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Abstract—This paper compares parallel and distributed
implementations of an iterative, Gibbs sampling, machine
learning algorithm. Distributed implementations run under
Hadoop on facility computing clouds. The probabilistic model
under study is the infinite HMM [1], in which parameters are
learnt using an instance blocked Gibbs sampling, with a step
consisting of a dynamic program. We apply this model to learn
part-of-speech tags from newswire text in an unsupervised
fashion. However our focus here is on runtime performance,
as opposed to NLP-relevant scores, embodied by iteration
duration, ease of development, deployment and debugging.

I. INTRODUCTION

Probabilistic models are at the core of many modern
machine learning algorithms. Generally probabilistic models
are specified up to a finite number of parameters which are
subsequently learned by fitting the model to data. These
models are generally called parametric models. Nonpara-
metric models extend parametric models by allowing the
number of parameters to grow when the number of data-
points increases. As more parameters generally implies more
flexible models, nonparametric models can easily adapt to
the amount of data without overfitting.

As nonparametric models have the most potential in a
context where much data is available, it is crucial that we
can learn the parameters of these models efficiently. In
this paper we compare two ways of scaling the training
algorithm for a nonparametric model: using parallelization
on a single machine versus using distributed computing on
top of Hadoop. Similar effort has been undertaken by the
Mahout community in order to build distributed versions of
the parallelized machine learning algorithms described by
Bradski et al. [2]

The broad context in which we will explore the applica-
bility of the different scalability options is natural language
processing (NLP). The explosion of the WWW has made
available increasing amounts of text in digital format, thus
presenting a growing challenge to the traditional single-
processor or parallel approaches. Furthermore, it is a suitable
domain for Bayesian non-parametric methods to demonstrate
their potential, as it is hard to define in advance the right
level of detail needed for varying amounts of text of different
genres.

Concretely, the contribution of our paper is 4-fold:
1) We experiment how to apply the map-reduce paradigm

to an iterative sampling algorithm,
2) We explore which paradigm (parallel/distributed) is

best in which situation,
3) We report the lessons learned from our distributed

implementation,
4) We will shortly release the Hadoop source code to

encourage research in this area of machine learning.

II. THE INFINITE HIDDEN MARKOV MODEL

The hidden Markov model (or HMM) is a probabilistic
modelling tool that is in wide use throughout machine
learning, signal processing, bio-informatics and many other
fields. The HMM describes a probability distribution over
a sequence of observations w1, w2, · · · , wT of length T .
The HMM assumes there exists a Markov chain denoted
by s1, s2, · · · , sT where each st is in one of K possible
states. The distribution of the state at time t only depends
on the states before it through the state at time t − 1. This
dependency is governed by a K by K stochastic transition
matrix π where πij = p(st = j|st−1 = i). This is the
Markov property which gives the HMM its middle name.
Generally, we do not directly observe the Markov chain, but
rather an observation wt whose distribution only depends
on the state st, an observation model F (e.g. a Normal
distribution) and a set of parameters θ (e.g. the mean and
variances of the normal distribution).

For a fixed K many techniques (e.g. expectation max-
imization [3]) can be used to learn the parameters θ of
the HMM. In this paper we focus on the issue of learning
K using a nonparametric Bayesian approach. The infinite
hidden Markov model (or iHMM), introduced in [1] is a
probabilistic model which defines a distribution over all
hidden Markov models with arbitrary large state space
K. For a dataset of size N at most N states can be
used. Nonetheless, the prior distribution puts most of its
mass on state spaces much smaller than N (e.g. logN or
log logN ). Incidentally, after conditioning the model on N
observations, the posterior will have most of its mass on
hidden Markov models with state spaces much smaller than
N . The nonparametric behavior of the iHMM stems from



the fact that the more data is available, the more fine grained
a state space it can learn if the data calls for a more complex
model. As this paper focusses on the computational aspects
of the iHMM, we point the interested reader to [1] and [4]
for more theoretical background on the subject.

At present, there are no known deterministic algorithms
for learning the parameters of the iHMM. In this paper
we build on a Gibbs sampling method known as the beam
sampler [5]. We refer to [5] for technical details of the beam
sampler but line-out the algorithm here. Each iteration of the
beam sampler consists of the following steps:

1) Compute the sufficient statistics for the transition and
emission parameters,

2) Sample auxilary variables to dynamically truncate the
infinite transition matrix,

3) Sample a finite representation of the transition and
emission parameters,

4) Run forward-filtering backward-sampling to resample
the hidden state sequence,

5) Resample any hyperparameters in the model.

In the application we describe below the sufficient statis-
tics for the transition and emission parameters are the
numbers nij which denote the number of transitions from i
to j in our dataset and the numbers eiw which denote the
number of observations of type w emitted from state i. In
other words, these numbers can be computed in time linear
in the number of datapoints.

There is one auxilary variable for each adjacent pair of
states in the dataset. Since sampling each auxilary variable
is a constant time operation, we can compute these number
in time linear in the number of datapoints.

Sampling the transition and emission parameters is gen-
erally very cheap: if K states are used in an iteration and
the emission distribution is multinomial with E outcomes,
K2 entries in the transition matrix and KE entries in the
emission distribution need to be computed.

The forward filtering backward-sampling procedure
requires computing the table p(st|w1:t). Using
dynamic programming, we can efficiently compute
this recursively using the equality p(st|w1:t) ∝
p(wt|st)

∑
st−1

p(st|st−1)p(st−1|w1:t−1). This table
has size KT for a sequence of length T , while each
entry takes K operations to compute. In other words, the
forward-filtering takes time T K2 to compute. Once we have
computed p(sT |w1:T ) we can sample sT and then backtrack
to sample each other element in the state sequence. The
complexity of this procedure is T K2.

In other words, one iteration for the Gibbs sampler of the
iHMM comprises of steps which are all linear in the length
of the sequence T . Nonetheless, the additional K2 factor for
the dynamic programming step swamps the complexity for
the other steps in the computation.

III. UNSUPERVISED POS TAGGING WITH THE IHMM

Part-of-Speech (PoS) tagging is a standard component in
NLP pipelines. PoS tags characterize words according to
their syntactic (and sometimes semantic) behaviour, which
allows us to perform syntactic parsing as well as use them
in a variety of tasks, such as named entity recognition or
determining intonation for text-to-speech systems [6].

Most of the work in PoS tagging has focused on the
use of supervised machine learning methods, which require
large amounts of labelled data. Using such methods (the
supervised HMM being a very common choice), PoS tagging
performance on English newswire text has reached high
levels. However, when moving to new domains or languages
which do not have labelled data readily available, such
methods are unable to adapt. Therefore, recent work has
focused on unsupervised methods that use unlabelled data
and is available in large quantities.

In previous work on unsupervised PoS tagging using
HMMs, a main question was how to set the number of
hidden states appropriately. In particular, Johnson [7] reports
results for different numbers of hidden states but it is
unclear how to make this choice a priori, while Goldwater
& Griffiths [8] leave this question as future work. It must be
pointed here that this is a non-issue when using supervised
machine learning methods, since there the model predicts
a PoS tag from a fixed set that was provided with the
training data. However in unsupervised PoS tagging the
states learned by the iHMM do not correspond to PoS tags
from a labelled corpus, therefore it is counter-intuitive to
fix their number in advance. The fact that different authors
use different versions with different number of PoS tags
of the same dataset (e.g. Goldwater & Griffiths [8] versus
Johnson [7]) supports this claim. To address the issue of
selecting the number of states in unsupervised PoS tagging
Van Gael et al. [9] applied the iHMM to the task and
obtained competitive performance while allowing the model
to pick the number of hidden states.

Evaluating unsupervised PoS tagging is rather difficult
mainly due to the fact that the output of such systems
are not actual PoS tags but state identifiers. Therefore it is
impossible to evaluate performance against a manually la-
belled dataset using accuracy, as in supervised PoS tagging.
Nevertheless, the state identifiers provide a clustering of
the instances which can be used for evaluation purposes by
treating the instances with same state identifier as belonging
to the same cluster.

Clustering evaluation measures assess and sometimes
combine the two desirable properties that a clustering should
have with respect to a manually labelled dataset: homo-
geneity and completeness. Homogeneity is the degree to
which each cluster contains instances from a single class.
Completeness is the degree to which each class is contained
in a single cluster. While an ideal clustering should have both



properties, naively improving one of them can be harmful for
the other. For example, one can achieve better homogeneity
by simply increasing the number of clusters discovered but
this is likely to reduce completeness.

The most common approach followed in previous work is
to evaluate unsupervised PoS tagging as clustering against a
manually labelled dataset is the Variation of Information (VI)
[10] which assesses homogeneity and completeness using
the quantities H(C|K) (the conditional entropy of the class
distribution in the manually labelled dataset given the clus-
tering) and H(K|C) (the conditional entropy of clustering
given the class distribution in the manually labelled dataset).
The lower these quantities are, the better the clustering
is with respect to the manually labelled dataset. The final
score is obtained by summing them, which means that lower
values are better.

While inducing a mapping between states and PoS tags
and the use accuracy is an option, the quality of the mapping
would affect the evaluation, which is undesirable. This is
also the case with the commonly used F-measure clustering
evaluation measure [11]. Information-theoretic measures like
VI neither need nor attempt to infer such mappings, therefore
they are more suitable to our purposes.

IV. EXPERIMENTS

As a rough performance indicator, we measured the
duration of a Gibbs iteration in different setups, one par-
allel, and three distributed Hadoop setups. In addition, we
are contrasting the different settings in terms of ease of
development, deployment, and debugging.

A. Algorithm and data
The implemented algorithm was the same in all settings.

In particular, the initial value for K was fixed to 100, a value
to which cluster number converges as reported in [9]. To
measure iteration duration, we averaged across 10 iterations
of the algorithm.

In all our experiments, the datasets were derived from
the Wall Street Journal (WSJ) part of the Penn Treebank,
which is one of the standard corpora used in NLP research.
It consists of 1 million tokens of financial newswire text and
it has been labelled manually with PoS tags.

We extracted subsets of the WSJ dataset of sizes 1e3, 1e4
and 1e5 tokens. Together with the full dataset of 1e6 tokens
and a dataset with all datapoints duplicated 10 times (10e7
tokens) we are covering an interesting range. Note that the
dataset with 1e7 is not interesting from a modelling point
of view as we duplicated all data 10 times; nonetheless the
computational analysis remains valid.

As a sanity check, we evaluated the output of our
distributed implementation on the 1e5 subset of the WSJ
and the performance in terms of VI was 4.5 bits, roughly
equivalent to the ones achieved by the parallel one in [9]. It
must be noted that these scores are not strictly comparable

due to differences in the dataset size, and we leave it to
future work to present a full NLP-oriented evaluation of our
distributed implementation.

B. Configurations

Parallel is an implementation of the iHMM in .NET
which uses multithreading on a quad core 2.4 GHz machine
with 8GB of RAM.

hadoop-1 is an implementation of the iHMM on Hadoop,
where each step of the Gibbs iteration is implemented
as map-reduce. “Each step” means each operation which
scales with the number of data points, K or V (as defined
above). This gives a total of 9 map-reduce jobs for each
iteration in hadoop-1. hadoop-2 is entirely like hadoop-1,
except that only the most CPU-intensive step, namely the
dynamic program, was implemented as map-reduce. hadoop-
3 is exactly like hadoop-2 from the software point of view.

The Hadoop experiments were implemented in Java using
the Hadoop map-reduce library. They ran on Amazon’s Elas-
tic MapReduce computing cloud. For hadoop-1 experiments,
they ran on clusters of different sizes: each cluster had one
master node (the job tracker, in map-reduce terminology)
and one or several slave nodes: 1, 2, 3, 4, 8 or 16 depending
on the experiment. For hadoop-2 experiments, the cluster
size was kept constant: one master and one slave node. For
both hadoop-1 and hadoop-2, we used nodes of the Amazon
“small” type, i.e. 32-bit platforms with one CPU equivalent
to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor, 1.7
GB of memory, with 160 GB storage. For hadoop-3, and in
order to beat the parallel setting, we resorted to Amazon
“extra large” nodes, 64-bit platforms with 8 virtual cores,
each equivalent to 2.5 times the reference 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor, 7 GB of memory, 1690 GB
of storage.

C. Results

Figures 1 to 3 represent the iteration duration (in seconds)
across different settings against a range of data set sizes.
Data set size is measured in number of data points, that is,
numbers of tokens (words). In the plots, each point marker
represents an experiment with a given software and hardware
setting, and a given data set size. Iteration duration was
averaged over the 10 first iterations of the iHMM learning
algorithm. Lines connect point markers to denote that they
belong to the same experimental setting. In the legends, the
letter H stands for hadoop.

log-log representation implies that a linear increase in
computing cost with the number of data points should be
reflected in a line. This is indeed the general trend of
all experiments. The initially lower slope of some curves
reflects the overhead of parts of the algorithm, or parts of
the distribution process, which does not scale linearly with
the data size.
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Figure 1. All hadoop-1 experiments. The name of each result set is hadoop-
1-*, with * indicating the number of slave nodes in the cluster. Iteration
duration scales only slightly with cluster size.
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Figure 2. All hadoop-2, hadoop-3, and the parallel experiment side-by-
side. All hadoop-2-* experiments use the same setting, and are just different
runs of the same experiment. This demonstrates that there is little variability
between runs. The hadoop-3 experiments demonstrate that scaling, and
resorting to a more powerful machine type, finally beats the parallel setup.
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Figure 3. All experiments in the same plot. The general scaling trend
follows that of the parallel setup. Increasing data size even further than what
was tested here, we expect that hadoop-1 and -2 setups will become faster
than the parallel setup. However, the point where e.g. lines for experiments
hadoop-1-8 and parallel intersect seems several orders of magnitude above
present experiments.

Figure 4. Experimental data for Figures 1-3. Iteration duration in seconds.

None of the hadoop-1 and hadoop-2 implementations
were faster, in absolute terms, than parallel for the data sizes
demonstrated here. This can be attributed to the different
performance of the CPUs used in the parallel case, and on
the Amazon cluster used for the distributed experiments.

The parallel implementations scales perfectly well with
data size, but cannot accommodate data sizes beyond those
shown, i.e. from 10 million data points onwards, because it
is entirely memory-based (and therefore incurs no disk I/O
costs). It is therefore necessary, for large datasets, to resort
to the distributed implementations.

hadoop-1’s cost is roughly stable for a wide range of
settings, and does not scale well with the number of nodes.
This implementation, where each Gibbs iteration contains
9 map-reduce jobs, is apparently badly suited to a Hadoop
implementation because of the heavy overhead each map-
reduce job incurs: about 30 seconds notwithstanding the
number of nodes it runs on.

hadoop-2’s cost is well beyond that of hadoop-1 and does
not suffer from the large overhead effect. It therefore scales
well with the amount of data.

The isolated hadoop-3 experiments used hardware which
is comparable with the parallel experiment, and demonstrate
a definite speedup when running from a cluster.

D. Qualitative comparison

This section completes the computing cost comparison
with lessons from the software development exercise of all
implementations.

1) Development: Using the parallel extensions under .Net
proved relatively easy, and since no file-level or data-
splitting is expected from the developer, was a one-off
change from a reference, non-parallel implementation.

Turning to Hadoop implied learning the framework
through tutorials and books, a much longer process. The
developer writes his own reader/writer for the file format
in which he intends to store map input, intermediate data,
and reduce output. Portions of code corresponding to the
reference implementation can be reused inside the relevant,
corresponding map-reduce job. Shared parameters represent
a special challenge in this shared-nothing framework, and
here they were written to disk. Map-reduce jobs which
needed to update them had to funnel all data processing



through a single reducer, in order to obtain a single updated
value for the parameter.

Quite some effort had to be expended in tuning, consider-
ing the large overhead that a Hadoop job setup incurs, which
is constant on each slave node. In particular, in hadoop-
1, independent map-reduce jobs were parallelized using the
JobControl feature of Hadoop. In spite of these efforts, the
job setup overhead remained large, with respect to the fact
that our algorithm is data-light but CPU intensive in only
one of its phases.

2) Deployment: Deployment of the parallel .Net version
presented no particular difficulties. Deployment on the Ama-
zon Elastic MapReduce (AEMR) platform proved accept-
ably easy once all the necessary admninistrative configu-
ration had been performed, and the command-line tool for
cluster startup and termination, job startup and termination
had been learnt.

3) Debugging: Debugging the .Net implementation con-
sisted of fixing dependencies on shared parameters, which
can be spotted in the source code.

Running on AEMR presented a number of difficulties.
Several bugs and crashes, some unsolved to day, which
appeared exclusively on AEMR, not on our development
cluster, made deployment hard. Diagnostic tools sum up
to console and log consultation on running clusters. The
algorithm received a large amount of logging statements,
and logging configuration itself had to be brought in agree-
ment with Hadoop requirements, to allow some amount of
debugging.

V. CONCLUSION

We have implemented an iterative learning algorithm un-
der four different settings, one parallel and three distributed
ones with Hadoop. The runtime duration of an iteration is
crucial for such a Gibbs sampling algorithm, since conver-
gence typically takes several thousands of iterations.

We presented the algorithm (beam sampling on the infinite
HMM) and the application (part-of-speech tagging) we were
applying it on. Iteration durations were compared for the
different settings, and the effort involved in developing the
implementations was contrasted.

The parallel deployment had better performance than the
distributed ones running on “small” cores; the overall best
performance is obtained on a distributed setup running the
“extra-large”, more powerful, machines. The parallel setup
would not scale up to larger data sizes, neither would it
scale very much with number of cores used. Therefore a
distributed implementations is required when turning to web-
scale data.

Our first experiment with Hadoop, in which all loops were
turned into map-reduce jobs, incurred high map-reduce job
setup overhead, in spite of the tuning we applied. Had it
been know to us that Hadoop is not well suited to iterative

applications containing several map-reduce jobs per itera-
tion, we would not have tried this; we hope this finding is a
contribution of this paper. Our Hadoop implementation with
only one map-reduce job per iteration had acceptable scaling
behaviour with data size. Ongoing experiments investigate
its scaling across number of nodes, which seems roughly
linear, making it a good candidate for Gibbs sampling on a
very large scale.
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