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Nominal Cubical
model of type theory

Andrew Pitts

Computer Science & Technology

The CCHM model of Homotopy Type Theory can be
reformulated using (some) nominal techniques.

A. M. Pitts, Nominal Sets: Names and

Symmetry in Computer Science, Cambridge
Tracts in Theoretical Computer Science,
vol. 57 (CUP, 2013)

This simplifies the description if some parts of the
model and may lead to new models of univalence.
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Plan

◮ Motivation: the univalence axiom [HoTT]

◮ Overview of the Cohen-Coquand-Huber-Mörtberg
presheaf model of univalent type theory
[CCHM,OP,B+]

◮ Toposes of M-sets

◮ CCHM cubical sets as finitely supported
M-sets [Pit]

◮ Path objects

◮ Cofibrant propositions and fibrant families

◮ A univalent universe [CCHM]
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y

type of identifications

(proofs of equality)
between X and Y in U
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

p∗ : X � Y p∗ : Y � X
η : (id =Y�Y p∗ ◦ p∗) ε : (p∗ ◦ p∗ =X�X id)
well-defined by just giving the case when p ≡ refl
(for which p∗ ≡ p∗ ≡ λx. x and η ≡ ε ≡ refl)
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

Licata, Shulman et al: the above is logically equivalent to, but a bit simpler
than Voevodsky’s original definition.
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

ETT satisfies: if p : x =A y,
then x ≡ y and p ≡ refl
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

Need a source of models of “intensional” identification types.
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

N.B. univalence is inconsistent with extensional type theory (ETT).

Need a source of models of “intensional” identification types.

Homotopy Type Theory to the rescue: elements p : x =A y are
analogous to paths p from point x to point y in a space A with
refl : x =A x corresponding to a constant path [Awodey-Warren,
Voevodsky,. . . ]
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

All (?) existing models with non-truncated univalent universes stem
in some way from:

◮ Kan simplicial sets in classical set theory [Voevodsky et al]

◮ uniform-Kan cubical sets in constructive set theory [CCHM]

(We need more, and simpler, examples!)
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Univalence
In Martin-Löf Type Theory (MLTT), Voevodsky’s univalence axiom
is an extensionality property of types in a universe U:

given X, Y : U, every p : X =U Y induces an
isomorphism X ∼= Y (relative to =).

U is univalent if there is a proof of “all isomorphisms
X ∼= Y in U are induced by some p : X =U Y”.
(Notation: UTT ≡ MLTT + univalence.)

All (?) existing models with non-truncated univalent universes stem
in some way from:

◮ Kan simplicial sets in classical set theory [Voevodsky et al]

◮ uniform-Kan cubical sets in constructive set theory [CCHM]
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Overview of the CCHM model

Uses Dybjer’s Category with Families (CwF) for the
semantics of MLTT.

Brief recap here – see [Hof] for details.
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1
[objects Γ, ∆, . . . ∈ C model typing contexts;
morphisms γ ∈ C(∆, Γ) model simultaneous substitutions mapping
variables to terms (context morphisms);
1 denotes the empty context]
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1

◮ for each Γ ∈ C, a set C(Γ) of families over Γ

and for each γ ∈ C(∆, Γ) a re-indexing function
_[γ] : C(Γ) � C(∆), functorial in γ
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1

◮ for each Γ ∈ C, a set C(Γ) of families over Γ

and for each γ ∈ C(∆, Γ) a re-indexing function
_[γ] : C(Γ) � C(∆), functorial in γ
[families model types-in-context; re-indexing models substitution of terms
for variables in types]
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1

◮ for each Γ ∈ C, a set C(Γ) of families over Γ

◮ for each Γ ∈ C and A ∈ C(Γ), a set C(Γ ⊢ A) of
elements of the family A over Γ

and for each γ ∈ C(∆, Γ) a re-indexing function
_[γ] : C(Γ ⊢ A) � C(∆ ⊢ A[γ]),
(dependently) functorial in γ
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1

◮ for each Γ ∈ C, a set C(Γ) of families over Γ

◮ for each Γ ∈ C and A ∈ C(Γ), a set C(Γ ⊢ A) of
elements of the family A over Γ

and for each γ ∈ C(∆, Γ) a re-indexing function
_[γ] : C(Γ ⊢ A) � C(∆ ⊢ A[γ]),
(dependently) functorial in γ
[elements model terms-in-context of a given type; re-indexing models
substitution of terms for variables in terms]
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Category with Families (CwF)

A CwF is given by

◮ category C with a terminal object 1

◮ for each Γ ∈ C, a set C(Γ) of families over Γ

◮ for each Γ ∈ C and A ∈ C(Γ), a set C(Γ ⊢ A) of
elements of the family A over Γ

◮ comprehension structure. . .
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Category with Families (CwF)

A CwF is given by. . . plus a comprehension structure:

[modelling the basic properties of the judgements of MLTT, independent of any
particular type-forming constructs]
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Category with Families (CwF)

A CwF is given by. . . plus a comprehension structure:

for each Γ ∈ C and A ∈ C(Γ), an object Γ.A ∈ C,
projection morphism pA ∈ C(Γ.A, Γ), generic element
qA ∈ C(Γ.A ⊢ A[p]) and pairing operation

γ ∈ C(∆, Γ) a ∈ C(∆ ⊢ A[γ])

〈γ , a〉 ∈ C(∆, Γ.A)

satisfying















pA ◦ 〈γ , a〉 = γ
qA[〈γ , a〉] = a
〈γ , a〉 ◦ δ = 〈γ ◦ δ , a[δ]〉
〈pA , qA〉 = idΓ.A
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ.

[These are models of ETT, with the identification type for A � Γ given

by the diagonal A
∆
−→ A ×Γ A.]
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ. For

CCHM we take E ≡ SetCop
where C is the small category of

free, finitely generated De Morgan algebras (more on those later).
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ.

◮ Using an interval 0, 1 : 1⇒ I and a subobject of cofibrant
propositions F֌ Ω in the topos E, one defines a notion of
fibration structure α ∈ Fib(A) on families A ∈ E(Γ), giving
a new CwF F (based on E) with F(Γ) ≡ ∑A∈E(Γ) Fib(A)
and F(Γ ⊢ (A, α)) ≡ E(Γ ⊢ A).
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ.

◮ Using an interval 0, 1 : 1⇒ I and a subobject of cofibrant
propositions F֌ Ω in the topos E, one defines a notion of
fibration structure α ∈ Fib(A) on families A ∈ E(Γ), giving
a new CwF F (based on E) with F(Γ) ≡ ∑A∈E(Γ) Fib(A)
and F(Γ ⊢ (A, α)) ≡ E(Γ ⊢ A).

◮ Working in the internal ETT of a topos E, [OP] identifies
axioms on 0, 1 : 1⇒ I and F֌ Ω that ensure we get a
model of intensional MLTT:

– fibrations are closed under E’s Π, Σ, W , . . .
e.g. have Fib(A) � Fib(B) � Fib(Π A B)

– path objects I � Γ yield (propositional, non-truncated) identification
types in F
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ.

◮ Using an interval 0, 1 : 1⇒ I and a subobject of cofibrant
propositions F֌ Ω in the topos E, one defines a notion of
fibration structure α ∈ Fib(A) on families A ∈ E(Γ), giving
a new CwF F (based on E) with F(Γ) ≡ ∑A∈E(Γ) Fib(A)
and F(Γ ⊢ (A, α)) ≡ E(Γ ⊢ A).

◮ Working in the internal ETT of a topos E, [OP] identifies
axioms on 0, 1 : 1⇒ I and F֌ Ω that ensure we get a
model of intensional MLTT.

◮ When E = SetCop
with C the category of free finitely

generated De Morgan algebras, [CCHM] show that
Hofmann-Streicher universe construction in E can be extended
so that F is a model of UTT.
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Overview of the CCHM model

◮ Every topos E has an associated CwF so that families over
Γ ∈ E equivalent to morphisms with cod Γ, E(Γ) ≃ E/Γ.

◮ Using an interval 0, 1 : 1⇒ I and a subobject of cofibrant
propositions F֌ Ω in the topos E, one defines a notion of
fibration structure α ∈ Fib(A) on families A ∈ E(Γ), giving
a new CwF F (based on E) with F(Γ) ≡ ∑A∈E(Γ) Fib(A)
and F(Γ ⊢ (A, α)) ≡ E(Γ ⊢ A).

◮ Working in the internal ETT of a topos E, [OP] identifies
axioms on 0, 1 : 1⇒ I and F֌ Ω that ensure we get a
model of intensional MLTT.

◮ When E = SetCop
with C the category of free finitely

generated De Morgan algebras, [CCHM] show that
Hofmann-Streicher universe construction in E can be extended
so that F is a model of UTT.

The details are complicated!

Here I give an equivalent, “nominal” formulation of SetCop
as a

topos of finitely supported M-sets that may enable a simpler
treatment.

Path types in the new formulation look like name abstraction sets
from the theory of nominal sets.
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Plan

◮ Motivation: the univalence axiom [HoTT]

◮ Overview of the Cohen-Coquand-Huber-Mörtberg
presheaf model of univalent type theory [CCHM,OP]

◮ Toposes of M-sets

◮ CCHM cubical sets as finitely supported
M-sets [Pit]

◮ Paths objects

◮ Cofibrant propositions and fibrant families

◮ A univalent universe [CCHM]

I.9/18



CwF of M-sets, SetM

Fix a monoid (M , _ ◦ _ , id).

m ◦ (m′
◦ m′′) = (m ◦ m′) ◦ m′′

id ◦ m = m

m ◦ id = m

(w.l.o.g. M is a set of endofunctions)
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CwF of M-sets, SetM

Objects Γ ∈ SetM are sets equipped with an M-action

m ∈ M, x ∈ Γ 7→ m · x ∈ Γ

m′ · (m · x) = (m′
◦ m) · x

id · x = x
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CwF of M-sets, SetM

Objects Γ ∈ SetM are sets equipped with an M-action

Morphisms γ ∈ SetM(∆, Γ) are functions preserving
the M-action

m · (γ x) = γ(m · x)
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CwF of M-sets, SetM

Objects Γ ∈ SetM are sets equipped with an M-action

Morphisms γ ∈ SetM(∆, Γ) are functions preserving
the M-action

Families A ∈ SetM(Γ) are families of sets
(A x ∈ Set | x ∈ Γ) equipped with a
dependently-typed M-action

m ∈ M, a ∈ A x 7→ m · a ∈ A(m · x) (x ∈ Γ)

m′ · (m · a) = (m′
◦ m) · a

id · a = a
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CwF of M-sets, SetM

Objects Γ ∈ SetM are sets equipped with an M-action

Morphisms γ ∈ SetM(∆, Γ) are functions preserving
the M-action

Families A ∈ SetM(Γ) are families of sets
(A x ∈ Set | x ∈ Γ) equipped with a
dependently-typed M-action

Elements α ∈ SetM(Γ ⊢ A) are dependent functions
α ∈ ∏x∈Γ A x preserving the M-action

m · (α x) = α(m · x)
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CwF of M-sets, SetM

Comprehension structure:

Γ.A ≡ ∑x∈Γ A x

m · (x, a) ≡ (m · x, m · a)

pA(x, a) ≡ x

qA(x, a) ≡ a

〈γ , α〉 y ≡ (γ y, α y)
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CwF of M-sets, SetM

Σ-types [Hof, Definition 3.15]:

given Γ ∈ SetM, A ∈ SetM(Γ) and B ∈ SetM(Γ.A),
we get

Σ A B ∈ SetM(Γ)

with

(Σ A B) x ≡ ∑a∈A x B(x, a)

m · (a, b) ≡ (m · a, m · b)

etc
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CwF of M-sets, SetM

Π-types [Hof, Definition 3.18]:

given Γ ∈ SetM, A ∈ SetM(Γ) and B ∈ SetM(Γ.A),
we get

Π A B ∈ SetM(Γ)

where for each x ∈ Γ, (Π A B) x is the set

{ f ∈ ∏m∈M ∏a∈A(m·x) B(m · x, a) |
(∀m, m′, a) m′ · ( f m a) = f(m′

◦ m)(m′ · a)}

with M-action given by (m′ · f)m a ≡ f(m ◦ m′) a.

Etc.
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Topos structure of SetM

Limits (& colimits) are created by the forgetful functor
U : SetM → Set.

Subobjects of Γ ∈ SetM correspond to subsets of
U Γ ∈ Set that are closed under the M-action.

Subobject classifier:

Ω ≡ {ϕ ⊆ M | (∀m, m′) m ∈ ϕ ⇒ m′
◦ m ∈ ϕ}

m ·ϕ ≡ {m′ ∈ M | m′
◦ m ∈ ϕ}

so m′ ∈ m ·ϕ ⇔ m′ ◦ m ∈ ϕ
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Topos structure of SetM

Limits (& colimits) are created by the forgetful functor
U : SetM → Set.

Subobjects of Γ ∈ SetM correspond to subsets of
U Γ ∈ Set that are closed under the M-action.

Subobject classifier:

Ω ≡ {ϕ ⊆ M | (∀m, m′) m ∈ ϕ ⇒ m′
◦ m ∈ ϕ}

m ·ϕ ≡ {m′ ∈ M | m′
◦ m ∈ ϕ}

Truth ⊤ ∈ SetM(1, Ω) is ⊤(0) ≡ M

Classifier of S֌ Γ is χS ∈ SetM(Γ, Ω) where

χS x ≡ {m ∈ M | m · x ∈ S}
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The CCHM monoid

From now on we take
M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set I
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The CCHM monoid

From now on we take
M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set I

distributive lattice (D, v, v, 0, 1) equipped with a function
d 7→ 1 - d which is involutive 1 - (1 - d) = d

and satisfies De Morgan’s Law 1 - (d1 v d2) = (1 - d1)

v(1 - d2)
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The CCHM monoid

From now on we take
M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set I

we call elements of I cartesian directions

and write them as i, j, k, . . .
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The CCHM monoid

From now on we take
M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set I

elements of I are equivalence classes for the equational theory of
De Morgan algebra of ‘De Morgan polynomials’
d ::= i | 0 | 1 | d v d | d vd | 1 - d (i ∈ I)
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The CCHM monoid

From now on we take
M to be the monoid of finitary endomorphisms
of the free De Morgan algebra I

on a countably infinite set I

elements of I are De Morgan algebra homomorphisms m : I → I

for which dom(m) ≡ {i ∈ I | m i 6= i} is finite.

(Since I is the free De Morgan algebra on I,
m is uniquely determined as a function

by its restriction to the finite set dom(m).)

Notation: (d/i) ∈ M is the homomorphism m with
dom(m) = {i} and m(i) = d.
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Finite support property

Let Γ ∈ SetM and x ∈ Γ

A finite set of directions I ⊆fin I supports x if
for all m, m′ ∈ M

((∀i ∈ I) m i = m′i) ⇒ m · x = m′ · x

(If M is a group (has inverses), this is equivalent to the usual nominal sets
notion of finite support.)
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Finite support property

Let Γ ∈ SetM and x ∈ Γ

A finite set of directions I ⊆fin I supports x if
for all m, m′ ∈ M

((∀i ∈ I) m i = m′i) ⇒ m · x = m′ · x

Lemma. I ⊆fin I supports x iff

(∀i ∈ I) i /∈ I ⇒ (0/i) · x = x

(iff (∀i ∈ I) i /∈ I ⇒ (1/i) · x = x)
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Finite support property

Let Γ ∈ SetM and x ∈ Γ

A finite set of directions I ⊆fin I supports x if
for all m, m′ ∈ M

((∀i ∈ I) m i = m′i) ⇒ m · x = m′ · x

Lemma. I ⊆fin I supports x iff

(∀i ∈ I) i /∈ I ⇒ (0/i) · x = x

The interval: M acts on I via function application: m · d ≡ m d.
With respect to this action, each d ∈ I is supported by the finite set
I of directions occurring in some De Morgan polynominal
representing d, since if i /∈ I, then (0/i)d = d.
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De Morgan sets

The category Dms of De Morgan sets is the full
subcategory of SetM consisting of those M-sets Γ such
that every x ∈ Γ possesses a finite support.
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De Morgan sets

The category Dms of De Morgan sets is the full
subcategory of SetM consisting of those M-sets Γ such
that every x ∈ Γ possesses a finite support.

Dms is closed under taking finite limits and the
inclusion Dms ֒→ SetM has a right adjoint, given by

Γ 7→ Γfs ≡ {x ∈ Γ | x has a finite support}
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De Morgan sets

The category Dms of De Morgan sets is the full
subcategory of SetM consisting of those M-sets Γ such
that every x ∈ Γ possesses a finite support.

Dms is closed under taking finite limits and the
inclusion Dms ֒→ SetM has a right adjoint, given by

Γ 7→ Γfs ≡ {x ∈ Γ | x has a finite support}

Hence Dms is a topos.
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De Morgan sets

The category Dms of De Morgan sets is the full
subcategory of SetM consisting of those M-sets Γ such
that every x ∈ Γ possesses a finite support.

Dms is closed under taking finite limits and the
inclusion Dms ֒→ SetM has a right adjoint, given by

Γ 7→ Γfs ≡ {x ∈ Γ | x has a finite support}

Hence Dms is a topos. In fact:

Theorem. (Orton, AMP) Dms is equivalent to the

presheaf topos SetCop

used in [CCHM].

(Cop is the category of free, finitely generated De Morgan algebras and
homomorphisms.)
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One can view De Morgan sets Γ ∈ Dms as sets whose
elements depend implicitly on finitely many (named)
dimensions i, j, k, . . .

k

j

i
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One can view De Morgan sets Γ ∈ Dms as sets whose
elements depend implicitly on finitely many (named)
dimensions i, j, k, . . .

k

x j

i

x ∈ Γ

supported by
{i, j, k}
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One can view De Morgan sets Γ ∈ Dms as sets whose
elements depend implicitly on finitely many (named)
dimensions i, j, k, . . ., with the dependency described by
the M-action on Γ

k

j

i
(1/i) · (0/j) · (0/k) · x

(0/i) · (0/j) · x (1/i) · x
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One can view De Morgan sets Γ ∈ Dms as sets whose
elements depend implicitly on finitely many (named)
dimensions i, j, k, . . ., with the dependency described by
the M-action on Γ

in the [CCHM] version using SetCop
,

dependency is explicit  “weakening hell”
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Other toposes of interest for modelling Homotopy Type
Theory can be presented (usefully?) as categories of
finitely supported M-sets for various monoids M.

E.g. other variations on the notion of “cubical set”

Theorem. [Pit] The presheaf category on
Grothendieck’s “smallest test category”
(non-trivial bipointed finite sets)op is equivalent to the
category of finitely supported M-sets where M is the
monoid of endofunctions on {⊥} ∪ Z ∪ {⊤}
preserving ⊥ and ⊤.
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Other toposes of interest for modelling Homotopy Type
Theory can be presented (usefully?) as categories of
finitely supported M-sets for various monoids M.

E.g. other variations on the notion of “cubical set”
but also simplicial sets:

Theorem. (Faber) The presheaf topos Set∆
op

of
simplicial sets is equivalent to the category of finitely
supported M-sets where M is the monoid of
order-preserving endofunctions on

{⊥ ≤ · · · − 2 ≤ −1 ≤ 0 ≤ 1 ≤ 2 ≤ · · · ≤ ⊤}

preserving ⊥ and ⊤.
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