
Equalisation Algorithms in Fixed Point Arithmetic
by

A.T. Markettos (CAI)

Fourth-year project in Group E, 2001/2002

Abstract

The conversion from floating point to fixed point of Least Mean-Squares (LMS)
and Recursive Least-Squares (RLS) equalisation algorithms is considered. Simula-
tions suggest that the stability of LMS depends on the representation of its step size,
whilst RLS is found to be stable for a wide range of parameter settings. RLS is imple-
mented on a fixed-point DSP, and LMS on a custom fixed-point DSP core.

1 Introduction

Broadband wireless networks suffer mul-
tipath interference from reflections due to
buildings, trees and vehicles in the trans-
mission path. This causes inter-symbol in-
terference (ISI) and nulls in the frequency
band. Such high bitrate networks, particu-
larly if they employ Single Carrier mod-
ulation schemes, require the use of an
equaliser to cancel this ISI[2]. A time-
domain equaliser consists of a filter trained
by an adaptive equalisation algorithm such
as Least Mean-Squares (LMS) or Recur-
sive Least-Squares (RLS). It is desirable to
be able to implement these on cheap fixed-
point hardware – to do this we must first
analyse whether they are stable in finite
precision arithmetic, and use this to design
an implementation.

2 Finite precision
implementation

A system for evaluating the finite preci-
sion behaviour of equalisers for use on a
fixed point processor has been developed.

�
Integer part Fractional part

Binary point

m bits n bits

m+n bit word� �

Figure 1: Fixed point representation

The aim was to examine the suitability
of equalisation algorithms for implemen-
tation on cheap fixed point hardware.

Fixed point values are represented using
integers divided into integer and fractional
parts (figure 1). Each fixed point variable
has an associated point position, which can
either be set globally or tailored for that
variable. We can consider an arithmetic
based on this representation, which deals
with performing arithmetic on values a and
b with different point positions pa and pb

respectively (
�

n and � n represent left
and right shifts by n places). Table 1 sets
this out.

A common optimisation is that for addi-
tion, subtraction and assignment shifts are
not required if the points for the two val-
ues are equal. We wish the C compiler to
perform the work of optimising code us-

1

Operation Pre-operation Arithmetical operator Point of result
Assignment a � b

� �
pa � pb � pa

Addition/ a ��� a
� �

pb � pa � q � a ��� b pb

subtraction b � � b
� �

pa � pb � q � a � b � pa

Multiplication q � a � b pa 	 pb

Division a �
� a
�

pb q � a ��� b pa

Table 1: Fixed point arithmetic

ing this arithmetic to remove unnecessary
shifts, since the point positions of each
variable are known on compilation.

A series of C preprocessor macros have
been developed, which take on much
of the work of converting a fixed point
algorithm to floating point. The length
of the integer representation can also be
defined, and is typically set to the native
word length of the machine in use. As
well as shifting operations, the macros
make use of C’s predicate operator:
(condition ? resultIfTrue :

resultIfFalse)

If the condition is known at compile time
(such as comparing two different point
positions), the compiler can ignore the
half of the predicate which will never be
evaluated, and optimise it away. Thus we
can compare point positions and make
the compiler take action on them, without
any impact on the resulting code. The
compiler will insert shifts only where
necessary, with the result that if two
values in an arithmetic operation have the
same point position there will be no extra
work carried out.

Each macro performs a normal arith-
metic operation, such as assignment,
addition or multiplication. Within the
constraints of the C syntax, it is possible
to directly replace an expression such as:

c = a+b;

with:
c = FIXED ADD(a,POINT A,b,POINT B,POINT C);

which performs the same function, but
is also provided with the point positions
of a, b and c. Thus clarity of the code is
maintained. Underneath the macros per-
form the functions in the table, performing
shifts as required.

3 Finite precision
algorithms

These macros allow easy modification of
existing floating point code, and allow
the evaluation of different point positions.
This was applied to two systems, a sim-
ple linear equaliser trained with the Least
Mean-Squares (LMS) algorithm, and a de-
cision feedback equaliser training with the
Recursive Least-Squares (RLS) algorithm.

3.1 Least Mean-Squares (LMS)

A schematic diagram of the LMS-trained
linear equaliser can be seen in figure 2. It
is trained using a known training sequence
sent from the transmitter, which is a fixed
number of symbols long. Since fixed point
arithmetic only handles real values, it is
necessary to split the calculation into real

2

Feedforward filter ���
���
�+

� � � � � �

�

Error e � t 	

-

Known training
sequence

�
�

Rx symbols

Output

Figure 2: FIR-based linear equaliser

and imaginary parts, and a useful start is to
write it in floating point arithmetic. Once
done, the macros can be applied to the al-
gorithm to convert it to fixed point.

When converted to fixed point, we can
examine its behaviour in relation to the
point positions. Figure 3 shows its be-
haviour when varying the point positions
of a number of parameters. The macros al-
low a default point to be specified, which
is used for all values other than those un-
der scrutiny. Unless otherwise stated the
default point was 8 in these tests.

These plots show the mean squared er-
ror over training. To stop large values
dwarfing small values, the MSE of each
step is limited to 2 - values above this are
taken as untrained. We can see that LMS
is stable when given enough fractional bits
- 8 or 9 in this 16 bit representation. Extra
fractional bits make little difference to the
result - either it trains correctly, or fails to
train at all. This can be seen especially on
the plot of µ, where when µ � 0 � 01, 7 bits
are required before this becomes non-zero
in fixed point format.

This suggests µ becomes the limiting
factor on the representation. To test this
hypothesis, we notice that figure 3(a) has
a step in MSE between correct and incor-
rect training. By differentiating this plot,
we can find the position of this step, and
hence the fractional bits required for cor-
rect training. Figure 4 shows this number

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16

M
S

E
 (

ca
pp

ed
)

Point position

Fixed point
Floating point

(a) Default point

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16

M
S

E
 (

ca
pp

ed
)

Point position

Fixed point
Floating point

(b) Point of step size µ

Figure 3: Effects of varying point position on
16 bit LMS. SNR=100dB, channel=[1,0,0.4], 5
taps, 1000 training symbols, 1000 data sym-
bols, µ � 0 01

 0

 2

 4

 6

 8

 10

 12

-1 0 1 2 3 4 5 6 7 8 9 10F
ra

ct
io

na
l b

its
 in

 r
ep

re
se

nt
at

io
n

fo
r

co
rr

ec
t t

ra
in

in
g

-log2(mu): number of bits for mu to be non-zero

Figure 4: Fractional bits required for correct
training when µ requires given number of bits to
be non-zero. SNR=100dB, channel=[1,0,0.4],
5 taps, 1000 training symbols, 1000 data sym-
bols

of fractional bits against the number of bits
required to represent µ. The straight line
agrees that µ is limiting.

This shows that LMS is stable in fi-
nite precision arithmetic. A typical output
from the filter can be seem in figure 5(a).

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
sq

ua
re

d
er

ro
r

Samples

(a) Training

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Im
ag

in
ar

y
pa

rt

Real part

(b) Constellation

Figure 5: LMS on DSP, noisy channel, small
reflector: SNR=10dB, channel=[1,0,0.1], 1000
training symbols, 10000 data symbols, 5 taps

The frequency response of the resulting
channel was also analysed (figure 6). From
this is can be seen that at frequency nulls
the (floating point) zero-forcing equaliser
has a higher magnitude output than the
fixed point LMS – this is due to restric-
tions on the magnitude of the representa-
tion. This does not affect the performance
of the filter, since in the frequency nulls it
would only amplify noise.

3.2 Recursive Least-Squares
(RLS)

RLS is known to have stability prob-
lems when represented in finite precision
arithmetic[1]. The fixed point macros can
be used to investigate its behaviour in fixed
point, and determine how it behaves when
changing the point position of different
variables. RLS was examined with a more

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 1 2 3 4 5 6 7

R
es

po
ns

e

Angular frequency (rad)

Channel response
ZFE

16-bit C equaliser
16-bit DSP equaliser

Figure 6: Frequency response of channel
[1,0,0.2+0.1i,0.2+0.5i] and filters. SNR=100dB,
8 taps.

Random data

Random (known)
training sequence � � � � �� � Transmit

filter ht
�
t � Channel hc

�
t �

Additive white
Gaussian noise n(t)�����	

�����	

�����	
�

�

��
������
�

�������
������

�

�
�

Feedforward filter

Feedback filter

Error e
�
t �

+ �
Known training
sequence

+

�

+
+

Output

Figure 7: Decision feedback equaliser (DFE)
filter system block diagram, trained with RLS

complex decision feedback equaliser (fig-
ure 7).

A similar system was developed by con-
verting floating point to fixed point with
the macros. The results of altering various
point positions were then noted.

As figure 8(a) shows, the RLS was sta-
ble in 8.8 format in a 16 bit representation.
These results were tested with a number
of different channels and noise levels, and
RLS was found to continue to be stable.
The optimal point position was found to be
8 bits.

[1] suggests that the inverse correlation
matrix

�
being non-positive definite is the

4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

M
S

E
 (

ca
pp

ed
)

Point position

Fixed point
Floating point

(a) Default point, 16 bit datawords

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30

M
S

E
 (

ca
pp

ed
)

Point position

Denominator point=24
Denominator point=28

Floating point

(b) Default point, 32 bit datawords

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14

M
S

E
 (

ca
pp

ed
)

Point position

Fixed point
Floating point

(c) Point of inverse correlation ma-
trix, 16 bit datawords

Figure 8: Effects of varying point
position on RLS. SNR=20dB,
channel=[0,0.2+0.1i,1,0.3+0.4i,0.2-0.3i], 5
taps, 32 training symbols, 100 data symbols

cause of numerical instability, yet figure
8(c) suggests control of the point of this
matrix can prevent this in common cases
(although this is not exhaustive, and a
more rigourous proof is required).

4 Fixed point
implementation

Using the above results, it was possible
to implement these algorithms on a fixed
point digital signal processor (DSP). The
processor used was part of a broadband
wireless data link, to perform echo can-
cellation by training a filter from a known
data sequence. A host processor pipes
data into the memory of the DSP, starts
it when a correllation event has occurred,
and reads out the results for use by further
hardware.

Originally this was an off-the-shelf
floating point DSP. As described above,
the RLS algorithm in floating point C was
converted to fixed point. Following from
the finite precision analysis of RLS, it was
possible to compile this RLS algorithm for
a substantially cheaper fixed point DSP.
Using simulated received data, it was pos-
sible to ensure it converged as expected on
this hardware under a wide variety of sim-
ulated conditions.

With the knowledge that LMS trains
correctly using 8.8 arithmetic (8 bits inte-
ger, 8 bits fractional), it was possible to
consider using a simple 16-bit DSP that
was integrated into the modem FPGA. As
no C compiler exists for this DSP, it was
necessary to program the algorithm in as-
sembler. The DSP architecture has 16-
bit registers with a 32-bit accumulator for
holding the result of multiply operations.
To support 8.8 fixed point arithmetic in
hardware, instructions were added to con-
vert between 16 and 32 bit representations
of 8.8 values, and these used to implement
LMS on this DSP. Architectural and tool
problems made this implementation and
debugging difficult, but the results of the

5

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16

B
E

R

SNR (dB)

Floating point
32 bit C

32 bit DSP
16 bit C

16 bit DSP
No equaliser

ZFE

Figure 9: BER v SNR for 1000 training sym-
bols, 10000 data symbols, 5 taps, averaged
over 20 runs.

implementation can be seen in figure 9.
This shows the 16-bit C implementation to
be indistinguishable from the ZFE in terms
of BER curve, while the DSP implemen-
tation is between C and no equaliser. It
is suspected that this is due to bugs in the
DSP implementation rather than a funda-
mental problem, but there was insufficient
time for further debugging.

With the knowledge that 8.8 arithmetic
is stable, it was possible to implement
LMS with the linear equaliser on a custom
digital signal processor with native sup-
port for 8.8 arithmetic. This showed sim-
ilar behaviour to the version in C, except
was more susceptible to bugs because of
the difficulty of programming in assem-
bler. Figure 9 shows that the BER per-
formance of the LMS trained filter is al-
most identical to that of a Zero Forcing
Equaliser, suggesting no substantial train-
ing errors.

The precision of the C and DSP ver-
sions was increased to 32 bit, with no no-
ticeable difference in performance. This
agrees with the statement above that once
stable, LMS does not improve with extra
precision.

5 Conclusion

We have demonstrated that:

� LMS is stable in finite precision arith-
metic, the limit being the step size
µ. The value of µ needed for correct
training should be chosen, then the
precision of the arithmetic decided
from that.

� RLS is stable in 8.8 fixed point arith-
metic over a wide range of channels
and noise. Stability can be main-
tained by controlling the point of the
inverse correlations matrix

�
. Fur-

ther work is required to establish what
limits the stability.

� Both have been implemented for use
in the equaliser of a broadband wire-
less receiver, LMS and RLS on an off-
the-shelf fixed point DSP and LMS
on a small custom DSP. The custom
DSP implementation of LMS needs
more work for final debugging before
its performance can be properly as-
sessed.

References

[1] Simon Haykin. Adaptive Filter The-
ory. Prentice Hall, fourth edition,
2002.

[2] Nigel King. Broadband business
and residental radio access. http:
//www.pipinghotnetworks.com/site/
whitepaper/broadbandbusiness.pdf ,
October 2000.

6

