An Invitation to
Nominal Domain Theory

Andrew Pitts

778 UNIVERSITY OF
Computer Laboratory

1/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

2/15

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

» Nom is “just” a concrete presentation of
Schanuel's atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

» Nom is “just” a concrete presentation of
Schanuel's atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

r n \
as in "choose a fresh name

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

Nom is “just” a concrete presentation of
Schanuel's atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.

Nom was one of two independent solutions circa
1999 for giving syntax/a an initial algebra
semantics.

Nominal domain theory

is domain theory in the internal HO logic of the
category of nominal sets, Nom.

Nom is “just” a concrete presentation of
Schanuel's atomic topos, oriented towards the
syntax-independent, mathematical model of
name-binding and freshness that it supports.
Nom_was one of two independent solutions circa

for giving syntax/a an initial algebra
semantics.

Fia-sek oy ser Proc. Lics 1999

Atoms, permutations and actions

» A = fixed, countably infinite set, whose elements
will be called atoms.

» G = group of all finite permutations of A.
» G-set = set X + action

(r,x) eEGXX—m-x€X

satisfying t-x = x and 7w« (7t/ - x) = (7t7d’) - x.

Finite support

A finite set of atoms a C A supports x € X if
(aa’)-x=x, foralla,a’ € A —a.

4/15

Finite support

A finite set of atoms a C A supports x € X if
(aa’) -x=x, foralla,a’ € A—a.

Permwfwhw\ Aot
Wo«nsposes a onrd A/

4/15

A finite set of atoms @ C A supports x € X if
(aa’)-x=x, foralla,a’ € A—a.

Lemma: If x € X has a finite support, then it has a

smallest one, supp(x).

A finite set of atoms @ C A supports x € X if
(aa’)-x=x, foralla,a’ € A—a7a.

A nominal set is a G-set all of whose elements have a

finite support.
Motivating example: for a A-term ¢

supp(t) = {free variables of t}

A finite set of atoms @ C A supports x € X if
(aa’)-x=x, foralla,a’ € A—a7a.

A nominal set is a G-set all of whose elements have a

finite support.

Another example, nominal set of atoms: /A + action
- a2 r(a), for which

supp(a) = {a}

A finite set of atoms @ C A supports x € X if
(aa’)-x=x, foralla,a’ € A—a.

A nominal set is a G-set all of whose elements have a
finite support.

Notation: Nom = category of nominal sets
and equivariant functions.

A finite set of atoms @ C A supports x € X if
(aa’)-x=x, foralla,a’ € A—a.

A nominal set is a G-set all of whose elements have a
finite support.

Notation: Nom = category of nominal sets

and equivariant functions.

- —

]E\AV\OHUY\S f-‘XﬁY bthween @ -sebe Sa\h‘gﬁ?f

)C("'x) = "T-()Cx) 4

Nom is a topos

Finite limits and NNO: created by forgetful functor
Nom — Set.
Powerobjects: Pg(X) = all subsets S C X that are

finitely supported w.r.t. the action given by
m-S2{m-x|x€S}

Nom is a topos

» Finite limits and NNO: created by forgetful functor
Nom — Set.

» Powerobjects: P (X) = all subsets S C X that are
finitely supported w.r.t. the action given by
m-S2{m-x|x€S}

ne WMS@% s /f\'m' fv\W)UM.
Eg-. SS A s fe {&%W S
o KkS s fi\n{k

Nom is a topos

Finite limits and NNO: created by forgetful functor
Nom — Set.

Powerobjects: Pg(X) = all subsets S C X that are
finitely supported w.r.t. the action given by
m-S2{m-x|x€S}

Exponentials: YX = all functions from X to Y that
are finitely supported w.r.t the action given by

(- f)(x) =m- (f(m" - x)).

First-order logic (and arithmetic) in NMom is just like for
Set. For example:

Negation: if [¢(x)] = S € Pg(X), then
[~¢(x)] = X — 5.

Sipp (X =) = swpp(S)

First-order logic (and arithmetic) in NMom is just like for
Set. For example:

» Negation: if [¢p(x)] = S € Pg(X), then
[~¢(x)] = X — 5.

» For all: if [¢(x,y)] =S € Ps(X X Y), then
[Vx.¢(x,y)]={y €Y |Vx € X.(x,y) € S}.

;_\/__/

e Swppert 0‘? s g
ovdained wA Swﬂ) (g)

Higher-order logic in NMom is like higher-order logic in
Set, except that we have to restrict to finitely supported
sets and functions when forming powersets and
exponentials

/15

Higher-order logic in NMom is like higher-order logic in
Set, except that we have to restrict to finitely supported
sets and functions when forming powersets and
exponentials—rules out some uses of choice:

For example
n— C(n) 2 {SC A | card(S) = n}

is a finitely (indeed, emptily) supported function from IN
to non-empty elements of Pg(Pgs(A)),

but there is no finitely supported function ¢ from IN to
P (A) satisfying

Vn € N. ¢(n) € C(n)

Nominal domains

Naive domain theory:

domain = w-chain complete poset
with least element (cppo)

interpreted in internal HO logic of Nom.

Ndom = cppo(Nom)

Objects (D, G, -)

(D, C) poset with L
(D, -) nominal set
L is equivariant wrt -

every finitely supported w-chain dg L d{ L - - -

D has a lub

Ndom = cppo(Nom)

Objects (D, G, -)
(D, C) poset with L
(D, -) nominal set
L is equivariant wrt -
every finitely supported w-chain dyg C dy = - -+ in

D has a lub ,
decd' = mdc A

N.B. Hrs \'w\pl\"es bk =l =1

Ndom = cppo(Nom)

Objects (D, G, -)

(D, C) poset with L
(D, -) nominal set
L is equivariant wrt -

every finitely supported w-chain dy & d1 in
D has a lub
Cl/\ouvx \SE
< S’\ ik et J} ™S
350 (DF) .
A wwmg ol e d
exctern —e4

(Ffm(/}()) g) 8/15

Ndom = cppo(Nom)

Morphisms f : (D,C,:) — (D' C,)
f is monotone and strict
f is equivariant
f preserves lubs of finitely supported w-chains.

Ndom = cppo(Nom)

Recursively defined objects

Minimal invariants p(F) for locally continuous functors
F : Ndom® x Ndom — Ndom

exist via the usual limit-colimit construction:

Ndom = cppo(Nom)

Recursively defined objects

Minimal invariants p(F) for locally continuous functors
F : Ndom® x Ndom — Ndom

exist via the usual limit-colimit construction:

= envidned over

Cpo((/%m)

Ndom = cppo(Nom)

Recursively defined objects

Minimal invariants p(F) for locally continuous functors
F : Ndom® x Ndom — Ndom

exist via the usual limit-colimit construction:

#(F) consists of compatible and finitely supported
sequences (d, € F™ | n < w),

r(0) 20,
where Fn+1) A F(F(n)’I:(n))

Untyped Pitts-Stark v-calculus :

Values n= x| al|Axe
Expressions = v |new|vv|letx=eine

ifv =10 then eelsee

names
Untyped Pitts-Stark v-calculus ;

Values = x|al|Axe
Expressions 2= vlnew|vv|letx=eine

ifv =10 then eelsee

0\ = loraww{’\ an
nam'ca WM AL ;
]E\zi S\/\ V]‘z/me, ' u(('m'(d%

9/15

Untyped Pitts-Stark v-calculus + Felleisen-style SOS:

Values n= x| al|Axe
Expressions = v |new|vv|letx=eine|

ifv =190 then eelsee
Frame-stacks s = id|so (Axe)

Termination relation (s, e) | between closed frame-stacks
and closed expressions inductively defined by

(s, e[vlx]) | (s,a)l ads
(id,v)| (so(Axe),v)] (s,new) |

etc.

Untyped Pitts-Stark v-calculus :

Values n= x| al|Axe
Expressions = v |new|vv|letx=eine

ifv =1v theneelsee
Frame-stacks s == 1id|so (Axe)

V =A, & (V—E)
Den sem in Ndom: {E =S -1,
S =V o1,

[new] EE=S —-1, mapseach f€S=V — 1, to

[new](f) = f(a) for some/any a & supp(f)

£ aa’ ¢ supp(§),tum (aa’)f =f

So
@ = (aa')-fa <Smuz, fae 1_L=(T}J_})
= ((00)5)(@4)-a)
E)C(a()

[new] € E=S — 1)\ mapseach f€ S=V — 1, to

[new](f) = f(a) " for some/any a & supp(f)

Untyped Pitts-Stark v-calculus :

Values n= x| al|Axe

Expressions = v |new|vv|letx=eine
ifv =190 then eelsee

Frame-stacks s == 1id|so (Axe)

Termination relation (s, e) | between closed frame-stacks
and closed expressions

Theorem (“computational adequacy").

(s,e)l & [el([s]) =T
where 1, = {T, L}.

Untyped Pitts-Stark v-calculus :

Values n= x| al|Axe

Expressions = v |new|vv|letx=eine
ifv =190 then eelsee

Frame-stacks s == 1id|so (Axe)

Termination relation (s, e) | between closed frame-stacks
and closed expressions

Theorem (“computational adequacy").

(s,e)l & [el([s]) =T
where 1, = {T, L}.

Example:
normalization-by-evaluation (NBE)

First have to describe the nominal domain [A]D of
name-bindings associated with each D € Ndom. ..

10/15

[A](—) : Ndom — Ndom

Locally continuous functor given by
[A]D £ (A x D)/ <, where pre-order < is:

(a,d) < (a’,d') & (aa”)-dC (a’ a”) -d
for some/any

a’ & supp(a,d,a’,d’)
Write (a)d for the equivalence class of (a,d).

[A](—) : Ndom — Ndom

Locally continuous functor given by
[A]D £ (A x D)/ <, where pre-order < is:

(a,d) 2 (a',d') = (aa")-dC (a'a")-d’
for some/any

a’ & supp(a,d,a’,d’)
Write (a)d for the equivalence class of (a,d).

/&@ ; Swpp((a)o() = SWFP(A)‘@

[A](—) : Ndom — Ndom

Locally continuous functor given by
[A]D £ (A x D)/ <, where pre-order < is:

(a,d) < (a’,d') =& (aa”)-dC (a’ a”) -d
for some/any

a’ & supp(a,d,a’,d’)

Write for the equivalence class of (a,d).

Pk : any fs chain CC e E&E - in LA]D fakes the
‘fOfVV\ <a>d, ;<a>4|€<a>JZQ)Q)r a Siwgie atorm a
and chan doC4CHLE m D

11/15

[A](—) : Ndom — Ndom

Since locally continuous, can use [A](—) in recursive
domain equations. E.g.

L=A,9(LKRL)® ([A]L)

Theorem. L is isomorphic to the flat nominal domain

A, where A = nominal set of A-terms (mod «).

[A](—) : Ndom — Ndom

Since locally continuous, can use [A](—) in recursive
domain equations. E.g.

L=A,(LKQL)® ([A]L)

Theorem. L is isomorphic to the flat nominal domain

A, where A = nominal set of A-terms (mod «).

\/aw’ﬂla)e\c

[A](—) : Ndom — Ndom

Since locally continuous, can use [A](—) in recursive
domain equations. E.g.

L=A,(LKXL)® ([A]L)

Theorem. L is isomorphic to the flat nominal domain

A |, where A = nominal set of A-terms (mod a).

QPp]\ca/"O‘Vl ‘{'e ms

[A](—) : Ndom — Ndom

Since locally continuous, can use [A](—) in recursive
domain equations. E.g.

L=A,(LKQL)® ([A]L)

Theorem. L is isomorphic to the flat“nominal domain

A |, where A = nominal set of A<terms (mod «).

A-obostrachion Jerms

Aterms L = A, ®(LRQL)D ([A]L)

semantic nfs N = u B(N — N)

neutrals u A, & (URN)

normalization reifyoeval : L — L

reification reify : N —oL

evaluation eval : L—oN
reify and eval are defined by fixpoint recursion, the
interesting clause of which is:

reify(f € N — N) = (a) (reify(f a))

for some/any

a & supp(f)

Aterms L = A, ®(LRQL)D ([A]L)

semantic nfs N = u B(N — N)
neutrals u A ®(URQN)

normalization reifyoeval : L — L

reification reify : N —oL

evaluation eval : L—oN
reify and eval are defined by fixpoint recursion, the
interesting clause of which is:

reify(f € N — N) = (a) (reify(f a))
see FreshmL progm mmire exam for Some/a(r}y)
w Rg.F of Shinwed,Pils & Gobbay , a & supp
Pfoc.a ICFP ’03 @/ 12/15

Topological considerations

Difficulty: name-binding construct on nominal posets,
D — [A]D

» preserves “has lubs of f.s. w-chains”, but
» does not preserve “has lubs of f.s. directed subsets”

13/15

Topological considerations
Difficulty: name-binding construct on nominal posets,
D — [A]D

» preserves “has lubs of f.s. w-chains”, but
» does not preserve “has lubs of f.s. directed subsets”

Reason: S = {d, | n € N} is in P (D) iff

there is a single finite set @ of atoms
supporting all d € S simultaneously

but in general S € Pg(D) does not have this
uniformly bounded” property.

C eqpivnlinkly . [VdeS. sugpll] & sopp(S)

13/15

Topological considerations

Basing nominal domain theory on
lubs of uniformly bounded directed sets

restores D — [A]D with good properties.
Used by

Laird — FM-biorders model of v-calculus

Winskel-Turner — nominal semantics of
higher-order concurrent processes with name
generation

13/15

Topological considerations

Basing nominal domain theory on

lubs of uniformly bounded directed sets
restores D — [A]D with good properties.
Questions:

Does “uniformly bounded” have a characterisation
within the internal HO logic of Nom?

Is there a useful theory of nominal Scott domains /
information systems / “domain theory in logical
form™?

13/15

Further developments

Dynamic allocation

N Benton and B Leperchey, “Relational Reasoning in a Nominal
Semantics for Storage”, Proc. TLCA 2005 (SLNCS 3461).

J Laird, “Sequentiality and the CPS Semantics of Fresh Names”,
Proc. MFPS 23 (ENTCS 173(2007)203-219).

N Tzevelekos, “Full abstraction for nominal general references”,
Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).

Sect. 6 of AMP, "Alpha-Structural Recursion and Induction”, JACM
53(2006)459-506.

J Schwinghammer, “On Normalization by Evaluation for Object Calculi”,
Proc. TYPES'07 (SLNCS 4941(2008)173-187).

14/15

Further developments
Dynamic aIIocation/J %ﬁ"@jﬂ;cd relations

g N Benton and B Leperchey, “Relational Reasoning in a Nominal
Semantics for Storage”, Proc. TLCA 2005 (SLNCS 3461).

> J Laird, “Sequentiality and the CPS Semantics of Fresh Names”,
Proc. MFPS 23 (ENTCS 173(2007)203-219).

N Tzevelekos, “Full abstraction for nominal general references”,
Proc. LICS 2007 (building on Abramsky et al, Proc. LICS 2004).
game semmnhcs n Wom wth

NBE rRf tmants (" S*mn} Swppcr{%")

> Sect. 6 of AMP, “Alpha-Structural Recursion and Induction”, JACM
53(2006)459-506.

» J Schwinghammer, “On Normalization by Evaluation for Object Calculi”,
Proc. TYPES'07 (SLNCS 4941(2008)173-187).

14/15

Key strength of nominal sets:
finite support generalizes “set of free variables” from

syntactical data to abstract mathematical objects, such
as extensional functions.

Should try to exploit this for denotational models of
languages/logics that mix up syntax and semantics.

E.g. Programming languages involving reflection, staged
meta-programming,

Suggestions welcome!

