
Dependency language models for sentence completion

Joseph Gubbins
Computer Laboratory

University of Cambridge
jsg52@cam.ac.uk

Andreas Vlachos
Computer Laboratory

University of Cambridge
av308@cam.ac.uk

Abstract

Sentence completion is a challenging seman-
tic modeling task in which models must
choose the most appropriate word from a
given set to complete a sentence. Although
a variety of language models have been ap-
plied to this task in previous work, none of the
existing approaches incorporate syntactic in-
formation. In this paper we propose to tackle
this task using a pair of simple language mod-
els in which the probability of a sentence is
estimated as the probability of the lexicalisa-
tion of a given syntactic dependency tree. We
apply our approach to the Microsoft Research
Sentence Completion Challenge and show that
it improves on n-gram language models by 8.7
percentage points, achieving the highest accu-
racy reported to date apart from neural lan-
guage models that are more complex and ex-
pensive to train.

1 Introduction

The verbal reasoning sections of standardised tests
such as the Scholastic Aptitude Test (SAT) fea-
ture problems where a partially complete sentence
is given and the candidate must choose the word
or phrase from a list of options which completes
the sentence in a logically consistent way. Sen-
tence completion is a challenging semantic mod-
elling problem. Systematic approaches for solving
such problems require models that can judge the
global coherence of sentences. Such measures of
global coherence may prove to be useful in various
applications, including machine translation and nat-
ural language generation (Zweig and Burges, 2012).

Most approaches to sentence completion employ
language models which use a window of immedi-
ate context around the missing word and choose the
word that results in the completed sentence with the
highest probability (Zweig and Burges, 2012; Mnih
and Teh, 2012). However, such language models
may fail to identify sentences that are locally co-
herent but are improbable due to long-range syntac-
tic/semantic dependencies. Consider, for example,
completing the sentence

I saw a tiger which was really very ...

with either fierce or talkative. A language model
relying on up to five words of immediate context
would ignore the crucial dependency between the
missing word and the noun tiger.

In this paper we tackle sentence completion us-
ing language models based on dependency gram-
mar. These models are similar to standard n-gram
language models, but instead of using the linear or-
dering of the words in the sentence, they generate
words along paths in the dependency tree of the sen-
tence. Unlike other approaches incorporating syntax
into language models (e.g., Chelba et al., 1997), our
models are relatively easy to train and estimate, and
can exploit standard smoothing methods. We apply
them to the Microsoft Research Sentence Comple-
tion Challenge (Zweig and Burges, 2012) and show
an improvement of 8.7 points in accuracy over n-
gram models, giving the best results to date for any
method apart from the more computationally de-
manding neural language models.



Figure 1: Dependency tree example

2 Unlabelled Dependency Language
Models

In dependency grammar, each word in a sentence is
associated with a node in a dependency tree (Figure
1). We define a dependency tree as a rooted, con-
nected, acyclic directed graph together with a map-
ping from the nodes of the tree to a set of gram-
matical relation labels R. We define a lexicalised
dependency tree as a dependency tree along with a
mapping from the vertices of the tree to a vocabulary
V .

We seek to model the probability distribution of
the lexicalisation of a given dependency tree. We
will use this as a language model; we neglect the
fact that a given lexicalised dependency tree can
correspond to more than one sentence due to vari-
ations in word order. Let ST be a lexicalised de-
pendency tree, where T is the unlexicalised tree and
let w1w2 . . . wm be an ordering of the words corre-
sponding to a breadth-first enumeration of the tree.
In order for this representation to be unique, when
we parse a sentence, we will use the unique breadth-
first ordering where the children of any node appear
in the same order as they did in the sentence. We
define w0 to be a special symbol denoting the root
of the tree. We denote the grammatical relation be-
tween wk and its parent by gk ∈ R.
We apply the chain rule to the words in the tree in
the order of this breadth-first enumeration:

P[ST |T ] =
m∏
i=1

P[wi|(wk)
i−1
k=0, T ] (1)

Given a word wi, we define the ancestor sequence

A(w) to be the subsequence of (wk)
i−1
k=0 describ-

ing the path from the root node to the parent of
w, where each element of the sequence is the par-
ent of the next element. For example in Figure 1,
A(w8) = (w0, w1, w3). We make the following two
assumptions:

• that each word wi is conditionally independent
of the words outside of its ancestor sequence
(wk)

i−1
k=0∩A(wi)

c, given the ancestor sequence
A(wi);

• that the words are independent of the labels
(gk)

m
k=1.

Using these assumptions, we can write the probabil-
ity as:

P[ST |T ] =
m∏
i=1

P[wi|A(wi)] (2)

Given a training data corpus consisting of sen-
tences parsed into dependency trees, the maximum
likelihood estimator for the probability P[wi|A(wi)]
is given by the proportion of cases where the ances-
tor sequence A(wi) was followed by wi. Let C(·) be
the count of the number of observations of a pattern
in the corpus. We have

P̂[wi|A(wi)] =
C((A(wi), wi))∑
w∈V C((A(wi), w))

(3)

As is the case for n-gram language models, we can’t
hope to observe all possible sequences of words no
matter how big the corpus. To deal with this data
sparsity issue, we take inspiration from n-gram mod-
els and assume a Markov property of order (N −1):

P[w|A(w)] = P[w|A(N−1)(w)] (4)

where A(N−1)(w) denotes the sequence of up to
(N − 1) closest ancestors of w.

The maximum likelihood estimator for this prob-
ability is:

P̂[wi|A(N−1)(wi)] =
C((A(N−1)(wi), wi))∑
w∈V C((A(N−1)(wi), w))

We have arrived at a model which is quite similar
to n-gram language models. The main difference



is that each word in the tree can have several chil-
dren, while in the n-gram models it can only be fol-
lowed by one word. Thus the sum in the denomina-
tor above does not simplify to the count of the ances-
tor sequence in the way that it does for n-gram lan-
guage models. However, we can calculate and store
the denominators easily during training, so that we
do not need to sum over the vocabulary each time we
evaluate the estimator. We refer to this model as the
order N unlabelled dependency language model.

As is the case for n-gram language models, even
for low values of N, we will often encounter se-
quences (A(N−1)(w), w) which were not observed
in training. In order to avoid assigning zero prob-
ability to the entire sentence, we need to use a
smoothing method. We can use any of the smooth-
ing methods used for n-gram language models. For
simplicity, we use stupid backoff smoothing (Brants
et al., 2007).

3 Labelled Dependency Language Models

We assumed above that the words are generated in-
dependently from the grammatical relations. How-
ever, we are likely to ignore valuable information in
doing so. To illustrate this point, consider the fol-
lowing pair of sentences:

You ate an apple

nsubj
dobj

det

An apple ate you

det nsubj dobj

The dependency trees of the two sentences are
very similar, with only the grammatical relations be-
tween ate and its arguments differing. The unla-
belled dependency language model will assign the
same probability to both of the sentences as it ig-
nores the labels of grammatical relations. In order
to be able to distinguish between them, the nature
of the grammatical relations between the words in
the dependency tree needs to be incorporated in the
language model. We relax the assumption that the
words are independent of the labels of the parse tree,
assuming instead the each word is conditionally in-
dependent of the words and labels outside its ances-
tor path given the words and labels in its ancestor

path. We define G(wi) to be the sequence of gram-
matical relations between the successive elements of
(A(wi), wi). G(wi) is the sequence of grammatical
relations found on the path from the root node to
wi. For example, in Figure 1, G(w8) = (g1, g3, g8).
With our modified assumption we have:

P[ST |T ] =
m∏
i=1

P[wi|A(wi), G(wi)] (5)

Once again we apply a Markov assumption.
Let G(N−1)(w) be the sequence of grammat-
ical relations between successive elements of
(A(N−1)(w), w). With an (N − 1)th order Markov
assumption, we have:

P[ST |T ] =
m∏
i=1

P[wi|A(N−1)(wi), G
(N−1)(wi)]

The maximum likelihood estimator for the probabil-
ity is once again given by the ratio of the counts of
labelled paths. We refer to this model as the order
N labelled dependency language model.

4 Dataset and Implementation Details

We carried out experiments using the Microsoft
Research Sentence (MSR) Completion Challenge
(Zweig and Burges, 2012). This consists of a set
of 1,040 sentence completion problems taken from
five of the Sherlock Holmes novels by Arthur Co-
nan Doyle. Each problem consists of a sentence
in which one word has been removed and replaced
with a blank and a set of 5 candidate words to com-
plete the sentence. The task is to choose the can-
didate word which, when inserted into the blank,
gives the most probable complete sentence. The set
of candidates consists of the original word and 4
imposter words with similar distributional statistics.
Human judges were tasked with choosing imposter
words which would lead to grammatically correct
sentences and such that, with some thought, the cor-
rect answer should be unambiguous. The training
data set consists of 522 19th century novels from
Project Gutenberg. We parsed the training data us-
ing the Nivre arc-eager deterministic dependency
parsing algorithm (Nivre and Scholz, 2004) as im-
plemented in MaltParser (Nivre et al., 2006). We
trained order N labelled and unabelled dependency



I saw a tiger which was really very
a. fierce
b. talkative

I saw a tiger which was really very fierce

ROOT

P[“fierce”] = P[saw|ROOT]× P[I|ROOT, saw]× P[tiger|ROOT, saw]× P[a|saw, tiger]× P[fierce|saw, tiger]
×P[which|tiger, fierce]× P[was|tiger, fierce]× P[really|tiger, fierce]× P[very|tiger, fierce]

PARSE

EVALUATE PROBABILITY

Figure 2: Procedure for evaluating sentence completion problems

N Unlab-SB Lab-SB Ngm-SB Ngm-KN
2 43.2% 43.0% 28.1% 27.8%
3 48.3% 49.8% 38.5% 38.4%
4 48.3% 50.0% 40.8% 41.1%
5 47.4% 49.9% 41.3% 40.8%

Table 1: Summary of results for Sentence Completion

language models for 2 ≤ N ≤ 5. Words which
occured fewer than 5 times were excluded from the
vocabulary. In order to have a baseline to compare
against, we also trained n-gram language models
with Kneser-Ney smoothing and stupid backoff us-
ing the Berkeley Language Modeling Toolkit (Pauls
and Klein, 2011).

To test a given language model, we calculated the
scores it assigned to each candidate sentence and
chose the completion with the highest score. For
the dependency language models we parsed the sen-
tence with each of the 5 possible completions and
calculated the probability in each case. Figure 2 il-
lustrates an example of this process for the order 3
unlabelled model.

5 Results

Table 1 summarises the results. Unlab-SB is the or-
der N unlabelled dependency language model with
Stupid Backoff, Lab-SB is the order N labelled
dependency language model with Stupid Backoff,
Ngm-SB is the n-gram language model with Stupid
Backoff and Ngm-KN is the interpolated Kneser-
Ney smoothed n-gram language model.

Both of the dependency language models outper-
fomed the n-gram language models by a substantial

Method Accuracy
n-grams (Various) 39% - 41%

Skip-grams (Mikolov) 48%
Unlabelled Dependency Model 48.3%

Average LSA (Zweig) 49%
Labelled Dependency Model 50.0%

Log-bilinear Neural LM (Mnih) 54.7%
Recurrent Neural LM (Mikolov) 55.4%

Table 2: Comparison against previous results

margin for all orders considered. The best result was
achieved by the order 4 labelled dependency model
which is 8.7 points in accuracy better than the best n-
gram model. Furthermore, the labelled dependency
models outperformed their unlabelled counterparts
for every order except 2.

Comparing against previous work (Table 2), the
performance of our n-gram baseline is slightly better
than the accuracy reported by other authors (Mnih
and Teh, 2012; Zweig et al., 2012) for models of this
type. The performance of the labelled dependency
language model is superior to the results reported
for any single model method, apart from those rely-
ing on neural language models (Mnih and Teh, 2012;
Mikolov et al., 2013) . However the superior perfor-
mance of neural networks comes at the cost of long
training times. The best result achieved in Zweig et
al. (2012) using a single method was 49% accuracy
with a method based on LSA. Mikolov et al. (2013)
also reported accuracy of 48% for a method called
skip-grams, which uses a log-linear classifier to pre-
dict which words will appear close to each other in
sentences.



6 Related Work and Discussion

The best-known language model based on depen-
dency parsing is that of Chelba et al. (1997). This
model writes the probability in the familiar left-to-
right chain rule decomposition in the linear order
of the sentence, conditioning the probability of the
next word on the linear trigram context, as well as
some part of the dependency graph information re-
lating to the words on its left. The language mod-
els we propose are far simpler to train and compute.
A somewhat similar model to our unlabelled depen-
dency language model was proposed in Graham and
van Genabith (2010). However they seem to have
used different probability estimators which ignore
the fact that each node in the dependency tree can
have multiple children. Other research on syntac-
tic language modelling has focused on using phrase
structure grammars (Pauls and Klein, 2012; Char-
niak, 2001; Roark, 2001; Hall and Johnson, 2003).
The linear complexity of deterministic dependency
parsing makes dependency language models such as
ours more scalable than these approaches.

The most similar task to sentence completion is
lexical substitution (McCarthy and Navigli, 2007).
The main difference between them is that in the lat-
ter the word to be substituted provides a very im-
portant clue in choosing the right candidate, while
in sentence completion this is not available. An-
other related task is selectional preference modeling
(Séaghdha, 2010; Ritter et al., 2010), where the aim
is to assess the plausibility of possible syntactic ar-
guments for a given word.

The dependency language models described in
this paper assign probabilities to full sentences. Lan-
guage models which require full sentences can be
used in automatic speech recognition (ASR) and ma-
chine translation (MT). The approach is to use a con-
ventional ASR or MT decoder to produce an N-best
list of the most likely candidate sentences and then
re-score these with the language model. This was
done by Chelba et al. (1997) for ASR using a de-
pendency language model and by Pauls and Klein
(2011) for MT using a PSG-based syntactic lan-
guage model.

7 Conclusion

We have proposed a pair of language models which
are probabilistic models for the lexicalisation of a
given dependency tree. These models are simple
to train and evaluate and are scalable to large data
sets. We applied them to the Microsoft Research
Sentence Completion Challenge. They performed
substantially better than n-gram language models,
achieving the best result reported for any single
method except for the more expensive and complex
to train neural language models.

Acknowledgments

Andreas Vlachos is funded by the European
Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no.
270019 (SPACEBOOK project www.spacebook-
project.eu). The authors would like to thank Dr.
Stephen Clark for his helpful comments.

References

Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och,
and Jeffrey Dean. 2007. Large Language Mod-
els in Machine Translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 858–867. Association for
Computational Linguistics.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguis-
tics, pages 124–131. Association for Computational
Linguistics.

Ciprian Chelba, David Engle, Frederick Jelinek, Vic-
tor Jimenez, Sanjeev Khudanpur, Lidia Mangu, Harry
Printz, Eric Ristad, Ronald Rosenfeld, Andreas Stol-
cke, et al. 1997. Structure and performance of a
dependency language model. In Proceedings of Eu-
rospeech, volume 5, pages 2775–2778.

Yvette Graham and Josef van Genabith. 2010. Deep syn-
tax language models and statistical machine transla-
tion. In Proceedings of the 4th Workshop on Syntax
and Structure in Statistical Translation, pages 118–
126. Coling 2010 Organizing Committee, August.

Keith Hall and Mark Johnson. 2003. Language mod-
eling using efficient best-first bottom-up parsing. In
IEEE Workshop on Automatic Speech Recognition and
Understanding, pages 507–512. IEEE.



Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Andriy Mnih and Yee W Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Con-
ference on Machine Learning, pages 1751–1758.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings of
the 20th International Conference on Computational
Linguistics, page 64. Association for Computational
Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of LREC, volume 6, pages
2216–2219.

Adam Pauls and Dan Klein. 2011. Faster and Smaller
N-Gram Language Models. In Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies,
pages 258–267. Association for Computational Lin-
guistics.

Adam Pauls and Dan Klein. 2012. Large-scale syntac-
tic language modeling with treelets. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics: Long Papers-Volume 1, pages
959–968. Association for Computational Linguistics.

Alan Ritter, Oren Etzioni, et al. 2010. A latent dirich-
let allocation method for selectional preferences. In
Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 424–434.
Association for Computational Linguistics.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Diarmuid O Séaghdha. 2010. Latent variable models
of selectional preference. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 435–444. Association for Computa-
tional Linguistics.

Geoffrey Zweig and Chris JC Burges. 2012. A challenge
set for advancing language modeling. In Proceedings
of the NAACL-HLT 2012 Workshop: Will We Ever Re-
ally Replace the N-gram Model? On the Future of
Language Modeling for HLT, pages 29–36. Associa-
tion for Computational Linguistics.

Geoffrey Zweig, John C Platt, Christopher Meek,
Christopher JC Burges, Ainur Yessenalina, and Qiang
Liu. 2012. Computational approaches to sentence
completion. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 601–610. Association
for Computational Linguistics.


