
An Invitation to
Nominal Domain Theory

Andrew Pitts

Computer Laboratory

1/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

2/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

I Nom is “just” a concrete presentation of
Schanuel’s atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

2/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

I Nom is “just” a concrete presentation of
Schanuel’s atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

2/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

I Nom is “just” a concrete presentation of
Schanuel’s atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

I Nom was one of two independent solutions circa
1999 for giving syntax/α an initial algebra
semantics.

2/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

I Nom is “just” a concrete presentation of
Schanuel’s atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

I Nom was one of two independent solutions circa
1999 for giving syntax/α an initial algebra
semantics.

2/15

Atoms, permutations and actions

I A = fixed, countably infinite set, whose elements
will be called atoms.

I G = group of all finite permutations of A.

I G-set = set X + action

(π, x) ∈ G × X 7→ π · x ∈ X

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

3/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

Lemma: If x ∈ X has a finite support, then it has a
smallest one, supp(x).

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

A nominal set is a G-set all of whose elements have a
finite support.

Motivating example: for a λ-term t

supp(t) = {free variables of t}

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

A nominal set is a G-set all of whose elements have a
finite support.

Another example, nominal set of atoms: A + action
π · a , π(a), for which

supp(a) = {a}

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

A nominal set is a G-set all of whose elements have a
finite support.

Notation: Nom = category of nominal sets
and equivariant functions.

4/15

Finite support

A finite set of atoms a ⊂ A supports x ∈ X if
(a a′) · x = x, for all a, a′ ∈ A − a.

A nominal set is a G-set all of whose elements have a
finite support.

Notation: Nom = category of nominal sets
and equivariant functions.

4/15

Nom is a topos

I Finite limits and NNO: created by forgetful functor
Nom → Set.

I Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}.

5/15

Nom is a topos

I Finite limits and NNO: created by forgetful functor
Nom → Set.

I Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}.

5/15

Nom is a topos

I Finite limits and NNO: created by forgetful functor
Nom → Set.

I Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}.

I Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
(π · f)(x) = π · (f (π−1 · x)).

5/15

First-order logic (and arithmetic) in Nom is just like for
Set. For example:

I Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

6/15

First-order logic (and arithmetic) in Nom is just like for
Set. For example:

I Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

I For all: if Jφ(x, y)K = S ∈ Pfs(X × Y), then
J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}.

6/15

Higher-order logic in Nom is like higher-order logic in
Set, except that we have to restrict to finitely supported
sets and functions when forming powersets and
exponentials

7/15

Higher-order logic in Nom is like higher-order logic in
Set, except that we have to restrict to finitely supported
sets and functions when forming powersets and
exponentials—rules out some uses of choice:

For example

n 7→ C(n) , {S ⊆ A | card(S) = n}

is a finitely (indeed, emptily) supported function from N

to non-empty elements of Pfs(Pfs(A)),

but there is no finitely supported function c from N to
Pfs(A) satisfying

∀n ∈ N. c(n) ∈ C(n)

7/15

Nominal domains

Naïve domain theory:

domain = ω-chain complete poset
with least element (cppo)

interpreted in internal HO logic of Nom.

8/15

Nominal domains
Ndom , cppo(Nom)

Objects (D, v, ·)

I (D, v) poset with ⊥
I (D, ·) nominal set

I v is equivariant wrt ·
I every finitely supported ω-chain d0 v d1 v · · · in

D has a lub

8/15

Nominal domains
Ndom , cppo(Nom)

Objects (D, v, ·)

I (D, v) poset with ⊥
I (D, ·) nominal set

I v is equivariant wrt ·
I every finitely supported ω-chain d0 v d1 v · · · in

D has a lub

8/15

Nominal domains
Ndom , cppo(Nom)

Objects (D, v, ·)

I (D, v) poset with ⊥
I (D, ·) nominal set

I v is equivariant wrt ·
I every finitely supported ω-chain d0 v d1 v · · · in

D has a lub

8/15

Nominal domains
Ndom , cppo(Nom)

Morphisms f : (D, v, ·) ((D′ v, ·)

I f is monotone and strict

I f is equivariant

I f preserves lubs of finitely supported ω-chains.

8/15

Nominal domains
Ndom , cppo(Nom)

Recursively defined objects

Minimal invariants µ(F) for locally continuous functors

F : Ndomop × Ndom → Ndom

exist via the usual limit-colimit construction:

8/15

Nominal domains
Ndom , cppo(Nom)

Recursively defined objects

Minimal invariants µ(F) for locally continuous functors

F : Ndomop × Ndom → Ndom

exist via the usual limit-colimit construction:

8/15

Nominal domains
Ndom , cppo(Nom)

Recursively defined objects

Minimal invariants µ(F) for locally continuous functors

F : Ndomop × Ndom → Ndom

exist via the usual limit-colimit construction:

µ(F) consists of compatible and finitely supported
sequences (dn ∈ F(n) | n < ω),

where

{

F(0) , ∅⊥

F(n+1) , F(F(n), F(n))
8/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus :

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e

9/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus :

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e

9/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus + Felleisen-style SOS:

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e
Frame-stacks s ::= id | s ◦ (λx e)

Termination relation 〈s, e〉↓ between closed frame-stacks
and closed expressions inductively defined by

〈id, v〉↓

〈s, e[v/x]〉↓

〈s ◦ (λx e), v〉↓

〈s, a〉↓ a /∈ s

〈s, new〉↓
etc.

9/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus :

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e
Frame-stacks s ::= id | s ◦ (λx e)

Den sem in Ndom:











V = A⊥ ⊕ (V (E)

E = S (1⊥

S = V (1⊥

JnewK ∈ E = S (1⊥ maps each f ∈ S = V (1⊥ to

JnewK(f) , f (a) for some/any a /∈ supp(f)

9/15

Example: dynamic allocation

JnewK ∈ E = S (1⊥ maps each f ∈ S = V (1⊥ to

JnewK(f) , f (a) for some/any a /∈ supp(f)

9/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus :

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e
Frame-stacks s ::= id | s ◦ (λx e)

Termination relation 〈s, e〉↓ between closed frame-stacks
and closed expressions

Theorem (“computational adequacy”).

〈s, e〉↓ ⇔ JeK(JsK) = >

where 1⊥ = {>, ⊥}.
9/15

Example: dynamic allocation

Untyped Pitts-Stark ν-calculus :

Values v ::= x | a | λx e
Expressions e ::= v | new | v v | let x = e in e |

if v = v then e else e
Frame-stacks s ::= id | s ◦ (λx e)

Termination relation 〈s, e〉↓ between closed frame-stacks
and closed expressions

Theorem (“computational adequacy”).

〈s, e〉↓ ⇔ JeK(JsK) = >

where 1⊥ = {>, ⊥}.
9/15

Example:
normalization-by-evaluation (NBE)

First have to describe the nominal domain [A]D of
name-bindings associated with each D ∈ Ndom. . .

10/15

Name-binding

[A](−) : Ndom → Ndom

Locally continuous functor given by
[A]D , (A × D)/ �, where pre-order � is:

(a, d) � (a′, d′) , (a a′′) · d v (a′ a′′) · d′

for some/any
a′′ /∈ supp(a, d, a′, d′)

Write 〈a〉d for the equivalence class of (a, d).

11/15

Name-binding

[A](−) : Ndom → Ndom

Locally continuous functor given by
[A]D , (A × D)/ �, where pre-order � is:

(a, d) � (a′, d′) , (a a′′) · d v (a′ a′′) · d′

for some/any
a′′ /∈ supp(a, d, a′, d′)

Write 〈a〉d for the equivalence class of (a, d).

11/15

Name-binding

[A](−) : Ndom → Ndom

Locally continuous functor given by
[A]D , (A × D)/ �, where pre-order � is:

(a, d) � (a′, d′) , (a a′′) · d v (a′ a′′) · d′

for some/any
a′′ /∈ supp(a, d, a′, d′)

Write 〈a〉d for the equivalence class of (a, d).

11/15

Name-binding

[A](−) : Ndom → Ndom

Since locally continuous, can use [A](−) in recursive
domain equations. E.g.

L = A⊥ ⊕ (L ⊗ L) ⊕ ([A]L)

Theorem. L is isomorphic to the flat nominal domain
Λ⊥, where Λ = nominal set of λ-terms (mod α).

11/15

Name-binding

[A](−) : Ndom → Ndom

Since locally continuous, can use [A](−) in recursive
domain equations. E.g.

L = A⊥ ⊕ (L ⊗ L) ⊕ ([A]L)

Theorem. L is isomorphic to the flat nominal domain
Λ⊥, where Λ = nominal set of λ-terms (mod α).

11/15

Name-binding

[A](−) : Ndom → Ndom

Since locally continuous, can use [A](−) in recursive
domain equations. E.g.

L = A⊥ ⊕ (L ⊗ L) ⊕ ([A]L)

Theorem. L is isomorphic to the flat nominal domain
Λ⊥, where Λ = nominal set of λ-terms (mod α).

11/15

Name-binding

[A](−) : Ndom → Ndom

Since locally continuous, can use [A](−) in recursive
domain equations. E.g.

L = A⊥ ⊕ (L ⊗ L) ⊕ ([A]L)

Theorem. L is isomorphic to the flat nominal domain
Λ⊥, where Λ = nominal set of λ-terms (mod α).

11/15

Example: NBE

λ-terms L = A⊥ ⊕ (L ⊗ L)⊕ ([A]L)

semantic nfs N = U ⊕(N → N)
neutrals U = A⊥ ⊕ (U ⊗ N)

normalization reify ◦ eval : L (L
reification reify : N (L
evaluation eval : L (N

reify and eval are defined by fixpoint recursion, the
interesting clause of which is:

reify(f ∈ N → N) = 〈a〉(reify(f a))
for some/any
a /∈ supp(f)

12/15

Example: NBE

λ-terms L = A⊥ ⊕ (L ⊗ L)⊕ ([A]L)

semantic nfs N = U ⊕(N → N)
neutrals U = A⊥ ⊕ (U ⊗ N)

normalization reify ◦ eval : L (L
reification reify : N (L
evaluation eval : L (N

reify and eval are defined by fixpoint recursion, the
interesting clause of which is:

reify(f ∈ N → N) = 〈a〉(reify(f a))
for some/any
a /∈ supp(f)

12/15

Topological considerations

Difficulty: name-binding construct on nominal posets,
D 7→ [A]D

I preserves “has lubs of f.s. ω-chains”, but

I does not preserve “has lubs of f.s. directed subsets”

13/15

Topological considerations

Difficulty: name-binding construct on nominal posets,
D 7→ [A]D

I preserves “has lubs of f.s. ω-chains”, but

I does not preserve “has lubs of f.s. directed subsets”

Reason: S = {dn | n ∈ N} is in Pfs(D) iff

there is a single finite set a of atoms
supporting all d ∈ S simultaneously

but in general S ∈ Pfs(D) does not have this
“uniformly bounded” property.

13/15

Topological considerations

Basing nominal domain theory on

lubs of uniformly bounded directed sets

restores D 7→ [A]D with good properties.

Used by

I Laird — FM-biorders model of ν-calculus

I Winskel-Turner — nominal semantics of
higher-order concurrent processes with name
generation

13/15

Topological considerations

Basing nominal domain theory on

lubs of uniformly bounded directed sets

restores D 7→ [A]D with good properties.

Questions:

I Does “uniformly bounded” have a characterisation
within the internal HO logic of Nom?

I Is there a useful theory of nominal Scott domains /
information systems / “domain theory in logical
form”?

13/15

Further developments

Dynamic allocation

I N Benton and B Leperchey, “Relational Reasoning in a Nominal
Semantics for Storage”, Proc. TLCA 2005 (SLNCS 3461).

I J Laird, “Sequentiality and the CPS Semantics of Fresh Names”,
Proc. MFPS 23 (ENTCS 173(2007)203–219).

I N Tzevelekos, “Full abstraction for nominal general references”,
Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).

NBE

I Sect. 6 of AMP, “Alpha-Structural Recursion and Induction”, JACM
53(2006)459–506.

I J Schwinghammer, “On Normalization by Evaluation for Object Calculi”,
Proc. TYPES’07 (SLNCS 4941(2008)173–187).

14/15

Further developments

Dynamic allocation

I N Benton and B Leperchey, “Relational Reasoning in a Nominal
Semantics for Storage”, Proc. TLCA 2005 (SLNCS 3461).

I J Laird, “Sequentiality and the CPS Semantics of Fresh Names”,
Proc. MFPS 23 (ENTCS 173(2007)203–219).

I N Tzevelekos, “Full abstraction for nominal general references”,
Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).

NBE

I Sect. 6 of AMP, “Alpha-Structural Recursion and Induction”, JACM
53(2006)459–506.

I J Schwinghammer, “On Normalization by Evaluation for Object Calculi”,
Proc. TYPES’07 (SLNCS 4941(2008)173–187).

14/15

Future applications?

Key strength of nominal sets:

finite support generalizes “set of free variables” from
syntactical data to abstract mathematical objects, such
as extensional functions.

Should try to exploit this for denotational models of
languages/logics that mix up syntax and semantics.

E.g. Programming languages involving reflection, staged
meta-programming,

Suggestions welcome!

15/15

