Nominal Sets

Andrew Pitts

图图图 UNIVERSITY OF
WhMBRIDGE
Computer Laboratory

Mathematics of syntax

- Seems of little interest to mathematicians and of only slight interest to logicians. (?)
- Vital for computer science - because of symbolic computation and automated reasoning.
- Has yet to reach an intellectual fixed point for syntax involving scope, binding and freshness of names.

Nominal sets

- Mathematical theory of names: scope, binding, freshness.
- Simple math to do with properties invariant under permuting names.
- Originally introduced by Gabbay \& AMP circa 2000, but the math goes back to 1930's set theory \& logic (Fraenkel \& Mostowski).

Nominal sets

- Mathematical theory of names: scope, binding, freshness.
- Simple math to do with properties invariant under permuting names.
- Originally introduced by Gabbay \& AMP circa 2000, but the math goes back to 1930's set theory \& logic (Fraenkel \& Mostowski).
- Applications: theorem-proving tools for PL semantics; metaprogramming (within functional programming, mainly); verification.

Outline

- Lecture 1. Structural recursion and induction in the presence of name-binding operations.
- Lecture 2. Introducing the category of nominal sets.
[Notes, chapters 1-3 +exercises]
- Lecture 3. Nominal algebraic data types and α-structural recursion.
[Notes, chapters 4-5 +exercises]
- Lecture 4. Simply typed λ-calculus with local names and name-abstraction.
[Www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

Lecture 1

For semantics, concrete syntax
letrec $\mathrm{f} x=$ if $\mathrm{x}>100$ then $\mathrm{x}-10$
else $\mathrm{f}(\mathrm{f}(\mathrm{x}+11))$ in $\mathrm{f}(\mathrm{x}+100)$
is unimportant compared to abstract syntax (ASTs):

We should aim for compositional semantics of program constructions, rather than of whole programs. (Why?)

ASTs enable two fundamental (and inter-linked) tools in programming language semantics:

- Definition of functions on syntax by recursion on its structure.
- Proof of properties of syntax by induction on its structure.

Structural recursion

Recursive definitions of functions whose values at a structure are given functions of their values at immediate substructures.

- Gödel System T (1958):

structure	$=$ numbers
structural recursion	$=$ primitive recursion for \mathbb{N}.

- Burstall, Martin-Löf et al (1970s) generalized this to ASTs.

Running example

Set of ASTs for $\boldsymbol{\lambda}$-terms

$$
\operatorname{Tr} \triangleq\{t::=\mathrm{V} a|\mathrm{~A}(t, t)| \mathrm{L}(a, t)\}
$$

where $a \in \mathbb{A}$, fixed infinite set of names of variables.
Operations for constructing these ASTs:

$$
\begin{aligned}
& \mathrm{V}: \mathbb{A} \rightarrow \operatorname{Tr} \\
& \mathrm{A}: \operatorname{Tr} \times \operatorname{Tr} \rightarrow \operatorname{Tr} \\
& \mathrm{L}: \mathbb{A} \times \operatorname{Tr} \rightarrow \mathbf{T r}
\end{aligned}
$$

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& f_{1} \in \mathbb{A} \rightarrow X \\
& f_{2} \in X \times X \rightarrow X \\
& f_{3} \in \mathbb{A} \times X \rightarrow X
\end{aligned}
$$

$$
\text { exists unique } \hat{f} \in \operatorname{Tr} \rightarrow X \text { satisfying }
$$

$$
\begin{aligned}
\hat{f}(\mathrm{~V} a) & =f_{1} a \\
\hat{f}\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right) \\
\hat{f}(\mathrm{~L}(a, t)) & =f_{3}(a, \hat{f} t)
\end{aligned}
$$

Structural recursion for Tr

E.g. the finite set var t of variables occurring in $t \in \operatorname{Tr}$:

$$
\begin{aligned}
\operatorname{var}(\mathrm{V} a) & =\{a\} \\
\operatorname{var}\left(\mathrm{A}\left(t, t^{\prime}\right)\right) & =(\operatorname{var} t) \cup\left(\operatorname{var} t^{\prime}\right) \\
\operatorname{var}(\mathrm{L}(a, t)) & =(\operatorname{var} t) \cup\{a\}
\end{aligned}
$$

is defined by structural recursion using

- $X=\mathbf{P}_{\mathrm{f}}(\mathbb{A})$ (finite sets of variables)
- $f_{1} a=\{a\}$
- $f_{2}\left(S, S^{\prime}\right)=S \cup S^{\prime}$
- $f_{3}(a, S)=S \cup\{a\}$.

Structural recursion for Tr

E.g. swapping: $(a b) \cdot t=$ result of transposing all occurrences of a and b in t

For example

$$
(a b) \cdot \mathrm{L}(a, \mathrm{~A}(\mathrm{~V} b, \mathrm{~V} c))=\mathrm{L}(b, \mathrm{~A}(\mathrm{~V} \boldsymbol{a}, \mathrm{~V} c))
$$

Structural recursion for $\mathbf{T r}$

E.g. swapping: $(a b) \cdot t=$ result of transposing all occurrences of a and b in t

$$
\begin{aligned}
(a b) \cdot V c= & \text { if } c=a \text { then } V b \text { else } \\
& \text { if } c=b \text { then } V a \text { else } V c
\end{aligned}
$$

$(a b) \cdot \mathrm{A}\left(t, t^{\prime}\right)=\mathrm{A}\left((a b) \cdot t_{,}(a b) \cdot t^{\prime}\right)$ $(a b) \cdot \mathrm{L}(c, t)=$ if $c=a$ then $\mathrm{L}(b,(a b) \cdot t)$ else if $c=b$ then $\mathrm{L}(a,(a b) \cdot t)$ else $\mathrm{L}\left(c_{r}(a b) \cdot t\right)$
is defined by structural recursion using. . .

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& f_{1} \in \mathbb{A} \rightarrow X \\
& f_{2} \in X \times X \rightarrow X \\
& f_{3} \in \mathbb{A} \times X \rightarrow X
\end{aligned}
$$

$$
\text { exists unique } \hat{f} \in \operatorname{Tr} \rightarrow X \text { satisfying }
$$

$$
\begin{aligned}
\hat{f}(\mathrm{~V} a) & =f_{1} a \\
\hat{f}\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right) \\
\hat{f}(\mathrm{~L}(a, t)) & =f_{3}(a, \hat{f} t)
\end{aligned}
$$

Structural recursion for Tr

Theorem.

Given

$$
\begin{aligned}
& =f_{1} a \\
& =f_{2}\left(\hat{f} t, \hat{f} t^{\prime}\right) \\
& =f_{3}(a, \hat{f} t)
\end{aligned}
$$

Alpha-equivalence

Smallest binary relation $={ }_{\alpha}$ on Tr closed under the rules:

$$
\frac{a \in \mathbb{A}}{a={ }_{\alpha} \mathrm{V} a} \quad \frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{\mathrm{A}\left(t_{1}, t_{2}\right)={ }_{\alpha} \mathrm{A}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)}
$$

$$
(a b) \cdot t={ }_{\alpha}\left(a^{\prime} b\right) \cdot t^{\prime} \quad b \notin\left\{a, a^{\prime}\right\} \cup \operatorname{var}\left(t t^{\prime}\right)
$$

$$
\mathrm{L}(a, t)={ }_{\alpha} \mathrm{L}\left(a^{\prime}, t^{\prime}\right)
$$

E.g. $\quad \mathrm{A}(\mathrm{L}(\boldsymbol{a}, \mathrm{A}(\mathrm{V} \boldsymbol{a}, \mathrm{V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})={ }_{\alpha} \quad \mathrm{A}(\mathrm{L}(\boldsymbol{c}, \mathrm{A}(\mathrm{V} \boldsymbol{c}, \mathrm{V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})$

$$
\neq{ }_{\alpha} \quad \mathrm{A}(\mathrm{~L}(\boldsymbol{b}, \mathrm{~A}(\mathrm{~V} \boldsymbol{b}, \mathrm{~V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})
$$

Fact: $={ }_{\alpha}$ is transitive (and reflexive \& symmetric).

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- $\frac{\text { pervasive (very many languages involve binding }}{\text { operations) }}$
- difficult to formalise/mechanise without losing sight of common informal practice:

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- $\frac{\text { pervasive (very many languages involve binding }}{\text { operations) }}$
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to alpha-equivalence". . .

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- $\frac{\text { pervasive (very many languages involve binding }}{\text { operations) }}$
- difficult to formalise/mechanise without losing sight of common informal practice:
"We identify expressions up to alpha-equivalence". and then forget about it, referring to alpha-equivalence classes $[t]_{\alpha}$ only via representatives t.

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha equivalence is

- pervasive (very many languages involve binding operations)
- difficult to formalise/mechanise without losing sight of common informal practice:
E.g. notation for λ-terms:

$$
\begin{array}{rll}
& \Lambda \triangleq\left\{[t]_{\alpha} \mid t \in \operatorname{Tr}\right\} \\
a & \text { means } & {[\mathrm{V} a]_{\alpha}(=\{\mathrm{V} a\})} \\
e e^{\prime} & \text { means } & {\left[\mathrm{A}\left(t, t^{\prime}\right)\right]_{\alpha}, \text { where } e=[t]_{\alpha} \text { and } e^{\prime}=\left[t^{\prime}\right]_{\alpha}} \\
\text { da.e } & \text { means } & {[\mathrm{L}(a, t)]_{\alpha} \text { where } e=[t]_{\alpha}}
\end{array}
$$

Informal structural recursion

E.g. capture-avoiding substitution:

$$
f=(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \Lambda
$$

$f a=$ if $a=a_{1}$ then e_{1} else a
$f\left(e e^{\prime}\right)=(f e)\left(f e^{\prime}\right)$
$f(\lambda a . e)=$ if $a \notin \mathrm{fv}\left(a_{1}, e_{1}\right)$ then $\lambda a .(f e)$ else don't care!

Not an instance of structural recursion for Tr. Why is f well-defined and total?

Informal structural recursion

E.g. denotation of $\boldsymbol{\lambda}$-term in a suitable domain \boldsymbol{D} :

$$
\llbracket-\rrbracket: \Lambda \rightarrow((\mathbb{A} \rightarrow D) \rightarrow D)
$$

$$
\begin{aligned}
\llbracket a \rrbracket \rho & =\rho a \\
\llbracket e e^{\prime} \rrbracket \rho & =\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right) \\
\llbracket \lambda a . e \rrbracket \rho & =\operatorname{fun}(\lambda(d \in D) \rightarrow \llbracket e \rrbracket(\rho[a \rightarrow d]))
\end{aligned}
$$

where $\begin{cases}\text { app } & \in D \times D \rightarrow c t s \\ \text { fun } & \in(D \rightarrow c t s D) \rightarrow c t s \\ D\end{cases}$ are continuous functions satisfying...

Informal structural recursion

E.g. denotation of $\boldsymbol{\lambda}$-term in a suitable domain \boldsymbol{D} :

$$
\llbracket-\rrbracket: \Lambda \rightarrow((\mathbb{A} \rightarrow \boldsymbol{D}) \rightarrow \boldsymbol{D})
$$

$$
\llbracket a \rrbracket \rho=\rho a
$$

$$
\llbracket e e^{\prime} \rrbracket \rho=\operatorname{app}\left(\llbracket e \rrbracket \rho, \llbracket e^{\prime} \rrbracket \rho\right)
$$

$$
\ulcorner\llbracket \lambda a \cdot e \rrbracket \rho=\operatorname{fun}(\lambda(d \in D) \rightarrow \llbracket e \rrbracket(\rho[a \rightarrow d]))
$$

why is this very standard definition independent of the choice of bound variable a ?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \Lambda \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \Lambda \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \boldsymbol{\Lambda} \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \Lambda \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?
Yes! - available for any nominal signature.

Is there a recursion principle for $\boldsymbol{\Lambda}$ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \boldsymbol{\Lambda} \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?
Yes! - available for any nominal signature.

Great. What's the catch?

Is there a recursion principle for Λ that legitimises these 'definitions' of $(-)\left[e_{1} / a_{1}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ and $\llbracket-\rrbracket: \boldsymbol{\Lambda} \rightarrow \boldsymbol{D}$ (and many other e.g.s)?

Yes! $-\alpha$-structural recursion.

What about other languages with binders?

Yes! - available for any nominal signature.

Great. What's the catch?

Need to learn a bit of possibly unfamiliar math, to do with permutations and support.

Lecture 2

Outline

- Lecture 1. Structural recursion and induction in the presence of name-binding operations.
- Lecture 2. Introducing the category of nominal sets.
[Notes, chapters 1-3 +exercises]
- Lecture 3. Nominal algebraic data types and α-structural recursion.
[Notes, chapters 4-5 +exercises]
- Lecture 4. Simply typed λ-calculus with local names and name-abstraction.
[Www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

Preliminaries on name-permutations

- $A=$ fixed countably infinite set of names (a, b, \ldots)

Preliminaries on

name-permutations

- $\mathbb{A}=$ fixed countably infinite set of names $(\boldsymbol{a}, \boldsymbol{b}, \ldots)$
- Perm $\mathbb{A}=$ group of finite permutations of \mathbb{A} $\left(\pi, \pi^{\prime}, \ldots\right)$
- π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.
- group: multiplication is composition of functions $\pi^{\prime} \circ \pi$; identity is identity function ι.

Preliminaries on

name-permutations

- $\mathbb{A}=$ fixed countably infinite set of names $(\boldsymbol{a}, \boldsymbol{b}, \ldots)$
- Perm $\mathbb{A}=$ group of finite permutations of \mathbb{A} $\left(\pi, \pi^{\prime}, \ldots\right)$
- π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.
- group: multiplication is composition of functions $\pi^{\prime} \circ \pi$; identity is identity function ι.
- swapping: $(a b) \in \operatorname{Perm} \mathbb{A}$ is the function mapping a to b, b to a and fixing all other names.

Fact: every $\pi \in \operatorname{Perm} \mathbb{A}$ is equal to

$$
\left(a_{1} b_{1}\right) \circ \cdots \circ\left(a_{n} b_{n}\right)
$$

for some $a_{i} \& b_{i}$ (with $\left.\pi a_{i} \neq a_{i} \neq b_{i} \neq \pi b_{i}\right)$.

Preliminaries on

name-permutations

- $\mathbb{A}=$ fixed countably infinite set of names $(\boldsymbol{a}, \boldsymbol{b}, \ldots)$
- Perm $\mathbb{A}=$ group of finite permutations of \mathbb{A} $\left(\pi, \pi^{\prime}, \ldots\right)$
- action of Perm \mathbb{A} on a set X is a function

$$
(-) \cdot(-): \operatorname{Perm} \mathbb{A} \times X \rightarrow X
$$

satisfying for all $x \in X$

- $\pi^{\prime} \cdot(\pi \cdot x)=\left(\pi^{\prime} \circ \pi\right) \cdot x$
- $\quad \cdot x=x$

Running example

Action of Perm \mathbb{A} on set of ASTs for λ-terms

$$
\operatorname{Tr} \triangleq\{t::=\mathrm{V} a|\mathrm{~A}(t, t)| \mathrm{L}(a, t)\}
$$

$$
\begin{aligned}
\pi \cdot \mathrm{V} a & =\mathrm{V}(\pi a) \\
\pi \cdot \mathrm{A}\left(t, t^{\prime}\right) & =\mathrm{A}\left(\pi \cdot t, \pi \cdot t^{\prime}\right) \\
\pi \cdot \mathrm{L}(a, t) & =\mathrm{L}(\pi a, \pi \cdot t)
\end{aligned}
$$

This respects α-equivalence and so induces an action on set of λ-terms $\Lambda=\left\{[t]_{\alpha} \mid t \in \operatorname{Tr}\right\}$:

$$
\pi \cdot[t]_{\alpha}=[\pi \cdot t]_{\alpha}
$$

Nominal sets

are sets X with with a Perm \mathbb{A}-action satisfying
Finite support property: for each $x \in X$, there is a finite subset $\bar{a} \subseteq \mathbb{A}$ that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathbb{A}$

$$
((\forall a \in \bar{a}) \pi a=a) \Rightarrow \pi \cdot x=x
$$

Fact: in a nominal set every $x \in X$ possesses a smallest finite support, written $\operatorname{supp} x$.

Nominal sets

are sets X with with a Perm \mathbb{A}-action satisfying
Finite support property: for each $x \in X$, there is a finite subset $\bar{a} \subseteq \mathbb{A}$ that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathbb{A}$

$$
((\forall a \in \bar{a}) \pi a=a) \Rightarrow \pi \cdot x=x
$$

Fact: in a nominal set every $x \in X$ possesses a smallest finite support, written $\operatorname{supp} x$.
E.g. Tr and Λ are nominal sets-any \bar{a} containing all the variables occurring (free, binding, or bound) in $t \in \operatorname{Tr}$ supports t and (hence) $[t]_{\alpha}$.
Fact: for $e \in \Lambda$, suppe $=\mathrm{fv} \boldsymbol{e}$. (See Notes, p28.)

Further examples of support

[Perm \mathbb{A} acts of sets of names $S \subseteq \mathbb{A}$ pointwise: $\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]

What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$
- $S_{2} \triangleq \mathbb{A}-\{a\}$
- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathbb{A}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm \mathbb{A} acts of sets of names $S \subseteq \mathbb{A}$ pointwise: $\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]

What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathbb{A}-\{a\}$
- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathbb{A}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm \mathbb{A} acts of sets of names $S \subseteq \mathbb{A}$ pointwise: $\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]

What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathbb{A}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathbb{A}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Further examples of support

[Perm \mathbb{A} acts of sets of names $S \subseteq \mathbb{A}$ pointwise: $\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]

What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathbb{A}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathbb{A}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ Answer: $\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$ is a support

Further examples of support

[Perm \mathbb{A} acts of sets of names $S \subseteq \mathbb{A}$ pointwise: $\pi \cdot S \triangleq\{\pi a \mid a \in S\}$.]

What is a support for the following sets of names?

- $S_{1} \triangleq\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{2} \triangleq \mathbb{A}-\{a\}$

Answer: $\{a\}$ is smallest support.

- $S_{3} \triangleq\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$, where $\mathbb{A}=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$

Answer: $\left\{a_{0}, a_{2}, a_{4}, \ldots\right\}$ is a support, and so is $\left\{a_{1}, a_{3}, a_{5}, \ldots\right\}$-but there is no finite support. S_{3} does not exist in the 'world of nominal sets'-in that world \mathbb{A} is infinite, but not enumerable.

Category of nominal sets, Nom

- objects are nominal sets
- morphisms are functions $f \in \boldsymbol{X} \rightarrow \boldsymbol{Y}$ that are equivariant:

$$
\pi \cdot(f x)=f(\pi \cdot x)
$$

for all $\pi \in \operatorname{Perm} \mathbb{A}, x \in X$.

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

So in particular Nom is a model of classical higher-order logic.

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Finite products: $X_{1} \times \cdots \times X_{n}$ is cartesian product of sets with Perm \mathbb{A}-action

$$
\pi \cdot\left(x_{1}, \ldots, x_{n}\right) \triangleq\left(\pi \cdot x_{1}, \ldots, \pi \cdot x_{n}\right)
$$

which satisfies

$$
\operatorname{supp}\left(x, \ldots, x_{n}\right)=\left(\operatorname{supp} x_{1}\right) \cup \cdots \cup\left(\operatorname{supp} x_{n}\right)
$$

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Coproducts are given by disjoint union.
Natural number object: $\mathbb{N}=\{0,1,2, \ldots\}$ with trivial Perm \mathbb{A}-action: $\pi \cdot n \triangleq n$ (so supp $n=\varnothing$).

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Exponentials: $X \rightarrow_{\mathrm{fs}} Y$ is the set of functions $f \in Y^{X}$ that are finitely supported w.r.t. the Perm \mathbb{A}-action

$$
\pi \cdot f \triangleq \lambda(x \in X) \rightarrow \pi \cdot\left(f\left(\pi^{-1} \cdot x\right)\right)
$$

(Can be tricky to see when $f \in Y^{X}$ is in $X \rightarrow_{\mathrm{fs}} Y$.)

Category of nominal sets, Nom

Fact. Nom is equivalent to the Schanuel topos, a well-known Grothendieck topos classifying the geometric theory of an infinite decidable object.

Subobject classifier: $\Omega=\{$ true, false $\}$ with trivial Perm A-action: $\pi \cdot b \triangleq b$ (so supp $b=\varnothing$).
(Nom is a Boolean topos: $\Omega=1+1$.)
Power objects: $X \rightarrow_{\mathrm{fs}} \Omega \cong \mathrm{P}_{\mathrm{fs}} X$, the set of subsets $S \subseteq X$ that are finitely supported w.r.t. the Perm \mathbb{A}-action

$$
\pi \cdot S \triangleq\{\pi \cdot x \mid x \in S\}
$$

The nominal set of names

\mathbb{A} is a nominal set once equipped with the action

$$
\pi \cdot a=\pi(a)
$$

which satisfies supp $a=\{a\}$.
N.B. \mathbb{A} is not \mathbb{N} ! Although $\mathbb{A} \in$ Set is a countable, any $f \in \mathbb{N} \rightarrow_{\text {fs }} \mathbb{A}$ has to satisfy

$$
\{f n\}=\operatorname{supp}(f n) \subseteq \operatorname{supp} f \cup \operatorname{supp} n=\operatorname{supp} f
$$

for all $n \in \mathbb{N}$, and so f cannot be surjective.

Nom $\not \vDash$ choice

Nom models classical higher-order logic, but not Hilbert's ε-operation, $\varepsilon x . \varphi(x)$ satisfying

$$
(\forall x: X) \varphi(x) \Rightarrow \varphi(\varepsilon x \cdot \varphi(x))
$$

Theorem. There is no equivariant function
$c:\left\{S \in \mathrm{P}_{\mathrm{fs}} \mathbb{A} \mid S \neq \varnothing\right\} \rightarrow \mathbb{A}$ satsifying $c(S) \in S$ for all non-empty $S \in \mathrm{P}_{\mathrm{fs}} \mathbb{A}$.

Proof. Suppose there were such a c. Putting $a \triangleq c \mathbb{A}$ and picking some $b \in \mathbb{A}-\{a\}$, we get a contradiction to $a \neq b$:

$$
a=c \mathbb{A}=c((a b) \cdot \mathbb{A})=(a b) \cdot c \mathbb{A}=(a b) \cdot a=b
$$

Nom $\not \vDash$ choice

Nom models classical higher-order logic, but not Hilbert's ε-operation, $\varepsilon x . \varphi(x)$ satisfying

$$
(\forall x: X) \varphi(x) \Rightarrow \varphi(\varepsilon x \cdot \varphi(x))
$$

In fact Nom does not model even very weak forms of choice, such as Dependent Choice.

Freshness

For each nominal set \boldsymbol{X}, we can define a relation $\# \subseteq \mathbb{A} \times X$ of freshness:

$$
a \# x \triangleq a \notin \operatorname{supp} x
$$

Freshness

For each nominal set X, we can define a relation $\# \subseteq \mathbb{A} \times X$ of freshness:

$$
a \# x \triangleq a \notin \operatorname{supp} x
$$

- In \mathbb{N}, a \# n always.
$-\ln \mathbb{A}, a \# b$ iff $a \neq b$.
$-\ln \Lambda, a \# t$ iff $a \notin \mathrm{fv} t$.
- In $X \times Y, a \#(x, y)$ iff $a \# x$ and $a \# y$.
- In $X \rightarrow_{\mathrm{fs}} Y, a \neq f$ can be subtle! (and hence ditto for $\mathbf{P}_{\mathrm{fs}} \boldsymbol{X}$)

Lecture 3

Outline

- Lecture 1. Structural recursion and induction in the presence of name-binding operations.
- Lecture 2. Introducing the category of nominal sets.
[Notes, chapters 1-3 +exercises]
- Lecture 3. Nominal algebraic data types and α-structural recursion.
[Notes, chapters 4-5 +exercises]
- Lecture 4. Simply typed $\boldsymbol{\lambda}$-calculus with local names and name-abstraction.
[Www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

Alpha-equivalence

Smallest binary relation $={ }_{\alpha}$ on Tr closed under the rules:

$$
\frac{a \in \mathbb{A}}{a={ }_{\alpha} \mathrm{V} a} \quad \frac{t_{1}={ }_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{\mathrm{A}\left(t_{1}, t_{2}\right)={ }_{\alpha} \mathrm{A}\left(t_{1}^{\prime}, t_{2}^{\prime}\right)}
$$

$$
(a b) \cdot t={ }_{\alpha}\left(a^{\prime} b\right) \cdot t^{\prime} \quad b \notin\left\{a, a^{\prime}\right\} \cup \operatorname{var}\left(t t^{\prime}\right)
$$

$$
\mathrm{L}(a, t)={ }_{\alpha} \mathrm{L}\left(a^{\prime}, t^{\prime}\right)
$$

E.g. $\quad \mathrm{A}(\mathrm{L}(\boldsymbol{a}, \mathrm{A}(\mathrm{V} \boldsymbol{a}, \mathrm{V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})={ }_{\alpha} \quad \mathrm{A}(\mathrm{L}(\boldsymbol{c}, \mathrm{A}(\mathrm{V} \boldsymbol{c}, \mathrm{V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})$

$$
\neq{ }_{\alpha} \quad \mathrm{A}(\mathrm{~L}(\boldsymbol{b}, \mathrm{~A}(\mathrm{~V} \boldsymbol{b}, \mathrm{~V} \boldsymbol{b})), \mathrm{V} \boldsymbol{c})
$$

Fact: $={ }_{\alpha}$ is transitive (and reflexive \& symmetric).

Name abstraction

Each $X \in$ Nom yields a nominal set $[\mathbb{A}] X$ of

name-abstractions $\langle a\rangle x$ are \sim-equivalence classes of pairs $(a, x) \in \mathbb{A} \times X$, where

$$
\begin{aligned}
&(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \Leftrightarrow \exists b \#\left(a, x, a^{\prime}, x^{\prime}\right) \\
&(b a) \cdot x=\left(b a^{\prime}\right) \cdot x^{\prime}
\end{aligned}
$$

The $\operatorname{Perm} \mathbb{A}$-action on $[\mathbb{A}] X$ is well-defined by

$$
\pi \cdot\langle a\rangle x=\langle\pi(a)\rangle(\pi \cdot x)
$$

Fact: $\operatorname{supp}(\langle a\rangle x)=\operatorname{supp} x-\{a\}$, so that

$$
b \#\langle a\rangle x \Leftrightarrow b=a \vee b \# x
$$

(Seee Notes, p40.)

Name abstraction

Each $X \in$ Nom yields a nominal set $[\mathbb{A}] X$ of

name-abstractions $\langle a\rangle x$ are \sim-equivalence classes of $\operatorname{pairs}(a, x) \in \mathbb{A} \times X$, where

$$
\begin{aligned}
&(a, x) \sim\left(a^{\prime}, x^{\prime}\right) \Leftrightarrow \exists b \#\left(a, x, a^{\prime}, x^{\prime}\right) \\
&(b a) \cdot x=\left(b a^{\prime}\right) \cdot x^{\prime}
\end{aligned}
$$

We get a functor $[\mathbb{A}](-):$ Nom \rightarrow Nom sending $f \in \operatorname{Nom}(X, Y)$ to $[\mathbb{A}] f \in \operatorname{Nom}([\mathbb{A}] X,[\mathbb{A}] Y)$ where

$$
[\mathbb{A}] f(\langle a\rangle x)=\langle a\rangle(f x)
$$

Name abstraction

$[\mathbb{A}](-):$ Nom \rightarrow Nom is a kind of (affine) function space-it is right adjoint to the functor $\mathbb{A} \otimes(-):$ Nom \rightarrow Nom sending X to $\mathbb{A} \otimes X=\{(a, x) \mid a \# x\}$.

Name abstraction

That explains what morphisms into $[\mathbb{A}] \boldsymbol{X}$ look like. More important is the following characterization of morphisms out of $[\mathbb{A}] X$.
Theorem. $f \in(\mathbb{A} \times X) \rightarrow_{\mathrm{fs}} Y$ factors through the subquotient $\{(a, x) \mid a \# f\} \subseteq \mathbb{A} \times X \rightarrow[\mathbb{A}] X$ to give a unique element of $\bar{f} \in([\mathbb{A}] X) \rightarrow_{\text {fs }} Y$ satisfying

$$
\bar{f}(\langle a\rangle x)=f(a, x) \quad \text { if } a \# f
$$

iff $(\forall a \in \mathbb{A}) a \# f \Rightarrow(\forall x \in X) a \# f(a, x)$
iff $(\exists a \in \mathbb{A}) a \# f \wedge(\forall x \in X) a \# f(a, x)$.
(Notes, p46.)

Initial algebras

- $[\mathbb{A}](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\text {fs }}(-)$ to give functors T : Nom \rightarrow Nom that have initial algebras $I: T D \rightarrow D$

Initial algebras

- $[\mathbb{A}](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\text {fs }}(-)$ to give functors T : Nom \rightarrow Nom that have initial algebras $I: T D \rightarrow D$

Initial algebras

- $[\mathbb{A}](-)$ has excellent exactness properties. It can be combined with $\times,+$ and $X \rightarrow_{\text {fs }}(-)$ to give functors T : Nom \rightarrow Nom that have initial algebras $I: T D \rightarrow D$
- For a wide class of such functors (nominal algebraic functors) the initial algebra \boldsymbol{D} coincides with ASTs/ α-equivalence.
E.g. $\boldsymbol{\Lambda}$ is the initial algebra for

$$
T(-) \triangleq \mathbb{A}+(-\times-)+[\mathbb{A}](-)
$$

Nominal algebraic signatures

- Sorts $\mathrm{S}::=\mathrm{N}$ name-sort (here just one, for simplicity)

D data-sorts
1 unit
S,S pairs
N.S name-binding

- Typed operations op : S \rightarrow D

Signature $\boldsymbol{\Sigma}$ is specified by the stuff in red.

Nominal algebraic signatures

Example: λ-calculus
name-sort Var for variables, data-sort Term for terms, and operations

V : Var \rightarrow Term
A : Term, Term \rightarrow Term
L:Var.Term \rightarrow Term

Nominal algebraic signatures

Example: π-calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum for processes, prefixed processes and summations, and operations

S: Sum \rightarrow Proc
Comp: Proc, Proc \rightarrow Proc
$\mathrm{Nu}:$ Chan. Proc \rightarrow Proc
!: Proc \rightarrow Proc
P: Pre \rightarrow Sum
$0: 1 \rightarrow$ Sum
Plus: Sum, Sum \rightarrow Sum
Out: Chan, Chan, Proc \rightarrow Pre
In: Chan, (Chan. Proc) \rightarrow Pre
Tau: Proc \rightarrow Pre
Match: Chan, Chan, Pre \rightarrow Pre

Nominal algebraic signatures

Closely related notions:

- binding signatures of Fiore, Plotkin \& Turi (LICS 1999)
- nominal algebras of Honsell, Miculan \& Scagnetto (ICALP 2001)
N.B. all these notions of signature restrict attention to iterated, but unary name-binding-there are other kinds of lexically scoped binder (e.g. see Pottier's C $\alpha \mathrm{ml}$ language.)

$\Sigma(\mathrm{S})=$ raw terms over $\boldsymbol{\Sigma}$ of sort S

$$
\begin{array}{lll}
\frac{a \in \mathbb{A}}{a \in \Sigma(\mathbb{N})} & \frac{t \in \Sigma(\mathrm{~S}) \quad \mathrm{op}: \mathrm{S} \rightarrow \mathrm{D}}{\mathrm{op} t \in \Sigma(\mathrm{D})} & \overline{() \in \Sigma(1)} \\
\frac{t_{1} \in \Sigma\left(\mathrm{~S}_{1}\right)}{t_{1}, t_{2} \in \Sigma\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)} & \frac{t_{2} \in \Sigma\left(\mathrm{~S}_{2}\right)}{a \cdot t \in \Sigma(\mathrm{~N} \cdot \mathrm{~S})}
\end{array}
$$

Each $\Sigma(\mathrm{S})$ is a nominal set once equipped with the obvious Perm \mathbb{A}-action—any finite set of atoms containing all those occurring in t supports $t \in \Sigma(S)$.

Alpha-equivalence $={ }_{\alpha} \subseteq \Sigma(\mathrm{S}) \times \Sigma(\mathrm{S})$

$$
\begin{array}{cc}
\frac{a \in \mathbb{A}}{a={ }_{\alpha} a} & \frac{t={ }_{\alpha} t^{\prime}}{\mathrm{op}^{\prime}={ }_{\alpha}{\text { op } t^{\prime}}^{()={ }_{\alpha}()}} \begin{array}{c}
\frac{t_{1}=_{\alpha} t_{1}^{\prime} \quad t_{2}={ }_{\alpha} t_{2}^{\prime}}{t_{1}, t_{2}={ }_{\alpha} t_{1}^{\prime}, t_{2}^{\prime}} \\
\frac{\left(a_{1} a\right) \cdot t_{1}={ }_{\alpha}\left(a_{2} a\right) \cdot t_{2} \quad a \#\left(a_{1}, t_{1}, a_{2}, t_{2}\right)}{a_{1} \cdot t_{1}={ }_{\alpha} a_{2} \cdot t_{2}}
\end{array} .
\end{array}
$$

Alpha-equivalence $={ }_{\alpha} \subseteq \Sigma(\mathrm{S}) \times \Sigma(\mathrm{S})$

Fact: $={ }_{\alpha}$ is equivariant $\left(t_{1}={ }_{\alpha} t_{2} \Rightarrow \pi \cdot t_{1}={ }_{\alpha} \pi \cdot t_{2}\right)$ and each quotient

$$
\Sigma_{\alpha}(S) \triangleq\left\{[t]_{\alpha} \mid t \in \Sigma(S)\right\}
$$

is a nominal set with

$$
\begin{array}{rc}
\pi \cdot[t]_{\alpha} & = \\
\operatorname{supp}[t]_{\alpha} & =f(\pi \cdot t]_{\alpha} \\
& \text { where } \\
f n(a \cdot t) & = \\
f n\left(t_{1}, t_{2}\right) & = \\
& \text { int }-\left\{a t_{1} \cup f n t_{2}\right. \\
& \text { etc. }
\end{array}
$$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.
(Notes, p61.)

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.

$$
\mathrm{T}_{\Sigma}(-)=\llbracket \mathrm{S}_{1} \rrbracket(-)+\cdots+\llbracket \mathrm{S}_{n} \rrbracket(-)
$$

where Σ has operations $\mathrm{op}_{i}: \mathrm{S}_{i} \rightarrow \boldsymbol{D}(i=1 . . n)$ and $\llbracket \mathrm{S} \rrbracket(-):$ Nom \rightarrow Nom is defined by:

$$
\begin{aligned}
\llbracket \mathrm{N} \rrbracket(-) & =\mathbb{A} \\
\llbracket \mathrm{D} \rrbracket(-) & =(-) \\
\llbracket 1 \rrbracket(-) & =1 \\
\llbracket \mathrm{~S}_{1}, \mathrm{~S}_{2} \rrbracket(-) & =\llbracket \mathrm{S}_{1} \rrbracket(-) \times \llbracket \mathrm{S}_{2} \rrbracket(-) \\
\llbracket \mathrm{N} \cdot \mathrm{~S} \rrbracket(-) & =\llbracket \mathbb{A}](\llbracket \mathrm{S} \rrbracket(-))
\end{aligned}
$$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.
E.g. for the λ-calculus signature with operations
$\mathrm{V}: \operatorname{Var} \rightarrow$ Term
A : Term, Term \rightarrow Term
L: Var.Term \rightarrow Term
we have
$\mathrm{T}_{\Sigma}(-)=\mathbb{A}+(-\times-)+[\mathbb{A}](-)$

Theorem. Given a nominal algebraic signature Σ (for simplicity, assume Σ has a single data-sort D as well as a single name-sort N)
$\Sigma_{\alpha}(\mathrm{D})$ is an initial algebra for the associated enriched functor $\mathrm{T}_{\Sigma}:$ Nom \rightarrow Nom.
T_{Σ} not only acts on equivariant (=emptily supported) functions, but also on finitely supported functions:

$$
\begin{aligned}
\left(X \rightarrow_{\mathrm{fs}} Y\right) & \rightarrow\left(\mathrm{T}_{\Sigma} X \rightarrow_{\mathrm{fs}} \mathrm{~T}_{\Sigma} Y\right) \\
F & \mapsto \mathrm{~T}_{\Sigma} F
\end{aligned}
$$

α-Structural recursion

For λ-terms:

Theorem.

Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X\right.$
$f_{3} \in[\mathbb{A}] X \rightarrow_{\mathrm{fs}} X$

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X \text { s.t. }\left\{\begin{aligned}
\hat{f} a & =f_{1} a \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e) & =f_{3}(\langle a\rangle(\hat{f} e)) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{aligned}\right.
$$

The enriched functor $[\mathbb{A}](-): \operatorname{Nom} \rightarrow$ Nom sends $f \in X \rightarrow_{\mathrm{fs}} Y$ to $[\mathbb{A}] f \in[\mathbb{A}] X \rightarrow_{\mathrm{fs}}[\mathbb{A}] Y$ where

$$
[\mathbb{A}] f(\langle a\rangle x)=\langle a\rangle(f x) \quad \text { if } a \# f
$$

α-Structural recursion

For λ-terms:

$$
\begin{aligned}
& \text { Theorem. } \\
& \text { Given any } X \in \text { Nom and }\left\{\begin{array}{l}
f_{1} \in \mathbb{A} \rightarrow_{\mathrm{fs}} X \\
f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X \\
f_{3} \in \mathbb{A} \times X \rightarrow_{\mathrm{fs}} X
\end{array}\right. \\
& \qquad(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)
\end{aligned} \text { s.t. }
$$

$\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X$

$$
\text { s.t. } \quad \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)
$$

$$
\hat{f}(\lambda a \cdot e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
$$

Name abstraction

Recall:

Theorem. $f \in(\mathbb{A} \times X) \rightarrow_{\mathrm{fs}} Y$ factors through the subquotient $\{(a, x) \mid a \# f\} \subseteq \mathbb{A} \times X \rightarrow[\mathbb{A}] X$ to give a unique element of $\bar{f} \in([\mathbb{A}] X) \rightarrow_{\mathrm{fs}} Y$ satisfying

$$
\bar{f}(\langle a\rangle x)=f(a, x) \quad \text { if } a \# f
$$

iff $(\forall a \in \mathbb{A}) a \# f \Rightarrow(\forall x \in X) a \# f(a, x)$
iff $(\exists a \in \mathbb{A}) a \# f \wedge(\forall x \in X) a \# f(a, x)$.

α-Structural recursion

For $\boldsymbol{\lambda}$-terms:
Theorem.
Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\text {fs }} X\right.$ s.t.
$f_{3} \in \mathbb{A} \times X \rightarrow \rightarrow_{f s} X$
$(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)$
(FCB)
$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X$
s.t.

$$
\left\{\begin{aligned}
\hat{f} a & =f_{1} a \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a \cdot e) & =f_{3}(a, \hat{f} e) \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{aligned}\right.
$$

E.g. capture-avoiding substitution $(-)\left[e^{\prime} / a^{\prime}\right]: \Lambda \rightarrow \boldsymbol{\Lambda}$ is the \hat{f} for

$$
\begin{aligned}
f_{1} a & \triangleq \text { if } a=a^{\prime} \text { then } e^{\prime} \text { else } a \\
f_{2}\left(e_{1}, e_{2}\right) & \triangleq e_{1} e_{2} \\
f_{3}(a, e) & \triangleq \lambda a . e
\end{aligned}
$$

for which (FCB) holds, since a \# λ a.e

α-Structural recursion

For $\boldsymbol{\lambda}$-terms:
Theorem.
Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\text {fs }} X\right.$ s.t.

$$
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)
$$

(FCB)
$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X$
s.t.
E.g. size function $\Lambda \rightarrow \mathbb{N}$ is the \hat{f} for

$$
\begin{aligned}
f_{1} a & \triangleq 0 \\
f_{2}\left(n_{1}, n_{2}\right) & \triangleq n_{1}+n_{2} \\
f_{3}(a, n) & \triangleq n+1
\end{aligned}
$$

for which (FCB) holds, since a \# $(n+1)$

α-Structural recursion

For $\boldsymbol{\lambda}$-terms:
Theorem.
Given any $X \in$ Nom and $\left\{f_{2} \in X \times X \rightarrow_{\text {fs }} X\right.$ s.t.
$f_{3} \in \mathbb{A} \times X \rightarrow \rightarrow_{f s} X$
$(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)$
(FCB)
$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X$
s.t.

$$
\{
$$

$$
\hat{f} a=f_{1} a
$$

$$
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)
$$

$$
\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
$$

Non-example: trying to list the bound variables of a λ-term

$$
\begin{aligned}
f_{1} a & \triangleq \text { nil } \\
f_{2}\left(\ell_{1}, \ell_{2}\right) & \triangleq \ell_{1} @ \ell_{2} \\
f_{3}(a, \ell) & \triangleq a:: \ell
\end{aligned}
$$

for which (FCB) does not hold, since $a \in \operatorname{supp}(a:: \ell)$.

α-Structural recursion

For λ-terms:
Theorem.
Given any $X \in$ Nom and $\left\{\begin{array}{l}f_{1} \in \mathbb{A} \rightarrow_{\mathrm{fs}} X \\ f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X \\ f_{3} \in \mathbb{A} \times X \rightarrow_{\mathrm{fs}} X\end{array}\right.$

$$
(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)
$$

$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X$
$\hat{f} a=f_{1} a$
$\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)$ $\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad$ if $a \#\left(f_{1}, f_{2}, f_{3}\right)$
Similar results hold for any nominal algebraic signature-see J ACM 53(2006)459-506.
Implemented in Urban \& Berghofer's Nominal package for Isabelle/HOL (classical higher-order logic).
Seems to capture informal usage well, but (FCB) can be tricky...

Counting bound variables

For each $e \in \Lambda$, $\operatorname{cbv} e \triangleq f e \rho_{0} \in \mathbb{N}$
where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X=\left(\mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{N}$ to satisfy

$$
\begin{aligned}
f a \rho & =\rho a \\
f\left(e_{1} e_{2}\right) \rho & =\left(f e_{1} \rho\right)+\left(f e_{2} \rho\right) \\
f(\lambda a . e) \rho & =f e(\rho[a \mapsto 1])
\end{aligned}
$$

and where $\rho_{0} \in \mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}$ is $\lambda(a \in \mathbb{A}) \rightarrow \mathbf{0}$.

Counting bound variables

For each $e \in \Lambda$, $\operatorname{cbv} e \triangleq f e \rho_{0} \in \mathbb{N}$
where we want $f \in \Lambda \rightarrow_{\mathrm{fs}} X$ with $X=\left(\mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{N}$ to satisfy

$$
\begin{aligned}
f a \rho & =\rho a \\
f\left(e_{1} e_{2}\right) \rho & =\left(f e_{1} \rho\right)+\left(f e_{2} \rho\right) \\
f(\lambda a . e) \rho & =f e(\rho[a \mapsto 1])
\end{aligned}
$$

and where $\rho_{0} \in \mathbb{A} \rightarrow_{\text {fs }} \mathbb{N}$ is $\lambda(a \in \mathbb{A}) \rightarrow \mathbf{0}$.
Looks like we should take
$f_{3}(a, x)=\lambda\left(\rho \in \mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow x(\rho[a \mapsto 1])$,
but this does not satisfy (FCB). Solution: take X to be a certain nominal subset of $\left(\mathbb{A} \rightarrow_{\mathrm{fs}} \mathbb{N}\right) \rightarrow_{\mathrm{fs}} \mathbb{N}$. (See Notes, p67.)

Lecture 4

Outline

- Lecture 1. Structural recursion and induction in the presence of name-binding operations.
- Lecture 2. Introducing the category of nominal sets.
[Notes, chapters 1-3 +exercises]
- Lecture 3. Nominal algebraic data types and α-structural recursion.
[Notes, chapters 4-5 +exercises]
- Lecture 4. Simply typed λ-calculus with local names and name-abstraction.
[Www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf]

α-Structural recursion

For λ-terms:

Theorem.

Given any $X \in$ Nom and $\left\{\begin{array}{l}f_{2} \in X \times X \rightarrow_{\text {fs }} X \text { s.t. }\end{array}\right.$
$(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x)$
(FCB)
$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X$
$\begin{aligned} \hat{f} a & =f_{1} a \\ \left.e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right)\end{aligned}$ $\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad$ if $a \#\left(f_{1}, f_{2}, f_{3}\right)$

Can we avoid explicit reasoning about finite support, \# and (FCB) when computing 'mod α '?

Want definition/computation to be separate from proving.

$$
\begin{aligned}
& \hat{f}=f_{1} a \\
& \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
& \hat{f}(\lambda a \cdot e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{2}\right) \\
&=\lambda a^{\prime} \cdot e^{\prime}
\end{aligned}
$$

Q: how to get rid of this inconvenient proof obligation?

$$
\begin{aligned}
& \hat{f}=f_{1} a \\
& \hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
& \hat{f}(\lambda a \cdot e)=v a \cdot f_{3}(a, \hat{f} e)\left[a \#\left(f_{1}, f_{2}, f_{2}\right)\right] \\
&=\lambda a^{\prime} \cdot e^{\prime} \quad
\end{aligned}
$$

Q: how to get rid of this inconvenient proof obligation? A: use a local scoping construct $\boldsymbol{v a} .(-)$ for names

$$
\begin{aligned}
\hat{f} & =f_{1} a \\
\hat{f}\left(e_{1} e_{2}\right) & =f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a \cdot e) & =v a \cdot f_{3}(a, \hat{f} e)\left[a \#\left(f_{1}, f_{2}, f_{2}\right)\right] \\
=\lambda a^{\prime} \cdot e^{\prime} \quad \longrightarrow & =v a^{\prime} \cdot f_{3}\left(a^{\prime}, \hat{f} e^{\prime}\right) O K!
\end{aligned}
$$

Q: how to get rid of this inconvenient proof obligation?
A: use a local scoping construct $v a$. (-) for names
which one?!

Dynamic allocation

- Stateful: va.t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]$ ".
- Used in Shinwell's Fresh OCaml $=$ OCaml +
- name types and name-abstraction type former
- name-abstraction patterns -matching involves dynamic allocation of fresh names [WWW.fresh-ocaml.org].

Sample Fresh OCaml code

```
(* syntax *)
type t;;
type var = t name;;
type term = Var of var | Lam of «var»term | App of term*term;;
    (* semantics *)
type sem = L of ((unit }->\mathrm{ sem) -> sem) | N of neu
and neu = V of var | A of neu*sem;;
    (* reify : sem -> term *)
let rec reify d =
    match d with L f >> let x = fresh in Lam(<x>(reify(f(function () -> N(V x)))))
        | N n -> reifyn n
and reifyn n =
    match n with V x -> Var x
                            | A(n', d') >> App(reifyn n', reify d');;
(* evals : (var * (unit }->\mathrm{ sem))list }->\mathrm{ term -> sem *)
let rec evals env t =
    match t with Var x m (match env with [] -> N(V x)
                            | (x',v)::env -> if x=x' then v() else evals env (Var x))
        | Lam(《x>t) -> L(function v -> evals ((x,v)::env) t)
        | App(t1,t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)
                        | N n }->\textrm{N}(\textrm{A}(\textrm{n},\mathrm{ evals env t2)));;
(* eval : term -> sem *)
let rec eval t = evals [] t;;
(* norm : lam -> lam *)
let norm t = reify(eval t);;
```


Dynamic allocation

- Stateful: va.t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]$ ".
- Used in Shinwell's Fresh OCaml = OCaml +
- name types and name-abstraction type former
- name-abstraction patterns
-matching involves dynamic allocation of fresh names
[www.fresh-ocaml.org].

Dynamic allocation

- Stateful: va.t means "add a fresh name a^{\prime} to the current state and return $t\left[a^{\prime} / a\right]^{\prime \prime}$.

Statefulness disrupts familiar mathematical properties of pure datatypes. So we will try to reject it in favour of...

Odersky's va. (-)

[M. Odersky, A Functional Theory of Local Names, POPL'94]

- Unfamiliar—apparently not used in practice (so far).
- Pure equational calculus, in which local scopes 'intrude' rather than extrude (as per dynamic allocation):

$$
\begin{aligned}
v a \cdot(\lambda x \rightarrow t) & \approx \lambda x \rightarrow(v a \cdot t) \quad[a \neq x] \\
\text { va. }\left(t, t^{\prime}\right) & \approx\left(\text { va.t,va.t }{ }^{\prime}\right)
\end{aligned}
$$

- New: a straightforward semantics using nominal sets equipped with a 'name-restriction operation'...

Name-restriction

A name-restriction operation on a nominal set X is a morphism $(-) \backslash(-) \in \operatorname{Nom}(\mathbb{A} \times X, X)$ satisfying

$$
\begin{aligned}
& >a \# a \backslash x \\
& >a \# x \Rightarrow a \backslash x=x \\
& >a \backslash(b \backslash x)=b \backslash(a \backslash x)
\end{aligned}
$$

Equivalently, a morphism $\rho:[\mathbb{A}] X \rightarrow X$ making

commute, where $\kappa x=\langle a\rangle x$ for some (or indeed any) $a \# x$; and where $\delta\left(\langle a\rangle\left\langle a^{\prime}\right\rangle x\right)=\left\langle a^{\prime}\right\rangle\langle a\rangle x$.

Given any $X \in \operatorname{Nom}$ and $\left\{\begin{array}{l}f_{1} \in \mathbb{A} \rightarrow_{\mathrm{fs}} X \\ f_{2} \in X \times X \rightarrow \mathrm{fs} X \\ f_{3} \in \mathbb{A} \times X \rightarrow \mathrm{fs} X\end{array}\right.$

$$
\text { s.t. }
$$

$\quad(\forall a) a \#\left(f_{1}, f_{2}, f_{3}\right) \Rightarrow(\forall x) a \# f_{3}(a, x) \quad$ (FCB)
$\exists!\hat{f} \in \Lambda \rightarrow_{\mathrm{fs}} X \quad \hat{f} \quad \hat{f} a=f_{1} a$

$$
\text { s.t. }\left\{\begin{array}{l}
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e)=f_{3}(a, \hat{f} e) \quad \text { if } a \#\left(f_{1}, f_{2}, f_{3}\right)
\end{array}\right.
$$

If X has a name restriction operation $(-) \backslash(-)$, we can trivially satisfy (FCB) by using $a \backslash f_{3}(a, x)$ in place of $f_{3}(a, x)$.

Given any $X \in$ Nom and $\left\{\begin{array}{l}f_{1} \in \mathbb{A} \rightarrow_{\mathrm{fs}} X \\ f_{2} \in X \times X \rightarrow_{\mathrm{fs}} X \\ f_{3} \in \mathbb{A} \times X \rightarrow_{\mathrm{fs}} X\end{array}\right.$
and a restriction operation $(-) \backslash(-)$ on X,

$$
\exists!\hat{f} \in \Lambda \rightarrow_{\text {fs }} X \quad \text { s.t. }\left\{\begin{array}{c}
\hat{f} a=f_{1} a \\
\hat{f}\left(e_{1} e_{2}\right)=f_{2}\left(\hat{f} e_{1}, \hat{f} e_{2}\right) \\
\hat{f}(\lambda a . e)=a \backslash f_{3}(a, \hat{f} e)
\end{array}\right.
$$

Is requiring X to carry a name-restriction operation much of a hindrance for applications?

Not much...

Examples of name-restriction

- For \mathbb{N} :

$$
a \backslash n \triangleq n
$$

Examples of name-restriction

- For \mathbb{N} : $a \backslash n \triangleq n$
- For $\mathbb{A}^{\prime} \triangleq \mathbb{A} \uplus\{$ anon $\}$:

$$
\begin{aligned}
a \backslash a & \triangleq \text { anon } \\
a \backslash a^{\prime} & \triangleq a^{\prime} \text { if } a^{\prime} \neq a \\
a \backslash \text { anon } & \triangleq \text { anon }
\end{aligned}
$$

Examples of name-restriction

- For \mathbb{N} :

$$
a \backslash n \triangleq n
$$

- For $\mathbb{A}^{\prime} \triangleq \mathbb{A} \uplus\{$ anon $\}$:

$$
a \backslash t \triangleq t[\operatorname{anon} / a]
$$

- For $\Lambda^{\prime} \triangleq\{t::=\mathrm{V} \boldsymbol{a}|\mathrm{A}(\boldsymbol{t}, \boldsymbol{t})| \mathrm{L}(\boldsymbol{a} \cdot \boldsymbol{t}) \mid$ anon $\} /={ }_{\alpha}$: $a \backslash t]_{\alpha} \triangleq[t[\text { anon } / a]]_{\alpha}$

Examples of name-restriction

- For \mathbb{N} :

$$
a \backslash n \triangleq n
$$

- For $\mathbb{A}^{\prime} \triangleq \mathbb{A} \uplus\{$ anon $\}$:

$$
a \backslash t \triangleq t[\operatorname{anon} / a]
$$

- For $\Lambda^{\prime} \triangleq\{t::=\mathrm{V} \boldsymbol{a}|\mathrm{A}(\boldsymbol{t}, \boldsymbol{t})| \mathrm{L}(\boldsymbol{a} \cdot \boldsymbol{t}) \mid$ anon $\} /={ }_{\alpha}$:

$$
a \backslash[t]_{\alpha} \triangleq[t[\operatorname{anon} / a]]_{\alpha}
$$

- Nominal sets with name-restriction are closed under products, coproducts, name-abstraction and exponentiation by a nominal set.

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name, with terms for
- names, $a:$ Name $(a \in \mathbb{A})$

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name, with terms for
- names, a : Name $(a \in \mathbb{A})$
- equality test, $=:$ Name \rightarrow Name \rightarrow Bool

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name, with terms for
- names, a : Name $(a \in \mathbb{A})$
- equality test, $=:$ Name \rightarrow Name \rightarrow Bool

$$
t: T
$$

- name-swapping, $\frac{t: T}{\left(a \backslash a^{\prime}\right) t: T}$
with type-directed computation rules, e.g.

$$
(a<b)(\lambda x \rightarrow t)=\lambda x \rightarrow(a<b)(t[(a<b) x / x])
$$

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name, with terms for
- names, a : Name $(a \in \mathbb{A})$
- equality test, $=:$ Name \rightarrow Name \rightarrow Bool

$$
t: T
$$

- name-swapping, $\frac{t: T}{\left.(a\urcorner a^{\prime}\right) t: T}$
- locally scoped names $\frac{t: T}{v a \cdot t: T}$ (binds $\left.a\right)$ with Odersky-style computation rules, e.g.

$$
\text { va. } \lambda x \rightarrow t=\lambda x \rightarrow v a . t
$$

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name
- name-abstraction types, Name. T

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name
- name-abstraction types, Name.T, with terms for
- name-abstraction, $\frac{t: T}{\alpha a . t: \text { Name. } T}$ (binds a)

$\lambda \alpha v$-Calculus

[AMP, Structural Recursion with Locally Scoped Names, preprint 2011, www.cl.cam.ac.uk/users/amp12/papers/strrls/strrls.pdf] is standard simply-typed λ-calculus with booleans and products, extended with:

- type of names, Name
- name-abstraction types, Name.T, with terms for
- name-abstraction, $\frac{t: T}{\alpha a . t: \text { Name.T }}$ (binds a)
- unbinding, $\frac{t: \text { Name. } T \quad t^{\prime}: T^{\prime}}{\text { let } a \cdot x=t \text { in } t^{\prime}: T^{\prime}}$ (binds $a \& x$ in t^{\prime}) with computation rule that uses local scoping

$$
\text { let } a \cdot x=\alpha a . t \text { in } t^{\prime}=v a .\left(t^{\prime}[t / x]\right)
$$

$\lambda \alpha v$-Calculus

Denotational semantics. $\lambda \alpha v$-calculus has a

 straightforward interpretation in Nom that is sound for the computation rules-types denote nominal sets equipped with a name-restriction operation:$$
\begin{aligned}
\llbracket \text { Bool } \rrbracket & =\{\text { true, false }\} \\
\llbracket \text { Name } \rrbracket & =\mathbb{A} \uplus\{\text { anon }\} \\
\llbracket T \times T^{\prime} \rrbracket & =\llbracket T \rrbracket \times \llbracket T^{\prime} \rrbracket \\
\llbracket T \rightarrow T^{\prime} \rrbracket & =\llbracket T \rrbracket \rightarrow \text { fs } \llbracket T \rrbracket \\
\llbracket \text { Name. } T \rrbracket & =\llbracket \mathbb{A} \rrbracket \llbracket T \rrbracket
\end{aligned}
$$

$\lambda \alpha v$-Calculus

Normalization. Terms possess normal forms with respect to the computation rules that are unique up a simple structural congruence relation generated by:

$$
\begin{aligned}
v a . t & \equiv t \text { if } a \notin f n(t) \\
v a . v b . t & \equiv v b . v a . t
\end{aligned}
$$

(Proof in the paper Structural Recursion with Locally Scoped Names uses Coquand's technique of evaluation to weak head normal form (whnf) combined with a 'readback' of whnfs to normal forms.)

$\lambda \alpha v$-Calculus

Nominal datatypes. E.g. add type Lam with
constructors $\left\{\begin{array}{l}\mathrm{V}: \text { Name } \rightarrow \text { Lam } \\ \mathrm{A}:(\operatorname{Lam} \times \mathrm{Lam}) \rightarrow \operatorname{Lam} \\ \mathrm{L}:(\text { Name } \mathrm{Lam}) \rightarrow \operatorname{Lam}\end{array}\right.$
iterator $\frac{t_{1}: \text { Name } \rightarrow T t_{2}:(T \times T) \rightarrow T t_{3}:(\text { Name } . T) \rightarrow T}{\operatorname{lrec} t_{1} t_{2} t_{3}: \operatorname{Lam} \rightarrow T}$
computation rules (writing f for $\operatorname{lrec} t_{1} t_{2} t_{3}$)
$\left\{\begin{aligned} f(\mathrm{~V} t) & =t_{1} t \\ f\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =t_{2}\left(f t, f t^{\prime}\right) \\ f(\mathrm{~L} \alpha a . t) & =t_{3}(\alpha a . f t) \quad \text { if } a \notin f n\left(t_{1}, t_{2}, t_{3}\right)\end{aligned}\right.$

$\lambda \alpha v$-Calculus

Nominal datatypes. E.g. add type Lam with

 computation rules (writing f for $\operatorname{lrec} t_{1} t_{2} t_{3}$)$$
\left\{\begin{aligned}
f(\mathrm{~V} t) & =t_{1} t \\
f\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =t_{2}\left(f t, f t^{\prime}\right) \\
f(\mathrm{~L} \alpha a . t) & =t_{3}(\alpha a . f t) \quad \text { if } a \notin f n\left(t_{1}, t_{2}, t_{3}\right)
\end{aligned}\right.
$$

Theorem. Computation of normal forms in this extension of $\lambda \alpha \nu$-calculus adequately represents α-structurally recursive functions on Λ.

$\lambda \alpha v$-Calculus

Nominal datatypes. E.g. add type Lam with

 computation rules (writing f for $\operatorname{lrec} t_{1} t_{2} t_{3}$)$\left\{\begin{aligned} f(\mathrm{~V} t) & =t_{1} t \\ f\left(\mathrm{~A}\left(t, t^{\prime}\right)\right) & =t_{2}\left(f t, f t^{\prime}\right) \\ f(\mathrm{~L} \alpha a . t) & =t_{3}(\alpha a . f t) \quad \text { if } a \notin f n\left(t_{1}, t_{2}, t_{3}\right)\end{aligned}\right.$
Theorem. Computation of normal forms in this extension of $\lambda \alpha \nu$-calculus adequately represents α-structurally recursive functions on Λ.
E.g. capture-avoiding substitution of t for a is represented by $\operatorname{lrec} t_{1} t_{2} t_{3}$ with $t_{1} \triangleq$ if $x=a$ then t else $V x$

$$
\begin{aligned}
& t_{2} \triangleq \lambda x \rightarrow \operatorname{let}(y, z)=x \text { in } \mathrm{A} y z \\
& t_{3} \triangleq \lambda x \rightarrow \operatorname{let} a \cdot y=x \text { in L } \alpha b .(a(b) y
\end{aligned}
$$

$\lambda \alpha v$-calculus as a FP language

To do: revisit FreshML using Odersky-style local names rather than dynamic allocation

```
names Var : Set
data Term : Set where
    V : Var -> Term
    A : (Term }\times\mathrm{ Term)-> Term
    L : (Var . Term) -> Term
_/_ : Term -> Var -> Term -> Term --capture-avoiding substitution
(t / x) (V x') = if x = x' then t else V x'
(t / x) (A(t' , t'')) = A((t / x ) t' , (t / x ) t'')
(t / x) (L( }\mp@subsup{\textrm{x}}{}{\prime}.\mp@subsup{\textrm{t}}{}{\prime}))=L(\mp@subsup{x}{}{\prime}.(t/ x)\mp@subsup{t}{}{\prime}
```


'Nominal Agda' (???)

```
names Var : Set
data Term : Set where
    V : Var -> Term
    A : (Term }\times\mathrm{ Term)-> Term
    L : (Var . Term) -> Term
_/_ : Term -> Var -> Term -> Term
(t/ x) (V x') = if x = x' then t else V x'
(t / x) (A(t' , t'\prime)) = A((t / x ) t', (t / x ) t'')
(t/x)(L( }\mp@subsup{\textrm{x}}{}{\prime}.\mp@subsup{\textrm{t}}{}{\prime}))=L(\mp@subsup{\textrm{x}}{}{\prime}.(\textrm{t}/\textrm{x})\mp@subsup{\textrm{t}}{}{\prime}
data _==_ (t : Term) : Term -> Set where --intensional equality
    Refl : t == t
```


'Nominal Agda' (???)

```
names Var : Set
data Term : Set where
    V : Var -> Term
    A : (Term }\times\mathrm{ Term)-> Term
    L : (Var . Term) -> Term
--(possibly open) }\lambda\mathrm{ -terms mod }
--variable
--application term
--\lambda-abstraction
_/_ : Term -> Var -> Term -> Term --capture-avoiding substitution
(t/ x)(V x') = if x = x' then t else V x'
```



```
(t/x)(L( }\mp@subsup{\textrm{x}}{}{\prime}.\mp@subsup{\textrm{t}}{}{\prime}))=L(\mp@subsup{\textrm{x}}{}{\prime}.(\textrm{t}/\textrm{x})\mp@subsup{\textrm{t}}{}{\prime}
data _==_ (t : Term) : Term -> Set where --intensional equality
    Refl : t == t
eg : (x x' : Var) -> 
eg x x' = {! !}
```


Dependent types

- Can the $\lambda \alpha v$-calculus be extended from simple to dependent types?
At the moment I do not see how to do this, because...

$\Gamma, a:$ Name $\vdash e: T \quad a \notin f n(T)$

$\Gamma \vdash v a \cdot e: T$

$\Gamma, a:$ Name $\vdash e: T \quad a \notin f n(T)$ Гトva.e:T

 $\underset{e_{1}: T_{1}}{v a \cdot\left(e_{1}, e_{2}\right) \stackrel{?}{=}\left(\text { va. } e_{1}, \text { va. } e_{2}\right)}$
$\Gamma, a:$ Name $\vdash e: T \quad a \notin f n(T)$

$\Gamma \vdash$ va.e: T

$\Gamma, a:$ Name $\vdash e: T \quad a \notin f n(T)$

$\Gamma \vdash v a . e: T$

$\Gamma, a:$ Name $\vdash e: T \quad a \notin f n(T)$

$\Gamma \vdash$ va.e: T

Dependent types

- Can the $\lambda \alpha v$-calculus be extended from simple to dependent types?
At the moment I do not see how to do this, because...
- In any case, is there a useful/expressive form of indexed structural induction $\bmod \alpha$, whether or not we try to use Odersky-style locally scoped names?
(Recent work of Cheney on DNTT is interesting, but probably not sufficiently expressive.)

