An Invitation to Nominal Domain Theory

Andrew Pitts

is domain theory in the internal HO logic of the category of nominal sets, $\mathcal{N}om$.

is domain theory in the internal HO logic of the category of nominal sets, $\mathcal{N}om$.

Nom is "just" a concrete presentation of Schanuel's atomic topos, oriented towards the syntax-independent, mathematical model of name-binding and freshness that it supports.

is domain theory in the internal HO logic of the category of nominal sets, $\mathcal{N}om$.

 Nom is "just" a concrete presentation of Schanuel's atomic topos, oriented towards the syntax-independent, mathematical model of name-binding and freshness that it supports.

as in "choose a fresh name"

is domain theory in the internal HO logic of the category of nominal sets, $\mathcal{N}om$.

- Nom is "just" a concrete presentation of Schanuel's atomic topos, oriented towards the syntax-independent, mathematical model of name-binding and freshness that it supports.
- Nom was one of two independent solutions circa 1999 for giving syntax/α an initial algebra semantics.

is domain theory in the internal HO logic of the category of nominal sets, $\mathcal{N}om$.

FM-set theory

 Nom is "just" a concrete presentation of Schanuel's atomic topos, oriented towards the syntax-independent, mathematical model of name-binding and freshness that it supports.
 Nom was one of two independent solutions circa 1999 for giving syntax/α an initial algebra semantics.

see Proc. LICS 1999

Atoms, permutations and actions

- A = fixed, countably infinite set, whose elements will be called atoms.
- $\mathbb{G} = \text{group of all finite permutations of } \mathbb{A}$.
- \mathbb{G} -set = set X + action

 $(\pi, x) \in \mathbb{G} \times X \mapsto \pi \cdot x \in X$

satisfying $\iota \cdot x = x$ and $\pi \cdot (\pi' \cdot x) = (\pi \pi') \cdot x$.

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$.

```
A finite set of atoms \overline{a} \subset A supports x \in X if

(a \ a') \cdot x = x, for all a, a' \in A - \overline{a}.

permutation that

transposes a and a'
```

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$. <u>Lemma</u>: If $x \in X$ has a finite support, then it has a smallest one, supp(x).

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$.

A nominal set is a \mathbb{G} -set all of whose elements have a finite support.

Motivating example: for a λ -term t

 $supp(t) = \{ free variables of t \}$

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$.

A nominal set is a \mathbb{G} -set all of whose elements have a finite support.

Another example, nominal set of atoms: \mathbb{A} + action $\pi \cdot a \triangleq \pi(a)$, for which

 $supp(a) = \{a\}$

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$.

A nominal set is a \mathbb{G} -set all of whose elements have a finite support.

Notation: $\mathcal{N}om$ = category of nominal sets and equivariant functions.

A finite set of atoms $\overline{a} \subset \mathbb{A}$ supports $x \in X$ if $(a \ a') \cdot x = x$, for all $a, a' \in \mathbb{A} - \overline{a}$.

A nominal set is a \mathbb{G} -set all of whose elements have a finite support.

Notation: $\mathcal{N}om$ = category of nominal sets and equivariant functions.

functions
$$f: X \rightarrow Y$$
 between G_T -sets satisfying $f(\pi \cdot x) = \pi \cdot (f \cdot x)$

Nom is a topos

- Finite limits and NNO: created by forgetful functor $\mathcal{N}om \rightarrow \mathcal{S}et$.
- Powerobjects: P_{fs}(X) = all subsets S ⊆ X that are finitely supported w.r.t. the action given by π ⋅ S ≜ {π ⋅ x | x ∈ S}.

Nom is a topos

Finite limits and NNO: created by forgetful functor $\mathcal{N}om \rightarrow \mathcal{S}et$.

• Powerobjects: $P_{fs}(X) = \text{all subsets } S \subseteq X$ that are finitely supported w.r.t. the action given by $\pi \cdot S \triangleq \{\pi \cdot x \mid x \in S\}.$

Not every subset is finitely supported.
E.g.
$$S \subseteq A$$
 is f.s. iff either S
or A-S is finite

Nom is a topos

- Finite limits and NNO: created by forgetful functor $\mathcal{N}om \rightarrow \mathcal{S}et$.
- Powerobjects: P_{fs}(X) = all subsets S ⊆ X that are finitely supported w.r.t. the action given by π ⋅ S ≜ {π ⋅ x | x ∈ S}.
- Exponentials: Y^X = all functions from X to Y that are finitely supported w.r.t the action given by (π ⋅ f)(x) = π ⋅ (f(π⁻¹ ⋅ x)).

First-order logic (and arithmetic) in $\mathcal{N}om$ is just like for $\mathcal{S}et$. For example:

• Negation: if $\llbracket \phi(x) \rrbracket = S \in P_{fs}(X)$, then $\llbracket \neg \phi(x) \rrbracket = X - S$. Supp(X - S) = Supp(S) First-order logic (and arithmetic) in $\mathcal{N}om$ is just like for $\mathcal{S}et$. For example:

- Negation: if $\llbracket \phi(x) \rrbracket = S \in P_{fs}(X)$, then $\llbracket \neg \phi(x) \rrbracket = X S$.
- ► For all: if $\llbracket \phi(x, y) \rrbracket = S \in P_{\text{fs}}(X \times Y)$, then $\llbracket \forall x. \phi(x, y) \rrbracket = \{ y \in Y \mid \forall x \in X. (x, y) \in S \}.$

the support of this is contained in supp(S)

Higher-order logic in *Nom* is like higher-order logic in *Set*, except that we have to restrict to finitely supported sets and functions when forming powersets and exponentials

Higher-order logic in *Nom* is like higher-order logic in *Set*, except that we have to restrict to finitely supported sets and functions when forming powersets and exponentials—rules out some uses of choice:

For example

$n \mapsto C(n) \triangleq \{S \subseteq \mathbb{A} \mid card(S) = n\}$

is a finitely (indeed, emptily) supported function from \mathbb{N} to non-empty elements of $P_{fs}(P_{fs}(\mathbb{A}))$,

but there is no finitely supported function c from \mathbb{N} to $P_{\mathrm{fs}}(\mathbb{A})$ satisfying

 $\forall n \in \mathbb{N}. c(n) \in C(n)$

Naïve domain theory:

domain = ω -chain complete poset with least element (cppo)

interpreted in internal HO logic of $\mathcal{N}om$.

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

$\underline{\text{Objects}} (D, \sqsubseteq, \cdot)$

- (D, \sqsubseteq) poset with \bot
- ► (D, ·) nominal set
- 🕨 🔄 is equivariant wrt •
- every finitely supported ω-chain d₀ ⊆ d₁ ⊆ · · · in
 D has a lub

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

$\underline{\text{Objects}} (D, \sqsubseteq, \cdot)$

- (D, \sqsubseteq) poset with \bot
- ▶ (D, ·) nominal set
- 🕨 🔚 is equivariant wrt •
- every finitely supported ω -chain $d_0 \sqsubseteq d_1 \sqsubseteq \cdots$ in D has a lub

$$\land d \subseteq d' \implies \pi \cdot d \subseteq \pi \cdot d'$$

N.B. this implies that $\pi \cdot l = l$

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

$\underline{\text{Objects}} (D, \sqsubseteq, \cdot)$

- (D, \sqsubseteq) poset with \bot
- ▶ (D, ·) nominal set
- 🕨 🔄 is equivariant wrt •
- every finitely supported ω -chain $d_0 \sqsubseteq d_1 \sqsubseteq \cdots$ in *D* has a lub

So (D, Ξ) may be incomplete externally - e.g. $(P_{fin}(R), \Xi)$ > chain is f.s. iff there's a single finite set of atoms supporting <u>all</u> the d_n

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

$\underline{\text{Morphisms}} f: (D, \sqsubseteq, \cdot) \multimap (D' \sqsubseteq, \cdot)$

- f is monotone and strict
- f is equivariant
- f preserves lubs of finitely supported ω -chains.

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

Recursively defined objects

Minimal invariants $\mu(F)$ for locally continuous functors

$F: \mathcal{N}dom^{op} \times \mathcal{N}dom \to \mathcal{N}dom$

exist via the usual limit-colimit construction:

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

Recursively defined objects

Minimal invariants $\mu(F)$ for locally continuous functors

 $F: \mathcal{N}dom^{op} \times \mathcal{N}dom \to \mathcal{N}dom^{'}$

exist via the usual limit-colimit construction:

= enriched over Gpo(Nom)

$\mathcal{N}dom \triangleq cppo(\mathcal{N}om)$

Recursively defined objects

Minimal invariants $\mu(F)$ for locally continuous functors

$F: \mathcal{N}dom^{op} \times \mathcal{N}dom \to \mathcal{N}dom$

exist via the usual limit-colimit construction:

 $\mu(F)$ consists of compatible and finitely supported sequences $(d_n \in F^{(n)} \mid n < \omega)$,

where
$$\begin{cases} F^{(0)} & \triangleq \emptyset_{\perp} \\ F^{(n+1)} & \triangleq F(F^{(n)}, F^{(n)}) \end{cases}$$

Untyped Pitts-Stark ν -calculus :

Values	${\mathcal V}$::=	$x \mid a \mid \lambda x e$
Expressions	е	::=	$v \mid \text{new} \mid v v \mid \text{let} x = e \text{ in } e \mid$
			$ ext{if } v = v ext{ then } e ext{else } e$

Untyped Pitts-Stark ν -calculus + Felleisen-style SOS:

Values	${\mathcal V}$::=	$x \mid a \mid \lambda x e$
Expressions	e	::=	$v \mid \texttt{new} \mid v v \mid \texttt{let} x = e \texttt{ in } e \mid$
			$ ext{if } v = v ext{ then } e ext{else } e$
Frame-stacks	S	::=	$id \mid s \circ (\lambda x e)$

Termination relation $\langle s, e \rangle \downarrow$ between closed frame-stacks and closed expressions inductively defined by

$$\frac{\langle s, e[v/x] \rangle \downarrow}{\langle id, v \rangle \downarrow} \quad \frac{\langle s, e[v/x] \rangle \downarrow}{\langle s \circ (\lambda x e), v \rangle \downarrow} \quad \frac{\langle s, a \rangle \downarrow \quad a \notin s}{\langle s, new \rangle \downarrow} \quad \text{etc.}$$

Untyped Pitts-Stark v-calculus :

Values	${\mathcal U}$::=	$x \mid a \mid \lambda x e$
Expressions	е	::=	$v \mid \text{new} \mid v v \mid \text{let} x = e \text{ in } e \mid$
			$ ext{if } v = v ext{ then } e ext{else } e$
Frame-stacks	S	::=	$\operatorname{id} \mid s \circ (\lambda x e)$

Den sem in
$$\mathcal{N}dom$$
:
$$\begin{cases} V = \mathbb{A}_{\perp} \oplus (V \multimap E) \\ E = S \multimap \mathbf{1}_{\perp} \\ S = V \multimap \mathbf{1}_{\perp} \end{cases}$$

 $\llbracket \texttt{new}
rbracket \in E = S \multimap 1_{\perp}$ maps each $f \in S = V \multimap 1_{\perp}$ to $\llbracket \texttt{new}
rbracket (f) \triangleq f(a)$ for some/any $a \notin supp(f)$

if
$$a, a' \notin supp(f)$$
, then $(a a') \cdot f = f$
and so
 $f(a) = (a a') \cdot fa$ (since $fa \in 1_{\perp} = \{T, \perp\}$)
 $= ((aa') \cdot f) ((a a') \cdot a)$
 $= f(a')$
[new] $\in E = S \longrightarrow 1$ maps each $f \in S = V \longrightarrow 1_{\perp}$ to
[new](f) $\triangleq f(a)$ for some/any $a \notin supp(f)$

Untyped Pitts-Stark v-calculus :

Values	${\mathcal V}$::=	$x \mid a \mid \lambda x e$
Expressions	е	::=	$v \mid \texttt{new} \mid v v \mid \texttt{let} x = e \texttt{ in } e \mid$
			$ ext{if } v = v ext{ then } e ext{else } e$
Frame-stacks	S	::=	$\operatorname{id} \mid s \circ (\lambda x e)$

Termination relation $\langle s, e \rangle \downarrow$ between closed frame-stacks and closed expressions

<u>Theorem</u> ("computational adequacy").

 $\langle s, e \rangle \downarrow \Leftrightarrow \llbracket e \rrbracket (\llbracket s \rrbracket) = \top$

where $1_{\perp} = \{\top, \bot\}$.

Untyped Pitts-Stark v-calculus :

Values	${\mathcal V}$::=	$x \mid a \mid \lambda x e$
Expressions	е	::=	$v \mid \texttt{new} \mid v v \mid \texttt{let} x = e \texttt{ in } e \mid$
			$ ext{if } v = v ext{ then } e ext{else } e$
Frame-stacks	S	::=	$id \mid s \circ (\lambda x e)$

Termination relation $\langle s, e \rangle \downarrow$ between closed frame-stacks and closed expressions

 $\begin{array}{ll} \underline{\text{Theorem}} (\text{``computational adequacy''}). & far from \\ \forall s, e \rangle \downarrow \Leftrightarrow [\![e]\!] ([\![s]\!]) = \top & \texttt{fully abstact} \\ (cf. \ Laived), \\ \texttt{but still useful} \\ \texttt{out still useful} \\ \texttt{(cf. Laived),} \\ \texttt{but still useful} \\ \texttt{(cf. bin well-file)} \end{array}$

Example: normalization-by-evaluation (NBE)

First have to describe the nominal domain [A]D of name-bindings associated with each $D \in \mathcal{N}dom$...

$[\mathbb{A}](-):\mathcal{N}dom \to \mathcal{N}dom$

Locally continuous functor given by $[\mathbb{A}]D \triangleq (\mathbb{A} \times D)/ \preceq$, where pre-order \preceq is: $(a,d) \preceq (a',d') \triangleq (a a'') \cdot d \sqsubseteq (a' a'') \cdot d'$ for some/any $a'' \notin supp(a,d,a',d')$

Write $\langle a \rangle d$ for the equivalence class of (a, d).

$[\mathbb{A}](-):\mathcal{N}dom \to \mathcal{N}dom$

Locally continuous functor given by $[\mathbb{A}]D \triangleq (\mathbb{A} \times D)/ \preceq$, where pre-order \preceq is: $(a,d) \preceq (a',d') \triangleq (a a'') \cdot d \sqsubseteq (a' a'') \cdot d'$ for some/any $a'' \notin supp(a,d,a',d')$

Write $\langle a \rangle d$ for the equivalence class of (a, d). fact : $supp(\langle a \rangle d) = supp(d) - a$

$[\mathbb{A}](-):\mathcal{N}dom \to \mathcal{N}dom$

Locally continuous functor given by $[\mathbb{A}]D \triangleq (\mathbb{A} \times D) / \preceq$, where pre-order \preceq is: $(a,d) \preceq (a',d') \triangleq (a a'') \cdot d \sqsubseteq (a' a'') \cdot d'$ for some/any $a'' \notin supp(a, d, a', d')$ Write $\langle a \rangle d$ for the equivalence class of (a, d). quotient makes chain completeness delicate, but... <u>Fait</u>: any f.s. chain $e_0 \subseteq e_1 \subseteq e_2 \subseteq \dots$ in [A] D takes the form $\langle a \rangle d_0 \equiv \langle a \rangle d_1 \equiv \langle a \rangle d_2 \equiv \dots$ for a single atom a and chain do Ed, Ed, E. in D

$[\mathbb{A}](-): \mathcal{N}dom \to \mathcal{N}dom$

Since locally continuous, can use $[\mathbb{A}](-)$ in recursive domain equations. E.g.

$L = \mathbb{A}_{\perp} \oplus (L \otimes L) \oplus ([\mathbb{A}]L)$

<u>Theorem</u>. *L* is isomorphic to the flat nominal domain Λ_{\perp} , where Λ = nominal set of λ -terms (mod α).

$[\mathbb{A}](-):\mathcal{N}dom \to \mathcal{N}dom$

Since locally continuous, can use $[\mathbb{A}](-)$ in recursive domain equations. E.g.

$$L = \mathbb{A}_{\perp} \oplus (L \otimes L) \oplus ([\mathbb{A}]L)$$

<u>Theorem</u>. *L* is isomorphic to the flat nominal domain Λ_{\perp} , where Λ = nominal set of λ -terms (mod α).

$[\mathbb{A}](-):\mathcal{N}dom\to\mathcal{N}dom$

Since locally continuous, can use $[\mathbb{A}](-)$ in recursive domain equations. E.g.

$$L = \mathbb{A}_{\perp} \oplus (L \bigotimes L) \oplus ([\mathbb{A}]L)$$

<u>Theorem</u>. *L* is isomorphic to the flat nominal domain Λ_{\perp} , where Λ = nominal set of λ -terms (mod α).

$[\mathbb{A}](-):\mathcal{N}dom \to \mathcal{N}dom$

Since locally continuous, can use $[\mathbb{A}](-)$ in recursive domain equations. E.g.

 $L = \mathbb{A}_{\perp} \oplus (L \otimes L) \oplus ([\mathbb{A}]L)$ <u>Theorem</u>. *L* is isomorphic to the flat nominal domain $\Lambda_{\perp}, \text{ where } \Lambda = \text{ nominal set of } \lambda \text{ terms (mod } \alpha).$

Example: NBE

 $egin{array}{rll} \lambda ext{-terms} & L &=& \mathbb{A}_ot\oplus (L\otimes L)\oplus \ ([\mathbb{A}]L) \ {
m semantic nfs} & N &=& U & \oplus (N o N) \ {
m neutrals} & U &=& \mathbb{A}_ot\oplus (U\otimes N) \end{array}$

normalizationreify \circ eval: $L \multimap L$ reificationreify: $N \multimap L$ evaluationeval: $L \multimap N$

reify and *eval* are defined by fixpoint recursion, the interesting clause of which is:

 $reify(f \in N \to N) = \langle a \rangle (reify(f a))$ for some/any $a \notin supp(f)$

Example: NBE

 $egin{array}{rll} \lambda ext{-terms} & L &=& \mathbb{A}_ot\oplus (L\otimes L)\oplus \ ([\mathbb{A}]L) \ {
m semantic nfs} & N &=& U & \oplus (N o N) \ {
m neutrals} & U &=& \mathbb{A}_ot\oplus (U\otimes N) \end{array}$

normalizationreify \circ eval: $L \multimap L$ reificationreify: $N \multimap L$ evaluationeval: $L \multimap N$

reify and *eval* are defined by fixpoint recursion, the interesting clause of which is:

 $\begin{array}{l} \operatorname{reify}(f \in N \to N) = \langle a \rangle (\operatorname{reify}(f \, a)) \\ \text{See FreshML programming example} & \text{for some/any} \\ \text{in Fig. 7 of Shinwell, Pitts & Grabbarg,} & a \notin \operatorname{supp}(f) \\ \operatorname{Pric.} & \operatorname{ICFP}'03. \end{array}$

Difficulty: name-binding construct on nominal posets, $D \mapsto [\mathbb{A}]D$

- preserves "has lubs of f.s. ω -chains", but
- does not preserve "has lubs of f.s. directed subsets"

Difficulty: name-binding construct on nominal posets, $D \mapsto [A]D$

- preserves "has lubs of f.s. ω -chains", but
- does not preserve "has lubs of f.s. directed subsets"

Reason: $S = \{d_n \mid n \in \mathbb{N}\}$ is in $P_{fs}(D)$ iff

there is a single finite set \overline{a} of atoms supporting all $d \in S$ simultaneously

but in general $S \in P_{fs}(D)$ does not have this "uniformly bounded" property.

 \Rightarrow equivalently: $\forall d \in S$, $supp(d) \subseteq supp(S)$

Basing nominal domain theory on

lubs of uniformly bounded directed sets

restores $D \mapsto [A]D$ with good properties. Used by

- Laird FM-biorders model of v-calculus
- Winskel-Turner nominal semantics of higher-order concurrent processes with name generation

Basing nominal domain theory on

lubs of uniformly bounded directed sets restores $D \mapsto [A]D$ with good properties. Questions:

- Does "uniformly bounded" have a characterisation within the internal HO logic of *Nom*?
- Is there a useful theory of nominal Scott domains / information systems / "domain theory in logical form"?

Further developments

Dynamic allocation

- ▶ N Benton and B Leperchey, "Relational Reasoning in a Nominal Semantics for Storage", Proc. TLCA 2005 (SLNCS 3461).
- J Laird, "Sequentiality and the CPS Semantics of Fresh Names", Proc. MFPS 23 (ENTCS 173(2007)203–219).
- N Tzevelekos, "Full abstraction for nominal general references", Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).

<u>NBE</u>

- Sect. 6 of AMP, "Alpha-Structural Recursion and Induction", JACM 53(2006)459–506.
- J Schwinghammer, "On Normalization by Evaluation for Object Calculi", Proc. TYPES'07 (SLNCS 4941(2008)173–187).

Further developments

Dynamic allocation

parametric logical relations meets Wdom

- → N Benton and B Leperchey, "Relational Reasoning in a Nominal Semantics for Storage", Proc. TLCA 2005 (SLNCS 3461).
 - J Laird, "Sequentiality and the CPS Semantics of Fresh Names", Proc. MFPS 23 (ENTCS 173(2007)203–219).

 N Tzevelekos, "Full abstraction for nominal general references", Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).

NBE game semantics in Wom with refinements ("strong support")

- Sect. 6 of AMP, "Alpha-Structural Recursion and Induction", JACM 53(2006)459–506.
- J Schwinghammer, "On Normalization by Evaluation for Object Calculi", Proc. TYPES'07 (SLNCS 4941(2008)173–187).

Future applications?

Key strength of nominal sets:

finite support generalizes "set of free variables" from syntactical data to abstract mathematical objects, such as extensional functions.

Should try to exploit this for denotational models of languages/logics that mix up syntax and semantics.

E.g. Programming languages involving reflection, staged meta-programming,

Suggestions welcome!