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Abstract

In this work we apply Dirichlet Process Mix-
ture Models to a learning task in natural
language processing (NLP): lexical-semantic
verb clustering. We assess the performance
on a dataset based on Levin’s (1993) verb
classes using the recently introduced V-
measure metric. In, we present a method to
add human supervision to the model in or-
der to to influence the solution with respect
to some prior knowledge. The quantitative
evaluation performed highlights the benefits
of the chosen method compared to previously
used clustering approaches.

1. Introduction

Bayesian non-parametric models have received a lot of
attention in the machine learning community. These
models have the attractive property that the number
of components used to model the data is not fixed in
advance but is actually determined by the model and
the data. This property is particularly interesting for
natural language processing (NLP) where many tasks
are aimed at discovering novel, previously unknown
information in corpora.

In this work, we apply the basic models of this class,
Dirichlet Process Mixture Models (DPMMs) (Neal,
2000) to a typical unsupervised learning task in NLP:
lexical-semantic verb clustering. The task involves
discovering classes of verbs similar in terms of their
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syntactic-semantic properties (e.g. MOTION class for
the verbs “travel”, “walk” and “run”). Such classes
can provide important support for other NLP tasks
and applications. Although some fixed classifications
are available (e.g. Levin (1993)), these are not compre-
hensive and are inadequate for specific domains such
as the biomedical one (Korhonen et al., 2006b).

The clustering algorithms applied to this task so far
require the number of clusters as input (Schulte im
Walde, 2006; Korhonen et al., 2006b). This is prob-
lematic as we do not know how many classes exist in
the data. Even if the number of classes in a particu-
lar dataset was known (e.g. in the context of a care-
fully controlled experiment), a particular dataset may
not contain instances for all the classes. Moreover,
each class is not necessarily contained in one cluster
exclusively, since the target classes are defined man-
ually without taking into account the feature repre-
sentation used. The fact that DPMMs do not require
the number of target clusters in advance, renders them
particularly promising for the many NLP tasks where
clustering is used for learning purposes.

In addition to applying the standard DPMM to verb
clustering we also present a method to add human su-
pervision to the model in order to to influence the so-
lution with respect to some prior intuition or some
considerations relevant to the application in mind.
We achieve this by enforcing pairwise clustering con-
straints on the solution discovered by the model. We
evaluate these methods on two different datasets in-
cluding general English and biomedical verbs, respec-
tively. Our results compare favourably to earlier re-
sults reported with verb clustering and demonstrate
the potential of DPMM based models for discovering
novel information from natural language data.
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Figure 1. Graphical representation of DPMMs.

2. Unsupervised clustering with
DPMMs

With DPMMs, as with other Bayesian non-parametric
models, the number of mixture components is not fixed
in advance, but is determined by the model and the
data. The parameters of each component are gener-
ated by a Dirichlet Process (DP) which can be seen
as a distribution over the parameters of other distri-
butions. In turn, each instance is generated by the
chosen component given the parameters defined in the
previous step:

G|α, G0 ∼ DP (α, G0)
θzi |G ∼ G (1)

xi|θzi ∼ p(xi|θzi)

In Eq. 1, G0 and G are probability distributions over
the component parameters (θ), and α > 0 is the con-
centration parameter which determines the variance
of the Dirichlet process. We can think of G as a ran-
domly drawn probability distribution with mean G0.
Intuitively, the larger α is, the more similar G will be
to G0. zi is the component chosen for instance xi, and
θzi its parameters. The graphical model is depicted in
Figure 1.

The prior for assigning instance xi to either an existing
component z or to a new one znew conditioned on the
other component assignments (z−i) is given by:

p(zi = z|z−i) =
n−i,z

N − 1 + α
(2)

p(zi = znew|z−i) =
α

N − 1 + α

where n−i,z is the number of instances assigned to

component z excluding instance xi and N is the to-
tal number of instances. A clustering of the instances
is generated by assigning more than one instance to
the same mixture component.

The prior in Eq. 2 exemplifies two main properties of
the DPMMs. Firstly, the probability of assigning an
instance to a particular component is proportionate to
the number of instances already assigned to it (n−i,z).
In other words, DPMMs exhibit the “rich get richer”
property. Secondly, the probability that a new cluster
is created depends on the concentration parameter α.

A popular metaphor to describe DPMMs is the Chi-
nese Restaurant Process. Customers (instances) arrive
at a Chinese restaurant which has an infinite number of
tables (components). Each customer chooses to sit at
one of the tables that is either occupied (p(zi = z|z−i))
or vacant (p(zi = znew|z−i)). Popular tables attract
more customers.

An alternative view of DPMMs is the stick-breaking
construction (Sethuraman, 1994). In this construc-
tion, the mixing proportions of the components (πk)
are produced as follows:

πk = βk

k−1∏
j=1

(1− βj) (3)

βk ∼ B(1, α)

where B is the Beta distribution. It can be verified
that

∑∞
k=1 πk = 1. Intuitively, the mixing proportion

of each component is obtained by successively breaking
a stick of unit length. As a result, the mixing propor-
tion of a new component gets progressively smaller.
In order to generate an instance xi, the component zi

is chosen using a multinomial distribution parameter-
ized by the mixing proportions πk, and the instance is
generated as in Eq. 1.

3. Evaluation

The evaluation of unsupervised clustering against a
gold standard is not straightforward because the clus-
ters found by the algorithm are not associated with
the classes in the gold standard. Formally defined,
the method partitions a set of instances X = {xi|i =
1, ..., N} into a set of clusters K = {kj |j = 1, ..., |K|}.
To evaluate the quality of the resulting clusters, we use
an external gold standard in which the instances are
partitioned into a set of classes C = {cl|l = 1, ..., |C|}.
The aim of a clustering algorithm is to find a parti-
tioning of the instances K that resembles as closely as
possible the gold standard C.

Most work on verb clustering has used F-measure or
the Rand Index (Rand, 1971) for quantitative eval-
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uation. However, Rosenberg and Hirschberg (2007)
point out that F-measure assumes (the missing) map-
ping between cl and kj . Also, in their experimental
assessment they show that when the number of clus-
ters not representing a particular class was increased
the Rand Index did not decrease. Another recently in-
troduced metric, variation information (Meilă, 2007),
while it avoids these problems, its value range de-
pends on the maximum number of classes |C| and
clusters |K| involved in the evaluation, rendering the
performance comparisons between different algorithms
and/or datasets difficult (Rosenberg & Hirschberg,
2007). Rosenberg and Hirschberg suggest a new
information-theoretic metric for clustering evaluation:
V-measure. V-measure is the harmonic mean of homo-
geneity and completeness which evaluate the quality of
the clustering in a complementary way. Homogeneity
assesses the degree to which each cluster contains in-
stances from a single class of C. This is computed as
the conditional entropy of the class distribution of the
gold standard given the clustering discovered by the
algorithm, H(C|K), normalized by the entropy of the
class distribution in the gold standard, H(C). Com-
pleteness assesses the degree to which each class is con-
tained in a single cluster. This is computed as the con-
ditional entropy of the cluster distribution discovered
by the algorithm given the class, H(K|C), normalized
by the entropy of the cluster distribution, H(K). In
both cases, we subtract the resulting ratios from 1 to
associate higher scores with better solutions:

h = 1− H(C|K)
H(C)

c = 1− H(K|C)
H(K)

V =
2 ∗ h ∗ c

h + c
(4)

We should note that V-measure favors clustering so-
lutions with a large number of clusters (large |K|),
since such solutions can achieve very high homogene-
ity while maintaining reasonable completeness (Rosen-
berg & Hirschberg, 2007). To demonstrate this bias
for the dataset used in the following section, the clus-
tering solution in which each verb is assigned to a
singleton cluster achieves 100% homogeneity, 53.3%
completeness and 69.5% V-measure, which are in fact
higher than the scores achieved by any of the cluster-
ing methods evaluated in the following sections. While
increasing |K| does not guarantee an increase in V-
measure (splitting homogeneous clusters would reduce
completeness without improving homogeneity), it is
easier to achieve higher scores when more clusters are
produced. The lenience of V-measure towards such

solutions reflects the intuition mentioned in the intro-
duction that a single class is likely to be contained in
more than one cluster given the representation used.
As our method does not require the number of clusters
in advance, it is worth keeping this bias in mind.

4. Experiments

Following Kurihara et al. (2007), we used variational
inference in order to perform parameter estimation for
the DPMMs. In particular, we approximated the in-
finite vector of the mixing proportions using a finite
symmetric Dirichlet prior. The distributions generat-
ing the instances of each component were Gaussians
with diagonal covariance. The initial number of com-
ponents was set to 100 and the concentration param-
eter alpha was set to 1.1

After inferring the parameters of the DPMM from the
data, for each instance we obtain a probability distri-
bution over the components, in other words a “soft”
clustering. In order to produce a clustering solution
in which each instance is assigned to one cluster only,
each instance is assigned to the component with the
highest probability. As a result, the components of
the mixture are considered to be the clusters of the
clustering solution. However, the transformation de-
scribed above can result in fewer clusters than com-
ponents, since there may be components that are not
the most probable ones for any instance of the dataset,
resulting in empty clusters.

To perform lexical-semantic verb clustering we used
the dataset of Sun et al. (2008). It contains 204 verbs
belonging to 17 fine-grained classes in Levin’s (1993)
taxonomy so that each class contains 12 verbs. The
classes and their verbs were selected randomly. In Sun
et al.’s dataset, the features for each verb are their
subcategorization frames (SCFs) and associated fre-
quencies in corpus data, which capture the syntac-
tic context in which the verbs occur in text. SCFs
were extracted from the publicly available VALEX lex-
icon (Korhonen et al., 2006a). VALEX was acquired
automatically using a domain-independent statistical
parsing toolkit, RASP (Briscoe & Carroll, 2002), and
a classifier which identifies verbal SCFs. As a conse-
quence, it includes some noise due to standard text
processing and parsing errors and due to the subtlety
of argument-adjunct distinction.

As a pre-processing step, we used the logarithms of the
frequencies instead of the frequencies themselves, to
smooth the very skewed distributions that are typical
to natural language. This has a down-scaling effect

1http://mi.cs.titech.ac.jp/kurihara/vdpmog.html
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on extremely frequent features, without reducing them
to the same scale as infrequent ones. Subsequently,
the feature vector of each verb was normalized to unit
length so that the frequency of the verb does not affect
its representation.

Furthermore, dimensionality reduction was applied
due to the large number of sparse features. The latter
have similar distributions across verbs simply due to
their sparsity. Since DPMMs do not weigh the fea-
tures, a large number of sparse features is likely to in-
fluence inappropriately the clustering discovered. Nev-
ertheless, sparse features incorporate useful semantic
distinctions and have also performed well in some pre-
vious works. Therefore, rather than excluding them,
we used principal component analysis (PCA) to reduce
the dimensionality, employing the same cut-off point
in all our experiments.

We evaluated the performance of the DPMMs in
lexical-semantic clustering using the dataset of Sun
et al. and experimented with various versions of the
VALEX lexicon and the feature sets. In order to al-
leviate the effect of the random initialization, we ran
each experiment 200 times. We achieved the best re-
sults with the cleanest version of the lexicon. Our
performance was 69.5% homogeneity, 53.7% complete-
ness and 60.5% V-measure, discovering 61.1 clusters
on average. The best performance achieved in pre-
vious work was 59% in V-measure (Sun et al., 2008)
using pairwise clustering (Puzicha et al., 2000). How-
ever, this result was achieved by setting the number of
clusters to be discovered equal to the number of classes
in the dataset, while DPMMs discover the number of
clusters in the dataset.

5. Adding supervision

While the ability to discover novel information is at-
tractive in NLP, in many cases it is also desirable to
influence the solution with respect to some prior intu-
ition or some considerations relevant to the application
in mind. For example, while discovering finer-grained
lexical-semantic classes than those included in the gold
standard is useful, some NLP applications may bene-
fit from a coarser clustering or a clustering targeted
towards revealing some specific aspect of the dataset.
For example, in the task of verb clustering, “encom-
pass” and “carry” could be in the same cluster if the
aim is to cluster all verbs meaning INCLUSION to-
gether, but they could also be separated if the aspect
of MOTION of the latter is taken into account.

As an extension to this work, we implemented a semi-
supervised version of the DPMMs that enables human

supervision to guide the clustering solution. The hu-
man supervision is modelled as pairwise constraints
over instances, as in Klein et al. (2002): given a pair
of instances, either they should be clustered together
(must-link) or not (cannot-link). This information can
be obtained either from a human expert, or by ap-
propriate manipulation of extant resources, such as
ontologies. Specifying the relations between the in-
stances results in an indirect labeling of the instances.
Such labeling is likely to be re-usable, since it defines
relations between the datapoints rather than explicit
labels. The former are more likely to be useful to mul-
tiple tasks which might not have the same labels but
could still take advantage of relations between data-
points.

The constraints will be added to the model by tak-
ing them into account during parameter estimation.
We built a Dirichlet process mixture model using a
standard sampling inference scheme (algorithm 3 from
Neal (2000)). We chose the multinomial distribution
to model the components. Following Neal (2000), we
integrated analytically over the parameters θzi of the
model (Eq. 1 in Section 2).

In order to add supervision to the Dirichlet Process
model we sample from distributions that respect the
constraints imposed. In more detail, if two instances
are connected with a cannot-link constraint, we will
sample only from distributions that keep them in dif-
ferent components. Therefore, we set to 0 the proba-
bility of assigning an instance to a component contain-
ing cannot-link instance(s). Accordingly, in case they
are connected with a must-link constraint, we sample
only from distributions that keep them in the same
component. Therefore, we set to 1 the probability of
assigning an instance to a component containing must-
link instance(s).

The expectation is that such constraints will not only
affect the participating instances but the overall clus-
tering as well. By guiding the clustering solution in
this manner the DPMMs may discover knowledge bet-
ter suited to the user’s needs.

6. Experiments with supervision

In order to experiment with this method of adding su-
pervision to the DPMMs, we implemented the DPMM
model described in the previous section. The α pa-
rameter was determined by using a Gamma prior in
Metropolis sampling scheme, which was run after each
sampling of a component assignment zi (Eq. 1).

In this second set of experiments we used the dataset
of Korhonen et al. (2006b). It consists of 193 medium
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to high frequency verbs from a corpus of 2230 full-text
articles from 3 biomedical journals. The features, as in
the Sun et al. (2008) dataset, were the subcategoriza-
tion frames (SCFs) and their associated frequencies in
the corpus, which were extracted automatically, result-
ing in 439 preposition-specific SCFs.

A team of domain experts and linguists were involved
in creating a gold standard for this dataset. The for-
mer analyzed the verbs requiring domain-knowledge
and the latter the general English and/or scientific
ones. This effort resulted in a three-level gold standard
which exemplifies the need for human supervision in
order to influence the clustering solution discovered by
the DPMMs, since ideally we would like to be able to
discover any of these solutions. The number of classes
was 16, 34 and 50 at each level of granularity.

As in Section 4, the feature set was very sparse and
therefore we applied dimensionality reduction. How-
ever, PCA could not be used, since we used the multi-
nomial distribution to model the components which
cannot accept negative values. Therefore, we applied
non-negative matrix factorization (NMF) (Lin, 2007)
which decomposes the dataset in two dense matrices
with non-negative values. In order to simulate the
process of obtaining human supervision, we generated
random verb pairs which we labelled as must-link or
cannot-link according the version of the gold standard
we aimed for.

We used 35 dimensions for the NMF dimensionality
reduction. The base measure G0 used was the nor-
malized mean of the dataset, the initial value for the
α was 1 and all the instances were assigned to a sin-
gle component initially. We generated 100 pairs of
verbs and obtained their must-links or cannot-links
for each of the three level of granularity of the gold
standard. First, we ran the DPMM without any su-
pervision, in order to adapt itself to the data without
any constraints for 100 iterations of the Gibbs sam-
pler. Then, we ran the model using the constraints
to restrict the sampling for another 100 iterations and
obtained the final component assignment.

The results from these experiments appear in Table 1.
The rows labeled “vanilla” contain the results for the
standard unsupervised model. The other rows are la-
belled according to the version of the gold standard
followed by the number of links obtained from it. The
number of clusters discovered by all the versions of the
model did not vary substantially, being between 37 and
41. It can be observed that adding supervision to the
model guides it to clustering closer to the version of the
gold standard the supervision was obtained from. For
example, adding 100 links from the coarsest version

hom comp V
16 classes

vanilla 77.09% 64.11% 70%
link16 100 82.16% 64.52% 72.28%
link50 100 77.53% 62.69% 69.32%

gauss 78.54% 50.22% 61.26%
34 classes

vanilla 70.24% 78.94% 74.34%
link34 100 73.19% 79.24& 76.10%

gauss 77.30% 66.79% 71.65%
50 classes

vanilla 69.07% 87.43% 77.17%
link16 100 70.87% 84.71% 77.17%
link50 100 71.19% 87.63% 78.56%

gauss 76.53% 74.49% 75.49%

Table 1. Results on the biomedical verb dataset.

which contains 16 classes (row “link16 100” in the “16
classes” part of the table) improves the V-measure by
2.28% when evaluating on the same version. However,
when evaluating on the finest grained version of the
standard (containing 50 classes), then the V-measure
remains identical and only the homogeneity and com-
pleteness scores change. On the other hand, adding
100 links from the latter version of the gold standard,
improves the performance by 1.39% when evaluating
on it. As expected though, the performance drops for
the 16-class version, since the supervision guides the
clustering to a different solution. Adding supervision
from the 34-class version, improves the performance
by 1.76% in v-measure (row “link34 100”). Overall,
the model is adapted towards the clustering solution
aimed for. In the rows labeled “gauss” we report the
result with the DPMM using Gaussians used in the
experiments of Section 4, which discovered 63.23 clus-
ters on average. The new model outperforms it at all
level of gold standard, even without using supervision.

It must be noted that the different levels of granular-
ity could have been achieved by appropriate tuning
of the concentration parameter α (Eq. 1). However,
to a non-expert in non-parametric modelling we be-
lieve it could be easier to simply provide examples of
verbs that he or she would consider appropriate to be
clustered together or separately. Moreover, α would
affect the granularity of the clustering globally, while
in a given application one might prefer to influence it
more locally, something that can be achieved with the
inclusion of pairwise links.
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7. Conclusions - Future work

This paper makes several contributions. We ap-
plied DPMMs to a typical NLP learning task (lexical-
semantic verb clustering) where the ability to discover
the number of classes from the data is highly attrac-
tive. We experimented with two different datasets in-
cluding (i) general English and (ii) biomedical verbs.
Our quantitative evaluation using the recently intro-
duced V-measure shows that the method compares fa-
vorably to earlier verb clustering methods which all
rely on a pre-defined number of target clusters. In
addition, we demonstrated how such models can be
adapted to different needs using supervision in the
form of pairwise links between instances.

The results encourage to apply DPMMs to further
datasets and tasks. For verb clustering, we plan to
investigate hierarchical Bayesian non-parametric mod-
els (Heller & Ghahramani, 2005) and to extend our
experiments to larger datasets. We plan to conduct a
thorough investigation of the ability of DPMMs to dis-
cover novel information not included in gold standards.
Our preliminary assessment showed that many “er-
rors” are due to the DPMM identifying verbs which are
in fact too polysemous to be classified in single classes
in large un-disambiguated input data and discovering
semantically related classes as well as sub-classes of
existing fine-grained classes. With respect to adding
supervision to the model, we intend to explore ways in
which the DPMM would select the links between in-
stances to be labelled as in Klein et al. (2002), instead
of obtaining them at random. Finally, an extrinsic
evaluation of the clustering provided by DPMMs as
part of an NLP application is likely to be very infor-
mative on their practical potential.
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