LLIGENT| TRANSPORTATION 'SYSTEMS

Generation

Scalable, Distributed,
Real-Time Map

In this application, many vehicles participate in the collection,
processing, and dissemination of data to automatically generate digital

road maps.

Jonathan J. Davies, Alastair R.
Beresford, and Andy Hopper
University of Cambridge

ey V2tlY improved collection and

odern vehicles have a plethora

of onboard computing equip-

ment. Today’s cars have up to

50 microprocessors governing

various aspects of their oper-
ation. We foresee a future in which vehicles’
sensor, communication, and computational re-
sources are harnessed to improve the trans-
portation infrastructure and have a positive
impact on society.

To start working toward that vision, we can
exploit modern vehicles’ com-
puting facilities to provide a
host of participative mobile
applications. Such uses include

dissemination of weather data

and real-time measurement of
road surface conditions. In particular, the shar-
ing of movement data from vehicles might help
facilitate city planning, improve fleet manage-
ment, and enforce congestion charging (charging
fees for driving in certain areas at certain times).

The map data in a vehicle’s navigation unit
forms the basis of the unit’s routing decisions. This
data is prone to cartographic errors and to inac-
curacies due to recent changes in the road net-
work, including temporary road closures. These
problems can frustrate drivers when they cause the
unit to give impossible driving instructions.

So, organizations that produce digital maps,
such as Navteq and Tele Atlas, must invest signif-
icant effort in maintaining and improving their
data’s accuracy. Details about new roads and the
modification or closure of existing roads must be
incorporated into the databases in a timely fash-

1536-1268/06/$20.00 © 2006 IEEE W Published by the IEEE CS and IEEE ComSoc

ion. Mapping organizations obtain data about
road network changes from various sources,
including local authorities and building contrac-
tors, but this data tends to be highly inaccurate.
Aerial photographs can help mapmakers deduce
roads’ presence and shape but are prohibitively
expensive to update frequently. Instead, mapping
companies typically own fleets of probe vehicles
that investigate discrepancies and explore new
roads. Tele Atlas spends tens of millions of dollars
each year in North America to keep its databases
up-to-date, while in 2004 Navteq employed more
than 500 analysts who drove a total of 3.5 million
miles throughout North America and Europe.

To simplify this mapmaking process, vehicles
could use their computational resources to
directly generate accurate map data. We envisage
vehicles on the road network forming a wide-
scale mobile sensing and computing platform.
Toward that goal, we’ve developed an algorithm
for keeping digital maps up-to-date, using ordi-
nary vehicles making normal journeys rather than
fleets of dedicated probe vehicles. However, fur-
ther development is required to address several
remaining challenges, including the choice of
architecture to support the algorithm.

Automatically generating
digital maps

Information about a road network can be rep-
resented as a directed graph with metadata asso-
ciated with its edges. Such a graph can be used to
both render a graphical depiction of the road net-
work and serve as an input to in-vehicle naviga-
tion systems. The graph’s edges represent roads
(or road lanes), and its vertices represent junctions.

PERVASIVE computing

47

[SIiNR HARNOIN| SlvisivlE|

D iscretizing the space covered by sensor readings into a grid
of cells is an established practice. Robotics researchers use
certainty grids' or occupancy grids? to store the probability that
an obstacle exists in any particular cell in an environment that ro-
bots will explore.? Unlike that research, we don’t have the luxury
of being able to determine obstacles’ presence. Robotics research
also heavily employs Voronoi graphs,* particularly because they
describe an environment'’s topological features, making them suit-

| S8 =t =PRSS |
1. H.P. Moravec and A. Elfes, “High Resolution Maps from Wide Angle
Sonar,” Proc. 1985 IEEE Int’l Conf. Robotics and Automation, IEEE Press,
1985, pp. 116-121.

2. A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and Nav-
igation,” Computer, June 1989, pp. 46-57.

3. S. Thrun, “Robotic Mapping: A Survey,” Exploring Artificial Intelligence in

able for route planning.

the New Millennium, G. Lakemeyer and B. Nebel, eds., Morgan Kauf-

mann, 2002, pp. 1-36.

Robert Harle investigated generating descriptions of an in-
door environment purely from records of location fixes.> While 4. H. Choset and K. Nagatani, “Topological Simultaneous Localization and

it’s unrealistic to expect exhaustive coverage of a typical in-
door environment, we can expect vehicles to exhaust all avail-

125-137.

able road space. This is because the road network imposes

greater constraints on the users’ movement.

Generating a directed graph

The application based on our algo-
rithm transforms GPS traces from mul-
tiple vehicles into a road map. Process-
ing involves four basic stages:

1. Generate a 2D histogram indicating
the number of GPS fixes found in
each cell.

2. Deduce the road edges’ positions.

3. Compute the positions of the roads’
centerlines.

4.Determine the direction of travel
permitted along each road.

We now examine these stages in detail,
using figure 1 as a running example.

A trace of location fixes obtained from
a vehicle’s GPS unit will show which
roads the vehicle has traveled along. The
trace will contain errors due to uncer-
tainty in the location fixes and missed
sightings when the GPS satellite signal is
obscured. From a single trace, distin-
guishing between junctions and bends in
roads is difficult. Moreover, the GPS
readings’ inherent errors might mean that
the trace misrepresents the roads’ true
positions. However, if we superimpose
the traces from several vehicles traveling
along different routes, junctions will soon

PERVASIVE computing

Mapping (SLAM): Toward Exact Localization without Explicit Localiza-
tion,” IEEE Trans. Robotics and Automation, vol. 17, no. 2, 2001, pp.

5. R.K. Harle, “Maintaining World Models in Context-Aware Environ-
ments,” doctoral thesis, Laboratory for Communications Eng., Dept. of

Eng., Univ. of Cambridge, 2004.

become apparent. Also, the roads’ true
positions will become clearer as noise due
to errors becomes less significant.

Creating a histogram. Splitting up 2D
space in the horizontal plane into cells—
small, tessellating, square units of area—
we wish to determine the likelihood that
each cell is part of a road. The Nyquist-
Shannon sampling theorem dictates that
the cell width should be at most half the
minimum road width to prevent aliasing.
In practice, this equates to a few meters.
A GPS reading falling in a cell is a good
indication that the cell might be part of a
road. So, if we associate with each cell
the number of GPS points that fall in it,
cells with higher frequencies will more
likely be parts of a road. In this way, we
group our 2D real-valued GPS fixes into
discrete cells. (For a brief look at similar
research and other research related to
map generation, see the “Related Work
in Map Generation” sidebar.)

At highway speeds, with GPS fixes
obtained at 1 Hz, consecutive fixes will
fall approximately 30 meters apart. Thus,
with a cell size of a few meters, succes-
sive fixes won’t lie in adjacent cells, leav-
ing us with disjoint regions of road. But
if the GPS fixes are temporally ordered,

we know that road exists between con-
secutive fixes. So, we can also increment
the value in the cells that are between
those cells in which the fixes lie. If the fre-
quency of readings is greater than a few
Hertz, then linear interpolation between
the GPS fixes will likely be acceptable.
However, higher-order interpolation
might yield more realistic results.

The value attached to each cell repre-
sents the confidence that the cell is part of
aroad. Our application increments a cell’s
value by an amount proportional to the
length of the line that passes through the
cell. In this way, if the line traverses only
a cell’s corner, then that cell’s value is
incremented by only a small amount.

After the application has processed all
the available GPS fixes in this way, we
have a 2D histogram that estimates the
confidence of each cell constituting part
of a road, based on all the journeys
traced out in the data (see figure 1a).

Despite the interpolation between suc-
cessive GPS fixes, gaps will likely exist
because a cell with a low frequency
might be surrounded by cells with high
frequencies. This might be due to a ran-
dom paucity of data collected in that cell;
systematic errors intrinsic in the original
GPS data; real-world features that

www.computer.org/pervasive

Figure 1. Generating a map of the city
center of Cambridge, UK:

(a) a histogram, with one pixel per cell,
(b) a blurred histogram,

(c) a thresholded histogram,

(d) contours, (e) a Voronoi graph, and
(f) a directed graph.

obstruct vehicles, such as lampposts or
road barriers; or blackspots (areas with-
out GPS coverage) such as under bridges.
In any case, these gaps are undesirable
and should be removed because we’re
merely aiming for a directed graph of the
road network’s topology where connec-
tivity is important.

To remove such gaps in the histogram,
we apply a blur filter. This removes small
gaps because the filter averages cell values
with neighboring cells, but larger gaps will
persist. Similarly, the filter will smooth
jagged edges. However, performing a blur
might undesirably merge two nearby but
distinct roads. Figure 1b depicts the data
convolved with a three-by-three-cell uni-
form blur convolution filter.

Deducing edge positions. At this pro-
cessing stage, we have a good idea of
whether a road exists in any given cell.
So, we binarize this metric to a Boolean
value: is there a road or not? To do this,
we apply a global threshold to our cells.
The threshold’s value will relate to the
degree of confidence we want in the road
network deduced from our algorithm. A
lower threshold will be more susceptible
to noise due to GPS errors. Figure 1c
shows the result of thresholding the data.

After thresholding, we apply a contour
follower! to the image. This extracts a set
of closed polygons describing the road
regions’ outline (see figure 1d). This out-
line might not coincide precisely with the
roads’ real-life edges, owing to errors in
the original GPS data. However, if these
errors are symmetrically distributed, the
centerline between the edges will coincide
with the road’s actual centerline.

Computing centerlines. A Voronoi graph
is the set of points equidistant from the

OCTOBER-DECEMBER 2006

edges

—— Retained
edges

(e)

nearest two points on the boundaries of a
set of closed polygons.? We can compute
the road centerlines by producing the
Voronoi graph of the contours describing
the roads’ edges and discarding the result-
ing edges that lie outside the roads.
However, because the roads’ edges
aren’t convex, many short edges of the
Voronoi graph will be attached to the
main trunk of each road. This gives the
graph a rather “hairy” appearance. These
edges don’t correspond to real-life roads;

One-way
roads

—— Two-way
() roads

they’re artifacts from our initial dis-
cretization of GPS fixes into square cells.
We can remove the edges that are shorter
than a threshold representing the mini-
mum permitted road length, leaving
just the main edges running the roads’
lengths. Figure 1e depicts the Voronoi
graph generated from the contours, with
the short edges in red.

Determining road direction. The final
stage is to deduce which edges of the

PERVASIVE computing

49

50

undirected Voronoi graph represent uni-
directional roads and which represent
bidirectional roads. If the original GPS
data was temporally ordered, we can
produce a further data structure that will
help us determine this. Again splitting
space into cells, in each cell we now keep
track of the number of journeys embod-
ied in the GPS traces that pass through

lish that a new road has been opened: it
acquires GPS traces of vehicles using the
road and regenerates the map to show
the new road. However, we can’t say that
about the other two goals. Once we have
some GPS traces traveling down a par-
ticular road, the digital maps that our
basic application produces will always
contain that road.

For the map to be suitable for navigation, we

need to associate metadata with each edge in

the directed graph.

the cell in each of the eight compass direc-
tions. We generate this by quantizing the
bearing of the displacement vector
between each successive pair of fixes and
incrementing the count for that direction.

For each compass direction, we sum
the counts of journeys associated with
each cell on a road. Unidirectional roads
have significantly more cars traveling
parallel to the road in one direction than
in the other. Figure 1f shows which edges
the algorithm deduced as unidirectional
and as bidirectional.

Complexity. The algorithm’s overall time
complexity is O(n + m), where 7 is the
number of GPS readings and mz is the
total number of cells. Individually, the
stages involving the processing of GPS
readings are O(n) and the stages involv-
ing image processing are O(7). However,
if we can store the latest versions of the
histogram and direction data, the time
complexity of generating the new map
incorporating an incremental set of GPS
readings of size & is merely O(dn + m).

Reflecting road changes

We wanted our application to produce
digital maps that reflect the creation of
new roads, the closure of old roads, and
the change in geometry of existing roads.
Our algorithm makes it trivial to estab-

PERVASIVE computing

To reflect changes to existing roads over
time, we must place lower trust in older
data than in more recent data. This means
that vehicles must continue to travel down
roads regularly to maintain our level of
trust in the roads’ existence. To adjust the
trust levels accordingly, we could adjust
the values in the histogram by smaller
increments when processing an older GPS
trace than when processing a more recent
one. So, when a road is closed, we would
no longer receive GPS traces showing it
in use. Eventually the histogram cells’
value would fall below our binarization
threshold, causing the road to disappear
from the map. However, this implies that
a certain latency would exist between
when the road closes and when the map
reflects the closure. We could reduce this
delay if we can obtain more GPS traces
from more vehicles.

Map regeneration

For the map to be suitable for naviga-
tion, we need to associate metadata with
each edge in the directed graph. How-
ever, this task might be relatively expen-
sive because it might involve manual
effort. While metadata such as the speed
limit could be inferred from the GPS
data, metadata such as the road name
could be determined only by visiting
each road or, perhaps in the future, from

active road signs. Because we want the
application to generate up-to-date maps,
we must execute the algorithm repeti-
tively as new GPS traces come to light.
However, we need to avoid the cost of
reassociating the metadata from scratch
every time we regenerate a map.

On the basis of the knowledge ob-
tained from additional GPS traces, roads
in the old version might change their
shape, and junctions might shift position.
Furthermore, roads—and thus junctions—
might appear or disappear. This makes it
difficult to determine which roads in the
old version correspond to which roads in
the present version, thus making it diffi-
cult to transfer the old roads’ metadata
to the new roads.

To estimate which roads in the old ver-
sion correspond to which roads in the
present version, and which roads exist
only in one version, we can employ a
weighted bipartite graph. A bipartite
graph is a special type of undirected
graph that splits vertices into two disjoint
sets, with no edges between two vertices
in the same set. A weighted bipartite
graph has costs associated with its edges.

In this case, the two sets of vertices
represent the roads in the old version and
the roads in the present version. The
edges have an associated cost relating to
the similarity between a pair of roads
from those sets. So, a low-cost edge
between two vertices in the bipartite
graph means that a road in the old ver-
sion very closely corresponds to a road
in the present version. The cost metric
relates to the distance that the ends of
the road network edges have moved
between the two versions and to the sim-
ilarity in the edges’ shape.

Figures 2a and 2b show a map’s old and
new versions; figure 2¢ shows a bipartite
graph constructed from the two versions.

A minimum-cost maximal matching
on this bipartite graph will therefore
indicate which edges in the old and pre-
sent versions best correspond and will

www.computer.org/pervasive

Figure 2. Estimating which roads in an
old map correspond to which roads in a
new map: (a) an old version of a map,
(b) a new version of a map, (c) a
weighted bipartite graph of the maps,
and (d) a minimum-cost maximal match-
ing on the bipartite graph.

contain high-cost edges between the
remaining vertices. (A matching is a sub-
set of the graph’s edges with no vertices
in common. A maximal matching em-
ploys as many edges as possible. A min-
imum-cost maximal matching minimizes
the sum of its edges’ costs.) The applica-
tion can ignore these high-cost edges,
which correspond to pairs of roads in
one version of the map but not the other.
For the remaining low-cost edges, the
application can transfer metadata be-
tween the roads corresponding to the
vertices. In figure 2d, the red edge rep-
resents a discarded high-cost edge. This
matching indicates that road B has
closed and roads 1, 3, and 7 are new.

Scalability

To process GPS traces from a vast
number of vehicles covering a large geo-
graphical area, our algorithm must scale
gracefully. Fortunately, it’s highly paral-
lelizable, by dividing up space into tes-
sellating regions or tiles. (A tile comprises
many cells and might cover several
square kilometers.) Then, an individual
processing node can use the GPS traces
falling in a tile to produce a directed
graph of the road network in that tile.

Once each processing node has pro-
duced its tile’s graph, we need to stitch
the results back together into one com-
plete graph. However, we can’t expect
that roads spanning the tiles’ edges will
necessarily align and thus be contiguous
when juxtaposed. This is because we
can’t be certain about the results pro-
duced near a tile’s border when that tile
has been processed in isolation.

To solve this problem, we process a set
of tiles, each of which overlaps the adja-
cent tiles by the number of cells corre-
sponding to the region of uncertainty.

OCTOBER-DECEMBER 2006

A
B

3
c 4

5
D

6
E 7

@ | 0w cost

(c) High cost

Then, to stitch together the resulting
directed graphs from each tile, we simply
clip the roads to the tile’s central region.
A road that originally traversed two
adjacent tiles will now be contiguous, so
we join into a single edge the edges that
meet at the seam between their respec-
tive tiles. The ratio of the overlap region’s
area to that of the entire map corre-
sponds to the parallelization overhead.

We’ve tested this technique successfully
by partitioning the data used in figure 1
into four quadrants, mimicking separate
processing nodes. Processing each quad-
rant individually and stitching the result-
ing graphs together produced the same
output as processing all the data at once.

Possible system architectures
Many modern satellite navigation
units are, in fact, small computers con-
taining general-purpose processors and
hard disks. Some (such as the TomTom
GO) already use a GPRS (General Packet

Radio Service) connection from an

c 4
5

D
6
E o7
(d) L?W cost
— High cost

attached mobile telephone to download
real-time traffic reports. Navigation units
with Internet connectivity could support
our mapping application by sharing GPS
traces at regular intervals. Further in the
future, vehicles will likely also carry IEEE
802.11 communications equipment,
which could upload data when within
range of a suitable access point.

A broad spectrum of system architec-
tures could support map generation. We
can view a network of vehicles and any
infrastructure support as a set of nodes
in a distributed-memory parallel com-
puter. At one end of the spectrum is the
fully centralized approach, where vehi-
cles upload their raw GPS readings to a
central server that generates new map
data. Despite bringing benefits, particu-
larly timely data delivery and homoge-
neous results, this approach will likely
be impractical because of the communi-
cation bandwidth needed to transmit all
the GPS readings to the server.

To distribute the communications

PERVASIVE computing

51

52

NS ol e A 011

bandwidth, we can employ multiple
servers, each processing data for a dif-
ferent geographical region. Commercial
operators seeking to gather and process
data cheaply might prefer this approach.
Furthermore, to avoid requiring a costly
backhaul network between regional
servers, the vehicles themselves could dis-
tribute data across region boundaries.

small-scale cooperative driver assistance
systems such as TrafficView® and those
enabled by Network-on-Wheels.®

Performance limitations

Our application has several funda-
mental performance limitations.

GPS reading errors are typically mod-
eled by a bivariate normal distribution.

We can view a network of vehicles and any

infrastructure support as a set of nodes in a

distributed-memory parallel computer.

This is a topic of ongoing research in the
CarTel project, which uses vehicles as
high-bandwidth “data mules.”3

An increasingly common solution is
to execute some processing on the vehi-
cles themselves. For example, in the
Vehicle Data Stream Mining (VEDAS)
project, vehicles process their own sensor
data, uploading the results to a remote
central server over a low-bandwidth
wireless network.*

Another architecture is to provide
public data caches that are connected to
the Internet and store data but don’t con-
tain any processing facilities. In this sce-
nario, the vehicles must acquire as many
GPS traces as they can from the nearest
public data cache (perhaps by IEEE
802.11 communications) and execute
the map application locally. Consumers
concerned about location privacy might
prefer this approach; such a decentral-
ized scheme can limit the transmission
of personally identifiable data.

At the far end of the architecture spec-
trum is the fully peer-to-peer scenario
in which vehicular ad hoc networks
(VaNETs) share GPS and map data. Al-
though this solution won’t have any
ongoing service costs to customers, it’s
unlikely that it can gather sufficient data
to produce up-to-date, reliable maps.
Vanets will likely be more suited to

PERVASIVE computing

The standard deviation, o, in the error of
the position estimate for a modern GPS
receiver has recently been estimated as
4.25 m, giving a 95 percent confidence
interval of 8.5 m.” (Others have esti-
mated the value to be 3.5 m.8) We believe
that a reasonable minimum distance
between two adjacent parallel roads
should be 40. This means that no more
than approximately 2.5 percent of the
position estimates of vehicles at one
road’s edge can overlap with no more
than approximately 2.5 percent of the
position estimates of vehicles at the other
road’s nearest edge. If this limit isn’t
observed, the region between the roads
might be filled with stray GPS fixes, caus-
ing no discernable gap between the roads
after thresholding. For example, with &
=4 m, the minimum road spacing toler-
ated is approximately 16 m.

The distribution of GPS readings for
vehicles traveling in all lanes of a road
won’t be normal. However, we can ap-
proximate it using a multimodal distri-
bution consisting of one normal distri-
bution per lane. We assume that this
distribution’s underlying mean is on the
road’s centerline (roughly, that the traf-
fic volume is evenly distributed about
the centerline). By the central limit the-
orem, the error on the mean of the GPS
readings, when compared with the

road’s actual centerline, will be normally
distributed. Also, its standard deviation
will decrease at a rate of 1/n for an n-
fold increase in the number of samples.
So, with sufficient samples, GPS data
becomes an accurate predictor of the
real centerline.

More specifically, we can model the
distribution of GPS samples collected
from a two-lane road as a distribution
(N(ty, 0%) + N(itp, 62))/2, where 1; and
W, are the positions of the lanes’ center-
lines and the mean is the road’s center-
line. By the central limit theorem, with
73 samples, the estimate of the road’s
centerline with the lanes’ centers 3 m
apart will be within 1 m of the true posi-
tion, 95 percent of the time.

High GPS sampling rates are desir-
able. Ideally, the sampling rate should
be such that when an abrupt change of
direction occurs, consecutive position
fixes are no more than one cell width
apart. This corresponds to a frequency
of v/w for maximum cornering speed v
and cell width w. For a cell width of a
few meters, a 1 Hz sampling rate typi-
cally gives adequate performance. With
lower frequencies, when the samples
are linearly interpolated, the change of
direction won’t be as sharp as in real-
ity. When a vehicle is traveling rapidly,
the distance between consecutive fixes
will be larger, but abrupt direction
changes aren’t possible owing to phys-
ical limits on deceleration. To decrease
the volume of GPS data that a vehicle
collects, we could adopt a strategy such
as recording only the points where the
direction changes substantially.

Roads with little traffic volume will
require more time for changes to appear
in the map. Furthermore, less popular
roads might even fall under the threshold
and thus not appear in the generated
map because they aren’t distinguishable
from erroneous road segments.

When the algorithm receives a new
GPS trace, the degree to which the trace

www.computer.org/pervasive

Figure 3. A UK Ordnance Survey map of
the Cambridge area, with a generated
road map overlaid in black. The yellow
circle highlights new roads. The red circle
highlights a bridge misinterpreted as a
junction. The blue circle highlights a
misaligned junction. The green circle
highlights two junctions that have
merged into one.

affects the generated map varies. If the
trace uses roads that haven’t been visited
recently, the map won’t likely be affected
because the contributions to cells in the
histogram won’t rise above the thresh-
old. On the other hand, if it uses roads
that have been recently heavily visited,
the map will be minimally affected
because the trace will have little impact
on the centerlines’ positions. Between
these two extremes, the trace will have
a more significant effect. Because of the
cost of regenerating the map, we can
choose to regenerate it only when we
have sufficient new data to significantly
affect the output. We can further reduce
the cost of executing the algorithm by
regenerating only the map parts that
have received new data.

Practical analysis

To investigate our algorithm’s efficacy
with real-world data, we performed a
practical experiment. Our application
generated the images in figures 1 and 3
from GPS traces constituting nearly one
million position readings collected by a
single vehicle that we drive in and around
Cambridge. (For more on that vehicle,
see the Works in Progress department in
this issue. We’ve also generated road
maps from other GPS data sources.)

We compared our application’s output
with a UK Ordnance Survey map of the
same region (see figure 3). Our proof-of-
concept implementation of the algorithm
takes less than two minutes to complete
on a standard desktop workstation, for a
40 km? region comprising approximately
one million cells, with approximately one
million GPS samples. In the histogram,
93 percent of the cells were empty, with

OCTOBER-DECEMBER 2006

12

M11

A

© Crown Copyright/database right 2005. An Ordnance Survey/EDINA supplied service.

22 percent of the remainder falling below
an empirically determined threshold.

According to the Cambridgeshire
County Council, approximately 1,000
vehicles per hour use a typical city-cen-
ter road.” If we need 73 samples at a par-
ticular point along a road’s length to
achieve acceptable accuracy, we should
regenerate the map 14 times per hour—
once every four minutes—with fresh
data. Because the algorithm’s time com-
plexity is linear with area, our imple-
mentation could process an area approx-
imately 80 km? every four minutes. So,
to process the entire UK, we would need
approximately 3,000 processing nodes.
However, we believe that an optimized
implementation could execute at least an
order of magnitude more quickly.

On the roads that have a sufficient
density of GPS readings, the generated
road segments align well with the OS
road segments. However, we noticed

five main differences between our map
and the OS map.

First, some road segments exist in the
generated map but not in the OS map.
These correspond to newly constructed
roads that don’t yet appear in the OS
data, justifying our claim that you can
use our algorithm to highlight the cre-
ation of new roads. The yellow circle in
figure 3 indicates such new roads.

Second, the generated segments are
much more jagged than the OS segments.
This is because the algorithm extracts the
segments from a Voronoi graph of jagged
boundaries. A topic for further research
is whether a line simplification algorithm
such as the Douglas-Peucker algorithm!®
could smooth the segments.

Third, the generated map interprets
road bridges as crossroads (see the red cir-
cle in figure 3). This is because we discard
altitude data when initially forming the
2D histogram. This problem has two

PERVASIVE computing

53

54

RIS o A N oo N 8 v1 8 s

potential solutions, which we plan to
explore. By using a 3D histogram, extract-
ing the 3D surface (using an algorithm
such as Marching Cubes'!), and produc-
ing a 3D Voronoi graph, we should find
that the two roads no longer intersect.
Alternatively, we could analyze each gen-
erated junction and determine which
turns the vehicles can actually make. The
algorithm would then interpret bridges as
crossroads with no permissible turns.

Fourth, the generated map has some
skewed junctions (see the blue circle in
figure 3). This results from the errors
inherent in the initial GPS fixes, causing
the histogram to inaccurately reflect the
true road layout. This problem is hard
to fix but might be solved by having
vehicles use accelerometers and sensor
fusion techniques to improve the loca-
tion fixes’ accuracy.

Finally, some pairs of nearby junctions
have merged (see the green circle in figure
3). This results from an excessively gross
discretization resulting from too large a
cell size or too heavy a blur. So, we can
potentially fix this by adjusting these
parameters.

Generating road maps in this way
doesn’t produce a perfect result, but nei-
ther do traditional mapmaking tech-
niques. By using data from privately
owned vehicles, we have the advantage
of being able to discover changes to the
road network. We hope that the degree
of automation will increase as we solve
the issues outlined in this section.

e plan to investigate mak-

ing the histogram’s cell

sizes adaptive, so that our

algorithm can more ac-

curately inspect areas with many GPS

readings. We also plan to analyze vehi-

cles’ direction of approach to and depar-

ture from junctions to determine the junc-
tions’ nature more precisely.

Future research on such a system’s

PERVASIVE computing

architectural design will simulate vari-
ous architectures and investigate their
applicability to applications with other
data and processing requirements. Re-
search is also necessary on social and
security issues related to such participa-
tive applications, such as protecting vehi-
cle owners’ privacy and protecting the
system from malicious users. H

ACKNOWLEDGMENTS

We thank Andrew Rice, David Cottingham, Robert
Harle, and Ripduman Sohan for useful discussions; Ri-
chard Gibbens for assistance with the statistical an-
alysis; Andrew Rice for the use of his contour follower
implementation; and Keith Farkas for his helpful advice.

REFERENCES

1. S. Yokoi, J.-I. Toriwaki, and T. Fukumura,
“An Analysis of Topological Properties of
Digitized Binary Pictures Using Local Fea-
tures,” Computer Graphics and Image Pro-
cessing, vol. 4, no. 1, 1975, pp. 63-73.

2. F. Aurenhammer, “Voronoi Diagrams—A
Survey of a Fundamental Geometric Data
Structure,” ACM Computing Surveys, vol.
23, no. 3, Sept. 1991, pp. 345-405.

3. B. Hull et al., “CarTel: A Distributed Mo-
bile Sensor Computing System,” to be pub-
lished in Proc. 4th ACM Conf. Embedded
Network Sensor Systems (SenSys 06), ACM
Press, 2006.

4. H. Kargupta et al., “Vepas: A Mobile and
Distributed Data Stream Mining System for
Real-Time Vehicle Monitoring,” Proc.
SIAM Int’l Data Mining Conf., Cambridge
Univ. Press, 2004, pp. 300-311.

5. T.Nadeem et al., “TrafficView: Traffic Data
Dissemination Using Car-to-Car Commu-
nication,” Mobile Computing and Comm.
Rev., vol. 8, no. 3,2004, pp. 6-19.

6. M. Torrent-Moreno, A. Festag, and H.
Hartenstein, “System Design for Informa-
tion Dissemination in VANETs,” Proc. 3rd
Int’l Workshop Intelligent Transportation
(WIT), Technische Universitat Hamburg-
Harburg, 2006, pp. 27-33.

7. R.Prasad and M. Ruggieri, Applied Satellite
Navigation Using GPS, GALILEO, and Aug-
mentation Systems, Artech House, 2005.

8. K.D. McDonald and C. Hegarty, “Post-
modernization GPS Performance Capabil-

Jonathan). Davies is a PhD
candidate in the University
of Cambridge’s Computer
Laboratory. His research in-
terests include intelligent
transportation systems and
sentient computing. He re-
ceived his BA in computer
science from the University
of Cambridge. Contact him at the Computer
Laboratory, 15 J) Thomson Ave., Cambridge,
CB3 OFD, UK; jjd27@cam.ac.uk; www.cl.cam.
ac.uk/~jjd27.

Alastair R. Beresford is a
research associate in the Uni-
versity of Cambridge’s Com-
| puter Laboratory and a re-
search fellow at Robinson
College. His research inter-
ests include ubiquitous sys-
tems, computer security,
and networking. He received
his PhD in engineering from the University of
Cambridge. Contact him at the Computer Lab-
oratory, 15] Thomson Ave., Cambridge, CB3
OFD, UK; arb33@cam.ac.uk; www.cl.cam.ac.uk/
~arb33.

Andy Hopper is a professor
of computer technology and
the department head in the
University of Cambridge’s
Computer Laboratory. His
research interests include
network design and sustain-
able and mobile computing.
He received his PhD in com-
puter science from the University of Cambridge.
He’s a fellow of the Royal Academy of Engineer-
ing and the Royal Society and is a trustee of the
Institution of Engineering and Technology. Con-
tact him at the Computer Laboratory, 15]
Thomson Ave., Cambridge, CB3 OFD, UK;
ah12@cam.ac.uk; www.cl.cam.ac.uk/~ah12.

ities,” Proc. IAIN World Congress and the
ION 56th Ann. Meeting, Inst. of Naviga-
tion, 2000, pp. 242-249.

9. 2005 Traffic Monitoring Report, Cam-
bridgeshire County Council, 2006, www.
cambridgeshire.gov.uk/transport/
monitoring/network/traffic+monitoring+
report.htm.

10. D.H. Douglas and T.K. Peucker, “Algo-
rithms for the Reduction of the Number of
Points Required to Represent a Line or Its
Caricature,” The Canadian Cartographer,
vol. 10, no. 2, 1973, pp. 112-122.

11. W.E. Lorensen and H.E. Cline, “Marching
Cubes: A High Resolution 3D Surface Con-
struction Algorithm,” SiGGrapH Computer
Graphics, vol. 21, no. 4, 1987, pp. 163-169.

www.computer.org/pervasive

