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Abstract
This paper presents two strong baselines
for the BioNLP 2009 shared task on event
extraction. First we re-implement a rule-
based approach which allows us to ex-
plore the task and the effect of domain-
adapted parsing on it. We then replace the
rule-based component with support vec-
tor machine classifiers and achieve perfor-
mance near the state-of-the-art without us-
ing any external resources. The good per-
formances achieved and the relative sim-
plicity of both approaches make them re-
producible baselines. We conclude with
suggestions for future work with respect to
the task representation.

1 Introduction

The term biomedical event extraction is used to re-
fer to tasks whose aim is the extraction of informa-
tion beyond the entity level. It commonly involves
recognizing actions and relations between one or
more entities. The recent BioNLP 2009 shared
task on event extraction (Kim et al., 2009) focused
on a number of relations of varying complexity in
which an event consisted of a trigger and one or
more arguments. It attracted 24 submissions and
provided a basis for system development. The per-
formances ranged from 16% to 52% in F-score.

In this paper we describe two strong baseline
approaches for the main task (described in Sec. 2)
with a focus on annotation costs and reproducibil-
ity. Both approaches rely on a dictionary of lem-
mas associated with event types (Sec. 3). First we
re-implement the rule-based approach of Vlachos
et al. (2009) using resources provided in the shared
task. While it is unlikely to reach the perfor-
mance of approaches combining supervised ma-
chine learning, exploring its potential can high-
light what annotated data is useful and its poten-
tial contribution to performance. Also, given its

reliance on syntax, it allows us to assess the impor-
tance of syntactic parsing. Nevertheless, the per-
formance achieved (35.39% F-score) is competi-
tive with systems that used more annotated data
and/or other resources (Sec. 5).

Building on the error analysis of the rule-based
approach, we replace the rule-based component
with support vector machine (SVM) classifiers
trained on partial event annotation in the form of
trigger-argument associations (Sec. 6). The use
of a trainable classifier highlights issues concern-
ing the suitability of the annotated data as train-
ing material. Using a simple feature representa-
tion and no external resources, the performance
rises to 47.89% in F-score, which would have been
second best in the shared task (Sec. 7). The er-
ror analysis suggests that future work on event ex-
traction should look into different task representa-
tions which will allow more advanced models to
demonstrate their potential (Sec. 8). Both systems
shall become publically available.

2 Definition, datasets and resources

The BioNLP 2009 shared task focused on extrac-
tion of events involving proteins. Protein recogni-
tion was considered a given in order to focus the
research efforts on the novel aspects of the task.
Nine event types were defined in the main task,
which can be broadly classified in two classes.
Simple events, namely Gene expression, Tran-
scription, Protein catabolism, Phosphorylation,
Localization and Binding, which have proteins
as their Theme argument and Regulation events,
namely Positive regulation, Negative regulation
and (unspecified) Regulation which have an oblig-
atory Theme argument and an optional Cause ar-
gument which can be either a protein or another
event. Every event has a trigger which is a con-
tiguous textual string that can span over one or
more tokens, as well as a part of a token. Triggers
and arguments can be shared across events and



ID type trigger Theme Cause
E1 Neg reg suppressed E2
E2 Pos reg induced E3 gp41
E3 Gene exp production IL-10

Table 1: Shared task example annotation.

the same textual string can be a trigger for events
of different types. In an example demonstrating
the complexity of the task: “. . . SQ 22536 sup-
pressed gp41-induced IL-10 production in mono-
cytes.” Participating systems, given the two pro-
teins (in bold), need to generate the three appro-
priately nested events of Table 1.

While event components can reside in different
sentences, we focus on events that are contained
in a single sentence. Participants were not pro-
vided with resources to develop anaphora resolu-
tion components and the anaphoric phenomena in-
volved were rather complex, as we observed in
Vlachos et al. (2009). Extraction of events involv-
ing anaphoric relations inside a single sentence is
still possible but it is likely to require rather com-
plex patterns to be extracted.

The shared task involved three datasets, train-
ing, development and test, which consisted of 800,
150 and 260 abstracts respectively taken from the
GENIA event corpus. Their annotation was tai-
lored to the shared task definition. A resource
made available and used by the majority of the sys-
tems was the output of four syntactic parsers:

• Bikel’s (2004) re-implementation of Collins’
parsing model. This parser was trained on
newswire data exclusively.

• The re-ranking parser of Charniak & Johnson
adapted to the biomedical domain (McClosky
and Charniak, 2008). The in-domain, part-of-
speech (PoS) tagger was trained on the GENIA
corpus (Kim et al., 2003) and the self-training
of the re-ranking module used a part of the GE-
NIA treebank as development data.

• The C&C Combinatory Categorial Grammar
(CCG) parser adapted to the biomedical do-
main (Rimell and Clark, 2009). The PoS tag-
ger was trained on the GENIA corpus, while
1,000 sentences were annotated with lexical
categories and added to the training data of
the CCG supertagger and 600 sentences of the
BioInfer corpus (Pyysalo et al., 2007) were
used for parameter tuning.

• The GDep dependency parser trained for the
biomedical domain in the experiments of
Miyao et al. (2008). This parser was trained
for the biomedical domain using the GENIA
treebank.

The native Penn TreeBank output of Bikel’s and
McClosky’s parser was converted to the Stanford
Dependency (SD) collapsed dependency format
(de Marneffe and Manning, 2008). The output of
the CCG parser was also converted to the same de-
pendency format, while the output of GDep was
provided in a different dependency format used
for the dependency parsing CoNLL 2007 shared
task. From the description above, it is clear that
the various parsers have different levels of adap-
tation to the biomedical domain. While it is diffi-
cult to assess quantitatively the actual annotation
effort involved, it is possible to make some com-
parisons. Bikel’s parser was not adapted to the
domain, therefore it would be the cheapest one to
deploy. McClosky and CCG used in-domain cor-
pora annotated with PoS tags for training, while
the latter using some additional annotation for lex-
ical categories. Furthermore, they were tuned us-
ing in-domain syntactic treebanks. Therefore, they
represent a more expensive option in terms of an-
notation cost. Finally, GDep was trained using
an in-domain treebanked corpus, thus representing
the alternative with the highest annotation cost.

3 Trigger extraction

We perform trigger identification using a dictio-
nary of lemmas associated with the event type they
indicate. The underlying assumption is that a par-
ticular lemma has the same semantic content in ev-
ery occurrence, which results in extracting all of
its occurrences as triggers of the same event type.
This is clearly an over-simplification, but the re-
stricted domain and the task definition alleviates
most of the problems caused. For each lemma in
the dictionary, we extract all its occurrences in the
text as triggers, therefore over-generating, since
not all occurrences denote a biomedical event.
This can be either because they are not connected
with appropriate arguments or because they are
used with a sense irrelevant to the task. Both is-
sues are being resolved at the argument identifi-
cation stage since superfluous triggers should not
receive arguments and not form events.

The one-sense-per-term assumption is further
challenged by the fact that occurrences of the same



term can denote events of different types. For ex-
ample, “expression” is used as a trigger of four
different event types in the training data, namely
Gene expression, Transcription, Localization and
Positive regulation. While it can be argued that in
some cases this is due to annotation inconsisten-
cies, it is generally accepted that context can alter
the semantics of a token. In order to ameliorate
this problem, we define the concept of light trig-
gers in analogy analogy to light verbs. The latter
are verbs whose semantics are lost when occur-
ring in particular constructions, e.g. “make” as in
“make mistakes”. In the shared task, some lem-
mas commonly associated with a particular event
type, when modified by a term associated with
a different event type, denote events of the type
of their modifier instead of their own. For ex-
ample, “regulation” generally denotes Regulation
events, unless it has a modifier of a different event
type, e.g. “positive”. In these cases, “regulation”
becomes part of a multi-token Positive regulation
trigger (e.g. “positive regulation”). However, if
the actual tokens are not adjacent, only “regula-
tion” is annotated as a Positive regulation trigger,
which is due to the requirement that triggers are
contiguous textual strings. We refer to lemmas
exhibiting this behaviour as light triggers. Addi-
tionally, we observe that some lemmas triggered
events only when modified by another lemma as-
sociated with an event type. For example, “ac-
tivity” when occurring without a modifier is not
considered a trigger of any event, however, when
modified by “binding” then it becomes a Binding
event trigger. We refer to lemmas exhibiting this
behaviour as ultra-light triggers.1

In order to construct the dictionary of terms
with their associated event types we use the trig-
ger annotation from the training data, but we ar-
gue that such information could be obtained from
domain experts. First, we remove the triggers en-
countered only once in the data in order to avoid
processing non-indicative triggers. Then, we lem-
matize them with morpha (Minnen et al., 2001).
We remove prepositions and other stopwords from
multi-token triggers such as “in response to” and
“have a prominent increase” in order to keep only
the terms denoting the event type. Then, using
the single-token triggers only, we associate each
lemma with its most common event type. In cases

1Kilicoglu and Bergler (2009) made similar observations
on the lemma “activity” without formalizing them.

where a lemma consistently generates more that
one event trigger of different types (typically one
of the Simple event class and one of the Reg-
ulation class, we associate the lemma with all
the relevant event types. For example, “overex-
press” consistently denotes Gene expression and
Positive regulation events. The last token of each
multi-token trigger becomes a light trigger. Fi-
nally, if a lemma is encountered as part of a multi-
token trigger of a different event type more of-
ten than with the event type associated with it as
a single-token trigger, then it becomes an ultra-
light trigger. We avoid stemming because suffixes
distinguish lemmas in an important way with re-
spect to the task. For example, “activation” de-
notes Positive regulation events, while “activity”
is an ultra-light trigger. We only keep lemmas as-
sociated at least four times with a particular event
type, since below that threshold the annotation was
rather inconsistent.

During testing, we attempt to match each token
with one of the lemmas associated with an event
type. We perform this by relaxing the matching
successively, using the token lemma first and if no
match is found allowing a partial match in order
to deal with particles (e.g. so that “co-express”
matches “express”). This process returns single-
token triggers, some of which are processed fur-
ther in case they are light or ultra-light using syn-
tactic dependencies in the following stage.

4 Rule-based argument identification

In this stage, we connect the triggers extracted
with appropriate arguments using rules defined
with the Stanford dependency (SD) scheme (de
Marneffe and Manning, 2008). We re-implement
the set of rules of Vlachos et al. (2009) using the
syntactic parsing resources provided by the orga-
nizers for the development data. Rule-based sys-
tems need annotated data for tuning, but unlike
their supervised machine learning-based counter-
parts they do not learn parameters from it, thus re-
quiring less annotated data. We consider this to
be the main advantage of rule-based systems and
to demonstrate this point we explicitly avoid using
the training data provided. The rules define syn-
tactic dependency paths that connect tokens con-
taining triggers (trigger-tokens) with tokens con-
taining their arguments (arg-tokens). For multi-
token protein names, it is sufficient that a path
reaches any of its tokens. For Regulation event



class triggers we consider as arg-tokens not only
tokens containing (parts of) protein names but also
the trigger-tokens found in the same sentence. The
rules defined are the following:

• If a trigger-token is the governor of an arg-
token in subject relation (subj), then the latter
is identified as the Theme argument of the for-
mer, e.g. “Stat1 expresses”. The only excep-
tion to this rule is that when the trigger denotes
Regulation class events and the nominal sub-
ject relation (nsubj) is observed, the arg-token
is identified as a Cause argument, e.g. “gp41
induces”.

• If a trigger-token is the governor of an arg-
token in a prepositional relation, then the lat-
ter is identified as the Theme argument of the
former, e.g. “expression of Stat1”.

• If a trigger-token is the governor of an arg-
token in modifier relation then the latter is
identified as the Theme argument of the for-
mer, e.g. “Stat1 expression”. We restrict
the definition of the modifier relation to sub-
sume only the following relations: adjectival
modifier (amod), infinitival modifier (infmod),
participial modifier (partmod), adverbial mod-
ifier (advmod), relative clause modifier (rc-
mod), quantifier modifier (quantmod), tempo-
ral modifier (tmod) and noun compound mod-
ifier (nn) relations. This restriction is placed in
order to avoid matches irrelevant to the task.

• If a trigger-token is the governor of an arg-
token in object relation (obj) then the latter is
identified as the Theme argument, e.g. “SQ
22536 suppressed gp41”.

• If a Regulation event class trigger and a pro-
tein name are found in the same token, then
the protein name is identified as the Cause ar-
gument, e.g. “gp41-induced”.

A pre-processing step taken was to propagate
modifier and prepositional relations over tokens
that were co-ordinated or in an appositive relation.
This was necessary since the SD output provided
by the organizers is in the collapsed format, which
treats co-ordinated tokens asymmetrically without
propagating their dependencies.2

For each Simple or Binding trigger-argument
pair, we generate a single event with the argu-

2The organizers re-generated the dependencies in the
propagation format but we avoid using them in order to be
able to compare against the shared task participants.

ment marked as Theme. This approach is expected
to deal adequately with all event types except for
Binding, which can have multiple themes. We
generate Regulation events for trigger-argument
pairs whose argument is a protein name or a trig-
ger that has an already formed event. Since Reg-
ulation events can have other Regulation events as
Themes or Causes, we repeat this process until no
more events can be formed. Finally, at this stage
we generate the required Regulation class event
for triggers that consistently denote two events.

5 Rule-based system results

We report our results using the approximate span
matching/approximate recursive matching variant
of the evaluation. This variant allows for an event
to be considered extracted correctly if its trigger
is extracted with span within an one-token exten-
sion of the correct trigger span. Also in the case of
nested events, events below the top-level need only
their Theme argument to be correctly identified so
that the top-level event is considered correct. This
evaluation variant was used as the primary perfor-
mance criterion in the shared task.

We first compared the performances obtained
using the output of the different parsers pro-
vided by the organizers on the development data.
The best F-score was achieved using McClosky
(39.66%), followed by CCG (38.73%) and Bikel
(36.97%). As expected, the overall performance
correlates roughly with the adaptation cost in-
volved in the development of these parsers as de-
scribed in Section 2. Bikel, which is essentially
unadapted, has the worst performance overall, but
it would have been the cheapest to deploy. While
this can be viewed as a task-based parser compar-
ison, similar to the experiments of Miyao et al.
(2008), one should be careful with the interpreta-
tion of the results. As pointed out by the authors,
this type of evaluation cannot substitute a parsing
evaluation against an appropriately annotated cor-
pus since in the context of a given task only some
aspects of parsing are likely to be relevant. Fur-
thermore, in our experiments we are are not us-
ing the native output of the parsers but its conver-
sion to the SD format. Therefore unavoidably we
evaluate the conversion as well as the parsing. For
this reason we avoided using the output of GDep
which was not provided in this format.

Examining the lists of false positives and false
negatives on the system using the McClosky



parser, we observe that the most common triggers
of events not extracted correctly had lemmas that
were included in the dictionary, such as “binding”,
“expression”, “induction” and “activation”. This
suggests that most event extraction errors are due
to argument identification and that using a dictio-
nary for trigger extraction is sufficient, despite the
rather strong assumptions it is based upon. Dis-
abling the processing of light and ultra-light trig-
gers, the performance on the development data
drops to 39.28%, the main reason being the de-
creased recall in Binding events.

Based on the comparison performed on the de-
velopment data, we run our system using the Mc-
Closky parser on the test data (Table 2). The over-
all performance achieved (35.39%) is relatively
close to the one obtained on the development set
(4% lower). This is important since rule-based
systems are prone to overfitting their development
data due to the way they are built. Compared to the
performances achieved by the shared task partici-
pants, the system presented would be ranked sev-
enth in overall performance. We believe this is a
strong result, since it surpasses systems that used
supervised machine learning methods taking ad-
vantage of the development and the training data.
Restricting the comparison to rule-based systems,
it would have the second best performance out
of nine such systems, most of which used exter-
nal knowledge sources in order to improve their
performance. The best rule-based system (Kil-
icoglu and Bergler, 2009) had overall performance
of 44.62% in F-score, ranking third overall. The
main difference is that it used a much larger set
of lexicalized rules (27) which were extracted us-
ing the training data. Also, heuristics were em-
ployed in order to correct syntactic parsing errors
(Schuman and Bergler, 2006). While the benefits
from these additional processing steps are indis-
putable, they involved a lot of manual work, both
for rule construction as well as for the annotation
of the data used to extract the rules. We argue
that these performance benefits could be obtained
using machine learning methods aimed at ame-
liorating the argument identification stage. Com-
pared to the rule-based approach of Vlachos et
al. (2009), the performance is improved substan-
tially. The main difference between that system
and the one presented here is that the former uses
the domain-independent RASP parser (Briscoe et
al., 2006). While its performance was reasonable

(it was ranked 10th overall, 30.80% F-score), these
results lag behind those reported here. Note that
a direct comparison using the output of RASP is
not possible since the latter uses its own syntactic
dependency scheme and there is no lossless con-
version to the SD scheme.

Overall, the results of this section demonstrate
that the use of domain-adapted parsing is bene-
ficial to event extraction. This is not surprising
since the system presented depends heavily on the
parsing output. We argue that the annotation cost
of this adaptation is a good investment because,
unlike the task-specific training data, improved
syntactic parsing is likely to be useful for other
event extraction tasks, or even other IE tasks, e.g.
anaphora resolution. Therefore, we suggest that
domain-adaptation of syntactic parsing should be
considered first, especially in tasks that are heavily
dependent on it.

6 Improving argument identification
with partial annotation and support
vector machines

In this section, we present an approach to argu-
ment identification which attempts to overcome
the drawbacks of the rule-based approach. Fol-
lowing the trigger extraction stage, for each trigger
combined with each of its candidate arguments we
create a classification instance. The classification
task is to assign the correct argument type to the
instance. Therefore, we construct a binary clas-
sifier which determines whether a protein name
is the Theme argument of a Simple or a Binding
trigger (ThemePositive or ThemeNegative) and a
ternary classifier which determines whether a pro-
tein name or another trigger (and as consequence
its associated events) is the Theme or the Cause
argument of a Regulation trigger (RegThemePosi-
tive, RegCausePositive, RegNegative).

In order to acquire labeled instances for train-
ing, we decompose the gold standard (GS) events
into multiple events with single arguments. In
cases of events being arguments to Regulation
events, the former are replaced by their triggers.
We match the triggers extracted with those in-
cluded in the gold standard, ignoring the event
type annotation. Since we identify single-token
triggers, we replicate the approximate span match-
ing used in evaluation in order to achieve better
coverage. If the instance being considered has a
Simple or a Binding trigger, and if the pair is in-



Rules (MC) SVM (MC+CCG)
Event Type/Class recall precision F-score recall precision F-score
Gene expression 46.54 78.50 58.43 61.63 82.26 70.47

Transcription 26.28 28.57 27.38 29.93 62.12 40.39
Protein catabolism 28.57 100.00 44.44 42.86 85.71 57.14

Phosphorylation 65.19 82.24 72.73 78.52 91.38 84.46
Localization 32.18 88.89 47.26 40.80 95.95 57.26

Simple (total) 43.99 71.43 54.45 56.60 83.21 67.37
Binding 20.46 38.17 26.64 29.11 45.29 35.44

Regulation 15.81 23.47 18.89 23.71 39.20 29.55
Positive 21.16 33.02 25.79 37.03 43.65 40.07
Negative 17.15 29.41 21.67 30.34 40.35 34.64

Regulation (total) 19.30 30.47 23.63 33.15 42.32 37.18
Total 28.60 46.40 35.39 41.42 56.76 47.89

Table 2: Performance of the rule-based and the SVM-based systems on the test data. Each horizontal
corresponds to an event type or class. Binding events are not included in the Simple class aggregate
performance because they can have multiple Themes.

cluded in the GS then it is labeled as ThemePos-
itive, else it labeled as ThemeNegative. If the in-
stance being considered has a Regulation trigger
that has been matched with a GS trigger, and if
its argument is a protein name and their pair is in-
cluded in the GS then it is labeled according to
the latter (Reg{Theme/Cause}Positive), else, if not
found in the GS it is labeled as RegThemeNega-
tive. The same process is followed if the argument
is an event trigger which has been matched with
a GS trigger. We consider only Regulation trig-
gers that are matched in the GS in order to avoid
valid RegCausePositive instances being labeled as
RegNegative. Recall that the Cause argument is
optional, while the Theme is obligatory for Reg-
ulation events. This means that if an appropriate
Theme argument is not present, then it is possible
that a Cause argument that is present is not anno-
tated. Similarly, when considering event triggers
as arguments, we acquire labels only for instances
involving triggers that were annotated in the GS.
Since triggers without an appropriate Theme are
not annotated in the gold standard, it is possible
that a valid RegThemePositive or RegCausePosi-
tive is labeled as RegNegative instance not because
of the actual relation between the trigger and the
argument but because the argument did not have
an appropriate Theme present. In the example
mentioned in Sec. 2, if “IL-10” was replaced by
“protein” then none of the events would be an-
notated. We argue that a human annotator would
produce these annotations implicitly, and that this

partial (with respect to the task definition) annota-
tion scheme allows the encoding of this informa-
tion in a more flexible way. Also, this is likely to
be a more efficient way to use the annotation time,
since annotators would be requested to annotate
pre-determined trigger-argument pairs instead of
searching for events from scratch, given only the
protein name annotation.

For training data generation we consider the
triggers extracted using the dictionary instead of
those in the GS. This process is certain to intro-
duce some noise as some triggers might be omit-
ted due to limited dictionary coverage. If the event
type determined by the dictionary is incorrect, this
is unlikely to affect the argument identification
process, since the latter is dependent on the lemma
of the trigger rather than its type. For example, the
Theme argument of the trigger “expression” is un-
likely to depend on whether the event denoted is
Gene expression or Transcription.

The labeled instance acquisition process de-
scribed results in 9,699 binary and 10,541 ternary
labels compared to 6,607 triggers and 9,597 events
annotated in the training data provided. However,
it must be pointed out that in the shared task an-
notation scheme negative instances are annotated
implicitly, i.e. non-events are not annotated. If we
consider only the positive instances, then the anno-
tation scheme describeed results in 3,517 Theme-
Positive and 3,933 Reg{Theme/Cause}Positive in-
stances, which are simpler since they do not need
require textual span and event type specification.



For feature extraction, we find the shortest de-
pendency path connecting each trigger-argument
pair using Dijkstra’s algorithm. We allow paths
to follow either dependency direction by incor-
porating the direction in the dependency labels.
Apart from the dependency path, we extract as
features the trigger-token, the trigger event type
and the argument type (event type if the argument
is a trigger or Entity in case of protein names).
We filtered the training set considering only in-
stances in which the trigger was at a maximum dis-
tance of 4 dependencies away from the argument,
since longer paths were too sparse to be useful
in classifying unseen instances. At classification
time, we consider as {Theme/Reg}Negative any
instances in which the dependency path has not
been encountered in the training data, as well as
instances without a dependency path connecting
trigger and argument. This is necessary in order to
avoid instances being classified only on the basis
of the trigger-token and the argument type. Af-
ter the classifier has assigned labels to the trigger-
argument pairs, we construct events as described
in Sec. 4. In cases where it is unclear (to the classi-
fier) which is the trigger and which is the argument
in a given pair of Regulation event triggers the pro-
cess can result in cyclic dependencies. We resolve
them using the confidence of the classifier for each
decision by removing the least confident RegThe-
mePositive or RegCausePositive assignment.

7 SVM-based system results

In our experiments we used the LIBSVM toolkit
(Chang and Lin, 2001) which provides an imple-
mentation of Support Vector Machines with vari-
ous kernels and uses the one-against-one scheme
for multiclass problems. In all experiments, the
Gaussian kernel was used in order to capture po-
tential non-linear feature combinations, e.g. cases
where the combination of dependency path and
trigger-token would result in a different decision
rather than each of them independently. Prelimi-
nary experiments with the linear kernel confirmed
this expectation.

We focused on using the output of the two
domain-adapted parsers, namely CCG and Mc-
Closky. The reason for this is that, as argued in
Sec. 5, given the importance of syntactic parsing
to event extraction one should consider domain
adaptation of syntactic parsing before developing
task-specific training resources. We first compared

the performances obtained using the output of the
different parsers provided by the organizers us-
ing the development data. The main observation
is that, using either parser, the results are much
improved compared to those reported in Sec. 5,
by approximately eight percentage points in F-
score in either case (46.49% and 47.40% F-score
for CCG and McClosky respectively). Most of
the improvement is due to higher recall, suggest-
ing that the argument identification component is
able to learn patterns that are relevant to the task.
Overall, using the output of CCG results in higher
precision, while McClosky results in higher re-
call. These parsers have different theoretical foun-
dations, therefore they are expected to make dif-
ferent errors. In an effort to take advantage of
both parsers simultaneously, we combined them
by adding for each trigger-argument pair the de-
pendency paths extracted by both parsers. This
improved performance further to 49.35% F-score.

We then run the system combining the two
parsers on the test data, obtaining the results pre-
sented in Table 2. Overall, the system presented
would have the second best performance in the
shared task achieving 41.42%/56.76%/47.89% in
Recall/Precision/F-score. The top system (Bjorne
et al., 2009) achieved 46.73%/58.48%/51.95%
(R/P/F). It followed a machine learning approach
to trigger extraction which, while it is likely to
be responsible for the performance difference ob-
served when compared to the other participating
systems, requires explicit trigger annotation, thus
being more expensive. Furthermore, we argue that
the data provided by the organizers are not suit-
able to train a trigger extractor, since only triggers
participating in events are annotated, and semanti-
cally valid triggers without appropriate arguments
present are ignored. We hypothesize that this is
the reason the authors had to adjust the decisions
of their SVM classifiers.

The second best system (Buyko et al., 2009)
achieved 45.82%/47.52%/46.66% (R/P/F) using
many external knowledge sources such as the
Gene Ontology Annotation database, the Uni-
versal Protein Resourceand the Medical Subject
Headings thesaurus. While the use of these re-
sources and their successful usage is commend-
able, we believe it is important that the system
presented achieves comparable performance using
fewer resources.

Furthermore, joint inference models such as



Markov Logic Networks were applied to the
BioNLP 2009 event extraction shared task by
Riedel et al. (2009) and were ranked fourth.
This result was improved upon recently by Poon
and Vanderwende (2010) who achieved 50% F-
score, 2.11 percentage points better than the re-
sult achieved in this work. Such models have great
potential for event extraction and we believe that
they can benefit from the insights presented here.
Finally, despite the fact that we used the same ex-
perimental setup as the shared task participants,
we do not consider our results are directly com-
parable to theirs since we did not work under the
same time constraints and we profited from their
experiences.

8 Discussion

Our error analysis on the output of the best system
on the development data discouraged us from pur-
suing further improvements. Echoing the observa-
tions of Buyko et al. (2009), we found that anno-
tation inconsistency was affecting our results sig-
nificantly. In many cases the event triggers anno-
tated in the development data were rather mislead-
ing, e.g. “negative” as a Gene expression event
trigger (abstract 8622883), “increase the stabil-
ity” as a Positive regulation event trigger (abstract
8626752), “disappearance” as a Binding event
trigger (abstract 10455128). Finally, some events
were ignored by the annotation, such as “regula-
tion of thymidine kinase” (abstract 8622883).

An additional complication is that events that
are annotated due to anaphoric linking can have
a disproportionate effect on the scores. In an ex-
ample from abstract 9794375: “CD3, CD2, and
CD28 are functionally distinct receptors on T lym-
phocytes. Engagement of any of these recep-
tors induces the rapid tyrosine phosphorylation
of a shared group of intracellular signaling pro-
teins, including Vav, Cbl, p85 phosphoinositide 3-
kinase, and the Src family kinases Lck and Fyn.”
Failing to recognize the anaphoric Binding events
involving proteins “CD2” and “CD28”, an other-
wise perfect system would receive two false nega-
tives for the Binding events, eight false negatives
for the missing Positive regulation events due to
the missing Causes and four false positives for the
incomplete Positive regulation events extracted.

Despite this criticism, we believe that the
BioNLP 2009 shared task on event extraction was
a big step forward for biomedical information ex-

traction and we are grateful to the organizers for
the effort and resources provided, without which
the research presented here would not have been
possible. The performances achieved in the main
Task1 ranged from 16% to 52% in F-score, sug-
gesting improvements in task definition, data an-
notation and participating systems compared to
previous community-wide efforts. Indicatively,
in the protein-protein interaction pair subtask of
BioCreative II (Krallinger et al., 2008) the anno-
tated datasets provided were produced by extract-
ing curation information from relevant databases.
This meant that there was no text-bound annota-
tion, thus making the application and evaluation
of existing NLP techniques difficult, resulting in
rather low performances. The best performance
achieved was 29% in F-score, while many of the
teams scored below 10%.

However, we believe that future work should
look at improving the annotation in order to be
able to assess the progress in the systems devel-
oped. In particular, we argue that we should move
towards a dependency-based representation, simi-
lar to the one introduced by Surdeanu et al. (2008)
for joint syntactic parsing and semantic role label-
ing. Such representation can express the nested
nature of the events and evaluate the dependencies
between them directly. Furthermore, given the im-
portance of syntactic parsing via syntactic depen-
dencies to event extraction, it would be interesting
to see how performing these tasks jointly would
help improve the performance. A dependency-
based representation would also allow for non-
contiguous event components, as well as more
complex phenomena such as the light triggers dis-
cussed earlier.

9 Conclusions

In this paper we focused on the BioNLP 2009
shared task on event extraction. We developed
two systems, a rule-based one that does not re-
quire training data and a SVM-based one which
achieves near state-of-the-art performance. The
good performances achieved and their reliance on
shared task resources exclusively makes them re-
producible and strong baselines for future work.
Furthermore, we demonstrated the importance of
domain adaptation of syntactic parsing for event
extraction. Finally, based on our error analysis we
suggest future directions for event extraction with
respect to the task representation.
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