
CTCS2004, 1

Nominal Semantics of
Abstraction and Restriction

Andrew Pitts
University of Cambridge
Computer Laboratory

Unofficial title:

The Joy of Name-Swapping

CTCS2004, 1

Nominal Semantics of
Abstraction and Restriction

Andrew Pitts
University of Cambridge
Computer Laboratory

Unofficial title:

The Joy of Name-Swapping

CTCS2004, 2

Aim: describe the topos of nominal sets
(a simple reformulation of Schanuel’s atomic topos)
as a model for computations on syntactical
structures involving
■ freshness of names
(as in “choose a fresh name”)

■ name-abstraction
(e.g. as in λ-calculus / α-equivalence)

■ name-restriction
(e.g. as in the π-calculus / structural congruence)

The key idea is equivariance: regard names as
atoms and enforce anonymity in binding constructs
through invariance under atom-permutations.

CTCS2004, 2

Aim: describe the topos of nominal sets
(a simple reformulation of Schanuel’s atomic topos)
as a model for computations on syntactical
structures involving
■ freshness of names
(as in “choose a fresh name”)

■ name-abstraction
(e.g. as in λ-calculus / α-equivalence)

■ name-restriction
(e.g. as in the π-calculus / structural congruence)

The key idea is equivariance: regard names as
atoms and enforce anonymity in binding constructs
through invariance under atom-permutations.

CTCS2004, 3

Atoms, permutations and actions

■ A , fixed, countably infinite set, whose elements will
be called atoms.

■ G , group of all finite permutations of A.
■ An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

■ G-set , set X + action of G on X .
■ A function f : X → Y between G-sets is
equivariant if f(π · x) = π · (f x), for all π ∈ G and
x ∈ X .

CTCS2004, 3

Atoms, permutations and actions

■ A , fixed, countably infinite set, whose elements will
be called atoms.

■ G , group of all finite permutations of A.

■ An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

■ G-set , set X + action of G on X .
■ A function f : X → Y between G-sets is
equivariant if f(π · x) = π · (f x), for all π ∈ G and
x ∈ X .

CTCS2004, 3

Atoms, permutations and actions

■ A , fixed, countably infinite set, whose elements will
be called atoms.

■ G , group of all finite permutations of A.
■ An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

■ G-set , set X + action of G on X .
■ A function f : X → Y between G-sets is
equivariant if f(π · x) = π · (f x), for all π ∈ G and
x ∈ X .

CTCS2004, 3

Atoms, permutations and actions

■ A , fixed, countably infinite set, whose elements will
be called atoms.

■ G , group of all finite permutations of A.
■ An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

■ G-set , set X + action of G on X .

■ A function f : X → Y between G-sets is
equivariant if f(π · x) = π · (f x), for all π ∈ G and
x ∈ X .

CTCS2004, 3

Atoms, permutations and actions

■ A , fixed, countably infinite set, whose elements will
be called atoms.

■ G , group of all finite permutations of A.
■ An action of G on a set X is a function

G×X → X written (π, x) 7→ π · x

satisfying ι · x = x and π · (π′ · x) = (ππ′) · x.

■ G-set , set X + action of G on X .
■ A function f : X → Y between G-sets is
equivariant if f(π · x) = π · (f x), for all π ∈ G and
x ∈ X .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

Lemma: a is not free in t iff · t =α t holds for all
but finitely many atoms a′.

So what? Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

N.B. binding and non-binding constructs are treated just the same

Lemma: a is not free in t iff · t =α t holds for all
but finitely many atoms a′.

So what? Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

Lemma: a is not free in t iff (a a′) · t =α t holds for
all but finitely many atoms a′.

So what? Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

Lemma: a is not free in t iff (a a′) · t =α t holds for
all but finitely many atoms a′.

permutation transposing a and a′

So what? Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

Lemma: a is not free in t iff (a a′) · t =α t holds for
all but finitely many atoms a′.

So what?

Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 4

Languages are G-sets

For example, λ-terms modulo α-equivalence

{t ::= a | λa t | t t}/=α

with G-action recursively defined by:

π · a =α π(a)

π · (λa t) =α λπ(a) (π · t)

π · (t t′) =α (π · t)(π · t′)

Lemma: a is not free in t iff (a a′) · t =α t holds for
all but finitely many atoms a′.

So what? Lemma suggests a syntax-independent
notion of freshness (“not free in”) relation. . .

CTCS2004, 5

Finite support

Definition: a finite set of atoms a ⊂ A supports an
element x ∈ X of a G-set X if (a a′) · x = x holds
for all a, a′ ∈ A− a.

A nominal set is a G-set all of whose elements have
a finite support.

CTCS2004, 5

Finite support

Definition: a finite set of atoms a ⊂ A supports an
element x ∈ X of a G-set X if (a a′) · x = x holds
for all a, a′ ∈ A− a.

A nominal set is a G-set all of whose elements have
a finite support.

Lemma: If x ∈ X has a finite support, then it has a
smallest one, written supp(x) .

E.g. for a λ-term, supp(t) = {free variables of t}.

CTCS2004, 5

Finite support

Definition: a finite set of atoms a ⊂ A supports an
element x ∈ X of a G-set X if (a a′) · x = x holds
for all a, a′ ∈ A− a.

A nominal set is a G-set all of whose elements have
a finite support.

Nset = category of nominal sets and equivariant
functions.

CTCS2004, 6

Nset is a topos

■ Terminal object: 1 , {0}
action π · 0 = 0,
support supp(0) = ∅.

■ Product: X × Y , {(x, y) | x ∈ Y & y ∈ Y }
action π · (x, y) , (π · x, π · y),
support supp(x, y) = supp(x) ∪ supp(y).

■ Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}. (Nset is boolean.)

■ Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
π · f , λx ∈ X. π · (f(π−1 · x)).

CTCS2004, 6

Nset is a topos

■ Terminal object: 1 , {0}
action π · 0 = 0,
support supp(0) = ∅.

■ Product: X × Y , {(x, y) | x ∈ Y & y ∈ Y }
action π · (x, y) , (π · x, π · y),
support supp(x, y) = supp(x) ∪ supp(y).

■ Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}. (Nset is boolean.)

■ Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
π · f , λx ∈ X. π · (f(π−1 · x)).

CTCS2004, 6

Nset is a topos

■ Terminal object: 1 , {0}
action π · 0 = 0,
support supp(0) = ∅.

■ Product: X × Y , {(x, y) | x ∈ Y & y ∈ Y }
action π · (x, y) , (π · x, π · y),
support supp(x, y) = supp(x) ∪ supp(y).

■ Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}. (Nset is boolean.)

■ Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
π · f , λx ∈ X. π · (f(π−1 · x)).

CTCS2004, 6

Nset is a topos

■ Terminal object: 1 , {0}
action π · 0 = 0,
support supp(0) = ∅.

■ Product: X × Y , {(x, y) | x ∈ Y & y ∈ Y }
action π · (x, y) , (π · x, π · y),
support supp(x, y) = supp(x) ∪ supp(y).

■ Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}. (Nset is boolean.)

■ Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
π · f , λx ∈ X. π · (f(π−1 · x)).

CTCS2004, 6

Nset is a topos

■ Terminal object: 1 , {0}
action π · 0 = 0,
support supp(0) = ∅.

■ Product: X × Y , {(x, y) | x ∈ Y & y ∈ Y }
action π · (x, y) , (π · x, π · y),
support supp(x, y) = supp(x) ∪ supp(y).

■ Powerobjects: Pfs(X) = all subsets S ⊆ X that are
finitely supported w.r.t. the action given by
π · S , {π · x | x ∈ S}. (Nset is boolean.)

■ Exponentials: Y X = all functions from X to Y that
are finitely supported w.r.t the action given by
π · f , λx ∈ X. π · (f(π−1 · x)).

CTCS2004, 7

First-order logic (and arithmetic) in Nset is just like
for ordinary sets. For example:

■ Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

■ For all: if Jφ(x, y)K = S ∈ Pfs(X × Y), then
J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}.

CTCS2004, 7

First-order logic (and arithmetic) in Nset is just like
for ordinary sets. For example:

■ Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

(X − S is in Pfs(X) because it is supported by any
finite a that supports S.)

■ For all: if Jφ(x, y)K = S ∈ Pfs(X × Y), then
J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}.

CTCS2004, 7

First-order logic (and arithmetic) in Nset is just like
for ordinary sets. For example:

■ Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

■ For all: if Jφ(x, y)K = S ∈ Pfs(X × Y), then
J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}.

CTCS2004, 7

First-order logic (and arithmetic) in Nset is just like
for ordinary sets. For example:

■ Negation: if Jφ(x)K = S ∈ Pfs(X), then
J¬φ(x)K = X − S.

■ For all: if Jφ(x, y)K = S ∈ Pfs(X × Y), then
J∀x. φ(x, y)K = {y ∈ Y | ∀x ∈ X. (x, y) ∈ S}.

({y ∈ Y | ∀x ∈ X. (x, y) ∈ S} is in Pfs(Y),
because it is supported by any finite a that
supports S.)

CTCS2004, 8

Higher-order logic in Nset is like higher-order logic
for ordinary sets, except that we have to restrict to
finitely supported sets and functions when forming
powersets and exponentials.

CTCS2004, 8

Higher-order logic in Nset is like higher-order logic
for ordinary sets, except that we have to restrict to
finitely supported sets and functions when forming
powersets and exponentials.

For example
Tarski Fixpoint Theorem: for any monotone and
finitely supported function Φ from Pfs(X) to itself,
the usual least (pre)fixed point

µ(Φ) ,
⋂

{S ∈ Pfs(X) | Φ(S) ⊆ S}

is again finitely supported, hence in Pfs(X).

CTCS2004, 8

Higher-order logic in Nset is like higher-order logic
for ordinary sets, except that we have to restrict to
finitely supported sets and functions when forming
powersets and exponentials.

This rules out the use of choice. For example

n 7→ C(n) , {S ⊆ A | card(S) = n}

is a finitely (indeed, emptily) supported function from
N to non-empty elements of Pfs(Pfs(A)),

but there is no finitely supported function c from N

to Pfs(A) satisfying

∀n ∈ N. c(n) ∈ C(n)

CTCS2004, 9

Atom-abstraction

CTCS2004, 10

Nominal set of atom-abstractions, [A]X

[A]X , (A×X)/∼

with equivalence relation (a, x) (a′, x′) given by:

(a a′′) · x = (a′ a′′) · x′ in X , for some (or indeed
any) a′′ s.t. a′′ (a, x, a′, x′)

Write [a]x for the ∼-equivalence class of (a, x).

Action: π · [a]x = [π(a)](π · x)

(and it follows that supp([a]x) = supp(x)− {a}).

CTCS2004, 10

Nominal set of atom-abstractions, [A]X

[A]X , (A×X)/∼

with equivalence relation (a, x) ∼ (a′, x′) given by:

(a a′′) · x = (a′ a′′) · x′ in X , for some (or indeed
any) a′′ s.t. a′′ # (a, x, a′, x′)

Write [a]x for the ∼-equivalence class of (a, x).

Action: π · [a]x = [π(a)](π · x)

(and it follows that supp([a]x) = supp(x)− {a}).

CTCS2004, 10

Nominal set of atom-abstractions, [A]X

[A]X , (A×X)/∼

with equivalence relation (a, x) ∼ (a′, x′) given by:

(a a′′) · x = (a′ a′′) · x′ in X , for some (or indeed
any) a′′ s.t. a′′ #

given elements x ∈ X and y ∈ Y of nominal sets,

we write x # y to mean supp(x) ∩ supp(y) = ∅.

(a, x, a′, x′)

Write [a]x for the ∼-equivalence class of (a, x).

Action: π · [a]x = [π(a)](π · x)

(and it follows that supp([a]x) = supp(x)− {a}).

CTCS2004, 10

Nominal set of atom-abstractions, [A]X

[A]X , (A×X)/∼

with equivalence relation (a, x) ∼ (a′, x′) given by:

(a a′′) · x = (a′ a′′) · x′ in X , for some (or indeed
any) a′′ s.t. a′′ # (a, x, a′, x′)

Write [a]x for the ∼-equivalence class of (a, x).

Action: π · [a]x = [π(a)](π · x)

(and it follows that supp([a]x) = supp(x)− {a}).

CTCS2004, 10

Nominal set of atom-abstractions, [A]X

[A]X , (A×X)/∼

with equivalence relation (a, x) ∼ (a′, x′) given by:

(a a′′) · x = (a′ a′′) · x′ in X , for some (or indeed
any) a′′ s.t. a′′ # (a, x, a′, x′)

Write [a]x for the ∼-equivalence class of (a, x).

Action: π · [a]x = [π(a)](π · x)

(and it follows that supp([a]x) = supp(x)− {a}).

CTCS2004, 11

Atom-abstraction is extremely well-behaved:

equivariant functions Y → [A]X
naturally correspond to equivariant functions

{(a, y) ∈ A× Y | a # y} → X

equivariant functions [A]X → Y
naturally correspond to equivariant functions

f : A×X → Y s.t. a # f(a, x), all a, x

[A](X × Y) ∼= [A]X × [A]Y

[A](X + Y) ∼= [A]X + [A]Y

[A](Y X) ∼= ([A]Y)[A]X

CTCS2004, 12

Atom-abstraction gives the non-recursive essence of
α-equivalence.

Theorem: {t ::= a | λa t | t t}/=α

(quotient of an inductively defined set)

as an object of Nset is isomorphic to

µX (A + [A]X + X ×X)
(inductively defined nominal set).

Similarly for other languages involving binders.

This observation was the starting point for
FreshML/Fresh O’Caml—functional programming for
nominal sets and equivariant functions (Shinwell,
Gabbay & AMP, ICFP’03).

CTCS2004, 12

Atom-abstraction gives the non-recursive essence of
α-equivalence.

Theorem: {t ::= a | λa t | t t}/=α

(quotient of an inductively defined set)

as an object of Nset is isomorphic to

µX (A + [A]X + X ×X)
(inductively defined nominal set).

Similarly for other languages involving binders.

This observation was the starting point for
FreshML/Fresh O’Caml—functional programming for
nominal sets and equivariant functions (Shinwell,
Gabbay & AMP, ICFP’03).

CTCS2004, 13

Atom-restriction

CTCS2004, 14

π-Calculus restriction, νx.P

Its reduction
P [a/x]→ P ′[a/x] a /∈ fn(P, P ′)

νx. P → νx. P ′

is specific to π-calculus, but structural congruences
(α) νx. P ≡ νx′. P [x′/x] if x′ /∈ fn(P)

(γ) νx. P ≡ P if x /∈ fn(P)

(σ) νx. νx′. P ≡ νx′. νx. P

(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

are quite general properties of a “spatial” notion of
scope restriction.
(Cf. Caires & Cardelli, A spatial logic for concurrency,
CONCUR’02.)

Aim: a construct in nominal sets
satisfying (α)–(σ) that allows us to discuss scope
extrusion (ε) in a syntax-independent way.

CTCS2004, 14

π-Calculus restriction, νx.P

Its reduction
P [a/x]→ P ′[a/x] a /∈ fn(P, P ′)

νx. P → νx. P ′

is specific to π-calculus, but structural congruences
(α) νx. P ≡ νx′. P [x′/x] if x′ /∈ fn(P)

(γ) νx. P ≡ P if x /∈ fn(P)

(σ) νx. νx′. P ≡ νx′. νx. P

(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

are quite general properties of a “spatial” notion of
scope restriction.
Aim: a construct in nominal sets satisfying (α)–(σ)
that allows us to discuss scope extrusion (ε) in a
syntax-independent way.

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

Theorem: every nominal set X possesses a
freely generated restriction structure:

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

(α) νx. P ≡ νx′. P [x′/x] if x′ /∈ fn(P)

Theorem: every nominal set X possesses a
freely generated restriction structure:

X
ηX

νX (νX, ρX)

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

(γ) νx. P ≡ P if x /∈ fn(P)

Theorem: every nominal set X possesses a
freely generated restriction structure:

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

(σ) νx. νx′. P ≡ νx′. νx. P

Theorem: every nominal set X possesses a
freely generated restriction structure:

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

Theorem: every nominal set X possesses a
freely generated restriction structure:

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

Theorem: every nominal set X possesses a
freely generated restriction structure:

X
ηX

∀

νX (νX, ρX)

R (R, ρ)

CTCS2004, 15

Nominal restriction structure, (R, ρ)

is given by a nominal set R and an equivariant
function ρ : [A]R→ R

satisfying

{

a # r ⇒ ρ[a]r = r

ρ[a]ρ[a′]r = ρ[a′]ρ[a]r

Theorem: every nominal set X possesses a
freely generated restriction structure:

X
ηX

∀

νX

∃!

(νX, ρX)

preserving restriction

R (R, ρ)

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

CTCS2004, 16

Construction of νX

νX , (X × PfinA

finite sets a of atoms

)/∼

with equivalence relation (x, a) (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

x

· ·
supp(x) − a supp(x) ∩ a

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

· · · · · · · · · · · · · ·
supp(x) − a

· · · · · · · · · · ·
π

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

· · · · · · · · · · · · · ·
supp(x) − a

· · · · · ·
· · · · · π

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

· · · · · · · · · · · · · ·
supp(x) − a

· · · ·
· · · ·
· · · π

CTCS2004, 16

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

π · x

· · · · · · · · · · · · · ·
supp(x) − a′ supp(x) ∩ a′

· · ·
· · ·
· · ·
· ·

CTCS2004, 17

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

Write xra for the ∼-equivalence class of (x, a).

G-action is: π · (xra) , (π · x)r{π(a) | a ∈ a}

(and it follows that supp(xra) = supp(x)− a).

CTCS2004, 17

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

Write xra for the ∼-equivalence class of (x, a).

G-action is: π · (xra) , (π · x)r{π(a) | a ∈ a}

(and it follows that supp(xra) = supp(x)− a).

CTCS2004, 17

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

Write xra for the ∼-equivalence class of (x, a).

G-action is: π · (xra) , (π · x)r{π(a) | a ∈ a}

(and it follows that supp(xra) = supp(x)− a).

Restriction operation ρX : [A]νX → νX is:

ρX[a](xra) , xr({a} ∪ a)

CTCS2004, 17

Construction of νX

νX , (X × PfinA)/∼

with equivalence relation (x, a) ∼ (x′, a′) given by:

supp(x)− a = supp(x′)− a′ and π · x = x′

for some π ∈ G with π # supp(x)− a

Write xra for the ∼-equivalence class of (x, a).

G-action is: π · (xra) , (π · x)r{π(a) | a ∈ a}

(and it follows that supp(xra) = supp(x)− a).

Insertion operation ηX : X → νX is:

ηX(x) , xr∅

CTCS2004, 18

Abstraction from restriction

The equivalence relation used to construct νX
seems quite similar to that used to construct [A]X .
What is the relationship?

Lemma: The subset of ν(A×X) given by

{(a, x)r{a} | a ∈ A & x ∈ X}

is isomorphic to [A]X via the correspondence

(a, x)r{a} ←→ [a]x

CTCS2004, 18

Abstraction from restriction

The equivalence relation used to construct νX
seems quite similar to that used to construct [A]X .
What is the relationship?

Lemma: The subset of ν(A×X) given by

{(a, x)r{a} | a ∈ A & x ∈ X}

is isomorphic to [A]X via the correspondence

(a, x)r{a} ←→ [a]x

CTCS2004, 19

Scope extrusion

For π-calculus, symmetry of (−)|(−) plus
(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

says operation (−)|(−) on {π-processes}/≡ is a
bimorphism of restriction structures:
equivariant function (−)|(−) : R1 ×R2 → R3

satisfying

{

(ρ1[a]r)|r′ = ρ3[a](r|r′) if a # r′

r|(ρ2[a]r′) = ρ3[a](r|r′) if a # r

Theorem: Given R1 & R2, there is a universal
bimorphism

CTCS2004, 19

Scope extrusion

For π-calculus, symmetry of (−)|(−) plus
(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

says operation (−)|(−) on {π-processes}/≡ is a
bimorphism of restriction structures:
equivariant function (−)|(−) : R1 ×R2 → R3

satisfying

{

(ρ1[a]r)|r′ = ρ3[a](r|r′) if a # r′

r|(ρ2[a]r′) = ρ3[a](r|r′) if a # r

Theorem: Given R1 & R2, there is a universal
bimorphism R1 ×R2 R1 : R2

CTCS2004, 19

Scope extrusion

For π-calculus, symmetry of (−)|(−) plus
(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

says operation (−)|(−) on {π-processes}/≡ is a
bimorphism of restriction structures:
equivariant function (−)|(−) : R1 ×R2 → R3

satisfying

{

(ρ1[a]r)|r′ = ρ3[a](r|r′) if a # r′

r|(ρ2[a]r′) = ρ3[a](r|r′) if a # r

Theorem: Given R1 & R2, there is a universal
bimorphism R1 ×R2

∀ bimorphisms

R1 : R2

R3

CTCS2004, 19

Scope extrusion

For π-calculus, symmetry of (−)|(−) plus
(ε) (νx. P)|P ′ ≡ νx. (P |P ′) if x /∈ fn(P ′)

says operation (−)|(−) on {π-processes}/≡ is a
bimorphism of restriction structures:
equivariant function (−)|(−) : R1 ×R2 → R3

satisfying

{

(ρ1[a]r)|r′ = ρ3[a](r|r′) if a # r′

r|(ρ2[a]r′) = ρ3[a](r|r′) if a # r

Theorem: Given R1 & R2, there is a universal
bimorphism R1 ×R2

∀ bimorphisms

R1 : R2

∃! morphism

R3

CTCS2004, 20

????

Is there a (useful!) initial algebra semantics for
“spatial” calculi/logics (e.g. π, ambients, TQL, . . .)
using restriction structures in nominal sets?

■ Use [A](−) for domain of name-binding operators.
■ Use − :− for domain of binary, spatial operators.
■ Use −×− for domain of binary, non-spatial
operators.

(Cf. presheaf semantics of π-calculus:
Stark (LICS’96), Fiore-Moggi-Sangiorgi (LICS’96).)

CTCS2004, 21

Equations + freshness constraints = ?

In Nset we can model equational theories
conditioned by freshness, e.g.:

a′#x ` R(a, x) = R(a′, (a a′) · x)

` R(a, R(a′x)) = R(a′, R(a, x))

a#x ` R(a, x) = x

CTCS2004, 21

Equations + freshness constraints = ?

In Nset we can model equational theories
conditioned by freshness, e.g.:

a′#x ` R(a, x) = R(a′, (a a′) · x)

` R(a, R(a′x)) = R(a′, R(a, x))

a#x ` R(a, x) = x

What is the categorical logic of this kind of theory?
Is there a notion of classifying category (internal to
Nset) for this kind of theory within Nset?

(Cf. Urban, Gabbay & AMP, Nominal Unification, TCS
to appear.)

CTCS2004, 22

Dynamic allocation monads

X 7→ (νX, ρX) reflects nominal sets into nominal
restriction structures. So ν(−) is a monad on Nset.

In fact the explicit construction of νX shows that
ν(−) corresponds to one of Moggi’s dynamic
allocation monads on a functor-category, used for
semantics of name creation.

Abramsky-Ghica-Murawski-Ong-Stark (LICS’04) make
use of nominal sets and ν(−) to give a fully abstract
game semantics for the Pitts-Stark ν-calculus.

What about old-fashioned denotational semantics,
using domains? I’m glad you asked. . .

CTCS2004, 22

Dynamic allocation monads

X 7→ (νX, ρX) reflects nominal sets into nominal
restriction structures. So ν(−) is a monad on Nset.

In fact the explicit construction of νX shows that
ν(−) corresponds to one of Moggi’s dynamic
allocation monads on a functor-category, used for
semantics of name creation.

Abramsky-Ghica-Murawski-Ong-Stark (LICS’04) make
use of nominal sets and ν(−) to give a fully abstract
game semantics for the Pitts-Stark ν-calculus.

What about old-fashioned denotational semantics,
using domains? I’m glad you asked. . .

CTCS2004, 22

Dynamic allocation monads

X 7→ (νX, ρX) reflects nominal sets into nominal
restriction structures. So ν(−) is a monad on Nset.

In fact the explicit construction of νX shows that
ν(−) corresponds to one of Moggi’s dynamic
allocation monads on a functor-category, used for
semantics of name creation.

Abramsky-Ghica-Murawski-Ong-Stark (LICS’04) make
use of nominal sets and ν(−) to give a fully abstract
game semantics for the Pitts-Stark ν-calculus.

What about old-fashioned denotational semantics,
using domains?

I’m glad you asked. . .

CTCS2004, 22

Dynamic allocation monads

X 7→ (νX, ρX) reflects nominal sets into nominal
restriction structures. So ν(−) is a monad on Nset.

In fact the explicit construction of νX shows that
ν(−) corresponds to one of Moggi’s dynamic
allocation monads on a functor-category, used for
semantics of name creation.

Abramsky-Ghica-Murawski-Ong-Stark (LICS’04) make
use of nominal sets and ν(−) to give a fully abstract
game semantics for the Pitts-Stark ν-calculus.

What about old-fashioned denotational semantics,
using domains? I’m glad you asked. . .

CTCS2004, 23

Domain theory in Nset

CTCS2004, 24

ω-Cpos inNset

Conventional domain theory in Nset, up to and
including the construction of recursively defined
domains, is no harder than in Set .

N.B. an internal ω-chain is just an increasing
sequence d0 v d1 v · · · for which there is a single
finite set of atoms supporting all the dn.
So ω-cpos in Nset may be incomplete
externally—e.g. (Pfin(A),⊆).

Problem:
Unlike [A]D, the free restriction structure νD is not
always an ω-cpo in Nset even if D is.
(Partly explains why dynamic allocation monads on
functor categories have had limited application.)

Solution:
Continuous function domain D→{⊥,>} possesses a
restriction structure; hence we can use the
continuation monad ((−)→{⊥,>})→{⊥,>}
to give a denotational semantics of dynamic
allocation + fixpoint recursion.
See: Shinwell-Pitts, “On a Monadic Semantics for
Freshness” (APPSEM’04).

CTCS2004, 24

ω-Cpos inNset

Problem:
Unlike [A]D, the free restriction structure νD is not
always an ω-cpo in Nset even if D is.
(Partly explains why dynamic allocation monads on
functor categories have had limited application.)

Solution:
Continuous function domain D→{⊥,>} possesses a
restriction structure; hence we can use the
continuation monad ((−)→{⊥,>})→{⊥,>}
to give a denotational semantics of dynamic
allocation + fixpoint recursion.
See: Shinwell-Pitts, “On a Monadic Semantics for
Freshness” (APPSEM’04).

CTCS2004, 24

ω-Cpos inNset

Problem:
Unlike [A]D, the free restriction structure νD is not
always an ω-cpo in Nset even if D is.
(Partly explains why dynamic allocation monads on
functor categories have had limited application.)

Solution:
Continuous function domain D→{⊥,>} possesses a
restriction structure; hence we can use the
continuation monad ((−)→{⊥,>})→{⊥,>}
to give a denotational semantics of dynamic
allocation + fixpoint recursion.
See: Shinwell-Pitts, “On a Monadic Semantics for
Freshness” (APPSEM’04).

CTCS2004, 25

Conclusion

Nominal sets provide a model of
■ restriction & anonymity (via permutation-invariance)
■ name-abstraction & implicit dependence on
parameters (via the notion of “support”)

■ function-abstraction & explicit dependence on
parameters (via exponentials)

■ dynamic allocation of fresh names (via the notion
of support again)
that is pretty, pretty simple, and pretty rich in
interesting properties.

We are only at the beginning of the computational
consequences of taking this model seriously.

CTCS2004, 26

Thanks
James Cheney (Cornell), Jamie Gabbay (INRIA),
Mark Shinwell & Christian Urban (Cambridge).

Further info
www.cl.cam.ac.uk/users/amp12/freshml/

	Title page
	Title page

	Aim
	Aim

	Atoms, permutations and actions
	Atoms, permutations and actions
	Atoms, permutations and actions
	Atoms, permutations and actions
	Atoms, permutations and actions

	Languages are G-sets
	Languages are G-sets
	Languages are G-sets
	Languages are G-sets
	Languages are G-sets
	Languages are G-sets

	Finite support
	Finite support
	Finite support

	Nset is a topos
	Nset is a topos
	Nset is a topos
	Nset is a topos
	Nset is a topos

	First-order logic
	First-order logic
	First-order logic
	First-order logic

	Higher-order logic
	Higher-order logic
	Higher-order logic

	Road-map (1)
	Nominal set of atom-abstractions
	Nominal set of atom-abstractions
	Nominal set of atom-abstractions
	Nominal set of atom-abstractions
	Nominal set of atom-abstractions

	Atom-abstraction is well-behaved
	Essence of alpha-equivalence
	Essence of alpha-equivalence

	Road-map (2)
	Pi-calculus restriction
	Pi-calculus restriction

	Nominal restriction structure
	Nominal restriction structure
	Nominal restriction structure
	Nominal restriction structure
	Nominal restriction structure
	Nominal restriction structure
	Nominal restriction structure

	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X

	Construction of nu X
	Construction of nu X
	Construction of nu X
	Construction of nu X

	Abstraction from restriction
	Abstraction from restriction

	Scope extrusion
	Scope extrusion
	Scope extrusion
	Scope extrusion

	Some questions
	Equations + freshness constraints = ?
	Equations + freshness constraints = ?

	Dynamic allocation monads
	Dynamic allocation monads
	Dynamic allocation monads
	Dynamic allocation monads

	Road-map (3)
	omega-Cpos in Nset
	omega-Cpos in Nset
	omega-Cpos in Nset

	Conclusion
	

