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ABSTRACT
A common task in biomedical text mining is the recognition of gene

names. In many applications though, it is important to know whether a
gene name refers to the actual gene or to an entity related to it. This
paper presents a trainable system to perform this task. It combines
syntactic parsing with SVMs and achieves 78.63% accuracy. The trai-
ning data used were generated automatically by a simple rule-based
tagger. Such an approach can be useful to other fields which exhibit
similar ambiguity in the way names are used to refer to entities.

1 INTRODUCTION
There has been a substantial amount of work in recent years on bio-
medical named entity recognition (Morgan et al., 2004; Blaschke
et al., 2004; Kim et al., 2004). It has been observed that gene names
(gn) are used to name proteins as well as other types of entities. This
ambiguity has two consequences. Firstly, it results in inconsisten-
cies in annotation of NER corpora, which renders the evaluation of
the various methods problematic (Dingare et al., 2005). Secondly,
when a gn is recognised in text, it might be important certain to
know that it refers to the actual gene, e.g. when we want to identify
coreferential chains.

In order to deal with the annotation inconsistencies, Vlachos and
Gasperin, 2006 presented guidelines to annotate biomedical text
with not only gns, but also with information on whether the gns refer
to the genes. In this paper, we describe a bootstrapping approach
based on syntactic parsing and SVMs. Instead of annotating training
material manually, we created it automatically using freely availa-
ble material from FlyBase. Such an approach could be of interest to
other fields in which the same name can be used to refer to more
than one type of entity and there is lack of annotated material.

2 TASK AND TEST CORPUS DESCRIPTION
The task we deal with is to determine whether a noun phrase (NP)
containing one or more gns (gn) refers to the actual gene(s) or to
other biomedical entities. We label these classes as gene-mention
(gm) and other-mention (om) respectively. For brevity in the remain-
der of the paper we will be referring to the NPs containing one or
more gns as mentions. In the following sentence, given that “hth” is
a gn, the task is to classify “the hth gene” as gm and “the hth locus”
as om:

... in <om> the <gn> hth </gn> locus </om> and cloned
<gm> the <gn> hth </gn> gene </gm> ...

While the nouns “gene” and “locus” in the respective NPs are
indicative, there are many cases where the NP consists of a gn only.
In such cases, we need to take the context into account.
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We used the manually annotated dataset of Vlachos and Gasperin,
2006 as test set. It contains 182 gms and 389 oms1.

3 TRAINING DATA CREATION
Annotated material is always the bottleneck when applying machine
learning techniques to new tasks and domains. Substantial human
effort is required so as to create a reasonably sized and consistently
annotated training corpus. In addition, training material created for
a task in a particular domain is unlikely to be very useful even in
a slightly different domain (Vlachos and Gasperin, 2006). For these
reasons, we created training data automatically. The steps performed
in this process are described in the following subsections. Briefly,
we (a) gathered abstracts and tagged the gns in them, (b) parsed the
text and extracted the NPs containing gns and (c) developed a simple
rule-based tagger to classify the NPs.

3.1 Data gathering and gene name annotation
We performed data gathering and gn annotation as described in Vla-
chos and Gasperin, 2006. 16,609 biological article abstracts from
papers curated in FlyBase were gathered, accompanied by the list
of genes that were curated in their respective papers. The text was
processed using the RASP toolkit tokenizer (Briscoe et al., 2006)
and for each abstract, the genes and their synonyms were tagged
automatically using longest-extent pattern matching.

It is important to note that any errors made in this stage will propa-
gate through all the steps of the process, affecting the quality of the
training material created. The annotation of gns described above is
bound to be imperfect. Gene names can be common English words
resulting in false positives (Vlachos and Gasperin, 2006). Moreover,
the lists of the genes curated for each paper do not contain all the gns
appearing in its abstract. Nevertheless, given that training datasets
created in this fashion were used successfully for gn recognition in
Morgan et al., 2004 and Vlachos and Gasperin, 2006 we expect that
the noise will not affect the performance of the resulting system too
detrimentally.

3.2 RASP and noun phrase extraction
For NP boundary detection we used a part-of-speech (POS) tagger
and a syntactic parser to generate a list of grammatical relations
(GRs) over the tokens. The POS tagger is a bigram HMM trained
on general English text and has a module for handling unknown
words. The parser is an unmodified parser for general English text.
Both these modules are part of the RASP toolkit.

The tokens in the input are tagged in parallel by the POS-tagger
and the dictionary-based gn tagger of the previous step. Then, any

1 The corpus and detailed annotation guidelines can be found at
http://www.cl.cam.ac.uk/ nk304/Project Index
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Table 1. Most frequent lemmas that are indicative of their class and their
frequencies in the annotated material.

om ind. protein mutant activity expression function locus
f. 37 23 16 10 10 7

gm ind. gene element transgene
f. 49 4 1

tokens that belong to gns are re-tagged as “singular proper name”
in the POS tag stream. The resulting POS tag stream is parsed
by RASP and the GRs generated are searched in order to recover
NP boundaries. From the recovered NPs, we kept only those that
contained one or more gns.

We evaluated the performance of the NP extraction module in
order to assess the quality of the generated training material. Testing
on the mentions of the test set, the module achieved 80.57% F-score
(86.40% for left- and 89.22% for right-hand boundaries). During
this experiment, we used the annotations of the gns produced by the
dictionary-based tagger of the previous step, instead of the perfect
manual annotation of the test set. While this produces more errors
due to the imperfect gn recognition, it is a more realistic assessment
of our training data creation technique. It is worth mentioning that
about 25% of the errors arise from the parser failing to produce a
complete parse of the sentence, in which case it produces partial
parses that are more likely to contain errors.

3.3 Rule-based annotation
We have now created a corpus in which gns and mentions have been
annotated automatically. In order to classify them in gms and oms,
we developed a simple rule-based classifier using observations made
on the manually annotated corpus and the annotation guidelines of
Vlachos and Gasperin, 2006.

Two types of rules were created. The first type uses the tokens
of the mention outside the gn. There are several tokens or pairs
of tokens that are indicative of gene- or oms, such as “gene” or
“mutant”. The tokens of the gns were not used because they are not
expected to be indicative of mention’s class.

We collected statistics on the frequency of the lemmas of tokens
appearing in mentions. We kept noun or adjective lemmas only,
according to their POS tag. Then we chose manually those that are
indicative of each class, ignoring the labels of the test set. We kept
the most frequent lemmas for each class and manually filtered out
lemmas that appear accidentally in the mention without indicating
its class. For example, “fluorescent” is removed because it is not
indicative of the class, whereas “protein” is kept. The resulting lists
appear in Table 1. The rule-based system classifies a mention in a
certain class if it contains a token considered to be indicative of it.

The second type of rules uses the GRs output of RASP (Briscoe,
2006) and is applied after the first type. The key idea is that some
mentions can be classified following an already classified mention in
the appropriate syntactic context, expressed by the GRs. The form
of a GR between two tokens with lemmas lem1, lem2, positions in
the sentence idx1, idx2 and POS tags POS1, POS2 is:

type((lem1, idx1, POS1), (lem2, idx2, POS2))

Each rule checks for the existence of some RASP GRs and for
mentions that participate in them in a specific role. For this pur-
pose, we developed rules that take advantage of apposition, in which
two NPs are placed next to each other and the second one (which
is called appositive) defines or modifies the first. Two mentions in
apposition are likely to belong to the same class.

In terms of RASP’s GRs, apposition is expressed through the text
adjunct relation (ta). The first rule developed takes advantage of the
apposition between a pair of mentions in which one of the two has
been classified by the rules that use indicative tokens. For example,
consider the sentence:

... the localised activity of <om> the receptor kinase <gn>
Torso </gn> </om> ( <om> <gn> Tor </gn> </om> ) at ...

“the receptor kinase Torso” is already classified as om because it
contains the token “receptor”. Given the GR:

ta((′′kinase′′, 19, NN1), (′′Tor′′, 22, NP1))

mention “Tor” should be classified as om as well.
The second rule takes advantage of the apposition between a men-

tion and a token, whose lemma belongs to the lists of indicative
tokens of Table 1. For example, the RASP analysis for the sentence:

... the protein, <om> <gn> RPS15 </gn> </om>, causes ...
includes the relation:

ta((′′protein′′, 13, NN1), (′′RPS15′′, 15, NP1))

“protein” is a lemma of the regular expression list for oms (see
table 1). Hence, the mention “RPS15” should be classified as om,
since it is in apposition with “protein”. Finally, we created a ver-
sion of the first rule to deal with cases where the appositive is
coordination between two or more NPs.

Mentions not captured by any of the rules were not processed fur-
ther nor were they added to the training material compiled. While
we could attempt to increase coverage, we opted for accuracy and
simplicity, since we did not want to build a classifier manually, but
to bootstrap a statistical system from high precision data.

4 BOOTSTRAPPED SYSTEM
The bootstrapped system creates training examples using the steps
described in section 3. These are used to extract features and train
an SVM classifier. The latter is used to classify the mentions during
testing combined with a post-processing scheme which is applied in
order to take advantage of the coordination between mentions.

Support Vector Machines (SVM) (Vapnik, 1998) are state-of-the-
art statistical learning models that perform classification and real
valued function approximation tasks. They project the training data-
points to a high dimensional feature space in which they find the
separating hyperplane between two classes. During testing, SVMs
project the data-points into the same higher dimensional feature
space and classify them depending on the side of the separating
hyperplane that they are found on. The SVM package used in this
paper is SV M light (Joachims, 1999). The features used to repre-
sent the mentions were extracted from two sources, either from the
tokens or from the GRs output of RASP.

The tokens from inside the mentions but outside the gn are a gene-
ralisation of the indicative token rules of the rule-based classifier
(Section 3.3). Since SVMs require numerical features as input, each
token found in the mentions was lemmatized by RASP and was tur-
ned into a binary feature. Similar transformation was performed for
the features that are described later in this section. In order to assess
how useful tokens are as features, we checked the type of mentions,
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in which each token of the test set appears. We found that 81.87%
of the tokens appear in oms only, 11.70% in gms only and 6.43% in
both classes. 93.57% of the tokens appear in one class only, so we
expect tokens to be useful as features.

For the syntactic features, we used the GRs output of RASP. We
expect GRs to be useful in cases where the context is vital to classify
the mentions correctly, because GRs use information from the entire
sentence. For each mention we added the following features:

• The tokens with which the mention is linked through apposition
(Section 3.3).

• The tokens with which the mention is related via the prepo-
sition “of” as an argument. This helps to capture cases such
as “the expression of torpedo”, where the token “expression”
indicates that “torpedo” refers to a gene.

• The verbs whose subject is the mention in a passive construc-
tion. This feature helps to capture occurrences such as “faf
is expressed...”, where the verb “express” indicates that “faf”
refers to a gene.

• The verbs whose subject is the mention. The intuition behind
this is that genes tend to be inactive, so mentions that are
subjects of verbs such as “localise” are usually oms.

• The combination of the verb and the direct object for which
the mention is the subject of the verb. This feature extends the
previous one by further refining the action of the verb using
its direct object, which can be useful to capture patterns like
“hth encodes a homeodomain-containing protein”, where the
fact that “hth” encodes a protein suggests that “hth” refers to a
gene. A special case of this rule was made for the verb “be”,
where the direct object GR is replaced by complement.

For each token related to a mention via one of the features descri-
bed above a separate binary SVM feature is created using its lemma.
For example, if the token “genes” is found to be in apposition with
a mention, then a binary feature “gene appositive” is created. If a
lemma is related to mentions via more than one features, then a
separate binary SVM feature is created for each case.

The instances of the training and the testing sets are transfor-
med into vectors of their features. The SVM classifies each mention
independently during testing. Consequently, mentions that are coor-
dinated may not be classified in the same class. To avoid this, we
post-process the output and identify the coordinated mentions using
RASP’s GRs. If two or more such mentions disagree, then the label
of the mention that was classified with the highest confidence (larger
margin assigned by the classifier) is assigned to all.

5 EXPERIMENTS
Table 2 presents statistics of the training corpus and of the test set.
Since we consider both classes of equal importance and the task is
not very imbalanced (32% gms - 68% oms in the test set), we deci-
ded to use accuracy, defined as the percentage of correctly annotated
mentions over all mentions, as evaluation metric.

As expected, mentions containing lemmas that have been encoun-
tered in the training data are more likely to be correctly classified
than those containing unknown lemmas. To obtain a more infor-
mative evaluation of the performance of the trained classifier, we
present statistics for the seen, partially seen and unseen test menti-
ons separately. For each mention we create a template consisting of

Table 2. Corpora annotation statistics

test corpus training corpus

abstracts / sentences 81 / 600 16,609 / 111,822
tokens / avg. tokens per mention 15,704 / 2.54 2,923,188 / 2.58
mentions / gn only mentions 571 / 282 105,977 / N/A

Table 3. Evaluation results of the bootstrapped system.

Accuracy

Total / Unseen / Seen (same class) 78.63% 90.00% 98.88%
Partially seen (ind. / same / opp.) class 89.00% 89.83% 87.80%
Gene name only 61.70%

the annotation tags and the lemmas of the tokens outside gns. Seen
mentions are those whose template has been encountered in the trai-
ning data. Partially seen mentions are those that although they are
not seen, one or more of their lemmas have been encountered in the
training data. They are counted towards partially seen mentions in
the same or in the opposite class depending on whether their lem-
mas were in a training example of the same or the opposite class,
respectively. Unseen mentions contain lemmas that have not been
encountered in the training data. We expect the last two categories
to be harder than the first two.

Another category of interest contains those mentions consisting
only of one or more gns, which represent 49.39% of the test corpus
(table 2). In these cases, only features based on the GRs can be
extracted. We expect them to be the most difficult for our system to
classify and we consider these separately in our evaluation.

5.1 Rule-based system results
Most mentions of the test set are oms. If all mentions are classified as
oms, the accuracy would be 68.12%, giving a rather crude baseline.
The rule-based system applied to the test corpus achieves 97.67%
accuracy; the rules using the lemmas and the GRs achieve 97.98%
and 94.7%, respectively. However, the coverage is low, at 38%. We
didn’t attempt to develop more rules, because our priority was for
them to be simple and as accurate as possible, because they are used
to create training examples for the bootstrapped classifier. To com-
pare with the above baseline and the accuracy of the bootstrapped
system, we considered all unclassified mentions of the test set as
oms. This achieves an accuracy of 77.76% over all test mentions,
substantially higher than the baseline.

5.2 Bootstrapped system results
The rule-based tagger tagged 32.17% of the mentions available in
the training data; the rules using the lemmas and the GRs tag-
ged 28.97% and 3.21%, respectively. This is lower than the 38%
achieved on the test corpus, which can be attributed to the errors
introduced by the automatic NP detection module used. Those left
untagged were not used in the training of the SVM classifier. It is
worth mentioning that many more oms than gms were generated
(more than 3 to 1), resulting in a rather imbalanced dataset which
could result in a biased classifier.
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Table 4. Assessing the contribution of syntactic parser.

step(s) total unseen seen partially gene
removed seen name only

t 76.36% 70.00% 100.00% 88.60% 58.68%
f 76.71% 90.00% 98.88% 89.00% 57.80%
p 78.46% 90.00% 98.88% 89.00% 61.35%
t, f 72.68% 90.00% 100.00% 72.81% 56.94%
t, f, p 72.50% 90.00% 100.00% 72.81% 56.60%

Table 3 presents the evaluation of the bootstrapped system. For
the seen mentions, performance is very high and comparable to the
accuracy of the rule-based system in the instances that some rule is
applied (97.67%). The performance in the partially seen and unseen
categories was good as well, showing that the system is able to cope
with mentions containing lemmas not encountered in the training
data. It must be noted that the rule-based system has no way of
dealing with cases that do not contain lemmas covered by its rules.

For mentions that include only gns, the accuracy was lower
(61.70%). While this was expected, since such mentions do not con-
tain any tokens to use their lemmas as features, we hoped that the
syntactic features would be able to deal with them. However, in
many cases no syntactic features were extracted because the rules
could not take advantage of the GRs generated by the parser. This
can be partially attributed to the fact that the parser used is a general
English parser, therefore its performance is likely to be worse than
expected in texts from the biomedical domain. While the accuracy
in these instances is low, it is still better than the accuracy achieved
by considering all the instances as oms (56.74%).

We were interested in assessing the contribution of the syntactic
parser to the performance of the booststrapped system. The parser
is used at three points throughout the system. During data genera-
tion, we take advantage of the apposition to generate more training
examples (Section 3.3). Then, we extract features based on GRs
(Section 4). Finally in the post-processing stage, in order to correct
coordinated mentions that are annotated inconsistently, we removed
the steps to assess their importance (Table 4).

The generation of training examples (row “t”) and the syntactic
features (row “f”) contribute more significantly than the post-
processing (row “p”). The removal of post-processing reduces the
accuracy from 78.63% to 78.46%, while the removal of each one
of the other steps decreases the performance by approximately 2%,
which is mainly due to decreased ability to classify gn only men-
tions. Due to the same reason, removing both these steps reduces
the performance further to 72.68%. These results are rather predic-
table, since the syntactic features and the examples generated by
the apposition rules enable the bootstrapped system to classify this
class of mentions (49.39% of our test set). As expected, the classi-
fier is biased towards the om class. We experimented with the j-trick
(Morik et al., 1999) and the use of RBF kernels, but the results did
not improve.

6 RELATED WORK AND CONCLUSION
We presented an approach to determine whether an NP contai-
ning one or more gns refers to an actual gene or to another entity.
We developed a bootstrapped system based on syntactic parsing

and SVMs. The training data were automatically annotated by a
rule-based tagger, whose rules were semi-automatically created.

There is some related work in the literature of biomedical text
mining. For example, Hatzivassiloglou et al., 2001 built a machine
learner to recognise names of genes, proteins and RNA labels. They
noted though their performance suffered due to annotation incon-
sistencies. Similar observations were made by Dingare et al., 2005
concerning the annotated data that were used for the BioNLP2004
shared task (Kim et al., 2004). As mentioned earlier, a lot of these
problems are due to the way gns are used to refer to entities that are
not necessarily genes.

In our approach, we formulate the task in two stages. First we
identified the gns and then we disambiguated their class. This is
similar to the way the Entity Detection and Tracking task is for-
mulated in the ACE projet (ACE, 2004). Apart from improving
inter-annotator agreement for the task, it also results in more infor-
mative output. The main advantage of our system is that it does not
require manually annotated training data. It uses a small set of sim-
ple, manually created rules to generate training examples out of a
big, unannotated corpus. The bootstrapped system achieves higher
performance than the rule-based one. As a disadvantage, we used
the same set for rule development, feature coverage estimation and
testing. Ideally, we should have used a different one for testing but
(to our knowledge) there are no other manually annotated corpora.

The syntactic parser contributes substantially to the achieved per-
formance. It was also observed that many errors occur in examples
where no syntactic features are extracted. Therefore, the perfor-
mance could be improved by adding more syntactic features. An
extension to this work is to attempt identifying more types of enti-
ties referred to by gns, such as proteins and to use the system to deal
with similar tasks in other domains. Furthermore, this system could
serve as a module in a more complicated task, such as coreference
resolution and it would be of interest to assess its potential in such
context.
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