
Search-based Structured Prediction applied to Biomedical Event Extraction

Andreas Vlachos and Mark Craven
Department of Biostatistics and Medical Informatics

University of Wisconsin-Madison
{vlachos,craven}@biostat.wisc.edu

Abstract

We develop an approach to biomedical event
extraction using a search-based structured pre-
diction framework, SEARN, which converts
the task into cost-sensitive classification tasks
whose models are learned jointly. We show
that SEARN improves on a simple yet strong
pipeline by 8.6 points in F-score on the
BioNLP 2009 shared task, while achieving the
best reported performance by a joint inference
method. Additionally, we consider the issue of
cost estimation during learning and present an
approach called focused costing that improves
improves efficiency and predictive accuracy.

1 Introduction

The term biomedical event extraction is used to re-
fer to the task of extracting descriptions of actions
and relations involving one or more entities from
the biomedical literature. The recent BioNLP 2009
shared task (BioNLP09ST) on event extraction (Kim
et al., 2009) focused on event types of varying com-
plexity. Each event consists of a trigger and one or
more arguments, the latter being proteins or other
events. Any token in a sentence can be a trigger for
one of the nine event types and, depending on their
associated event types, triggers are assigned appro-
priate arguments. Thus, the task can be viewed as
a structured prediction problem in which the output
for a given instance is a (possibly disconnected) di-
rected acyclic graph (not necessarily a tree) in which
vertices correspond to triggers or protein arguments,
and edges represent relations between them.

Despite being a structured prediction task, most of
the systems that have been applied to BioNLP09ST

to date are pipelines that decompose event extrac-
tion into a set of simpler classification tasks. Clas-
sifiers for these tasks are typically learned indepen-
dently, thereby ignoring event structure during train-
ing. Typically in such systems, the relationships
among these tasks are taken into account by incor-
porating post-processing rules that enforce certain
constraints when combining their predictions, and
by tuning classification thresholds to improve the ac-
curacy of joint predictions. Pipelines are appealing
as they are relatively easy to implement and they of-
ten achieve state-of-the-art performance (Bjorne et
al., 2009; Miwa et al., 2010).

Because of the nature of the output space, the task
is not amenable to sequential or grammar-based ap-
proaches (e.g. linear CRFs, HMMs, PCFGs) which
employ dynamic programming in order to do ef-
ficient inference. The only joint inference frame-
work that has been applied to BioNLP09ST to date
is Markov Logic Networks (MLNs) (Riedel et al.,
2009; Poon and Vanderwende, 2010). However,
MLNs require task-dependent approximate infer-
ence and substantial computational resources in or-
der to achieve state-of-the-art performance.

In this work we explore an alternative joint in-
ference approach to biomedical event extraction us-
ing a search-based structured prediction framework,
SEARN (Daumé III et al., 2009). SEARN is an
algorithm that converts the problem of learning a
model for structured prediction into learning a set
of models for cost-sensitive classification (CSC).
CSC is a task in which each training instance has
a vector of misclassification costs associated with it,
thus rendering some mistakes on some instances to
be more expensive than others (Domingos, 1999).
Compared to a standard pipeline, SEARN is able to



achieve better performance because its models are
learned jointly. Thus, each of them is able to use fea-
tures representing the predictions made by the oth-
ers, while taking into account possible mistakes.

In this paper, we make the following contribu-
tions. Using the SEARN framework, we develop a
joint inference approach to biomedical event extrac-
tion. We evaluate our approach on the BioNLP09ST
dataset and show that SEARN improves on a simple
yet strong pipeline by 8.6 points in F-score, while
achieving the best reported performance on the task
by a joint inference method. Additionally, we con-
sider the issue of cost estimation and present an ap-
proach called focused costing that improves perfor-
mance. We believe that these contributions are likely
to be relevant to applications of SEARN to other
natural language processing tasks that involve struc-
tured prediction in complex output spaces.

2 BioNLP 2009 shared task description

BioNLP09ST focused on the extraction of events
involving proteins whose names are annotated in
advance. Each event has two types of arguments,
Theme and Cause, which correspond respectively to
the Agent and Patient roles in semantic role label-
ing (Gildea and Jurafsky, 2002). Nine event types
are defined which can be broadly classified in three
categories, namely Simple, Binding and Regulation.
Simple events include Gene expression, Transcrip-
tion, Protein catabolism, Phosphorylation, and Lo-
calization events. These have only one Theme ar-
gument which is a protein. Binding events have
one or more protein Themes. Finally, Regulation
events, which include Positive regulation, Nega-
tive regulation and Regulation, have one obligatory
Theme and one optional Cause, each of which can
be either a protein or another event. Each event has
a trigger which is a contiguous string that can span
over one or more tokens. Triggers and arguments
can be shared across events. In an example demon-
strating the complexity of the task, given the passage
“. . . SQ 22536 suppressed gp41-induced IL-10 pro-
duction in monocytes”, systems should extract the
three appropriately nested events listed in Fig. 1d.

Performance is measured using Recall, Precision
and F-score over complete events, i.e. the trigger,
the event type and the arguments all must be correct

in order to obtain a true positive. It is important to
note that if either the trigger, the type, or an argu-
ment of a predicted event is incorrect then this event
will result in one false positive and one false nega-
tive. In the example of Fig. 1, if “suppressed” is rec-
ognized incorrectly as a Regulation trigger then it is
better to not assign a Theme to it so that we avoid
a false positive due to extracting an event with in-
correct type. Finally, the evaluation ignores triggers
that do not form events.

3 Event extraction decomposition

Figure 1 describes the event extraction decomposi-
tion that we use throughout the paper. We assume
that the sentences to be processed are parsed into
syntactic dependencies and lemmatized. Each stage
has its own module, which is either a learned classi-
fier (trigger recognition, Theme/Cause assignment)
or a rule-based component (event construction).

3.1 Trigger recognition
In trigger recognition the system decides whether a
token acts as a trigger for one of the nine event types
or not. Thus it is a 10-way classification task. We
only consider tokens that are tagged as nouns, verbs
or adjectives by the parser, as they cover the majority
of the triggers in the BioNLP09ST data. The main
features used in the classifier represent the lemma
of the token which is sufficient to predict the event
type correctly in most cases. In addition, we include
features that conjoin each lemma with its part-of-
speech tag. This allows us to handle words with
the same nominal and verbal form that have differ-
ent meanings, such as “lead”. While the domain
restricts most lemmas to one event type, there are
some whose event type is determined by the context,
e.g. “regulation” on its own denotes a Regulation
event but in “positive regulation” it denotes a Posi-
tive regulation event instead. In order to capture this
phenomenon, we add as features the conjunction of
each lemma with the lemma of the tokens immedi-
ately surrounding it, as well as with the lemmas of
the tokens with which it has syntactic dependencies.

3.2 Theme and Cause assignment
In Theme assignment, we form an agenda of can-
didate trigger-argument pairs for all trigger-protein
combinations in the sentence and classify them as



SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

(a) Trigger recognition

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

ThemeTheme

(b) Theme assignment

SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

Theme

Cause

Theme

(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

(d) Event construction

Figure 1: The stages of our event extraction decomposition. Protein names are shown in bold.

Themes or not. Whenever a trigger is predicted to be
associated with a Theme, we form candidate pairs
between all the Regulation triggers in the sentence
and that trigger as the argument, thus allowing the
prediction of nested events. Also, we remove candi-
date pairs that could result in directed cycles, as they
are not allowed by the task.

The features used to predict whether a trigger-
argument pair should be classified as a Theme are
extracted from the syntactic dependency path and
the textual string between them. In particular, we
extract the shortest unlexicalized dependency path
connecting each trigger-argument pair, allowing the
paths to follow either dependency direction. One set
of features represents these paths, and in addition,
we have sets of features representing each path con-
joined with the lemma, the PoS tag and the event
type of the trigger, the type of the argument and
the first and last lemmas in the dependency path.
The latter help by providing some mild lexicaliza-
tion. We also add features representing the textual
string between the trigger and the argument, com-
bined with the event type of the trigger. While not as
informative as dependency paths, such features help
in sentences where the parse is incorrect, as triggers
and their arguments tend to appear near each other.

In Cause assignment, we form an agenda of can-
didate trigger-argument pairs using only the Regu-
lation class triggers that were assigned at least one
Theme. These are combined with protein names and
other triggers that were assigned a Theme. We ex-

tract features as in Theme assignment, further fea-
tures representing the conjunction of the dependency
path of the candidate pair with the path(s) from the
trigger to its Theme(s).

3.3 Event construction

In event construction, we convert the predictions of
the previous stages into a set of legal events. If
a Binding trigger is assigned multiple Themes, we
choose to form either one event per Theme or one
event with multiple Themes. Following Bjorne et
al. (2009), we group the arguments of each Binding
trigger according to the first label in their syntac-
tic dependency path and generate events using the
cross-product of these groups. For example, assum-
ing the parse was correct and all the Themes recog-
nized, “interactions of A and B with C” results in
two Binding events with two Themes each, A with
C, and B with C respectively. We add the exception
that if two Themes are in the same token (e.g. “A/B
interactions”) or the lemma of the trigger is “bind”
then they form one Binding event with two Themes.

4 Structured prediction with SEARN

SEARN (Daumé III et al., 2009) forms the struc-
tured output prediction for an instance s as a se-
quence of T multiclass predictions ŷ1:T made by a
hypothesis h. The latter consists of a set of classi-
fiers that are learned jointly. Each prediction ŷt can
use features from s as well as from all the previous
predictions ŷ1:t−1. These predictions are referred to



as actions and we adopt this term in order to distin-
guish them from the structured output predictions.

The SEARN algorithm is presented in Alg. 1. It
initializes hypothesis h to the optimal policy π (step
2) which predicts the optimal action in each step
t according to the gold standard. The optimal ac-
tion at step t is the one that minimizes the overall
loss over s assuming that all future actions ŷt+1:T

are also made optimally. The loss function ` is de-
fined by the structured prediction task considered.
Each iteration begins by making predictions for all
instances s in the training data S (step 6). For each
s and each action ŷt, a cost-sensitive classification
(CSC) example is generated (steps 8-12). The fea-
tures are extracted from s and the previous actions
ŷ1:t−1 (step 8). The cost for each possible action
yit is estimated by predicting the remaining actions
y′t+1:T in s using h (step 10) and evaluating the cost
incurred given that action (step 11). Using a CSC
learning algorithm, a new hypothesis is learned (step
13) which is combined with the current one accord-
ing to the interpolation parameter β.

Algorithm 1 SEARN
1: Input: labeled instances S , optimal policy π, CSC

learning algorithm CSCL, loss function `
2: current policy h = π
3: while h depends significantly on π do
4: Examples E = ∅
5: for s in S do
6: Predict h(s) = ŷ1:T
7: for ŷt in h(s) do
8: Extract features Φt = f(s, ŷ1:t−1)
9: for each possible action yit do

10: Predict y′t+1:T = h(s|ŷ1:t−1, yit)
11: Estimate cit = `(ŷ1:t−1, y

i
t, y′t+1:T )

12: Add (Φt, ct) to E
13: Learn a hypothesis hnew = CSCL(E)
14: h = βhnew + (1− β)h
15: Output: policy h without π

In each iteration, SEARN moves away from the
optimal policy and uses the learned hypotheses in-
stead when predicting (steps 6 and 10). Thus, each
hnew is adapted to the actions chosen by h instead
of those of the optimal policy. When the depen-
dence on the latter becomes insignificant, the algo-
rithm terminates and returns the weighted ensemble
of learned hypotheses without the optimal policy.

Note though that the estimation of the costs in step
11 is always performed using the gold standard.

The interpolation parameter β determines how
fast SEARN moves away from the optimal policy
and as a result how many iterations will be needed to
minimize the dependence on it. Dependence in this
context refers to the probability of using the optimal
policy instead of the learned hypothesis in choos-
ing an action during prediction. In each iteration,
the features extracted Φt are progressively corrupted
with the actions chosen by the learned hypotheses
instead of those of the optimal policy.

Structural information under SEARN is incorpo-
rated in two ways. First, via the costs that are es-
timated using the loss over the instance rather than
isolated actions (e.g. in PoS tagging, the loss would
be the number of incorrect PoS tags predicted in
a sentence if a token is tagged as noun). Second,
via the features extracted from the previous actions
(ŷ1:t−1) (e.g. the PoS tag predicted for the previ-
ous token can be a feature). These types of features
are possible in a standard pipeline as well, but dur-
ing training they would have to be extracted using
the gold standard instead of the actual predictions
made by the learned hypotheses, as during testing.
Since the prediction for each instance (ŷ1:T in step
6) changes in every iteration, the structure features
used to predict the actions have to be extracted anew.

The extraction of features from previous actions
implies a search order. For some tasks, such as PoS
tagging, there is a natural left-to-right order in which
the tokens are treated, however for many tasks this
is not the case.

Finally, SEARN can be used to learn a pipeline of
independently trained classifiers. This is achieved
using only one iteration in which the cost for each
action is set to 0 if it follows from the gold standard
and to 1 otherwise. This adaptation allows for a fair
comparison between SEARN and a pipeline.

5 SEARN for biomedical event extraction

In this section we discuss how we learn the event
extraction decomposition described in Sec. 3 under
SEARN. Each instance is a sentence consisting of
the tokens, the protein names and the syntactic pars-
ing output. The hypothesis learned in each iteration
consists of a classifier for each stage of the pipeline,



excluding event construction which is rule-based.
Unlike PoS tagging, there is no natural ordering

of the actions in event extraction. Ideally, the ac-
tions predicted earlier should be less dependent on
structural features and/or easier so that they can in-
form the more structure dependent/harder ones. In
trigger recognition, we process the tokens from left
to right since modifiers appearing before nouns tend
to affect the meaning of the latter, e.g. “binding ac-
tivity”. In Theme and Cause assignment, we predict
trigger-argument pairs in order of increasing depen-
dency path length, assuming that since dependency
paths are the main source of features at this stage and
shorter paths are less sparse, pairs containing shorter
ones should be more reliable to predict.

In addition to the features mentioned in Sec. 3,
SEARN allows us to extract and learn weights for
structural features for each action from the previous
ones. During trigger recognition, we add as features
the combination of the lemma of the current token
combined with the event type (if any) assigned to
the previous and the next token, as well as to the to-
kens that have syntactic dependencies with it. Dur-
ing Theme assignment, when considering a trigger-
argument pair, we add features based on whether it
forms an undirected cycle with previously predicted
Themes, whether the trigger has been assigned a pro-
tein as a Theme and the candidate Theme is an event
trigger (and the reverse) and whether the argument
has become the Theme of a trigger with the same
event type. We also add a feature indicating whether
the trigger has three Themes predicted already. Dur-
ing Cause assignment, we add features representing
whether the trigger has been assigned a protein as a
Cause and the candidate Cause is an event trigger.

The loss function ` sums the number of false pos-
itive and false negative events, which is the evalua-
tion measure of BioNLP09ST. The optimal policy is
derived from the gold standard and returns the ac-
tion that minimizes this loss over the sentence given
the previous actions and assuming that all future ac-
tions are optimal. In trigger recognition, it returns
either the event type for tokens that are triggers or a
“notrigger” label otherwise. In Theme assignment,
for a given trigger-argument pair the optimal policy
returns Theme only if the trigger is recognized cor-
rectly and the argument is indeed a Theme for that
trigger according to the gold standard. In case the ar-

gument is another event, we require that at least one
of its Themes to be recognized correctly as well. In
Cause assignment, the requirements are the same as
those for the Themes, but we also require that at least
one Theme of the trigger in the trigger-argument pair
to be considered correct. These additional checks
follow from the task definition, under which events
must have all their elements identified correctly.

5.1 Cost estimation
Cost estimation (steps 5-12 in Alg. 1) is crucial to
the successful application of SEARN. In order to
highlight its importance, consider the example of
Fig. 2 focusing on trigger recognition.

In the first iteration (Fig. 2a), the actions for the
sentence will be made using the optimal policy only,
thus replicating the gold standard. During costing,
if a token is not a trigger according to the gold stan-
dard (e.g. “SQ”), then the cost for incorrectly pre-
dicting that it is a trigger is 0, as the optimal policy
will not assign Themes to a trigger with incorrect
event type. Such instances are ignored by the cost-
sensitive learner. If a token is a trigger according to
the gold standard, then the cost for not predicting it
as such or predicting its type incorrectly is equal to
the number of the events that are dependent on it, as
they will become false negatives. False positives are
avoided as we are using the optimal policy in this
iteration.

In the second iteration (Fig. 2b), the optimal pol-
icy is interpolated with the learned hypothesis, thus
some of the actions are likely to be incorrect. As-
sume that “SQ” is incorrectly predicted to be a
Neg reg trigger and assigned a Theme. During cost-
ing, the action of labeling “SQ” as Neg reg has a
cost of 1, as it would result in a false positive event.
Thus the learned hypothesis will be informed that it
should not label “SQ” as a trigger as it would assign
Themes to it incorrectly and it is adapted to handle
its own mistakes. Similarly, the action of labeling
“production” as Neg reg in this iteration would in-
cur a cost of 6, as the learned hypothesis would as-
sign a Theme incorrectly, thus resulting in 3 false
negative and 3 false positive events. Therefore, the
learned hypothesis will be informed that assigning
the wrong event type to “production” is worse than
not predicting a trigger.

By evaluating the cost of each action according to



SQ 22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Gene exp

Theme

Theme

Cause

Theme

token No Gene exp Pos reg Neg reg
SQ 0 0 0 0
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 3

(a) First iteration (optimal policy only)

SQ
Neg reg

22536 suppressed
Neg reg

gp41-induced
Pos reg

IL-10 production
Neg reg

Theme

Theme

Cause

ThemeTheme

token No Gene exp Pos reg Neg reg
SQ 0 0 0 1
suppressed 1 1 1 0
-induced 2 2 0 2
production 3 0 3 6

(b) Second iteration (interpolation)

Figure 2: Prediction (top) and CSC examples for trigger recognition actions (bottom) in the first two SEARN
iterations. Each CSC example has its own vector of misclassification costs.

its effect on the prediction for the whole sentence,
we are able to take into account steps in the pre-
diction process that are not learned as actions. For
example, if the Binding event construction heuris-
tic described in Sec. 3.3 cannot produce the correct
events for a token that is a Binding trigger despite
the Themes being assigned correctly, then this will
increase the cost for tagging that trigger as Binding.

The interpolation between the optimal policy and
the learned hypothesis is stochastic, thus affecting
the cost estimates obtained. In order to obtain more
reliable estimates, one can average multiple sam-
ples for each action by repeating steps 10 and 11
of Alg. 1. However, the computational cost is effec-
tively multiplied by the number of samples.

In step 11 of Alg. 1, the cost of each action is esti-
mated over the whole sentence. While this allows us
to take structure into account, it can result in costs
being affected by a part of the output that is not re-
lated to that action. This is likely to occur in event
extraction, as sentences can often be long and con-
tain disconnected event components in their output
graphs. For this reason, we refine the cost estimation
of each action to take into account only the events
that are connected to it through either gold standard
or predicted events. For example, in Fig. 2 the cost
estimation for “SQ” will ignore the predicted events
in the first iteration and the gold standard, while it
will take them into account in the second one. We
refer to this refinement as focused costing.

A different approach proposed by Daumé III et
al. (2009) is to assume that all actions following the

one we are costing are going to be optimal and use
the optimal policy to approximate the prediction of
the learned hypothesis in step 10 of Alg. 1. In tasks
where the learned hypothesis is accurate enough,
this has no performance loss and it is computation-
ally efficient as the optimal policy is deterministic.
However, in event extraction the learned hypothesis
is likely to make mistakes, thus the optimal policy
does not provide a good approximation for it.

5.2 CSC learning with passive-aggressive
algorithms

The SEARN framework requires a multiclass CSC
algorithm to learn how to predict actions. This algo-
rithm must be computationally fast during parameter
learning and prediction, as in every iteration we need
to learn a new hypothesis and to consider each pos-
sible action for each instance in order to construct
the cost-sensitive examples. Daumé III et al. (2009)
showed that any binary classification algorithm can
be used to perform multiclass CSC by employing an
appropriate conversion between the tasks. The main
drawback of this approach is its reliance on multi-
ple subsamplings of the training data, which can be
inefficient for large datasets and many classes.

With these considerations in mind, we implement
a multiclass CSC learning algorithm using the gen-
eralization of the online passive-aggressive (PA) al-
gorithm for binary classification proposed by Cram-
mer et al. (2006). For each training example xt,
the K-class linear classifier with K weight vectors
w

(k)
t makes a prediction ŷt and suffers a loss `t. In



the case of multiclass CSC learning, each example
has its own cost vector ct. If the loss is 0 then the
weight vectors of the classifier are not updated (pas-
sive). Otherwise, the weight vectors are updated
minimally so that the prediction on example xt is
corrected (aggressive). The update takes into ac-
count the loss and the aggressiveness parameter C.
Crammer et al. (2006) describe three variants to per-
form the updates which differ in how the learning
rate τt is set. In our experiments we use the variant
named PA-II with prediction-based updates (Alg. 2).
Since we are operating in a batch learning setting
(i.e. we have access to all the training examples and
their order is not meaningful), we perform multiple
rounds over the training examples shuffling their or-
der, and average the weight vectors obtained.

Algorithm 2 Passive-aggressive CSC learning
1: Input: training examples X = x1 . . . xT , cost vec-

tors c1 . . . cT ≥ 0, rounds R, aggressiveness C
2: Initialize weights w(k)

0 = (0, ..., 0)
3: for r = 1, ..., R do
4: Shuffle X
5: for xt ∈ X do
6: Predict ŷt = argmaxk(w

(k)
t · xt)

7: Receive cost vector ct ≥ 0
8: if c(ŷt)

t > 0 then

9: Suffer loss `t = w
(ŷt)
t ·xt−w(yt)

t ·xt+
√
c
(ŷt)
t

10: Set learning rate τt = `t
||xt||2+ 1

2C

11: Update w(yt)
t+1 = wt + τtxt

12: Update w(ŷt)
t+1 = wt − τtxt

13: Average wavg = 1
T×R

∑T×R
i=0 wi

6 Experiments

BioNLP09ST comprises three datasets – training,
development and test – which consist of 800, 150
and 260 abstracts respectively. After the end
of the shared task, an on-line evaluation server
was activated in order to allow the evaluation on
the test data once per day, without allowing ac-
cess to the data itself. We report results using
Recall/Precision/F-score over complete events using
the approximate span matching/approximate recur-
sive matching variant which was the primary perfor-
mance criterion in BioNLP09ST. This variant counts
a predicted event as a true positive if its trigger is

extracted within a one-token extension of the gold-
standard trigger. Also, in the case of nested events,
those events below the top-level need their trigger,
event type and Theme but not their Cause to be cor-
rectly identified for the top-level event to be consid-
ered correct. The same event matching variant was
used in defining the loss as described in Sec. 5.

A pre-processing step we perform on the train-
ing data is to reduce the multi-token triggers in the
gold standard to their syntactic heads. This proce-
dure simplifies the task of assigning arguments to
triggers and, as the evaluation variant used allows
approximate trigger matching, it does not result in
a performance loss. For syntactic parsing, we use
the output of the BLLIP re-ranking parser adapted to
the biomedical domain by McClosky and Charniak
(2008), as provided by the shared task organizers
in the Stanford collapsed dependency format with
conjunct dependency propagation. Lemmatization
is performed using morpha (Minnen et al., 2001).

In all our experiments, for CSC learning with PA,
the C parameter is set by tuning on 10% of the train-
ing data and the number of rounds is fixed to 10. For
SEARN, we set the interpolation parameter β to 0.3
and the number of iterations to 12. The costs for
each action are obtained by averaging three samples
as described in Sec. 5.1. β and the number of sam-
ples are the only parameters that need tuning and we
use the development data for this purpose.

First we compare against a pipeline of indepen-
dently learned classifiers obtained as described in
Sec. 4 in order to assess the benefits of joint learning
under SEARN using focused costing. The results
shown in Table 1 demonstrate that SEARN obtains
better event extraction performance on both the de-
velopment and test sets by 7.7 and 8.6 F-score points
respectively. The pipeline baseline employed in our
experiments is a strong one: it would have ranked
fifth in BioNLP09ST and it is 20 F-score points bet-
ter than the baseline MLN employed by Poon and
Vanderwende (2010). Nevertheless, the indepen-
dently learned classifier for triggers misses almost
half of the event triggers, from which the subsequent
stages cannot recover. On the other hand, the trig-
ger classifier learned with SEARN overpredicts, but
since the Theme and Cause classifiers are learned
jointly with it they maintain relatively high precision
with substantially higher recall compared to their in-



pipeline SEARN focus SEARN default
R P F R P F R P F

triggerdev 53.0 61.1 56.8 81.8 34.2 48.2 84.9 12.0 21.0
Themedev 44.2 79.6 56.9 62.0 69.1 65.4 59.0 65.1 61.9
Causedev 18.1 59.2 27.8 30.6 45.0 36.4 31.9 45.5 37.5
Eventdev 35.8 68.9 47.1 50.8 59.5 54.8 47.4 54.3 50.6
Eventtest 30.8 67.4 42.2 44.5 59.1 50.8 41.3 53.6 46.6

Table 1: Recall / Precision / F-score on BioNLP09ST development and test data. Left-to-right: pipeline of
independently learned classifiers, SEARN with focused costing, SEARN with default costing.

dependently learned counterparts. The benefits of
SEARN are more pronounced in Regulation events
which are more complex. For these events, it im-
proves on the pipeline on both the development and
test sets by 11 and 14.2 F-score points respectively.

The focused costing approach we proposed con-
tributes to the success of SEARN. If we replace it
with the default costing approach which uses the
whole sentence, the F-score drops by 4.2 points on
both development and test datasets. The default
costing approach mainly affects the trigger recog-
nition stage, which takes place first. Trigger over-
prediction is more extreme in this case and renders
the Theme assignment stage harder to learn. While
the joint learning of the classifiers ameliorates this
issue and the event extraction performance is even-
tually higher than that of the pipeline, the use of fo-
cused costing improves the performance even fur-
ther. Note that trigger overprediction also makes
training slower, as it results in evaluating more ac-
tions for each sentence. Finally, using one instead
of three samples per action decreases the F-score by
1.3 points on the development data.

Compared with the MLN approaches applied to
BioNLP09ST, our predictive accuracy is better than
that of Poon and Vanderwende (2010) which is the
best joint inference performance to date and substan-
tially better than that of Riedel et al. (2009) (50 and
44.4 in F-score respectively). Recently, McClosky
et al. (2011) combined multiple decoders for a de-
pendency parser with a reranker, achieving 48.6 in
F-score. While they also extracted structure fea-
tures for Theme and Cause assignment, their model
is restricted to trees (ours can output directed acyclic
graphs) and their trigger recognizer is learned inde-
pendently.

When we train SEARN combining the training

and the development sets, we reach 52.3 in F-score,
which is better than the performance of the top
system in BioNLP09ST (51.95) by Bjorne et al.
(2009) which was trained in the same way. The
best performance to date is reported by Miwa et al.
(2010) (56.3 in F-score), who experimented with six
parsers, three dependency representations and vari-
ous combinations of these. They found that different
parser/dependency combinations provided the best
results on the development and test sets.

A direct comparison between learning frame-
works is difficult due to the differences in task de-
composition and feature extraction. In particular,
event extraction results depend substantially on the
quality of the syntactic parsing. For example, Poon
and Vanderwende (2010) heuristically correct the
syntactic parsing used and report that this improved
their performance by four F-score points.

7 Conclusions

We developed a joint inference approach to biomed-
ical event extraction using the SEARN framework
which converts a structured prediction task into a set
of CSC tasks whose models are learned jointly. Our
approach employs the PA algorithm for CSC learn-
ing and a focused cost estimation procedure which
improves the efficiency and accuracy of the standard
cost estimation method. Our approach provides the
best reported results for a joint inference method on
the BioNLP09ST task. With respect to the experi-
ments presented by Daumé III et al. (2009), we em-
pirically demonstrate the gains of using SEARN on
a problem harder than sequential tagging.

Acknowledgments
The authors were funded by NIH/NLM grant R01 /
LM07050.



References
Jari Bjorne, Juho Heimonen, Filip Ginter, Antti Airola,

Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP 2009 Work-
shop Companion Volume for Shared Task, pages 10–
18.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning
Research, 7:551–585.

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75:297–325.

Pedro Domingos. 1999. Metacost: a general method for
making classifiers cost-sensitive. In Proceedings of
the 5th International Conference on Knowledge Dis-
covery and Data Mining, pages 155–164.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics,
28:245–288.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Pro-
ceedings of the BioNLP 2009 Workshop Companion
Volume for Shared Task, pages 1–9.

David McClosky and Eugene Charniak. 2008. Self-
training for biomedical parsing. In Proceedings of
the 46th Annual Meeting of the Association of Compu-
tational Linguistics: Human Language Technologies,
pages 101–104.

David McClosky, Mihai Surdeanu, and Christopher D.
Manning. 2011. Event extraction as dependency pars-
ing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English. Natu-
ral Language Engineering, 7(3):207–223.

Makoto Miwa, Sampo Pyysalo, Tadayoshi Hara, and
Jun’ichi Tsujii. 2010. Evaluating dependency repre-
sentation for event extraction. In Proceedings of the
23rd International Conference on Computational Lin-
guistics, pages 779–787.

Hoifung Poon and Lucy Vanderwende. 2010. Joint in-
ference for knowledge extraction from biomedical lit-
erature. In Proceedings of the Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 813–821.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Jun’ichi Tsujii. 2009. A Markov logic approach
to bio-molecular event extraction. In Proceedings of

the BioNLP 2009 Workshop Companion Volume for
Shared Task, pages 41–49.


