Nominal Cubical

model of type theory

Andrew Pitts

Computer Science & Technology

Aarhus, October 2017

These slides are at www.cl.cam.ac.uk/~amp12/talks

Nominal Cubical

model of type theory

[CCHM]

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, Cubical type theory: a constructive interpretation of the univalence axiom. ArXiv e-prints, arXiv:1611.02108, 2016.

Nominal Cubical

model of type theory

The CCHM model of Homotopy Type Theory can be reformulated using (some) nominal techniques.

A. M. Pitts, *Nominal Sets: Names and Symmetry in Computer Science*, Cambridge Tracts in Theoretical Computer Science, vol. 57 (CUP, 2013)

This simplifies the description if some parts of the model and may lead to new models of univalence.

Plan

- Motivation: the univalence axiom [HoTT]
- Overview of the Cohen-Coquand-Huber-Mörtberg presheaf model of univalent type theory [CCHM,OP,B+]
- ▶ Toposes of M-sets
- CCHM cubical sets as finitely supportedM-sets [Pit]
- Path objects
- Cofibrant propositions and fibrant families
- ► A univalent universe [CCHM]

Main sources

- [HoTT] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations for Mathematics. Institute for Advanced Study, 2013.
- [CCHM] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, *Cubical type theory:* a constructive interpretation of the univalence axiom. arXiv:1611.02108.
 - [OP] I. Orton and A. M. Pitts, Axioms for modelling cubical type theory in a topos, Proc. CSL 2016.
 - [B+] L. Birkedal, A. Bizjak, R. Clouston, H. Grathwohl, B. Spitters, A. Vezzosi, Guarded Cubical Type Theory: Path Equality for Guarded Recursion, Proc. CSL 2016.
 - [Pit] A. M. Pitts, Nominal Presentation of Cubical Sets Models of Type Theory, Proc. TYPES 2014.
 - [Nom] A. M. Pitts, Nominal Sets: Names and Symmetry in Computer Science, Cambridge Tracts in Theoretical Computer Science, vol. 57 (CUP, 2013).
 - [Hof] M. Hofmann, *Syntax and semantics of dependent types*. In A.M. Pitts and P. Dybjer (eds), Semantics and Logics of Computation, pp 79–130 (CUP, 1997).

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe ${\mathfrak U}$

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe $\mathfrak U$:

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y

type of identifications
(proofs of equality)
between X and Y in \mathcal{U}
```

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe $\mathfrak U$:

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

```
p_*: X \to Y p^*: Y \to X \eta: (\mathrm{id} =_{Y \to Y} p_* \circ p^*) \varepsilon: (p^* \circ p_* =_{X \to X} \mathrm{id}) well-defined by just giving the case when p \equiv \mathrm{refl} (for which p_* \equiv p^* \equiv \lambda x. x and \eta \equiv \varepsilon \equiv \mathrm{refl})
```

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe $\mathfrak U$:

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

```
\mathcal{U} is univalent if there is a proof of "all isomorphisms X \cong Y in \mathcal{U} are induced by some p: X =_{\mathcal{U}} Y". (Notation: UTT \equiv MLTT + univalence.)
```

Licata, Shulman *et al*: the above is logically equivalent to, but a bit simpler than Voevodsky's original definition.

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe \mathfrak{U} :

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

 ${\mathfrak U}$ is **univalent** if there is a proof of "all isomorphisms $X\cong Y$ in ${\mathfrak U}$ are induced by some $p:X=_{{\mathfrak U}}Y$ ". (Notation: UTT \equiv MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

ETT satisfies: if $p: x =_A y$, then $x \equiv y$ and $p \equiv \text{refl}$

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe \mathfrak{U} :

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

 \mathcal{U} is **univalent** if there is a proof of "all isomorphisms $X \cong Y$ in \mathcal{U} are induced by some $p: X =_{\mathcal{U}} Y$ ". (Notation: UTT \equiv MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

Need a source of models of "intensional" identification types.

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe \mathfrak{U} :

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

 \mathcal{U} is **univalent** if there is a proof of "all isomorphisms $X \cong Y$ in \mathcal{U} are induced by some $p: X =_{\mathcal{U}} Y$ ". (Notation: UTT \equiv MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

Need a source of models of "intensional" identification types.

Homotopy Type Theory to the rescue: elements $p: x =_A y$ are analogous to paths p from point x to point y in a space A with $refl: x =_A x$ corresponding to a constant path [Awodey-Warren, Voevodsky,...]

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe $\mathfrak U$:

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

```
\mathcal{U} is univalent if there is a proof of "all isomorphisms X \cong Y in \mathcal{U} are induced by some p: X =_{\mathcal{U}} Y". (Notation: UTT \equiv MLTT + univalence.)
```

All (?) existing models with non-truncated univalent universes stem in some way from:

- ► Kan simplicial sets in classical set theory [Voevodsky et al]
- uniform-Kan cubical sets in constructive set theory [CCHM]

(We need more, and simpler, examples!)

In Martin-Löf Type Theory (MLTT), Voevodsky's univalence axiom is an extensionality property of types in a universe \mathfrak{U} :

```
given X, Y : \mathcal{U}, every p : X =_{\mathcal{U}} Y induces an isomorphism X \cong Y (relative to =).
```

```
\mathcal{U} is univalent if there is a proof of "all isomorphisms X \cong Y in \mathcal{U} are induced by some p: X =_{\mathcal{U}} Y". (Notation: UTT \equiv MLTT + univalence.)
```

All (?) existing models with non-truncated univalent universes stem in some way from:

- ► Kan simplicial sets in classical set theory [Voevodsky et al]
- uniform-Kan cubical sets in constructive set theory [CCHM]

Uses Dybjer's Category with Families (CwF) for the semantics of MLTT.

Brief recap here - see [Hof] for details.

A CwF is given by

category C with a terminal object 1

```
[objects \Gamma, \Delta, \ldots \in \mathcal{C} model typing contexts; morphisms \gamma \in \mathcal{C}(\Delta, \Gamma) model simultaneous substitutions mapping variables to terms (context morphisms);
```

1 denotes the empty context]

A CwF is given by

- category C with a terminal object 1
- for each $\Gamma \in \mathcal{C}$, a set $\mathcal{C}(\Gamma)$ of families over Γ and for each $\gamma \in \mathcal{C}(\Delta, \Gamma)$ a re-indexing function $\underline{\hspace{0.1cm}}[\gamma]: \mathcal{C}(\Gamma) \to \mathcal{C}(\Delta)$, functorial in γ

A CwF is given by

- category C with a terminal object 1
- for each $\Gamma \in \mathcal{C}$, a set $\mathcal{C}(\Gamma)$ of families over Γ and for each $\gamma \in \mathcal{C}(\Delta, \Gamma)$ a re-indexing function $\underline{\hspace{0.1cm}}[\gamma]: \mathcal{C}(\Gamma) \to \mathcal{C}(\Delta)$, functorial in γ

[families model types-in-context; re-indexing models substitution of terms for variables in types]

A CwF is given by

- category C with a terminal object 1
- ightharpoonup for each $\Gamma \in \mathcal{C}$, a set $\mathcal{C}(\Gamma)$ of families over Γ
- ightharpoonup for each $\Gamma \in \mathcal{C}$ and $A \in \mathcal{C}(\Gamma)$, a set $\mathcal{C}(\Gamma \vdash A)$ of elements of the family A over Γ and for each $\gamma \in \mathcal{C}(\Delta, \Gamma)$ a re-indexing function $[\gamma]: \mathcal{C}(\Gamma \vdash A) \to \mathcal{C}(\Delta \vdash A[\gamma]),$ (dependently) functorial in γ

A CwF is given by

- category C with a terminal object 1
- for each $\Gamma \in \mathcal{C}$, a set $\mathcal{C}(\Gamma)$ of families over Γ
- for each Γ ∈ C and A ∈ C(Γ), a set C(Γ ⊢ A) of elements of the family A over Γ and for each $\gamma \in C(\Delta, \Gamma)$ a re-indexing function $_[\gamma] : C(\Gamma \vdash A) \to C(\Delta \vdash A[\gamma])$, (dependently) functorial in γ

[elements model terms-in-context of a given type; re-indexing models substitution of terms for variables in terms]

A CwF is given by

- category C with a terminal object 1
- ightharpoonup for each $\Gamma \in \mathcal{C}$, a set $\mathcal{C}(\Gamma)$ of families over Γ
- ▶ for each $\Gamma \in \mathcal{C}$ and $A \in \mathcal{C}(\Gamma)$, a set $\mathcal{C}(\Gamma \vdash A)$ of elements of the family A over Γ
- comprehension structure. . .

A CwF is given by...plus a comprehension structure:

[modelling the basic properties of the judgements of MLTT, independent of any particular type-forming constructs]

A CwF is given by...plus a comprehension structure:

for each $\Gamma \in \mathcal{C}$ and $A \in \mathcal{C}(\Gamma)$, an object $\Gamma.A \in \mathcal{C}$, projection morphism $p_A \in \mathcal{C}(\Gamma.A, \Gamma)$, generic element $q_A \in \mathcal{C}(\Gamma.A \vdash A[p])$ and pairing operation

$$\frac{\gamma \in \mathcal{C}(\Delta, \Gamma) \qquad a \in \mathcal{C}(\Delta \vdash A[\gamma])}{\langle \gamma, a \rangle \in \mathcal{C}(\Delta, \Gamma.A)}$$

satisfying
$$\begin{cases} \begin{array}{l} \mathrm{p}_A \circ \langle \gamma \,, a \rangle &=& \gamma \\ \mathrm{q}_A [\langle \gamma \,, a \rangle] &=& a \\ \langle \gamma \,, a \rangle \circ \delta &=& \langle \gamma \circ \delta \,, a [\delta] \rangle \\ \langle p_A \,, \mathrm{q}_A \rangle &=& \mathrm{id}_{\Gamma A} \end{array} \end{cases}$$

Every topos $\mathcal E$ has an associated CwF so that families over $\Gamma \in \mathcal E$ equivalent to morphisms with cod Γ , $\mathcal E(\Gamma) \simeq \mathcal E/\Gamma$. [These are models of ETT, with the identification type for $A \to \Gamma$ given by the diagonal $A \xrightarrow{\Delta} A \times_{\Gamma} A$.]

▶ Every topos \mathcal{E} has an associated CwF so that families over $\Gamma \in \mathcal{E}$ equivalent to morphisms with cod Γ , $\mathcal{E}(\Gamma) \simeq \mathcal{E}/\Gamma$. For CCHM we take $\mathcal{E} \equiv \mathbf{Set}^{C^{op}}$ where C is the small category of free, finitely generated De Morgan algebras (more on those later).

- ▶ Every topos \mathcal{E} has an associated CwF so that families over $\Gamma \in \mathcal{E}$ equivalent to morphisms with cod Γ , $\mathcal{E}(\Gamma) \simeq \mathcal{E}/\Gamma$.
- ▶ Using an interval $0,1:1 \rightrightarrows \mathbb{I}$ and a subobject of cofibrant propositions $\mathbb{F} \rightarrowtail \Omega$ in the topos \mathcal{E} , one defines a notion of fibration structure $\alpha \in \operatorname{Fib}(A)$ on families $A \in \mathcal{E}(\Gamma)$, giving a new CwF \mathcal{F} (based on \mathcal{E}) with $\mathcal{F}(\Gamma) \equiv \sum_{A \in \mathcal{E}(\Gamma)} \operatorname{Fib}(A)$ and $\mathcal{F}(\Gamma \vdash (A, \alpha)) \equiv \mathcal{E}(\Gamma \vdash A)$.

- ▶ Every topos \mathcal{E} has an associated CwF so that families over $\Gamma \in \mathcal{E}$ equivalent to morphisms with cod Γ , $\mathcal{E}(\Gamma) \simeq \mathcal{E}/\Gamma$.
- ▶ Using an interval $0,1:1 \rightrightarrows \mathbb{I}$ and a subobject of cofibrant propositions $\mathbb{F} \rightarrowtail \Omega$ in the topos \mathcal{E} , one defines a notion of fibration structure $\alpha \in \operatorname{Fib}(A)$ on families $A \in \mathcal{E}(\Gamma)$, giving a new CwF \mathcal{F} (based on \mathcal{E}) with $\mathcal{F}(\Gamma) \equiv \sum_{A \in \mathcal{E}(\Gamma)} \operatorname{Fib}(A)$ and $\mathcal{F}(\Gamma \vdash (A, \alpha)) \equiv \mathcal{E}(\Gamma \vdash A)$.
- ▶ Working in the internal ETT of a topos \mathcal{E} , [OP] identifies axioms on $0,1:1 \rightrightarrows \mathbb{I}$ and $\mathbb{F} \rightarrowtail \Omega$ that ensure we get a model of intensional MLTT:
 - fibrations are closed under \mathcal{E} 's Π , Σ , W, ... e.g. have $Fib(A) \rightarrow Fib(B) \rightarrow Fib(\Pi A B)$
 - path objects $\mathbb{I} \to \Gamma$ yield (propositional, non-truncated) identification types in $\boldsymbol{\mathcal{F}}$

- ▶ Every topos \mathcal{E} has an associated CwF so that families over $\Gamma \in \mathcal{E}$ equivalent to morphisms with cod Γ , $\mathcal{E}(\Gamma) \simeq \mathcal{E}/\Gamma$.
- ▶ Using an interval $0,1:1 \rightrightarrows \mathbb{I}$ and a subobject of cofibrant propositions $\mathbb{F} \rightarrowtail \Omega$ in the topos \mathcal{E} , one defines a notion of fibration structure $\alpha \in \operatorname{Fib}(A)$ on families $A \in \mathcal{E}(\Gamma)$, giving a new CwF \mathcal{F} (based on \mathcal{E}) with $\mathcal{F}(\Gamma) \equiv \sum_{A \in \mathcal{E}(\Gamma)} \operatorname{Fib}(A)$ and $\mathcal{F}(\Gamma \vdash (A, \alpha)) \equiv \mathcal{E}(\Gamma \vdash A)$.
- ▶ Working in the internal ETT of a topos \mathcal{E} , [OP] identifies axioms on $0,1:1 \Rightarrow \mathbb{I}$ and $\mathbb{F} \mapsto \Omega$ that ensure we get a model of intensional MLTT.
- When & = Set^{Cop} with C the category of free finitely generated De Morgan algebras, [CCHM] show that Hofmann-Streicher universe construction in & can be extended so that 𝒯 is a model of UTT.

- ▶ Every topos \mathcal{E} has an associated CwF so that families over $\Gamma \in \mathcal{E}$ equivalent to morphisms with cod Γ , $\mathcal{E}(\Gamma) \simeq \mathcal{E}/\Gamma$.
- ▶ Using an interval $0,1:1 \Rightarrow I$ and a subobject of cofibrant

The details are complicated!

Here I give an equivalent, "nominal" formulation of $\mathbf{Set}^{\mathbf{C}^{op}}$ as a topos of finitely supported \mathbf{M} -sets that may enable a simpler treatment.

Path types in the new formulation look like name abstraction sets from the theory of nominal sets.

When E = Set^{Cop} with C the category of free finitely generated De Morgan algebras, [CCHM] show that Hofmann-Streicher universe construction in E can be extended so that F is a model of UTT.

Plan

- ▶ Motivation: the univalence axiom [HoTT]
- Overview of the Cohen-Coquand-Huber-Mörtberg presheaf model of univalent type theory [CCHM,OP]
- Toposes of M-sets
- CCHM cubical sets as finitely supportedM-sets [Pit]
- ► Paths objects
- Cofibrant propositions and fibrant families
- ► A univalent universe [CCHM]

```
Fix a monoid (M, \_\circ \_, id).
m \circ (m' \circ m'') = (m \circ m') \circ m''
id \circ m = m
m \circ id = m
```

(w.l.o.g. M is a set of endofunctions)

Objects $\Gamma \in \mathbf{Set}^{\mathbf{M}}$ are sets equipped with an \mathbf{M} -action

$$m \in \mathbb{M}, x \in \Gamma \mapsto m \cdot x \in \Gamma$$

 $m' \cdot (m \cdot x) = (m' \circ m) \cdot x$
 $id \cdot x = x$

Objects $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ are sets equipped with an \mathbb{M} -action Morphisms $\gamma \in \mathbf{Set}^{\mathbb{M}}(\Delta, \Gamma)$ are functions preserving the \mathbb{M} -action

$$m \cdot (\gamma x) = \gamma (m \cdot x)$$

Objects $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ are sets equipped with an \mathbb{M} -action Morphisms $\gamma \in \mathbf{Set}^{\mathbb{M}}(\Delta, \Gamma)$ are functions preserving the \mathbb{M} -action

Families $A \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$ are families of sets $(A x \in \mathbf{Set} \mid x \in \Gamma)$ equipped with a dependently-typed \mathbb{M} -action

$$m \in \mathbb{M}, a \in A x \mapsto m \cdot a \in A(m \cdot x) \quad (x \in \Gamma)$$

$$m' \cdot (m \cdot a) = (m' \circ m) \cdot a$$

$$id \cdot a = a$$

Objects $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ are sets equipped with an \mathbb{M} -action

Morphisms $\gamma \in \mathbf{Set}^{\mathbb{M}}(\Delta, \Gamma)$ are functions preserving the \mathbb{M} -action

Families $A \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$ are families of sets $(A \ x \in \mathbf{Set} \mid x \in \Gamma)$ equipped with a dependently-typed \mathbb{M} -action

Elements $\alpha \in \operatorname{Set}^{\mathbb{M}}(\Gamma \vdash A)$ are dependent functions $\alpha \in \prod_{x \in \Gamma} Ax$ preserving the M-action

$$m \cdot (\alpha x) = \alpha (m \cdot x)$$

Comprehension structure:

$$\Gamma.A \equiv \sum_{x \in \Gamma} A x$$

$$m \cdot (x, a) \equiv (m \cdot x, m \cdot a)$$

$$p_A(x, a) \equiv x$$

$$q_A(x, a) \equiv a$$

$$\langle \gamma, \alpha \rangle y \equiv (\gamma y, \alpha y)$$

CwF of M-sets, Set[™]

 Σ -types [Hof, Definition 3.15]:

given
$$\Gamma \in \mathbf{Set}^{\mathbb{M}}$$
, $A \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$ and $B \in \mathbf{Set}^{\mathbb{M}}(\Gamma.A)$, we get

$$\Sigma AB \in \operatorname{Set}^{\mathbb{M}}(\Gamma)$$

with

$$(\sum A B) x \equiv \sum_{a \in A x} B(x, a)$$

$$m \cdot (a, b) \equiv (m \cdot a, m \cdot b)$$

etc

CwF of M-sets, Set[™]

 Π -types [Hof, Definition 3.18]:

given $\Gamma \in \mathbf{Set}^{\mathbb{M}}$, $A \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$ and $B \in \mathbf{Set}^{\mathbb{M}}(\Gamma.A)$, we get

$$\Pi AB \in \mathbf{Set}^{\mathbb{M}}(\Gamma)$$

where for each $x \in \Gamma$, $(\Pi A B) x$ is the set

$$\{f \in \prod_{m \in \mathbb{M}} \prod_{a \in A(m \cdot x)} B(m \cdot x, a) \mid (\forall m, m', a) \ m' \cdot (f \ m \ a) = f(m' \circ m)(m' \cdot a)\}$$

with M-action given by $(m' \cdot f) m a \equiv f(m \circ m') a$. Etc.

Topos structure of **Set**^M

Limits (& colimits) are created by the forgetful functor $U : \mathbf{Set}^{\mathbb{M}} \to \mathbf{Set}$.

Subobjects of $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ correspond to subsets of $U\Gamma \in \mathbf{Set}$ that are closed under the \mathbb{M} -action.

Subobject classifier:

$$\Omega \equiv \{ \varphi \subseteq \mathbb{M} \mid (\forall m, m') \ m \in \varphi \Rightarrow m' \circ m \in \varphi \}$$

$$m \cdot \varphi \equiv \{ m' \in \mathbb{M} \mid m' \circ m \in \varphi \}$$
so $m' \in m \cdot \varphi \Leftrightarrow m' \circ m \in \varphi$

Topos structure of **Set**^M

Limits (& colimits) are created by the forgetful functor $U : \mathbf{Set}^{\mathbb{M}} \to \mathbf{Set}$.

Subobjects of $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ correspond to subsets of $U\Gamma \in \mathbf{Set}$ that are closed under the \mathbb{M} -action.

Subobject classifier:

$$\Omega \equiv \{ \varphi \subseteq \mathbb{M} \mid (\forall m, m') \ m \in \varphi \Rightarrow m' \circ m \in \varphi \}$$
 $m \cdot \varphi \equiv \{ m' \in \mathbb{M} \mid m' \circ m \in \varphi \}$
Truth $\top \in \mathbf{Set}^{\mathbb{M}}(1, \Omega) \text{ is } \top(0) \equiv \mathbb{M}$
Classifier of $S \mapsto \Gamma$ is $\chi_S \in \mathbf{Set}^{\mathbb{M}}(\Gamma, \Omega)$ where
 $\chi_S \chi \equiv \{ m \in \mathbb{M} \mid m \cdot \chi \in S \}$

From now on we take IM to be the monoid of finitary endomorphisms of the free De Morgan algebra II on a countably infinite set II

From now on we take \mathbb{M} to be the monoid of finitary endomorphisms of the free De Morgan algebra \mathbb{I} on a countably infinite set \mathbb{J}

```
distributive lattice (D, \lor, \land, 0, 1) equipped with a function d \mapsto 1 - d which is involutive 1 - (1 - d) = d and satisfies De Morgan's Law 1 - (d_1 \lor d_2) = (1 - d_1) \land (1 - d_2)
```

From now on we take ${\Bbb M}$ to be the monoid of finitary endomorphisms of the free De Morgan algebra ${\Bbb I}$ on a countably infinite set ${\frak I}$

we call elements of \mathfrak{I} cartesian **directions** and write them as i, j, k, \ldots

From now on we take

M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set J

```
elements of \mathbb{I} are equivalence classes for the equational theory of De Morgan algebra of 'De Morgan polynomials' d := i \mid \mathbf{0} \mid \mathbf{1} \mid d \lor d \mid d \land d \mid \mathbf{1} - d \qquad (i \in \mathfrak{I})
```

From now on we take

M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I
on a countably infinite set J

```
elements of \mathbb{I} are De Morgan algebra homomorphisms m: \mathbb{I} \to \mathbb{I} for which \operatorname{dom}(m) \equiv \{i \in \mathcal{I} \mid m \ i \neq i\} is finite.

(Since \mathbb{I} is the free De Morgan algebra on \mathcal{I}, m is uniquely determined as a function by its restriction to the finite set \operatorname{dom}(m).)

Notation: (dli) \in \mathbb{M} is the homomorphism m with \operatorname{dom}(m) = \{i\} and m(i) = d.
```

Finite support property

```
Let \Gamma \in \mathbf{Set}^{\mathbb{M}} and x \in \Gamma
A finite set of directions I \subseteq_{\mathrm{fin}} \mathfrak{I} supports x if for all m, m' \in \mathbb{M}
((\forall i \in I) \ m \ i = m'i) \Rightarrow m \cdot x = m' \cdot x
```

(If M is a group (has inverses), this is equivalent to the usual nominal sets notion of finite support.)

Finite support property

Let $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ and $x \in \Gamma$

A finite set of directions $I \subseteq_{\text{fin}} \mathfrak{I}$ supports x if for all $m, m' \in \mathbb{M}$

$$((\forall i \in I) \ m \ i = m'i) \ \Rightarrow m \cdot x = m' \cdot x$$

Lemma. $I \subseteq_{fin} \mathfrak{I}$ supports x iff

$$(\forall i \in \mathfrak{I}) \ i \notin I \Rightarrow (0/i) \cdot x = x$$

(iff
$$(\forall i \in \mathfrak{I}) \ i \notin I \Rightarrow (1/i) \cdot x = x$$
)

Finite support property

Let $\Gamma \in \mathbf{Set}^{\mathbb{M}}$ and $x \in \Gamma$

A finite set of directions $I \subseteq_{\text{fin}} \mathfrak{I}$ supports x if for all $m, m' \in \mathbb{M}$

$$((\forall i \in I) \ m \ i = m'i) \ \Rightarrow m \cdot x = m' \cdot x$$

Lemma. $I \subseteq_{fin} \mathfrak{I}$ supports x iff

$$(\forall i \in \mathfrak{I}) \ i \notin I \Rightarrow (0/i) \cdot x = x$$

The **interval**: \mathbb{M} acts on \mathbb{I} via function application: $m \cdot d \equiv m d$. With respect to this action, each $d \in \mathbb{I}$ is supported by the finite set I of directions occurring in some De Morgan polynominal representing d, since if $i \notin I$, then (0/i)d = d.

The category **Dms** of **De Morgan sets** is the full subcategory of $\mathbf{Set}^{\mathbb{M}}$ consisting of those \mathbb{M} -sets Γ such that every $x \in \Gamma$ possesses a finite support.

The category Dms of De Morgan sets is the full subcategory of $Set^{\mathbb{M}}$ consisting of those M-sets Γ such that every $x \in \Gamma$ possesses a finite support.

Dms is closed under taking finite limits and the inclusion $Dms \hookrightarrow Set^{\mathbb{M}}$ has a right adjoint, given by

$$\Gamma \mapsto \Gamma_{fs} \equiv \{x \in \Gamma \mid x \text{ has a finite support}\}\$$

The category Dms of De Morgan sets is the full subcategory of $Set^{\mathbb{M}}$ consisting of those M-sets Γ such that every $x \in \Gamma$ possesses a finite support.

Dms is closed under taking finite limits and the inclusion $Dms \hookrightarrow Set^{\mathbb{M}}$ has a right adjoint, given by

$$\Gamma \mapsto \Gamma_{fs} \equiv \{x \in \Gamma \mid x \text{ has a finite support}\}\$$

Hence **Dms** is a topos.

The category Dms of De Morgan sets is the full subcategory of $Set^{\mathbb{M}}$ consisting of those M-sets Γ such that every $x \in \Gamma$ possesses a finite support.

Dms is closed under taking finite limits and the inclusion $Dms \hookrightarrow Set^{\mathbb{M}}$ has a right adjoint, given by

$$\Gamma \mapsto \Gamma_{fs} \equiv \{x \in \Gamma \mid x \text{ has a finite support}\}\$$

Hence **Dms** is a topos. In fact:

Theorem. (Orton, AMP) Dms is equivalent to the presheaf topos Set^{Cop} used in [CCHM].

(C^{op} is the category of free, finitely generated De Morgan algebras and homomorphisms.)

One can view De Morgan sets $\Gamma \in \mathbf{Dms}$ as sets whose elements depend implicitly on finitely many (named) dimensions i, j, k, \ldots

One can view De Morgan sets $\Gamma \in \mathbf{Dms}$ as sets whose elements depend implicitly on finitely many (named) dimensions i, j, k, \ldots

One can view De Morgan sets $\Gamma \in \mathbf{Dms}$ as sets whose elements depend implicitly on finitely many (named) dimensions i, j, k, \ldots , with the dependency described by the \mathbf{M} -action on Γ

One can view De Morgan sets $\Gamma \in \mathbf{Dms}$ as sets whose elements depend implicitly on finitely many (named) dimensions i, j, k, \ldots , with the dependency described by the \mathbf{M} -action on \mathbf{I}

in the [CCHM] version using $\mathbf{Set}^{\mathbf{C^{op}}}$, dependency is explicit \leadsto "weakening hell"

Other toposes of interest for modelling Homotopy Type Theory can be presented (usefully?) as categories of finitely supported M-sets for various monoids M.

E.g. other variations on the notion of "cubical set"

Theorem. [Pit] The presheaf category on Grothendieck's "smallest test category" (non-trivial bipointed finite sets) op is equivalent to the category of finitely supported M-sets where M is the monoid of endofunctions on $\{\bot\} \cup \mathbb{Z} \cup \{\top\}$ preserving \bot and \top .

Other toposes of interest for modelling Homotopy Type Theory can be presented (usefully?) as categories of finitely supported M-sets for various monoids M.

E.g. other variations on the notion of "cubical set" but also simplicial sets:

Theorem. (Faber) The presheaf topos $\mathbf{Set}^{\Delta^{op}}$ of simplicial sets is equivalent to the category of finitely supported M-sets where M is the monoid of order-preserving endofunctions on

$$\{\bot \le \dots - 2 \le -1 \le 0 \le 1 \le 2 \le \dots \le \top\}$$

preserving \perp and \top .