59.60 53.87

Table 3: Detailed results on the test data using SEARN with domain adaptation

Domain abstracts+full abstracts full papers
Event Type/Class Recall Precision F-score F-score F-score
Gene expression 69.46 80.65 74.64 72.63 79.35
Transcription 44.83 62.40 52.17 53.11 48.28

Protein catabolism 73.33 42.31 53.66 70.97 0.00
Phosphorylation 81.62 88.82 85.07 83.08 90.53
Localization 45.03 88.66 59.72 61.72 43.75

Simple (TOTAL) 65.22 79.78 71.77 70.32 75.80
Binding 38.09 57.36 45.78 46.67 43.72

Simple+Binding (TOTAL) 58.75 75.23 65.98 65.27 67.87
Regulation 32.99 41.50 36.76 38.13 32.77

Positive regulation 40.82 51.62 45.59 44.69 47.36
Negative regulation 38.35 43.89 40.93 43.80 35.64
Regulation (TOTAL) 38.97 48.05 43.04 43.33 42.45

TOTAL 48.10 60.34 53.53 53.79 52.93

15

