
Reliably Prototyping Large SoCs Using FPGA Clusters

Paul J Fox, A Theodore Markettos and Simon W Moore
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom

{paul.fox, theo.markettos, simon.moore}@cl.cam.ac.uk

Abstract—Prototyping large SoCs (Systems on Chip) using
multiple FPGAs introduces a risk of errors on inter-FPGA
links. This raises the question of how we can prove the correct-
ness of a SoC prototyped using multiple FPGAs. We propose
using high-speed serial interconnect between FPGAs, with a
transparent error detection and correction protocol working
on a link-by-link basis. Our inter-FPGA interconnect has an
interface that resembles that of a network-on-chip, providing
a consistent interface to a prototype SoC and masking the
difference between on-chip and off-chip interconnect. Low-
latency communication and low area usage are favoured at
the expense of a little bandwidth inefficiency, a trade-off we
believe is appropriate given the high bandwidth of inter-FPGA
links.

Keywords-SoC; prototyping; reliability; interconnect; FPGA;
communication;

I. INTRODUCTION

Prototyping a large SoC using FPGAs needs multiple
devices as there is not enough space in a single FPGA. These
FPGAs must be connected, both physically and logically,
to bridge a partitioned prototype SoC. High bandwidth, low
latency interconnect allows a tight coupling across partitions.
For a trustworthy prototype we require this interconnect to
not introduce errors into the system under test.

With high data rates come bit errors. All high-speed
serial communication standards we have encountered have
methods for detecting bit errors on physical links. Therefore
we need to both detect and correct errors on inter-FPGA
links so that they cannot silently corrupt the operation of a
multi-FPGA SoC prototyping system.

The probability of bit errors on inter-FPGA links can be
reduced by placing the FPGAs on a single large PCB, but
these are very expensive and lack flexibility (e.g. to change
interconnect topology). In addition, the possibility of errors
is still not eliminated and so the question of confidence
in results remains. To provide a lower cost, more flexible,
SoC prototyping system we use multiple commodity single-
FPGA PCBs linked by high-speed serial interconnect. While
the probability of bit errors on these links is higher than on
a large PCB, by implementing a transparent error detection
and correction protocol we provide confidence in results
produced by our system.

To simplify SoC prototyping we propose a network-on-
chip style interconnect [1] that extends between FPGAs to
provide a consistent interface to a prototype SoC and mask

the difference between on-chip and off-chip interconnect.
This means that our interconnect must have a low latency,
and so error correction techniques used in local-area net-
works such as TCP are unsuitable as they favour bandwidth
at the expense of latency, and also have high buffering
requirements and hence large area. In contrast we sacrifice
some bandwidth to produce an error detection and correction
protocol with reduced latency, a trade-off we believe is
appropriate given the high bandwidth of inter-FPGA links
and the demands of SoC prototyping.

II. REQUIREMENTS

The interconnect requirements for multi-FPGA SoC pro-
totyping are quite distinct from those of conventional net-
working (e.g. for PC clusters):

1) Reliability: We need an interconnect that is reliable in
the face of bit errors so that we can have high confidence
in the correctness of a prototype SoC. Due to our need to
interface to a prototype SoC at a hardware level, we cannot
leave error handling to higher layers (as in IP networking),
so we must handle it in hardware next to the physical links.

2) High bandwidth and ultra-low latency: We would like
to minimise the effort involved in partitioning a SoC over
multiple FPGAs. If bandwidth is high and latency is kept
low, multiple FPGAs can be treated as if they were one
large chip. This is particularly helpful if the SoC has no
obvious partition boundaries. For those parts that must run
in lock-step, dilation of the simulated SoC clock enables
communication to happen within a single cycle. The length
of that cycle and so SoC performance is thus very much
dependent on the link latency.

3) Minimal overhead: The interconnect must have low
overheads because they increase latency and reduce through-
put. Overhead scales linearly with hop count, so is especially
critical for multi-hop traffic.

4) Frequent communication: Communication can be ex-
pected to happen frequently between partitions in a prototype
SoC, particularly as these partitions are likely to be essen-
tially arbitrary, and so there will be as much communication
off-FPGA as there is within a FPGA.

5) Short messages: The combination of the requirements
for low latency and frequent communication leads to a
requirement for the messages used for off-FPGA commu-
nication to be short. Sending large messages which may

978-1-4799-5810-8/14/$31.00 c© 2014 IEEE

be mostly empty would increase the latency due to the
interconnect being busy.

6) Simple interfacing: We wish to mask the difference
between on-chip and off-chip interconnect to provide a con-
sistent interface to a prototype SoC and simplify partitioning
over multiple FPGAs.

7) Scalability: The raison d’etre of multi-FPGA pro-
totyping is that one FPGA is not enough. Therefore an
interconnect should not impose its own size limits – we
should be able to scale to hundreds of FPGAs.

III. EXISTING APPROACHES

Many previous approaches to SoC prototyping using
FPGAs have used a single FPGA [2], [3]. Multiple FPGAs
connected using a high-speed serial interconnect have been
used [4], [5], but in both cases it is assumed that inter-FPGA
links are error free. In our experience this is an incorrect
assumption, particularly if we are to have confidence in the
correctness of a prototype SoC.

If we wish to build on the work in [4] while also providing
error detection and correction we will need to implement
an appropriate error detection and correction protocol over
a high-speed serial interconnect. There are many protocols
available, in addition to the option of creating a custom
protocol, each with advantages and disadvantages for SoC
prototyping.

Many cluster systems, and in particular PC clusters, use
Internet Protocol over physical technologies such as Eth-
ernet. This provides off-the-shelf switches, cables, routers,
media converters and FPGA IP. The disadvantage of Eth-
ernet is its focus on large packet sizes, which has an
impact on latency and throughput if shorter data payloads
are required. This is noticeable in the multi-FPGA SoC
prototyping system presented in [5], which uses 1G Ethernet
and exhibits inter-FPGA latency of the order of 10 µs in
many cases, and sometimes even higher.

Interconnect protocols designed for motherboard-level
communication include HyperTransport and PCIe. Hyper-
Transport’s minimum packet is 4 bytes of payload with 8
bytes of overhead, while PCIe has 4 bytes of payload for
20 bytes of overhead [6]. HyperTransport is primarily a
motherboard-only protocol since it uses source-synchronous
clocking [7]. PCIe uses high speed serial links so can travel
along cabling (either directly or encapsulated in the form of
Thunderbolt [8]). It consists of a ‘root complex’ interfacing
a CPU to a PCIe switch which joins PCIe peripherals. Laid
on top of this is a complex protocol intended to emulate
all the features of traditional PCI – the PCIe version 3.0
specification runs to 860 pages [9]. PCIe architecture is pri-
marily hierarchical - major usage is communication between
CPU/memory and peripherals. Peer-to-peer communication
is possible, but complex and focused on memory-mapped
I/O [10].

Infiniband is a serial point-to-point interconnect often used
by supercomputers. In these circumstances it is often used
as a conduit for IP, but it represents a general-purpose fabric.
The Infiniband Trade Association themselves quote an end-
to-end latency of 1 µs [11].

RapidIO [12] is perhaps the protocol most similar in
philosophy to the requirements we identified in the previous
section. It has reliability, low-latency (1 µs end-to-end), and
scalability [13]. However, it also has high overhead (12-16
bytes per packet) so is not ideal for creating a transparent
interconnect for SoC prototyping.

Aurora is a protocol that is restricted to Xilinx FPGAs.
It was used for SoC prototyping in [4] at a data rate
of 3.125 Gbps. However inter-FPGA links were assumed
to be error-free and so no error detection or correction
was implemented. Another implementation of a multi-FPGA
system using Aurora found that errors restricted usable data
rate to 1.95 Gbps per lane [14].

AIREN [15] blends on-chip and off-chip networks using
Aurora. On-chip a full crossbar with dimension-ordered
routing is used. Off-chip packets are source-routed across
the fabric, and are then presented to the target FPGA
using remote DMA. It does not appear to implement error
detection or correction.

IV. RELIABLE FPGA INTERCONNECT

Our reliable FPGA interconnect follows the requirements
identified in Section II. Reliability is achieved at a per-link
level using one reliable transceiver at each end of each
inter-FPGA link, forming a reliable link. These reliable links
are then combined with a routing and switching system to
allow our interconnect to span multiple FPGAs. All of the
components of the interconnect (other than the lowest level
transceiver interface) have been implemented in Bluespec
SystemVerilog. Our current implementation targets Altera
FPGAs, though we believe that it is also compatible with
FPGAs from Xilinx which have similar SERDES hard
blocks.

A. High-level interface

A high-level view of the interconnect is shown in Figure 1.
It is implemented as an Altera Qsys subsystem, which
has four internal communication ports and a number of
interfaces to inter-FPGA links, which each include a transmit
and receive differential pair and a reference clock input.

Once the interconnect block is instantiated in a higher-
level Qsys system, inter-FPGA link interfaces are exported
and connected to appropriate pins. The prototype SoC is
connected to the interconnect using bridges. These convert
the SoCs interfaces to Altera’s Avalon Streaming interfaces
to allow connection to the interconnect using Qsys. Ab-
stractly a streaming interfaces can be thought of as a buffered
channel.

SoC Bridge

Routing
and
Switching

Reliable
Transceiver

Reliable
Transceiver

Reliable
Transceiver

Reliable
Transceiver

Interconnect Block

High
Speed
Serial
Links

FPGA

Prototype
SoC

SoC Bridge

Figure 1. High-level view of FPGA interconnect

SoC bridges communicate using the inter-FPGA intercon-
nect by sending and receiving flits, which contain a 64-bit
payload and control bits to control routing and switching
and to allow multiple flits to be formed into packets. The
structure of a flit is described in more detail in Section IV-C

B. System architecture

The reliable FPGA interconnect is made up of a number
of reliable transceivers (described in Section IV-D), each
of which independently provides a reliable communication
channel with FIFO semantics between two FPGAs, com-
bined with a routing and switching system (described in
Section IV-E) to allow SoC bridges to communicate with any
other bridge in the multi-FPGA prototyping system, hence
linking the partitioned prototype SoC.

SoC bridges communicate by specifying either a specific
reliable link to an adjacent FPGAs (direct link mode) or
alternatively by specifying the identity of a target FPGA, in
which case hop-based routing is used to select appropriate
links to reach the target FPGA, via intermediate FPGAs as
needed (routed mode). In both cases the target bridge on the
target FPGA is also specified.

Direct link mode is most useful for prototyping SoCs
that can be partitioned by simple tiling as it introduces less
latency than routed mode as it is not necessary to calculate
the number of hops required to reach the target FPGA. It
is also used when setting up the prototyping system, as it
allows the identity of the FPGA at the other end of each
link to be established and hence for routing tables to be
constructed (see Section IV-E5).

Routed mode allows SoC bridges to communicate with
bridges on other FPGAs in the prototyping system without
needing to be aware of its topology and without the involve-
ment of the SoC or bridges on any intermediate FPGAs,
allowing the partitioning of more complex prototype SoCs.

C. Communication data structures

The fundamental unit of communication used on the
interconnect is a flit. 76 bit flits are used by our SoC bridges.

System Clock

TX Clock RX Clock

Serial Transceiver

Physical Layer

Link Layer

Reliability Layer

Physical Link

SoC Bridge

76

120 120

76

128 128

4 32

1 1

32 4

Figure 2. Diagram of the reliable transceiver, showing layers and clock
domains

These are extended to 128 bits in the reliable transceiver with
the information necessary to perform reliable transmission.

The fields visible to a bridge are:

Payload Control Start Packet End Packet
64 bits 10 bits 1 bit 1 bit

The fields added by the reliable transceiver are:

CRC Seq # Ack # Start of Day Header
32 bits 4+1 bits 4+1 bits 2 bits 8 bits

Bridges are responsible for setting the control field ap-
propriately to specify the target FPGA and SoC bridge (See
Section IV-E2). Flits can be formed into packets by setting
the start of packet flag set on the first flit and the end
of packet flag on the last flit. Bridges are responsible for
setting these flags appropriately, and for interpreting them
to reconstruct packets.

D. Reliable transceiver

The reliable transceiver provides reliable communication
between FPGAs with FIFO semantics, including ordering
and back-pressure. It is made up of a number of layers,
which are shown in Figure 2. In a similar manner to
an Ethernet stack, each layer handles communication with
decreasing levels of abstraction as it gets closer to the high-
speed serial transceiver. Each of the layers that make up the
reliable transceiver will now be discussed.

1) Reliability layer: The layout of this layer is shown
in Figure 3. It provides a reliable communication channel
with FIFO semantics by appending a CRC and sequence
number to each flit, which are validated by this layer in the
receiving reliable transceiver. An acknowledgement number
may also appended to a flit to acknowledge correct receipt
of a flits with that sequence number. If the receiver receives

Check
CRC
& Seq

Add CRC
& Seq

Add
Ack

Make
Ack

Check
Ack

Timeout?Replay
Timer

Replay
Buffer

Ack
Buffer

No

Yes

Remove

Reset

OKR
o
u

ti
n

g
 &

S
w

it
c
h

in
g

L
in

k
L
a
y
e
r

Figure 3. Diagram of reliability layer

a flit which either fails the CRC or that is out of sequence,
it does not send an acknowledgement. If there are pending
acknowledgements to be sent but no input flits, an empty
flit is sent for each acknowledgement.

Reliability is window-based with speculative transmis-
sion [16]. Transmitted flits that have not yet been ac-
knowledged being stored in a replay buffer. If a flit is not
acknowledged after a timeout (either because the receiver
detected an error or because an acknowledgement was lost),
the first flit in the replay buffer is sent continuously until it is
acknowledged, and the same for the other flits in the buffer,
after which new flits are accepted from the input. We use an
8-flit retransmission window, and so the replay buffer only
needs to hold 8×64 bit flits to store a whole window, which
significantly reduces FPGA area requirements compared to
protocols with larger flits and longer windows.

Back-pressure is achieved by sending acknowledgements
with an extra flag to indicate that no more flits can be
accepted. This prevents any further flits being transmitted,
and so ultimately leads to the reliable transceiver’s input
FIFO becoming full. The start of day bits are used to ensure
that a link resets correctly. The output to the link layer is a
stream of 120 bit flits.

2) Link layer: This layer performs clock crossing be-
tween the system clock domain and the transmit and re-
ceive clock domains used by the physical layer and serial
transceiver. It also serialises flits into 32 bit words. An 8 bit
header is appended to each 120-bit flit from the reliability
layer. These 128-bit flits are then serialised into 4× {32
bit words, 4 bit k symbol indicator} tuples for the physical
layer. The header is used by this layer to identify the start
of a 128 bit flit when de-serialising 32 bit words into 128 bit
flits, and by the physical layer to perform word alignment.

3) Physical layer: This layer performs word alignment
on the bytes in the 32 bit input received from the serial
transceiver using the 8 bit flit headers as an alignment pat-
tern. It also provides the serial transceiver with a continuous
stream to transmit. If no valid input is received from the link
layer, the symbol required for the transceiver to perform byte
alignment is sent. This layer is clocked by the transmit and
receive clocks provided by the serial transceiver.

Internal
Switch

External
Switch

Destination
to Hops

Port
Decider

Hop
Decrementer

Router

Direct Link
 Mode

S
o
C

 B
ri

d
g

e
s T

ra
n

s
c
e
iv

e
rs

R
e
lia

b
le

Figure 4. Diagram of the routing and switching system

4) Serial transceiver: A FPGA-specific transceiver block
provided by the FPGA manufacturer. On an Altera Stratix IV
this is an ALTGX megafunction, while on Stratix V it is a
Custom PHY megafunction. While this has not been tested,
it would appear that a Xilinx GTP transceiver could also be
used for compatibility with Xilinx FPGAs. The transceiver
block is configured to use 8b10b coding and byte alignment
of received bits using an alignment pattern, an 8b10b k (or
comma) symbol, which is the pattern sent by the physical
layer when it has no valid data to transmit.

The transceiver block generates a transmit clock and
recovers a receive clock from the incoming serial bit stream.
Higher-layer logic needs to perform clock crossing between
these clock domains and that used by the rest of the system.

We use a simple Verilog wrapper around the FPGA
manufacturer’s transceiver block to provide a consistent
interface to higher layers in our stack. The transceiver block
and this wrapper are the only parts of our system that are
specific to a particular FPGA.

E. Routing and switching

The routing and switching system is shown in Figure 4.
It connects SoC bridges on a FPGA with other bridges on
other FPGAs. With each inter-FPGA link handled by a re-
liable transceiver, which provides a reliable communication
channel with FIFO semantics, routing and switching flits
requires only directing flits to an appropriate link and (for
routed flits) re-writing a flit’s control bits.

Hop-based routing is used to reduce latency at inter-
mediate FPGAs between a source and target FPGA. Each
intermediate FPGA only needs to decrement the hop count
on an incoming flit and send it on an appropriate link to get
it closer to its destination.

1) FPGA topology: The multi-FPGA prototyping system
is assumed to be logically arranged as a 3D torus, with
FPGAs each assigned a unique, sequential identifier. We as-
sume that the FPGAs are fully connected in the x dimension,
but potentially not in the y and z dimensions. Each FPGA
has a unique, sequentially assigned identifier and knows the
size of the FPGA system in each dimension.

2) Format of flit control bits: When used with the routing
and switching system, the 10 control bits in a flit are
subdivided into:

Direct Link? Target FPGA / Link Target Bridge
1 bit 7 bits 2 bits

The direct link flag is used to choose between either direct
link mode or routed mode. Direct link mode sends a flit to
the FPGA at the other end of the off-FPGA link specified
by the target FPGA or link field. Routed mode sends a flit
to the FPGA specified by this field, via intermediate FPGAs
as necessary. These modes can be selected on a flit-by-flit
basis, though the mode should be kept consistent within a
packet.

3) Operation in direct link mode: In direct link mode the
internal switch accepts an incoming flit, multiplexes it with
flits from other applications and then passes it directly to the
external switch. This sends the flit on the specified inter-
FPGA link. The flit is received by the external switch on
the target FPGA and multiplexed with flits from other links.
It is then passed directly to the internal switch and then to
the specified application. The target FPGA or link control
field is re-written to indicate the link that the flit arrived on,
which is useful when constructing routing tables.

4) Operation in routed mode: In routed mode the internal
switch and external switch both pass incoming flits to the
router. Incoming flits from applications are checked to see if
they target this FPGA (i.e. the source and destination FPGA
are the same). If so they are sent straight back to the internal
switch, which delivers them to the target application. Flits
that target other FPGAs are passed to the destination to hops
converter. This contains a routing table that maps each target
FPGA to a number of hops in the x, y and z dimensions. The
control bits are re-written to replace the target FPGA field
with these hops, 3 bits for the x and y dimensions and 2 for z.
Flits are then passed to the port decider. This uses a routing
table to determine which link to use to get one hop closer
to the target FPGA. z hops are prioritised, then y, then x,
constant with our assumptions on the system topology. The
port decider passes flits to the external switch and hence an
inter-FPGA link.

When the router receives a flit, it is passed to the hop
decrementer, which decrements a hop in the dimension
corresponding to the link that the flit arrived on, using
another routing table. Any flit which has no hops remaining
in any dimension has reached its target FPGA, and is passed
to the internal switch to be delivered to the target application.
Flits with remaining hops are passed to the port decider to
continue their journey to their target FPGA.

5) Routing table setup: Before the routing and switching
system can be used in routed mode, its routing tables must
be populated. This is currently done by software running on
a NIOS II soft core, though in principle a hardware state
machine could be used. Given the dimensions of the system

and an FPGA’s identifier, for each link it must determine
which FPGA it connects to, its dimension and direction of
travel in the torus. In cases where more than one link has the
same dimension and number of hops, we determine which
link appears to be the most reliable and hence has the lowest
latency.

The process begins by each FPGA sending a probe flit
on every link. These flits are sent in direct link mode, and
contain the identifiers of the FPGA and the link in the
payload. Each FPGA then polls all of its links to receive
flits, and waits until it has received at least 1 flit in every
dimension and direction. This ensures that all FPGAs are
programmed and have started the setup process before any
inferences are made about the reliability of links. Once probe
flits are received, each FPGA can determine which FPGA
each link connects to and its dimension and direction of
travel in the torus.

To determine which link is most reliable in each dimen-
sion and direction, we would ideally count CRC failures.
However, CRCs are checked at the receiving end of each
link, and as we have not finished routing table setup there
is no way for sending FPGAs to access this information.
Instead we make use of the observation that less reliable
links have lower throughput as they need to retransmit
any failing flits. Using this observation, each FPGA sends
a further 32 probe flits on each link. The link in each
dimension and direction that finishes sending its probe flits
first is assumed to be the most reliable, and is entered into
the routing table as the link to be used for that dimension
and direction. This completes routing table setup.

V. PLATFORMS

Our initial prototyping platform was the Bluehive [17],
shown in Figure 5. Bluehive is a custom FPGA cluster
containing 16 Altera Stratix IV GX 230 FPGAs. These are
mounted on commercial FPGA evaluation boards – the DE4
from Terasic – which reduces cost through economies of
scale. Each DE4 has 4 SATA ports and an 8× PCI Express
connector which are directly connected to transceivers.

The SATA ports are connected to external ports of our
reliable FPGA interconnect and can be used to directly
connect boards using ordinary SATA cables. Instead of
using a conventional PCI Express backplane, which involves
implementing the PCIe protocol and using a PCIe bridge
chip which adds latency, we connect each lane in the PCI
Express port directly to an external port of our interconnect.

To create a pluggable topology we use a small 4-layer
custom PCB to convert the PCIe Express interface into 8
SATA links, at a physical layer only. This board is shown
in Figure 6. Its design is freely available at [18].

Bluehive has virtually no bit errors with links running at
3 Gbps. At 6 Gbps some links occasionally exhibit bit error
rates of up to 10−2, which may be a result of faulty cabling,
connectors, soldering on breakout boards or similar.

Figure 5. Bluehive prototyping system

Figure 6. PCIe to SATA breakout board

Newer FPGA evaluation boards expose some of their
transceiver interfaces as SFP+ cages. These can be used with
a variety of physical interconnects, including direct attach
cabling, optical transceivers and Ethernet.

We have created a small prototyping system using two
Altera Stratix V GX EA7 FPGAs on Terasic DE5 evaluation
boards, shown in Figure 7. The reliable FPGA interconnect
implementation is identical to that used with the Stratix IV
FPGA apart from use of the Stratix V specific transceiver.

VI. EXAMPLE APPLICATIONS

We have implemented two applications on our multi-
FPGA systems using our interconnect. In [17] we presented
a full-custom system for neural network simulation. The
whole system was implemented in Bluespec SystemVerilog
(BSV), which was interfaced to our interconnect via simple
FIFO bridges.

Figure 7. DE5 prototyping system with SFP+ direct attach cabling

We have also implemented a vector processing system
for the same neural simulation task [19]. Altera NIOS II
processors facilitate control the execution of our BlueVec
vector processors and communicate using our interconnect
via bridges that present a memory-mapped interface to our
interconnect. Adapting a single core BlueVec system running
on a single FPGA into a multi-core system spread over 16
FPGAs took one day of effort for the BlueVec developer.

VII. EVALUATION

To evaluate our interconnect, we consider the effect of
errors on the effective data rate of a link with a given bit error
rate, the latency of an inter-FPGA link and finally FPGA
resource requirements.

A. Measurement infrastructure

To measure throughput and latency, we built a BSV
hardware block that sends and receives streams of flits,
resulting in a stream of latency or throughput measurements
that is either stored in a FIFO and later retrieved by a host
PC (on hardware) or saved to a file (in simulation).

The effect of bit errors on throughout was modelled using
Bluesim, the cycle-accurate BSV simulator. Two complete
FPGA network-off-chip systems were instantiated (repre-
senting two FPGA boards) and connected using FIFOs to
emulate physical links. While the physical links themselves
were not modelled, the clock frequencies of the system,
transmit and receive clocks (see Figure 2) were tuned such
that in a case with no bit errors 1 flit could be sent or re-
ceived every 10 clock cycles, matching the rate measured on
the Bluehive with the physical links running at 3.125 Gbps.

Bit errors are approximated by forcing the CRC check in
the receiver to fail for every nth flit. For example, a bit error
rate of 2−14 is equivalent to one error in every 16384 bits.
If errors are evenly distributed, this is equivalent to 1 error
in 128 flits, so n = 128.

0

0.5

1

T
hr

ou
gh

pu
t/G

bp
s

102

104

106

R
et

ra
ns

m
its

pe
r

s

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

100

102

104

106

Bit error rate

C
R

C
fa

ils
pe

r
s

Figure 8. Performance for varying bit error rates (3.125 Gbps link rate)

B. Throughput and Effective data rate

The effect of bit errors on throughput is shown in Figure 8.
Effective data rate is derived from throughput by assuming
that each flit that is successfully transmitted carries 64 bits
of useful data. Of particular note is the effective data rate
of 1.2 Gbps with a low bit error rate of 10−10. Given that
64 bits of payload are carried in a 128 bit flit and that
8b10b encoding gives an overhead of 10/8 = 1.25, this
gives an actual data rate on the physical link of 3.0 Gbps,
which closely matches the intended physical link data rate
of 3.125 Gbps.

It is notable that the data rate for high error rates (10−3 or
higher) is around 40 Mbps. While this is clearly significantly
less than the physical link rate of 3.125 Gbps, this will still
provide a more than adequate communication link for setting
up and monitoring a multi-FPGA cluster, for example to
indicate to the operator that some physical links are showing
high error rates and should be investigated.

C. Latency

The latency of a single inter-FPGA link was measured
using two Stratix IV GX 230 FPGAs with line rates of
3.125 Gbps and 6.250 Gbps (connected using the PCIe–
SATA breakout board and SATA cables) and also two Stratix
V GX EA7 FPGAs with a line rate of 10.0 Gbps (connected
using SFP+ direct attach cables). Figure 9 shows two types
of measurement for these line rates: unloaded latency uses
a single flit at a time on an otherwise unused link and fully

3G 6G 10G 3G 6G 10G

Unloaded Fully loaded

0

200

400

600

800

1000

1200

L
at

en
cy

/n
s

Figure 9. End-to-end latency at different link rates

System Combinational Logic M9K
ALUT Registers Memory

Reliable Transceiver 1533 (0.8%) 1936 (1.1%) 17 (1.4%)
RapidIO Core (1×) 7100 (3.9%) 7600 (4.2%) 51 (4.1%)
4× Reliable Transceiver 6132 (3.4%) 7744 (4.2%) 68 (5.5%)
RapidIO Core (4×) 9000 (5.0%) 10300 (5.7%) 51 (4.1%)
Network-off-Chip Block 28590 (16%) 25248 (14%) 217 (18%)
inc NIOS & DDR2 ctl 50667 (28%) 76359 (42%) 337 (27%)

Table I
FPGA RESOURCE REQUIREMENTS. FIGURES IN BRACKETS ARE % OF

RESOURCES AVAILABLE ON AN ALTERA STRATIX IV GX 230

loaded latency sends as many flits as possible, as for the
throughout test.

The difference between the unloaded and fully loaded
latencies is primarily a result of 1 to 4 serialisation in
the link layer, which becomes pronounced when transmit
buffers become full. Fully loaded latency is around 1 µs at
3.125 Gbps, 600 ns at 6.25 Gbps and 450 ns at 10.0 Gbps,
which compares with 1 µs quoted for RapidIO [13] (unclear
if unloaded or fully loaded latency) at 10 Gbps line rate.

D. FPGA resources

Table I shows the FPGA resource requirements of our
network-off-chip. We measured a single reliable transceiver,
a network-off-chip block of 12 reliable transceivers (using 12
lanes from a DE4 board), and a full design with network-off-
chip, 2× Altera NIOS II processors and 2× DDR2 memory
controllers plus interfacing logic. The resource requirements
of 1-lane and 4-lane Altera RapidIO cores (taken from [20])
are also shown for comparison.

It is clear that our reliable transceiver uses significantly
less resources than the Altera RapidIO core, with 25% of
the logic usage and 33% of the memory usage. The majority
of the memory usage of the RapidIO core results from its
minimum 8KB transmit buffer and 4KB receive buffer. This
compares with the 8-flit and 16-flit transmit and receive
buffers in the reliable transceiver, which use 574 bits and
1230 block memory bits respectively, both mapping to three
M9K memory blocks. The remainder of the memory block
usage comes from the clock crossing FIFOs in the link layer.
The low buffer sizes that make this lower memory block
utilisation possible are enabled by out short flit size and low
end-to-end latency.

The 4-lane RapidIO core and 4 reliable transceivers are
not directly comparable as the former has a single set of
buffers and stripes each frame over 4 lanes while the latter
are 4 independent channels. However the logic usage of 4
reliable transceivers is still lower than that of the 4-lane
RapidIO core. Our higher memory block usage indicates
that using 4 serial links per reliable transceiver will lead to
promising future work as memory usage will be reduced. It
could also eliminate the 1-to-4 serialisation in the link layer,
which would significantly reduce latency.

Finally the resource usage of a complete prototyping
design shows that use of our interconnect leaves ample
FPGA resources for the prototype SoC after communication
and memory interfaces have been instantiated.

VIII. CONCLUSIONS

Our interconnect for multi-FPGA SoC prototyping sys-
tems has low latency and is designed to scale to hundreds of
FPGAs. Combined with some custom physical interconnect,
it allows us to create multi-FPGA prototyping systems using
commodity FPGA evaluation boards.

Errors introduced by inter-FPGA links are transparently
detected and corrected, providing high confidence in the
correctness of a prototype SoC. Low latency and short data
units allow us to use much less buffering than comparable
technologies such as RapidIO, and result in significantly
lower latency and FPGA resource utilisation. This is at the
expense of a little bandwidth inefficiency, a trade-off we
believe is appropriate given the high bandwidth of inter-
FPGA links.

The combination of transparent error correction, network-
on-chip semantics, low latency and low resource usage sim-
plifies partitioning of prototype SoCs over multiple FPGAs.

ACKNOWLEDGEMENTS

This work is part of the MRC2 Project that is spon-
sored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL),
under contract FA8750-11-C-0249. The views, opinions,
and/or findings contained in this paper are those of the
authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the
Department of Defense. We acknowledge additional support
from the UK research council, EPSRC, grant EP/G015783/1.
We would also like to thank Andrew Moore for his advice
on high-speed communication protocols.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
inteconnection networks,” in Design Automation, Proceedings
of the 38th Conference on, 2001, pp. 684 – 689.

[2] D. Wang, N. Jerger, and J. Steffan, “DART: A programmable
architecture for NoC simulation on FPGAs,” in Networks on
Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium
on, May 2011, pp. 145–152.

[3] P. Wolkotte, P. Hölzenspies, and G. J. M. Smit, “Fast, accurate
and detailed NoC simulations,” in Networks-on-Chip (NOCS)
First International Symposium on, May 2007, pp. 323–332.

[4] Kouadri-Mostefaoui, Abdellah-Medjadji, B. Senouci, and
F. Petrot, “Large scale on-chip networks : An accurate multi-
FPGA emulation platform,” in Digital System Design Archi-
tectures, Methods and Tools, 2008, pp. 3–9.

[5] A. Nejad, M. Martinez, and K. Goossens, “An FPGA bridge
preserving traffic quality of service for on-chip network-based
systems,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2011, pp. 1–6.

[6] B. Holden. (2006, November) Latency comparison between
HyperTransportTM and PCI-ExpressTM in communications
systems. [Online]. Available: http://www.hypertransport.org/
docs/wp/Low Latency Final.pdf

[7] M. Cavalli. (2007, June) Advanced interconnect standards
blend serial and parallel techniques for best performance and
scalability. [Online]. Available: http://www.hypertransport.
org/docs/wp/Serial vs Parallel.pdf

[8] Intel Corporation. (2012) Thunderbolt technology brief.
[Online]. Available: http://www.intel.com/content/dam/doc/
technology-brief/thunderbolt-technology-brief.pdf

[9] PCI-SIG, “PCI Express R© base specification revision 3.0,”
November 2010.

[10] K. Kong. (2007) PCIe R© as a multiprocessor system
interconnect. [Online]. Available: http://www.pcisig.com/
developers/main/training materials/get document?doc id=
8ac11bd327fad024de528e74830b3e6d8b220485

[11] Infiniband TA, “Advantages of Infiniband.” [On-
line]. Available: http://www.infinibandta.org/content/pages.
php?pg=about us advantages

[12] RapidIO Trade Association. RapidIO interconnect
specification 3.0. [Online]. Available: http://www.rapidio.
org/specs/current/2013-oct23.zip

[13] D. Paul, “Low latency servers with RapidIO,”
in Open Server Summit, October 2013. [Online].
Available: http://www.serverdesignsummit.com/English/
Collaterals/Proceedings/2013/20131024 C201 Paul.pdf

[14] T. Bunker and S. Swanson, “Latency-optimized networks for
clustering FPGAs,” in Field-Programmable Custom Comput-
ing Machines (FCCM), 2013, pp. 129–136.

[15] A. Schmidt, W. Kritikos, R. Sharma, and R. Sass, “AIREN: A
novel integration of on-chip and off-chip FPGA networks,” in
Field-Programmable Custom Computing Machines (FCCM),
2009, pp. 271–274.

[16] P. Watts, S. Moore, and A. Moore, “Energy implications
of photonic networks with speculative transmission,” Opti-
cal Communications and Networking, IEEE/OSA Journal of,
vol. 4, no. 6, pp. 503–513, June 2012.

[17] S. W. Moore, P. J. Fox, S. J. T. Marsh, A. T. Markettos,
and A. Mujumdar, “Bluehive - a field-programable custom
computing machine for extreme-scale real-time neural net-
work simulation,” in Field-Programmable Custom Computing
Machines (FCCM), 2012, pp. 133–140.

[18] “PCIe to SATA breakout board.” [Online]. Available: http:
//www.cl.cam.ac.uk/research/comparch/opensource/pcie-sata/

[19] M. Naylor, P. Fox, A. Markettos, and S. Moore, “Manag-
ing the FPGA memory wall: Custom computing or vector
processing?” in Field Programmable Logic and Applications
(FPL), Sept 2013, pp. 1–6.

[20] RapidIO MegaCore function user guide. [Online]. Available:
http://www.altera.co.uk/literature/ug/ug rapidio.pdf

