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Studies of the mathematical properties of impredicative polymorphic types have for the most part
focused on the polymorphic lambda calculus of Girard-Reynolds, which is a calculus of total
polymorphic functions. This paper considers polymorphic types from a functional programming
perspective, where the partialness arising from the presence of fixpoint recursion complicates the
nature of potentially infinite (‘lazy’) data types. An approach to Reynolds’ notion of relational
parametricity is developed which works directly on the syntax of a programming language, using a
novel closure operator to relate operational behaviour to parametricity properties of types. Working
with an extension of Plotkin’s PCF with ∀-types, lazy lists and existential types, we show by
example how the resulting logical relation can be used to prove properties of polymorphic types up
to operational equivalence.

1. Introduction
‘It turns out that virtually any basic type of interest can be encoded within F2 [polymorphic lambda

calculus]. Similarly, product types, sum types, existential types, and some recursive types, can be encoded
within F2: polymorphism has an amazing expressive power.’

Cardelli (1997, page 2225)

It is a widely held view—typified by the above quotation—that the polymorphic lambda cal-
culus (PLC) of Girard (1972) and Reynolds (1974) plays a foundational role for the statics, that
is, the type systems of functional programming languages analogous to the one played by the
untyped lambda calculus for the dynamics of such languages. The technical justification for this
view rests on the encoding of a wide class of data type constructions as PLC types: see for exam-
ple (Böhm and Berarducci 1985), (Reynolds and Plotkin 1993) and (Girard 1989, Chapter 11).
However, these results cannot just be applied ‘off the shelf’ to deduce properties of functional
programming languages equipped with polymorphic types. This is because PLC is a theory of
total polymorphic functions—a consequence of the fact that β-reduction of typeable PLC terms
is strongly normalising (Girard 1972); whereas functional programming languages typically fea-
ture various mechanisms for making general forms of recursive definitions, both at the level of
expressions and at the level of types. The first kind of definition entails the presence of ‘partial’
expressions, that is, ones whose evaluation does not terminate; and then the second kind of defi-
nition may throw up types whose values involve partiality in complicated ways, through the use
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of non-strict constructors. Can such ‘lazy’ data types be encoded with combinations of function-
and ∀-types? It is this question which motivates the results presented here.

A specific example may help to bring this issue into sharper focus. Consider the type numlist

of lazy lists of numbers in a non-strict functional programming language, such as the Haskell
language 〈www.haskell.org〉. The canonical forms of this type are the empty list, nil, and cons-
expressions, H:T , where the head H (of type num) and the tail T (of type numlist again)
are not necessarily in canonical form (and therefore their evaluation may not terminate). Thus
expressions of this type can represent finite lists (such as 0 : nil), properly infinite lists (such as
` = 0 : `), or ‘partial’ lists (such as 0 : Ω, where Ω is a divergent expression of type numlist).
Suppose now that the language is augmented with ∀-types. (We consider why one might want to
do so in a moment.) In PLC, the type

L(τ)
def
= ∀α (α → (τ → α → α) → α) (α not free in τ )

encodes finite τ -lists—in the sense that the closed β-normal forms of L(τ) are in bijection with
finite lists of closed β-normal forms of type τ . But what is the situation in the functional pro-
gramming language? Can uses of the lazy list type numlist always be replaced by the polymor-
phic type L(num)? More precisely, are numlist and L(num) ‘operationally isomorphic’, in the
sense that there are functions in the language from numlist to L(num) and back again that are
mutually inverse up to some reasonable notion of operational equivalence of expressions? Or is
numlist operationally isomorphic to some some other polymorphic type, or to no such type?

The reader will not find the answer to such questions in the literature, as far as I know. Partly
this is because it is hard to construct denotational models of both impredicative polymorphism
and fixpoint recursion. Such models do exist (see (Coquand, Gunter, and Winskel 1987; Co-
quand, Gunter, and Winskel 1989) for one style of model and (Abadi and Plotkin 1990) for
another), but there is not much in the way of useful analysis of the properties of polymorphic
types in these models. On the other hand for pure PLC, Reynolds’ notion of relational para-
metricity (Reynolds 1983; Ma and Reynolds 1992) turns out to provide a very powerful tool for
such an analysis. There are models of PLC supporting a relationally parametric structure (Bain-
bridge, Freyd, Scedrov, and Scott 1990), and in such models polymorphic encodings of data
type constructions have strong properties; indeed they have category-theoretic universal prop-
erties characterising the constructions uniquely up to isomorphism (Hasegawa 1991; Hasegawa
1994; Abadi, Cardelli, and Curien 1993; Plotkin and Abadi 1993). Can one extend this relational
approach to encompass fixpoint recursion? Unpublished work of Plotkin (1993) indicates one
way to do that model-theoretically. Here we show that a relatively simple, syntactic approach is
possible.

Should one care? Well, for one thing the results presented here provide a basis for obtaining
some ‘free theorems’ (Wadler 1989) up to operational equivalence (and modulo some restrictions
to do with strictness) in languages like ML and Haskell that combine higher order functions, fix-
point recursion and predicative polymorphism. However, the power of the relational approach
really shows when considering fully impredicative ∀-types. Since the type reconstruction prob-
lem is undecidable in this case (Wells 1994) and explicit labelling with type information is con-
sidered cumbersome, most higher order typed languages meant for human programmers eschew
fully impredicative polymorphism. However, it seems that impredicative polymorphism is a use-
ful feature of explicitly typed intermediate languages in compilers (Harper and Lillibridge 1993;
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Morrisett, Walker, Crary, and Glew 1998). Also, there is foundational interest in knowing, in
the presence of fixpoint recursion, to what extent various kinds of type can be reduced to pure
polymorphic types.

As Wadler (1989, Sec. 7) and Plotkin (1993) point out, extending relational parametricity to
cope with fixpoint recursion seems to necessitate working not with arbitrary relations, but with
ones that are at least admissible in the domain-theoretic sense, i.e. that are bottom-relating and
closed under taking limits of chains of related elements. In this paper a relational framework
for polymorphism and fixpoint recursion is developed which is based upon operational rather
than denotational semantics. This allows one to avoid some of the complexities of the domain-
theoretic approach. In particular, it turns out that questions of admissibility of relations can be
treated implicitly, via an operationally-defined notion of closure. This closure operator allows
us to tie operational behaviour to parametricity properties of types and it is the main technical
contribution of the paper. We use it to obtain a straightforward and apparently quite powerful
method for proving properties of Morris-style contextual equivalence of types and terms involv-
ing impredicative polymorphism and fixpoint recursion; and one which is based only upon the
syntax and operational semantics of the language. (See (Pitts 1997b; Pitts and Stark 1998) for
previous results of this kind.)

The plan of the paper is as follows. In the next section we introduce PolyPCF, an extension
of PCF (Plotkin 1977) with lazy lists and ∀-types which will serve as the vehicle for examin-
ing the issues raised above. We define a notion of observational congruence for PolyPCF terms
based upon observing convergence of evaluation in all contexts of list-type, but not of function-
or ∀-type. However, instead of working with a conventional Morris-style definition of contex-
tual equivalence, we define this observational congruence without mentioning PolyPCF contexts
explicitly, making use of the ‘relational’ approach of (Lassen 1998). Not only does this avoid
some low-level technicalities with binding in contexts, but it also makes it easier to state the
relevant properties of logical relations later on. Section 3 introduces the closure operation on
(binary) relations between PolyPCF terms mentioned above. We use it in Section 4 to present
our syntactic version of relational parametricity. An action of the PolyPCF types on binary re-
lations between closed PolyPCF terms (of the same closed type) is defined. This gives rise to a
certain binary logical relation which is shown to characterise PolyPCF observational congruence
(Theorem 4.15). Section 5 shows how the logical relation can be used to deduce extensionality
properties of PolyPCF observational congruence. Whereas these ‘context lemmas’ can be proved
in a number of different ways in addition to the one given here, the same does not seem to be
true of the results in the next two sections where we really exploit the relational parametricity
properties of observational congruence established earlier. In Section 6 we show, amongst other
things, that in PolyPCF it is indeed the case that αlist is observationally isomorphic to the pure
polymorphic type ∀α′ (α′ → (α → α′ → α′) → α′); and in Section 7 we show that existential
types, with a standard operational semantics, are definable in PolyPCF up to observational con-
gruence. Finally, Section 8 considers some directions in which the results presented here might
usefully be extended.
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Types τ ::= α type variable
| τ → τ function type
| ∀α (τ) ∀-type
| τ list list type

Terms M ::= x variable
| λ x : τ (M) function abstraction
| M M function application
| Λ α (M) type generalisation
| M τ type specialisation
| fix(M) fixpoint recursion
| nilτ empty list
| M :: M non-empty list
| caseM of {nil⇒M | x :: x⇒M} case expression

Notes
(i) α and x range over disjoint countably infinite sets TyVar and Var of type variables and

variables respectively.
(ii) The constructions ∀α (−), λ x : τ (−), Λ α (−), and caseM of {nil⇒M ′ | x :: x′ ⇒ (−)}

are binders. We will identify types and terms up to renaming of bound variables and bound type
variables.

(iii) We write ftv(e) for the finite set of free type variables of an expression e (be it a type or a term)
and fv(M) for the finite set of free variables of a term M .

(iv) The result of capture-avoiding substitution of a type τ for all free occurrences of a type variable
α in e (a type or a term) will be denoted e[τ/α]. Similarly, M [M ′/x] denotes the result of
capture-avoiding substitution of a term M ′ for all free occurrences of the variable x in M .

Fig. 1. Syntax of the PolyPCF language

2. Polymorphic PCF

To explore the issues raised in the Introduction we use a programming language, PolyPCF,
combining the Girard-Reynolds polymorphic lambda calculus with that veteran of studies in
programming languages, PCF (Plotkin 1977). Recall that PCF is a simply typed, call-by-name
lambda calculus equipped with fixpoint recursion and some basic operations on ground types of
natural numbers and booleans. To this we add ∀-types from the Girard-Reynolds polymorphic
lambda calculus and a type constructor for lists. For reasons of parsimony we do without the
ground types of natural numbers and booleans, because the role they play in the theory can be
taken by the list types. The syntax of PolyPCF types and terms is given in Fig. 1. We are only
interested in terms that can be assigned types. The PolyPCF type assignment relation is given by
the axioms and rules in Fig. 2, all of which are quite standard.

Notation 2.1. A type τ is closed if ftv(τ) = ∅; whereas a term M is closed if fv(M) = ∅,
whether or not it also has free type variables. We write Typ for the set of closed PolyPCF types,
i.e. those having no free type variables. Given τ ∈ Typ, we write Term(τ) for the set of closed
PolyPCF terms M for which ∅ ` M : τ is derivable from the axioms and rules in Fig. 2.
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Γ, x : τ ` x : τ

Γ, x : τ1 ` M : τ2

Γ ` λ x : τ1 (M) : τ1 → τ2

Γ ` F : τ1 → τ2 Γ ` A : τ1

Γ ` F A : τ2

Γ, α ` M : τ

Γ ` Λ α (M) : ∀α (τ)

Γ ` G : ∀α (τ1)

Γ ` G τ2 : τ1[τ2/α]

Γ ` F : τ → τ

Γ ` fix(F ) : τ

Γ ` nilτ : τ list
Γ ` H : τ Γ ` T : τ list

Γ ` H :: T : τ list

Γ ` L : τ1list Γ ` M1 : τ2 Γ, h : τ1, t : τ1list ` M2 : τ2

Γ ` caseLof {nil⇒M1 | h :: t⇒M2} : τ2

Notes
(i) Typing judgements take the form Γ ` M : τ where

— the typing environment Γ is a pair A, ∆ with A a finite subset of TyVar and ∆ a function
defined on a finite subset dom(∆) of Var and mapping each x ∈ dom(∆) to a type with
free type variables in A;

— M is a term with ftv(M) ⊆ A and fv(M) ⊆ dom(∆);
— τ is a type with ftv(τ) ⊆ A.
The PolyPCF type assignment relation consists of all such judgements inductively defined by
the above axioms and rules.

(ii) The notation Γ, x : τ indicates the typing environment obtained from the typing environment
Γ = A, ∆ by properly extending the function ∆ by mapping x /∈ dom(∆) to τ . Similarly, Γ, α

is the typing environment obtained by properly extending A with an α /∈ A.
(iii) The explicit type information included in the syntax of function abstractions and empty lists

ensures that, given Γ and M , there is at most one τ for which Γ ` M : τ holds.

Fig. 2. PolyPCF type assignment relation

We give the operational semantics of PolyPCF in terms of an inductively defined relation of
evaluation. It takes the form M ⇓ V , where M and V are closed terms of the same closed type
(i.e. M,V ∈ Term(τ) for some τ ∈ Typ) and where V is a value:

V ::= λx : τ (M) | Λα (M) | nilτ | M :: M.

The evaluation relation is inductively defined by the axioms and rules in Fig. 3. Note that function
application is given a call-by-name semantics and that the evaluation rule for type specialisations,
Gτ , is dictated by our choice of values at ∀-types—we choose not to evaluate ‘under the Λ’.
Evaluation is deterministic: given M , there is at most one V for which M ⇓ V holds; and of
course the rule for fix entails that there may be no such V .
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V ⇓ V (V a value)

F ⇓ λ x : τ (M) M [A/x] ⇓ V

F A ⇓ V

G ⇓ Λ α (M) M [τ/α] ⇓ V

G τ ⇓ V

F fix(F ) ⇓ V

fix(F ) ⇓ V

L ⇓ nilτ M1 ⇓ V

caseLof {nil⇒M1 | h :: t⇒M2} ⇓ V

L ⇓ H :: T M2[H/h, T/t] ⇓ V

caseLof {nil⇒M1 | h :: t⇒M2} ⇓ V

Fig. 3. PolyPCF evaluation relation

Next we define a suitable notion of program equivalence for PolyPCF. Recall that two terms
of a programming language are regarded as contextually equivalent if, roughly speaking, they
are interchangeable in any program without affecting the observable behaviour of the program
upon execution. Of course, to make this a precise notion one has to choose what constitutes an
executable program and what behaviour should be observable. For PCF, Plotkin (Plotkin 1977)
chooses ‘program’ to mean ‘closed term of ground type’ and the observable behaviour of such
a program to be the constant (integer or boolean) to which it evaluates, if any. Since we have
replaced ground types with list types, here we take a program to be a closed term of list type and
we observe whether or not it evaluates to nil. (In fact, just observing termination of evaluation at
list types leads to the same notion of contextual equivalence. Another reasonable choice would be
to observe termination of evaluation at any type; this gives rise to a different notion of contextual
equivalence, analogous to the one studied in (Abramsky 1990), but which can be analysed using
the same kind of operational techniques introduced in this paper; see Section 8.)

Thus given Γ ` M1 : τ and Γ ` M2 : τ in PolyPCF, we can say that the terms M1 and M2

are contextually equivalent, and write Γ ` M1 =ctx M2 : τ , if for any context M[−] for which
M[M1],M[M2] ∈ Term(τ ′list) for some τ ′ ∈ Typ, it is the case that

M[M1] ⇓ nilτ ′ ⇔ M[M2] ⇓ nilτ ′ .

As usual, a context M[−] means a PolyPCF term with a subterm replaced by the placeholder ‘−’;
and then M[M ] indicates the term that results from replacing the placeholder with the term M .
This is a textual substitution which may well involve capture of free variables in M by binders in
M[−]. So, unlike terms, contexts are not identified up to renaming of bound variables. Although
this might seem like a minor syntactic matter, it is an indication that the notion of ‘context’
occurring in the above definition of contextual equivalence is rather too concrete. Perhaps a
better indication is the fact that the substitutivity property of PolyPCF contextual equivalence

Γ, x : τ1 ` M =ctx M ′ : τ2 & Γ ` N =ctx N ′ : τ1 ⇒ Γ ` M [N/x] =ctx M ′[N ′/x] : τ2

is by no means an immediate consequence of the above definition of =ctx. This is because
M [N/x] is not of the form MN [M ] for some context MN [−] (uniformly in M ). Nevertheless,
we can regard M [N/x] as a use of M ‘in context’; or in other words, it is reasonable to demand
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that the above substitutivity property holds of a notion of PolyPCF contextual equivalence by
definition.

Partly for these reasons, we next develop a slightly more abstract, ‘relational’ treatment of
PolyPCF contextual equivalence which avoids explicit use of contexts, following (Gordon 1998;
Lassen 1998). This approach has the advantage of focussing on the key properties we want for
a notion of semantic equality of PolyPCF programs, by taking them as the definition (Defini-
tion 2.2) and then deducing the existence of a greatest† relation with those properties (Theo-
rem 2.3). This way of doing things makes it easier to state and prove the fundamental properties
of the logical relation to be defined in Section 4. However, to readers more used to the tradi-
tional approach to contextual equivalence outlined above, what follows may seem unfamiliar
and rather technical—in which case they may want to skip to Examples 2.6–2.9 on first read-
ing and take references to PolyPCF observational congruence, =obs (defined below), to mean
contextual equivalence =ctx, since the two relations do indeed coincide (Remark 2.4).

Definition 2.2. Suppose E is a set of 4-tuples (Γ,M,M ′, τ) satisfying

Γ ` M E M ′ : τ ⇒ (Γ ` M : τ & Γ ` M ′ : τ) (1)

where we write Γ ` M E M ′ : τ instead of (Γ,M,M ′, τ) ∈ E .
(i) E is compatible if it is closed under the axioms and rules in Fig. 4. It is substitutive if it is

closed under the rules in Fig. 5. (All these axioms and rules are intended to apply only to
4-tuples satisfying the well-formedness condition (1)).

(ii) It is not hard to see that compatible relations are automatically reflexive. A PolyPCF precon-
gruence is a compatible, substitutive relation which is also transitive. A PolyPCF congruence
is a precongruence which is also symmetric.

(iii) E is adequate if for all closed types τ ∈ Typ and closed terms M,M ′ ∈ Term(τ list)

∅ ` M E M ′ : τ list ⇒ (M ⇓ nilτ ⇔ M ′ ⇓ nilτ ).

Theorem 2.3 (PolyPCF observational congruence). There is a largest adequate, compatible
and substitutive relation. It is an equivalence relation and hence is the largest adequate PolyPCF
congruence relation. We call it PolyPCF observational congruence and write it as =obs.

Proof. We take =obs to be the union of all adequate, compatible and substitutive relations.
The collection of adequate relations is closed under the operations of non-empty union, rela-
tional composition and reciprocation; moreover, the identity relation is adequate, compatible and
substitutive. These facts imply that =obs is itself compatible (hence reflexive), substitutive, tran-
sitive and symmetric; see (Lassen 1998, Lemma 3.7.1 and Section 3.8).

Remark 2.4. The substitutivity properties of Fig. 5 are just as important a part of the laws of
equational logic appropriate to the language of PolyPCF as are the compatibility properties of
Fig. 4. It is for this reason that we have made substitutivity a part of the definition of =obs.
Nevertheless, it can be dispensed with in the definition since in fact =obs is the largest relation

† Greatest, because one wishes to identify programs as much as possible, i.e. unless there are observable reasons for not
doing so.
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Γ, x : τ ` x E x : τ

Γ, x : τ1 ` M E M ′ : τ2

Γ ` λ x : τ1 (M) E λ x : τ1 (M ′) : τ1 → τ2

Γ ` F E F ′ : τ1 → τ2 Γ ` A E A′ : τ1

Γ ` (F A) E (F ′ A′) : τ2

α, Γ ` M E M ′ : τ

Γ ` Λ α (M) E Λ α (M ′) : ∀α (τ)

Γ ` G E G′ : ∀α (τ1)

Γ ` (G τ2) E (G′ τ2) : τ1[τ2/α]

Γ ` F E F ′ : τ → τ

Γ ` fix(F ) E fix(F ′) : τ

Γ ` nilτ E nilτ : τ list
Γ ` H E H ′ : τ Γ ` T E T ′ : τ list

Γ ` (H :: T ) E (H ′ :: T ′) : τ list

Γ ` L E L′ : τ1list Γ ` M1 E M ′
1 : τ2 Γ, h : τ1, t : τ1list ` M2 E M ′

2 : τ2

Γ ` (caseLof {nil⇒M1 | h :: t⇒M2}) E (caseL′
of {nil⇒M ′

1 | h :: t⇒M ′
2}) : τ2

Fig. 4. Compatibility properties

α, Γ ` M E M ′ : τ1

Γ[τ2/α] ` M [τ2/α] E M ′[τ2/α] : τ1[τ2/α]

Γ, x : τ1 ` M E M ′ : τ2 Γ ` N E N ′ : τ1

Γ ` M [N/x] E M ′[N ′/x] : τ2

Fig. 5. Substitutivity properties

which is merely adequate and compatible. The fact that the largest adequate and compatible
relation is also substitutive follows once one knows that it relates β-convertible terms. This in
turn can be deduced as a corollary of the properties of the logical relation of Section 4 (see
also (Lassen 1998, Proposition 4.3.3) for a more direct proof). Once one knows that =obs is the
largest adequate and compatible relation, it is straightforward to see that it is indeed the same as
the notion of contextual equivalence =ctx which we mentioned at the start of this section.

We conclude this section with some examples of properties of PolyPCF types with respect to
observational congruence. It does not seem easy to prove such properties directly from the defini-
tion of observational congruence (or using the more concrete notion of contextual equivalence).
The logical relation of the next section will provide the means to prove them.

Notation 2.5. In the case of closed terms of closed type, we just write M1 =obs M2 : τ for
∅ ` M1 =obs M2 : τ .

Example 2.6 (Polymorphic null type). Consider the type

null
def
= ∀α (α).
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In PolyPCF there is a closed term of this type, namely Ω
def
= Λα (fix(λx : α (x))). This is a

‘polymorphic bottom’ since for each τ ∈ Typ it is not hard to see that Ω τ diverges, in the sense
that there is no V for which Ω τ ⇓ V holds. In fact, up to observational congruence, Ω is the
only closed term of type null . In other words, we claim that for all G ∈ Term(null), one has
G =obs Ω : null . The claim will be proved in Section 6.

Example 2.7 (Polymorphic unit type). Consider the type

unit
def
= ∀α (α → α).

As well as the ‘bottom’ term Ω unit , this type contains a polymorphic identity function Λα (λx :

α (x)). But that is all: we claim that if G ∈ Term(unit), then either G =obs (Ω unit) : unit or
G =obs Λα (λx : α (x)) : unit . The claim will be proved in Section 6.

Example 2.8 (Polymorphic lists). Consider the polymorphic list type

L(α)
def
= ∀α′ (α′ → (α → α′ → α′) → α′).

Define terms I and J as follows:

I
def
= Λα (fix (λ i : αlist → L(α) (λ ` : αlist (

Λα′ (λx′ : α′ (λ f : α → α′ → α′ (

case `of {nil⇒x′ | h :: t⇒ f h(i t α′ x′ f)})))))))

J
def
= Λα (λ p : L(α) (p (αlist) (N α) (C α)))

where N
def
= Λα (nilα) and C

def
= Λα (λh : α (λ t : αlist (h :: t))). Then I and J are closed

terms of types ∀α (αlist→L(α)) and ∀α (L(α)→αlist) respectively. We claim that these terms
constitute an isomorphism between αlist and L(α) up to observational congruence, polymorphi-
cally in α. In other words, the following observational congruences hold:

α, ` : αlist ` J α (I α `) =obs ` : αlist

α, g : L(α) ` I α (J α g) =obs g : L(α).

The claim will be proved in Section 6.

Example 2.9 (Existential types). The previous example shows that in PolyPCF, inductive list
types are observationally isomorphic to polymorphic list types. In Section 7 we give another
example of this phenomenon by extending PolyPCF with existential types ∃α (τ), equipped
with a standard operational semantics, and proving that they are observationally isomorphic to
the polymorphic types ∀α′ (∀α (τ → α′) → α′) (where α′ /∈ ftv(τ)).

3. >>-Closed relations

We aim to characterise PolyPCF observational congruence (defined in Theorem 2.3) in terms
of a binary ‘logical relation’ incorporating a notion of relational parametricity analogous to that
introduced by Reynolds (Reynolds 1983) for the pure polymorphic lambda calculus. This result
about PolyPCF observational congruence will be established in the next section and applied in
Sections 5, 6, and 7. But first we have to set up some technical machinery to do with ‘admissi-
bility’ properties of relations between PolyPCF terms. To see why, consider the simple example
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of the type null = ∀α (α) in Example 2.6. By analogy with a relationally parametric model of
the polymorphic lambda calculus, we want the relation of observational congruence at type null ,
i.e. {(G,G′) | G =obs G′ : null}, to coincide with

⋂

τ,τ ′∈Typ{(G,G′) | ∀ r ∈ R(τ, τ ′) ((Gτ,G τ ′) ∈ r)} (2)

where R(τ, τ ′) is some set of binary relations between closed terms of type τ and of type τ ′

in PolyPCF. What kind of binary relations should we take for R? If (2) is to coincide with
observational congruence, certainly R cannot consist of all binary relations, for then R(τ, τ ′)

would contain the empty relation and hence (2) would be empty, whereas {(G,G′) | G =obs

G′ : null} contains (Ω,Ω), where Ω is the ‘polymorphic bottom’ term defined in Example 2.6.
In fact we will have to restrict the parameterising relations r in the definition of relations like (2)
to be at least ‘admissible for fixpoint induction’, in some way. In domain theory, a subset of
a domain is said to be admissible if it contains the least element of the domain and is closed
under taking least upper bounds of chains in the domain. It is perfectly possible to make use
of a direct, syntactic version of this notion by considering relations between terms which are
closed under the limits of certain syntactically definable chains, e.g. those generated by the finite
unfoldings of a fixpoint term, or by syntactically definable projection functions. See (Birkedal
and Harper 1997) for an example of this approach to ‘syntactic admissibility’. Here we take a
more indirect, but ultimately more useful approach (already present implicitly in (Pitts and Stark
1998)), making use of a certain closure operation on term-relations. Not only do such >>-closed
relations, as we shall call them, have good admissibility properties (see Theorem 3.11), they also
enjoy an important property whose denotational analogue is automatic: they respect our chosen
notion of semantic equality, observational congruence (see Corollary 3.15).

Remark 3.1. Throughout this paper we concentrate on binary relations, rather than ones of
other arities, because we are interested in using relational parametricity to deduce properties
of the binary relation of observational congruence: it remains to be seen whether the theory of
>>-closed relations presented here can be adapted to relations of other arities. However, even
given the use of binary relations, the reader may wonder why in (2) we need to consider relations
between different types—why not just quantify over Rel(τ, τ), as τ ranges over Typ? The answer
is that the extra generality of using Rel(τ, τ ′) for potentially different domain and codomain
types τ, τ ′ makes for a sharper characterisation of observational congruence which we exploit in
several of the examples given in Sections 6 and 7.

The notion of >>-closure is the key technical contribution of this paper. It is induced by
a Galois connection between term relations and relations between PolyPCF evaluation con-
texts (Felleisen and Hieb 1992)—those contexts E [−] with a single occurrence of the placeholder,
‘−’, in the position where the next subexpression will be evaluated. The Galois connection arises
in a simple manner from the ‘nil-termination’ relation, E [M ] ⇓ nilτ , which is part of the evalu-
ation relation of Fig. 3. To aid analysis of nil-termination, we use the following reformulation of
evaluation contexts as stacks of ‘evaluation frames’ (cf. (Harper and Stone 1996) and (Pitts and
Stark 1998, Section 3)).

Definition 3.2. (Frame Stacks) The grammar for PolyPCF frame stacks is

S ::= Id | S ◦ F
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Γ ` Id : τ ( τ

Γ ` S : τ ′
( τ ′′ Γ ` A : τ

Γ ` S ◦ (−A) : (τ → τ ′) ( τ ′′

Γ ` S : τ ′[τ/α] ( τ ′′

Γ ` S ◦ (− τ) : ∀α (τ ′) ( τ ′′
α not free in Γ

Γ ` S : τ ′
( τ ′′ Γ ` M1 : τ ′ Γ, h : τ, t : τ list ` M2 : τ ′

Γ ` S ◦ (case−of {nil⇒M1 | h :: t⇒M2}) : τ list ( τ ′′

Fig. 6. Typing frame stacks

where F ranges over frames:

F ::= (−M) | (− τ) | (case−of {nil⇒M | x :: x⇒M}).

Thus frames stacks are essentially finite list of frames, and we will often refer to the length of S

meaning the length of the corresponding list.

We use the judgement Γ ` S : τ ( τ ′ to indicate the argument and result type of a
frame stack. Here Γ is a typing environment, as defined in Fig. 2, and we assume similar well-
formedness conditions as in Note (i) of that figure (free variables and free type variables of all
expressions in the judgement are listed in Γ). The axioms and rules inductively defining this
judgement are given in Fig. 6. Unlike PolyPCF terms, we have not included explicit type infor-
mation in the syntax of frame stacks. For example, Id is not tagged with a type. However, it is not
hard to see that, given Γ, S, and τ , there is at most one τ ′ for which Γ ` S : τ ( τ ′ holds. This
property is enough for our purposes, since the argument type τ of a frame stack S will always be
supplied in any particular situation in which we use S.

Notation 3.3. Given closed PolyPCF types τ, τ ′ ∈ Typ, we write Stack(τ, τ ′) for the set of
frame stacks S for which ∅ ` S : τ ( τ ′ is derivable from the axioms and rules in Fig. 6. We
will be particularly interested in the case when τ ′ is a list type, so we write

Stack(τ)
def
=

⋃

τ ′∈Typ Stack(τ, τ ′list).

Definition 3.4 (Applying a frame stack to a term). The analogue for frame stacks of the
operation of filling the hole of an evaluation context with a term is given by the operation
S,M 7→ S M , of applying a frame stack to term. It is defined by induction on the length of
the stack:

{

Id M
def
= M

(S ◦ F )M
def
= S (F [M ])

where F [M ] is the term which results from replacing ‘−’ by M in the frame F . Note that if
S ∈ Stack(τ, τ ′) and M ∈ Term(τ), then S M ∈ Term(τ ′).

The following lemma shows that, unlike PolyPCF function application, the above notion of
application is strict in its second argument.
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S = S′ ◦ (−A) S′
> M [A/x]

S > λ x : τ (M)

S ◦ (−A) > F

S > F A

S = S′ ◦ (− τ) S′
> M [τ/α]

S > Λ α (M)

S ◦ (− τ) > G

S > G τ

S ◦ (−fix(F )) > F

S > fix(F )

S = Id

S > nilτ

S = S′ ◦ (case − of {nil⇒M1 | h :: t⇒M2}) S′
> M1

S > nilτ

S = S′ ◦ (case − of {nil⇒M1 | h :: t⇒M2}) S′
> M2[H/h, T/t]

S > H :: T

Fig. 7. PolyPCF structural termination relation

Lemma 3.5.

S M ⇓ V ⇔ ∃V ′ (M ⇓ V ′ & S V ′ ⇓ V )

Proof. The result follows by induction on the length of frame stacks from the corresponding
property of frames, namely:

F [M ] ⇓ V ⇔ ∃V ′ (M ⇓ V ′ & F [V ′] ⇓ V ).

For each of the three kinds of frame, this property is a simple consequence of the inductive
definition of ⇓ in Fig. 3.

Theorem 3.6 (A structural induction principle for PolyPCF termination). For all closed
types τ, τ ′ ∈ Typ, for all frame stacks S ∈ Stack(τ, τ ′list), and for all closed terms M ∈

Term(τ), we have

S M ⇓ nilτ ′ ⇔ S > M

where the relation (−) > (−) is inductively defined by the rules in Fig. 7.

Proof. The way we have defined (−) > (−) is good for the use we will make of the theorem,
but perhaps obscures its origin, which lies in Felleisen’s evaluation-context based presentation
of structural operational semantics (Felleisen and Hieb 1992) and Krivine’s stack-based abstract
machines for evaluating lambda terms (see (Amadio and Curien 1998, page 184) for example).
Thus we can define a transition relation between (stack,term)-pairs, (S,M) → (S ′,M ′), by case
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analysis on the structure of M and then S, as follows:

(S, F [M ]) → (S ◦ F,M) if M is not a value
(S ◦ F, V ) → (S, F [V ]) if V is a value

(S,R) → (S,R′) where (R,R′) is one of the following (redex,reduct)-pairs:
R R′

(λx : τ (M))A M [A/x]

(Λα (M)) τ M [τ/α]

fix(F ) F fix(F )

casenilτ of {nil⇒M1 | h :: t⇒M2} M1

caseH :: T of {nil⇒M1 | h :: t⇒M2} M2[H/h, T/t].

It is not hard to see that S > M holds if and only if there is a finite sequence of transitions
(S,M) →∗ (Id ,nilτ ) (for some τ ). So the theorem follows once we prove

S M ⇓ V ⇔ (S,M) →∗ (Id , V ). (3)

This can be deduced using the following lemmas:

M ⇓ V ⇒ ∀S . (S,M) →∗ (S, V ) (4)
(S,M) → (S′,M ′) ⇒ ∀V (S′ M ′ ⇓ V ⇒ S M ⇓ V ) (5)
(S, S′ M) →∗ (S@S′,M) (6)

where S@S′ denotes the result of appending S ′ to S:
{

S@Id
def
= S

S@(S′ ◦ F )
def
= (S@S′) ◦ F.

(4) follows by induction on the derivation of M ⇓ V ; (5) by case analysis of →; and (6) by
induction on the length of S′. Then (4) and (6), together with the determinacy of →, imply the
left-to-right implication in (3). The reverse implication follows by repeated use of (5) starting
from the fact that Id V = V and hence Id V ⇓ V .

The relation (−) > (−) gives a structural characterisation of nil-termination of PolyPCF
evaluation because of the syntax-directed nature of the rules in Fig. 7. This facilitates inductive
proofs involving termination. In particular it helps with proving the following important property
of termination. (For statements and proofs of analogous properties see for example: (Mason,
Smith, and Talcott 1996, Section 4.3), (Pitts and Stark 1998, Theorem 3.2), (Birkedal and Harper
1997, Section 3.1), and (Lassen 1998, Section 4.5).)

Theorem 3.7 (Unwinding Theorem for PolyPCF). For any τ ∈ Typ and F ∈ Term(τ → τ),
define terms fix

(n)(F ) ∈ Term(τ) for each n ≥ 0 as follows.
{

fix
(0)(F )

def
= fix(λx : τ (x))

fix
(n+1)(F )

def
= F fix

(n)(F ).
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Then for any S ∈ Stack(τ) it is the case that

S > fix(F ) ⇔ ∃n ≥ 0 (S > fix
(n)(F )).

Proof. Note that it follows from the inductive definition of (−) > (−) (Fig. 7) that S >

fix
(0)(F ) holds for no S. Consequently, given any τ, τ ′, τ ′′ ∈ Typ, x : τ ` S : τ ′

( τ ′′list and
x : τ ` M : τ ′ one can prove

S[fix
(0)(F )/x] > M [fix

(0)(F )/x] ⇒ ∀A ∈ Term(τ) (S[A/x] > M [A/x])

by induction on the derivation of (−) > (−) (for all τ ′, τ ′′, S, and M simultaneously)‡. From
this it follows by induction on n ≥ 0 that for all S and M

S[fix
(n)(F )/x] > M [fix

(n)(F )/x] ⇒ S[fix
(n+1)(F )/x] > M [fix

(n+1)(F )/x]. (7)

Now one can prove the key property

S[fix(F )/x] > M [fix(F )/x] ⇒ ∃n ≥ 0 (S[fix
(n)/x] > M [fix

(n)(F )/x]) (8)

by induction on the derivation of (−) > (−) for all τ ′, τ ′′, S, and M simultaneously, using (7)
when it comes to the rule for fix terms. Clearly the left-to-right implication of the theorem is an
instance of (8); and the converse implication is a special case of

S[fix
(n)(F )/x] > M [fix

(n)(F )/x] ⇒ S[fix(F )/x] > M [fix(F )/x] (9)

which, once again, can be proved by induction on the derivation of (−) > (−) for all τ ′, S, M ,
and n simultaneously.

Definition 3.8 (Term- and stack-relations). A PolyPCF term-relation is a binary relation be-
tween (typeable) closed terms. Given closed PolyPCF types τ, τ ′ ∈ Typ, we write

Rel(τ, τ ′)

for the set of term-relations that are subsets of Term(τ) ×Term(τ ′). A PolyPCF stack-relation
is a binary relation between (typeable) frame stacks whose result types are list types. We write

StRel(τ, τ ′)

for the set of stack-relations that are subsets of Stack(τ)×Stack(τ ′). (Recall from Notation 3.3
that the elements of Stack(τ) are frame stacks S satisfying ∅ ` S : τ ( τ ′′list for some τ ′′.)

Using the (−) > (−) relation we can manufacture a stack-relation from a term-relation and
vice versa, as follows.

Definition 3.9 (The (−)> operation on relations). Given any τ, τ ′ ∈ Typ and r ∈ Rel(τ, τ ′),
define r> ∈ StRel(τ, τ ′) by

(S, S′) ∈ r>
def
⇔ ∀ (M,M ′) ∈ r (S > M ⇔ S′

> M ′);

‡ We are interested in the special case when x /∈ fv(S) and M = x, but the more general statement is needed to make
the induction go through; similarly for (7), (8) and (9).



Parametric Polymorphism and Operational Equivalence 335

and given any s ∈ StRel(τ, τ ′) define s> ∈ Rel(τ, τ ′) by

(M,M ′) ∈ s>
def
⇔ ∀ (S, S′) ∈ s (S > M ⇔ S′

> M ′).

Just from the form of the definition of the operations r 7→ r>, s 7→ s> (i.e. without using any
properties of the termination relation (−) > (−)) it is clear that one has a Galois connection with
respect to inclusion:

r ⊆ s> ⇔ s ⊆ r>. (10)
Hence the operations (−)> are inclusion-reversing

r1 ⊆ r2 ⇒ (r2)
> ⊆ (r1)

>

s1 ⊆ s2 ⇒ (s2)
> ⊆ (s1)

>

and r 7→ r>> is a closure operator for term-relations, i.e. is inclusion-preserving

r1 ⊆ r2 ⇒ (r1)
>> ⊆ (r2)

>> (11)

inflationary

r ⊆ r>>

and idempotent

r>> = (r>>)>>.

Definition 3.10 (>>-Closed term-relations). A term-relation r is >>-closed if r = r>>, or
equivalently if r>> ⊆ r, or equivalently if r = s> for some stack-relation s, or equivalently if
r = (r′)>> for some term-relation r′.

The next result is a PolyPCF version (for binary relations) of Scott’s Fixpoint Induction Prin-
ciple (Scott 1993). It justifies the claim that >>-closed term-relations have appropriate ‘admissi-
bility’ properties.

Theorem 3.11 (PolyPCF fixpoint induction). Suppose r ∈ Rel(τ, τ ′), F ∈ Term(τ →τ), and
F ′ ∈ Term(τ ′ → τ ′) satisfy

∀(A,A′) ∈ r . (F A,F ′ A′) ∈ r. (12)

If r is >>-closed, then (fix(F ),fix(F ′)) ∈ r.

Proof. Recall the definition of the terms fix
(n)(F ) from Theorem 3.7. From the definition of

(−) > (−) in Fig. 7, it follows that S > fix
(0)(F ) does not hold for any S ∈ Stack(τ). So

we have that (fix
(0)(F ),fix

(0)(F )) ∈ s> for any s ∈ StRel(τ, τ ′). Hence in particular taking
s = r>, we have

(fix
(0)(F ),fix

(0)(F ′)) ∈ r>> = r.

Using (12), it follows from this by induction on n that

(fix
(n)(F ),fix

(n)(F ′)) ∈ r
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holds for all n ≥ 0. So for any (S, S ′) ∈ r> we have

S > fix(F ) ⇔ ∃n ≥ 0 (S > fix
(n)(F )) by Theorem 3.7

⇔ ∃n ≥ 0 (S′
> fix

(n)(F ′)) since (fix
(n)(F ),fix

(n)(F ′)) ∈ r and (S, S′) ∈ r>

⇔ S′
> fix(F ′) by Theorem 3.7.

Thus by definition of (−)>, (fix(F ),fix(F )) ∈ r>> = r, as required.

Another property of >>-closed term-relations we will need is that they respect various no-
tions of semantic equivalence for PolyPCF. We have already introduced our primary such notion,
observational congruence, in Section 2. We will also need to consider a simpler notion, that of
‘Kleene equivalence’§

Definition 3.12 (Kleene equivalence). For each closed type τ ∈ Typ and closed terms M,M ′ ∈

Term(τ) we write M =kl M ′ : τ to mean ∀V (M ⇓ V ⇔ M ′ ⇓ V ).

Example 3.13. Each of the four pairs (R,R′) mentioned in the last clause of the definition of
→ in the proof of Theorem 3.6 is an example of a Kleene equivalence. This follows immediately
from the definition of ⇓ in Fig. 3.

Although it is by no means immediate from their definitions, it is in fact the case that Kleene
equivalence implies observational congruence (see Corollary 4.16). The converse is false: for
example, λx : τ (fix(λx′ : τ ′ (x′))) and fix(λ f : τ → τ ′ (f)) are not Kleene equivalent terms
of type τ → τ ′ (because the first is a value whereas the second does not evaluate to anything), but
the results of Section 5 show that they are observationally congruent (cf. Example 5.3).

Lemma 3.14. If M =kl M ′ : τ or M =obs M ′ : τ , then for any S ∈ Stack(τ)

S > M ⇔ S > M ′.

Proof. First suppose that M =kl M ′ : τ . Then

S > M ⇔ ∃V, τ ′ (M ⇓ V & S V ⇓ nilτ ′) by Theorem 3.6 and Lemma 3.5
⇔ ∃V, τ ′ (M ′ ⇓ V & S V ⇓ nilτ ′) since M =kl M ′ : τ

⇔ S > M ′ by Theorem 3.6 and Lemma 3.5.

The argument for observational congruence is slightly different. If M =obs M ′ : τ , then by the
compatibility properties which are part of the definition of =obs, we also have S M =obs S M ′ :

τ ′list for any S ∈ Stack(τ, τ ′list) and τ ′ ∈ Typ. Since =obs is adequate (Definition 2.2(iii)),
we have

S M ⇓ nilτ ′ ⇔ S M ′ ⇓ nilτ ′

from which the result follows by Theorem 3.6.

In view of this lemma, it follows from the definition of (−)> that if (M1,M
′
1) ∈ s>, then

(M2,M
′
1) ∈ s> for any M2 which is either Kleene equivalent to M1, or observationally congru-

ent to it; and similarly for M ′
1. Thus we have:

§ I believe this terminology, in the context of notions of program equivalence, was introduced by Robert Harper.
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Corollary 3.15. The >>-closed term-relations respect both observational congruence and Kleene
equivalence. In other words, if r ∈ Rel(τ, τ ′) is >>closed, then for ∼ equal to either =obs or
=kl, we have

M1 ∼ M2 : τ & (M2,M3) ∈ r & M3 ∼ M4 : τ ′ ⇒ (M1,M4) ∈ r.

4. A syntactical version of relational parametricity

In order to characterise PolyPCF observational congruence in terms of parametric logical rela-
tions we introduce a notion of ‘action’ of the PolyPCF types on term-relations. This is defined
by induction on the structure of types, using the following operations on term-relations, the first
of which is characteristic of all the various notions of ‘logical’ relations right back to their be-
ginning (Plotkin 1973).

Definition 4.1 (Action of → on term-relations). Given r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2),

we define r1 → r2 ∈ Rel(τ1 → τ2, τ
′
1 → τ ′

2) by:

(F, F ′) ∈ r1 → r2
def
⇔ ∀ (A,A′) ∈ r1 ((F A,F ′ A′) ∈ r2).

Definition 4.2 (Action of ∀ on term-relations). Let τ1 and τ ′
1 be PolyPCF types with at most a

single free type variable, α say. Suppose R is a function mapping term-relations r ∈ Rel(τ2, τ
′
2)

(any τ2, τ
′
2 ∈ Typ) to term-relations R(r) ∈ Rel(τ1[τ2/α], τ ′

1[τ
′
2/α]). Then we can form a term-

relation ∀ r (R(r)) ∈ Rel(∀α (τ1),∀α (τ ′
1)) as follows:

(G,G′) ∈ ∀ r (R(r))
def
⇔ ∀ τ2, τ

′
2 ∈ Typ (∀ r ∈ Rel(τ2, τ

′
2) ((Gτ2, G

′ τ ′
2) ∈ R(r))).

Definition 4.3 (Action of (−)list on term-relations). Given τ, τ ′ ∈ Typ, r1 ∈ Rel(τ, τ ′) and
r2 ∈ Rel(τ list , τ ′list), define 1 + (r1 × r2) ∈ Rel(τ list , τ ′list) by:

1 + (r1 × r2)
def
=

{(nilτ ,nilτ ′)} ∪ {(H :: T,H ′ :: T ′) | (H,H ′) ∈ r1 & (T, T ′) ∈ r2}.

Note that the subset relation makes Rel(τ list , τ ′list) into a complete lattice and that, for each r1,
the function r2 7→ (1 + (r1 × r2))

>> is monotone (cf. (11)). Therefore we can form its greatest
(post-)fixed point:

(r1)list
def
= ν r2 (1 + (r1 × r2))

>>.

Thus (r1)list is the unique term-relation satisfying

(r1)list = (1 + (r1 × (r1)list))
>> (13)

∀ r2 (r2 ⊆ (1 + (r1 × r2))
>> ⇒ r2 ⊆ (r1)list). (14)

The appearance of (−)>> in this definition and the reason for using a greatest fixed point (rather
than a least one) are discussed in Remark 4.4.

Combining the preceding definitions, for each PolyPCF type τ and each list ~α = α1, . . . , αn

of distinct type variables containing the free type variables of τ , we define a function from tuples
of term-relations to term-relations

r1 ∈ Rel(τ1, τ
′
1), . . . , rn ∈ Rel(τn, τ ′

n) 7→ ∆τ (~r/~α) ∈ Rel(τ [~τ/~α], τ [~τ ′/~α′]). (19)
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∆αi
(~r/~α)

def
= ri (15)

∆τ→τ ′(~r/~α)
def
= ∆τ (~r/~α) → ∆τ ′(~r/~α) (16)

∆∀ α (τ)(~r/~α)
def
= ∀ r (∆τ (r>>/α,~r/~α)) (17)

∆τ list(~r/~α)
def
= (∆τ (~r/~α))list (18)

Fig. 8. Definition of the logical relation ∆

The definition proceeds by induction on the structure of τ and is given in Fig. 8. We will see
below (Lemma 4.11) that these functions have the important property that they yield a >>-closed
term-relation when applied to a tuple of such relations. The ‘n = 0’ case of (19) means that
for each closed type τ ∈ Typ we can apply ∆τ to the empty tuple of term-relations to obtain a
term-relation ∆τ () ∈ Rel(τ, τ). We will see below (Theorem 4.15) that ∆τ () coincides with the
relation of observational congruence (defined in Theorem 2.3) at type τ :

M1 =ctx M2 : τ ⇔ (M1,M2) ∈ ∆τ () (M1,M2 ∈ Term(τ)). (20)

This, together with the definition of ∆ at ∀-types is what permits us to deduce results like those
in Examples 2.6–2.8 (see Sections 6 and 7).

Remark 4.4. In Fig. 8, the closure operation (−)>> has been carefully combined with the op-
erations of Definitions 4.1–4.3 to ensure that (20) holds. The way that (−)>> appears in the
definition of ∆τ list used in clause (18) reflects the fact that for PolyPCF observational congru-
ence we observe termination at list types. The use of ‘r>>/α’ in clause (17) is a way of ensuring
that the quantification is restricted to range over >>-closed relations. As remarked at the begin-
ning of Section 3, some such restriction to do with admissibility is necessary if such actions are
to characterise =obs; and we saw in Theorem 3.11 that being >>-closed ensures that a term-
relation has good admissibility properties. Finally, it is worth pointing out that if one changes
the greatest fixed point used in Definition 4.3 to a least fixed point, thereby obtaining a different
action, call it ∆′, one can still deduce the coincidence of ∆′

τ () with =obs. This corresponds to
the fact that denotationally, the relation of equality for recursive data types has a mixed induc-
tive/coinductive character: see (Pitts 1996); and in the case of algebraic data types like τ list , the
mixed inductive/co-inductive character of equality becomes a simultaneous one. Here we have
concentrated on the co-inductive aspect of =obs at list types rather than its inductive aspect, be-
cause that is more useful for proving semantic equalities between potentially infinite lists: see
Section 6.

As is typical for logical relations, in order to prove (20) we need to extend ∆τ () to a relation
between open terms. We do this via closing substitutions.

Definition 4.5. (Logical relation on open terms) Suppose Γ ` M : τ and Γ ` M ′ : τ hold,
with Γ = α1, . . . , αm, x1 : τ1, . . . , xn : τn say. Write

Γ ` M ∆ M ′ : τ (21)
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to mean: given any σi, σ
′
i ∈ Typ and ri ∈ Rel(σi, σ

′
i) (for i = 1..m) with each ri >>-closed,

then for any (Nj , N
′
j) ∈ ∆τj

(~r/~α) (for j = 1..n) it is the case that

(M [~σ/~α, ~N/~x],M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α).

(The restriction to >>-closed relations in this definition accords with the definition of ∆ at ∀-
types.)

Proposition 4.6 (‘Fundamental Property’ of the logical relation). The relation (21) between
open PolyPCF terms is compatible and substitutive, in the sense of Definition 2.2(i).

The proof of this proposition occupies most of the rest of this section. We begin with some
lemmas expressing general properties of the constructions in Definitions 4.1–4.3 with respect to
the Galois connection (−)> introduced in Section 3.

Lemma 4.7. Suppose r1 ∈ Rel(τ1, τ
′
1) and r2 ∈ Rel(τ2, τ

′
2). Consider r1 → r2 as in Defini-

tion 4.1.
(i) Suppose given values λx : τ1 (M) and λx : τ ′

1 (M ′) of types τ1 → τ2 and τ ′
1 → τ ′

2 respec-
tively, satisfying

∀ (A,A′) ∈ r1 ((M [A/x],M ′[A′/x]) ∈ r2). (22)
If r2 is >>-closed, then (λx : τ1 (M), λ x : τ ′

1 (M ′)) ∈ r1 → r2.
(ii) If (A,A′) ∈ r1 and (S, S′) ∈ r>2 , then (S ◦ (−A), S′ ◦ (−A′)) ∈ (r1 → r2)

>.
(iii) If r2 is >>-closed, then so is r1 → r2.

Proof. For part (i), we have to show for all (A,A′) ∈ r1 that

((λx : τ1 (M))A, (λx : τ ′
1 (M ′))A′) ∈ r2. (23)

From Example 3.13 we have the Kleene equivalences

(λx : τ1 (M))A =kl M [A/x] : τ2 and (λx : τ ′
1 (M ′))A′ =kl M ′[A′/x] : τ2

and by Corollary 3.15, r2 respects =kl. Hence (23) follows from assumption (22).
To prove part (ii), suppose (A,A′) ∈ r1 and (S, S′) ∈ r>2 . Then note that for any (F, F ′) ∈

r1 → r2

S ◦ (−A) > F ⇔ S > F A by definition of (−) > (−) (Fig. 7)
⇔ S′

> F ′ A′ since (F A,F ′ A′) ∈ r2 and (S, S′) ∈ r>2

⇔ S′ ◦ (−A′) > F ′ by definition of (−) > (−).

Since this is so for any such (F, F ′), by definition of (−)> we have (S ◦ (−A), S′ ◦ (−A′)) ∈

(r1 → r2)
>.

Finally, to prove part (ii), suppose (F, F ′) ∈ (r1 → r2)
>>, (A,A′) ∈ r1, and (S, S′) ∈ r>2 .

Then by part (ii) we have (S ◦ (−A), S ′ ◦ (−A′)) ∈ (r1 → r2)
> and hence

S ◦ (−A) > F ⇔ S′ ◦ (−A′) > F ′.

Therefore
S > F A ⇔ S′

> F ′ A′.
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Since this holds for all such (S, S ′), we have (F A,F ′ A′) ∈ (r>2 )> = r2; and since this is so
for all (A,A′) ∈ r1, it follows that (F, F ′) ∈ r1 → r2. Thus we have succeeded in proving that
(r1 → r2)

>> ⊆ r1 → r2, i.e. that r1 → r2 is >>-closed.

Lemma 4.8. Let τ1 and τ ′
1 be PolyPCF types with at most a single free type variable, α say.

Suppose R is a function mapping term-relations r ∈ Rel(τ2, τ
′
2) (any τ2, τ

′
2 ∈ Typ) to term-

relations R(r) ∈ Rel(τ1[τ2/α], τ ′
1[τ

′
2/α]). Let ∀ r (R(r)) be as in Definition 4.2.

(i) Suppose given values Λα (M) and Λα (M ′) of types ∀α (τ1) and ∀α (τ ′
1) respectively,

satisfying

∀ τ2, τ
′
2 ∈ Typ, r ∈ Rel(τ2, τ

′
2) ((M [τ2/α],M ′[τ ′

2/α]) ∈ R(r)).

If each R(r) is >>-closed, then (Λα (M),Λα (M ′)) ∈ ∀ r (R(r)).
(ii) If r2 ∈ Rel(τ2, τ

′
2) and (S, S′) ∈ R(r2)

>, then (S ◦ (− τ2), S
′ ◦ (− τ ′

2)) ∈ (∀ r (R(r)))>.
(iii) If each R(r) is >>-closed, then so is ∀ r (R(r)).

Proof. The proof is similar to that for Lemma 4.7, but using the property

S ◦ (− τ) > G ⇔ S > Gτ

(which follows immediately from the definition of (−) > (−) in Fig. 7) and the Kleene equiva-
lence (Λα (M)) τ =kl M [τ/α].

Lemma 4.9. Suppose r ∈ Rel(τ, τ ′) and consider (r)list as in Definition 4.3.
(i) (nilτ ,nilτ ′) ∈ (r)list ; and if (H,H ′) ∈ r and (T, T ′) ∈ (r)list , then (H :: T,H ′ :: T ′) ∈

(r)list .
(ii) (Id , Id) ∈ ((r)list)>.
(iii) (r)list is >>-closed.

Proof. In view of (13), (r)list contains 1 + (r × (r)list), from which part (i) follows imme-
diately.

Note that from (13) we have

((r)list)> = ((1 + (r × (r)list))>>)> = (1 + (r × (r)list))>.

So for part (ii), it suffices to show for all (L,L′) ∈ 1 + (r× (r)list) that Id > L ⇔ Id > L′. But
if (L,L′) ∈ 1 + (r × (r)list), then
eitherL = nilτ and L′ = nilτ ′ , in which case both Id > L and Id > L′ hold;
orL = H :: T and L′ = H ′ :: T ′ (for some (H,H ′) ∈ r and (T, T ′) ∈ (r)list), in which case

neither Id > L, nor Id > L′ hold.
Finally, for part (iii) just note that by (13), (r)list is >>-closed because it is of the form (r′)>>

for some r′.

Lemma 4.10. Suppose given closed types τ1, τ
′
1, τ2, τ

′
2 ∈ Typ, term-relations r1 ∈ Rel(τ1, τ

′
1),

r2 ∈ Rel(τ2, τ
′
2), closed terms (M1,M

′
1) ∈ r2, and open terms

h : τ1, t : τ1list ` M2 : τ2 and h′ : τ ′
1, t

′ : τ ′
1list ` M ′

2 : τ ′
2

satisfying

∀ (H,H ′) ∈ r1, (T, T ′) ∈ (r1)list ((M2[H/h, T/t],M ′
2[H

′/h′, T ′/t′]) ∈ r2). (24)
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Writing

match
def
= {nil⇒M1 | h :: t⇒M2} and match ′ def

= {nil⇒M ′
1 | h′ :: t′ ⇒M ′

2}

we have:
(i) If (S, S′) ∈ (r2)

>, then (S ◦ (case−of match), S′ ◦ (case−of match ′)) ∈ ((r1)list)
>.

(ii) If (L,L′) ∈ (r1)list and r2 is >>-closed, then (caseLof match, caseL′ of match ′) ∈ r2.

Proof. To prove part (i), assume given (S, S ′) ∈ (r2)
>. As noted in the proof of the previous

lemma, we have ((r1)list)
> = (1 + (r1 × (r1)list))

>. So it suffices to check for all (L,L′) ∈

1 + (r1 × (r1)list) that

S ◦ (case−of match) > L ⇔ S′ ◦ (case−of match ′) > L′. (25)

But if (L,L′) ∈ 1 + (r1 × (r1)list), then
eitherL = nilτ1

and L′ = nilτ ′

1
, in which case by definition of (−) > (−), (25) holds if and

only if
S > M1 ⇔ S′

> M ′
1

which is the case because (S, S ′) ∈ (r2)
> and (M1,M

′
1) ∈ r2;

orL = H :: T and L′ = H ′ :: T ′ for some (H,H ′) ∈ r1 and (T, T ′) ∈ (r1)list , in which case by
definition of (−) > (−), (25) holds if and only if

S > M2[H/h, T/t] ⇔ S′
> M ′

2[H
′/h′, T ′/t′]

which is the case because of property (24).
For part (ii), if (L,L′) ∈ (r1)list , then for any (S, S′) ∈ (r2)

> we have

S > (caseLof match) ⇔ S ◦ (case−of match) > L by definition of (−) > (−)

⇔ S′ ◦ (case−of match ′) > L′ by part (i)
⇔ S′

> (caseL′ of match ′) by definition of (−) > (−).

Since this holds for all (S, S′) ∈ (r2)
>, we have that (caseLof match, caseL′ of match ′) ∈

(r2)
>>. So if r2 = (r2)

>>, we have the desired conclusion.

We are now in a position to prove an important property of the action of PolyPCF types on
term-relations given in Fig. 8.

Lemma 4.11. For each open type τ , with free type variables in ~α say, if the term-relations ~r are
>>-closed, then so is the term-relation ∆τ (~r/~α) defined in Fig. 8. In particular for each closed
type τ , ∆τ () ∈ Rel(τ, τ) is >>-closed.

Proof. By induction on the structure of τ , using clauses (15)–(18) of the definition of ∆. The
base case of a type variable is trivial because each ri is assumed to be >>-closed. The induction
step for function types follows from Lemma 4.7(iii). The induction step for ∀-types follows from
Lemma 4.8(iii). The induction step for list types is trivial since by (13), (∆τ (~r/~α))list is equal
to a term-relation of the form (r′)>>.
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Lemma 4.12. Assuming ftv(τ) ⊆ {~α, ~α′} and ftv(~τ ′) ⊆ {~α} (so that ftv(τ [~τ ′/~α′]) ⊆ {~α}),
then for all ~r

∆τ [~τ ′/~α′](~r/~α) = ∆τ (~r/~α, (∆~τ ′(~r/~α))/~α′).

Proof. This follows immediately from the definition of ∆ in Fig. 8, by induction on the struc-
ture of τ .

We can now complete the proof of the fundamental property of the logical relation of Defini-
tion 4.5.

Proof of Proposition 4.6 To prove that the relation (21) is compatible, we have to verify that
it is closed under each of the axioms and rules in Fig. 4 corresponding to the various term-
forming constructs of the language. The compatibility axiom for variables is trivially satisfied
because of the way (21) is defined. The compatibility rule for function abstraction follows from
Lemma 4.7(i) and Lemma 4.11. The compatibility rule for function application follows di-
rectly from clause (16) in Fig. 8. The compatibility rule for type generalisation follows from
Lemma 4.8(i) and Lemma 4.11. The compatibility rule for type specialisation follows from
clause (17) in Fig. 8 together with Lemmas 4.11 and 4.12. The compatibility rule for fixpoint
terms follows from from Theorem 3.11 together with clause (16) in Fig. 8 and Lemma 4.11.
The compatibility rules for list values follow from Lemma 4.9(i) and Lemma 4.11. Finally, the
compatibility rule for case expressions follows from Lemmas 4.10(ii), 4.11 and 4.12.

So (21) is compatible. It is also closed under the two substitutivity rules in Fig. 5. The first
one follows from the substitution property of Lemma 4.12. The second one follows immediately
from the way (21) is defined from the functions ~r 7→ ∆τ (~r/~α) via closing substitutions.

Note that since ∆ is compatible, it is necessarily a reflexive relation and hence in particular
we have:

Corollary 4.13. For all τ ∈ Typ and M ∈ Term(τ) it is the case that (M,M) ∈ ∆τ ().

We need the corresponding property for frame stacks.

Lemma 4.14. For all τ ∈ Typ and all S ∈ Stack(τ), it is the case that (S, S) ∈ (∆τ ())>.

Proof. This follows by induction on the length of the frame stack S. The base case uses
Lemma 4.9(ii); the induction steps use Lemmas 4.7, 4.8, and 4.10.

Theorem 4.15. The logical relation (21) coincides with PolyPCF observational congruence:

Γ ` M =obs M ′ : τ ⇔ Γ ` M ∆ M ′ : τ. (26)

Proof. Using the substitutivity properties of =obs (which it possesses by definition) and of ∆

(which it possesses by Proposition 4.6), Corollary 3.15 and Lemma 4.11 combine to give

Γ ` M1 =obs M2 : τ & Γ ` M2 ∆ M3 : τ & Γ ` M3 =obs M4 : τ ′ ⇒

Γ ` M1 ∆ M4 : τ. (27)

Since =obs and ∆ are both compatible (the former by definition, the latter by Proposition 4.6),
they are both reflexive and so we can take M1 = M3 = M3 = M and M4 = M ′ in (27) to
deduce the left-to-right implication in (26).
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For the converse implication, in view of Proposition 4.6 it just suffices to show that ∆ is
adequate, in the sense of Definition 2.2(iii). For then ∆ is adequate, compatible and substitutive
and hence is contained in the largest such relation, which by definition is =obs. But if τ is any
closed type and ∅ ` L ∆ L′ : τ list , i.e. (L,L′) ∈ ∆τ list (), then by Lemma 4.9(ii) we have
Id > L ⇔ Id > L′ and therefore L ⇓ nilτ ⇔ L′ ⇓ nilτ by Theorem 3.6.

Theorem 4.15 allows one to prove many properties of PolyPCF observational congruence to
do with extensionality and relational parametricity; we pursue some of these properties in the
next two sections. It also allows us to deduce some basic instances of observational congruence
via the following result. Recall the notion of Kleene equivalence, =kl, from Definition 3.12.

Corollary 4.16. For all τ ∈ Typ and M,M ′ ∈ Term(τ), if M =kl M ′ : τ , then M =obs M ′ :

τ .

Proof. By Theorem 4.15 we have that (−) =obs (−) : τ coincides with ∆τ (). Therefore it
is closed under composition with =kl by Corollary 3.15 and Lemma 4.11. Thus since =obs is
reflexive we have

M =kl M ′ : τ ⇒ M =kl M ′ : τ & M ′ =obs M ′ : τ

⇒ M =obs M ′ : τ.

Thus the redex-reduct pairs (R,R′) mentioned in the last clause of the definition of → in the
proof of Theorem 3.6 are all instances of observational congruence (cf. Example 3.13):

(λx : τ1 (M))A =obs M [A/x] : τ2 (28)
(Λα (M)) τ2 =obs M [τ2/α] : τ1[τ2/α] (29)

casenilτ1
of {nil⇒M1 | h :: t⇒M2} =obs M1 : τ2 (30)

caseH :: T of {nil⇒M1 | h :: t⇒M2} =obs M2[H/h, T/t] : τ2 (31)
fix(F ) =obs F fix(F ) : τ. (32)

The following characterisation of =obs will be useful in Section 6.

Corollary 4.17. Given any closed type τ ∈ Typ and closed terms M,M ′ ∈ Term(τ), write
M =ciu M ′ : τ to mean

∀S ∈ Stack(τ) (S > M ⇔ S > M ′).

(This is the ‘uses’ part of the notion of ‘closed instantiations of uses’ (ciu) equivalence of Mason
and Talcott (1991).) Then

M =ciu M ′ : τ ⇔ M =obs M ′ : τ.

Proof. The fact that =obs is contained in =ciu follows (via Theorem 3.6) from the fact that
=obs is, by definition, an adequate PolyPCF congruence relation. For the converse implication,
by Theorem 4.15, it suffices to show that =ciu is contained in ∆τ (). But it is evident from the
definition of =ciu that any >>-closed term-relation, and hence in particular ∆τ (), is closed under
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composition with =ciu. So now we can argue as in the proof of Corollary 4.16 (using the evident
fact that =ciu is reflexive) to deduce that =ciu implies =obs.

5. Extensionality properties of observational congruence

In this section we use Theorem 4.15 to establish various extensionality principles for PolyPCF
observational congruence. Together, these generalise the ‘context lemma’ of Milner (1977) from
PCF to PolyPCF. The first result reduces observational congruence for open terms to that for
closed terms of closed type. Then restricting attention to closed terms, we give a separate exten-
sionality principle for each of the three ways of forming PolyPCF types—functions, ∀-types, and
list-types.

Theorem 5.1. Given Γ ` M : τ and Γ ` M ′ : τ , with Γ = α1, . . . , αm, x1 : τ1, . . . , xn : τn

say, then Γ ` M =obs M ′ : τ if and only if for all σi ∈ Typ (i = 1..m) and all Nj ∈

Term(τj [~σ/~α]) (j = 1..n), it is the case that

M [~σ/~α, ~N/~x] =obs M ′[~σ/~α, ~N/~x] : τ [~σ/~α]. (33)

Proof. The ‘only if’ direction holds because by definition =obs satisfies the substitutivity prop-
erties of Fig. 5 (and because it is reflexive).

For the ‘if’ direction, note that by Theorem 4.15 ∆ is reflexive and in particular Γ ` M ′ ∆

M ′ : τ holds. Thus by Definition 4.5, for all >>-closed ri ∈ Rel(σi, σ
′
i) (i = 1..m) and all

(Nj , N
′
j) ∈ ∆τj

(~r/~α) (j = 1..n) we have (M ′[~σ/~α, ~N/~x],M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α).
Since ∆τ (~r/~α) is >>-closed (by Lemma 4.11), from this, (33), and Corollary 3.15 we conclude
that (M [~σ/~α, ~N/~x],M ′[~σ′/~α, ~N ′/~x]) ∈ ∆τ (~r/~α). Thus by definition of the logical relation on
open terms (Definition 4.5) we have Γ ` M ∆ M ′ : τ and hence Γ ` M =obs M ′ : τ by
Theorem 4.15.

Theorem 5.2 (Function type extensionality). For all τ1 → τ2 ∈ Typ and F, F ′ ∈ Term(τ1 →

τ2)

F =obs F ′ : τ1 → τ2 ⇔ ∀A ∈ Term(τ1) (F A =obs F ′ A : τ2). (34)

Proof.

F =obs F ′ : τ1 → τ2 ⇔ (F, F ′) ∈ ∆τ1→τ2
() by Theorem 4.15

⇔ ∀ (A,A′) ∈ ∆τ1
() ((F A,F ′ A′) ∈ ∆τ2

()) by definition of ∆τ1→τ2
()

⇔ ∀A,A′ ∈ Term(τ1) (A =obs A′ : τ1 ⇒

F A =obs F ′ A′ : τ2) by Theorem 4.15.

Since this holds for all F, F ′ and since =obs is reflexive and transitive, (34) follows.

Example 5.3. Consider the ‘polymorphic bottom’ Ω ∈ Term(∀α (α)) introduced in Exam-
ple 2.6:

Ω
def
= Λα (fix(λx : α (x))).



Parametric Polymorphism and Operational Equivalence 345

For any τ1, τ2 ∈ Typ and A ∈ Term(τ1), evaluation of both (λx : τ1 (Ω τ2))A and Ω(τ1 →

τ2)A diverges, so
(λx : τ1 (Ω τ2))A =kl Ω(τ1 → τ2)A.

Hence by Corollary 4.16

∀A ∈ Term(τ1) ((λx : τ1 (Ω τ2))A =obs Ω(τ1 → τ2)A : τ2)

and so by the above theorem, λx : τ1 (Ω τ2) =obs Ω(τ1 → τ2) : τ1 → τ2.

Theorem 5.4 (∀-type extensionality). For all ∀α (τ) ∈ Typ and G,G′ ∈ Term(∀α (τ))

G =obs G′ : ∀α (τ) ⇔ ∀ τ ′ ∈ Typ (Gτ ′ =obs G′ τ ′ : τ [τ ′/α]).

Proof. The left-to-right implication follows from the fact that =obs is a PolyPCF congruence
(Definition 2.2(ii)). Conversely, suppose

∀ τ ′ ∈ Typ (Gτ ′ =obs G′ τ ′ : τ [τ ′/α]) (35)

holds. To show that G =obs G′ : ∀α (τ), by Theorem 4.15 it suffices to prove that (G,G′) ∈

∆∀α (τ)(), i.e. that (Gτ1, G
′ τ2) ∈ ∆τ (r>>/α) for all r ∈ Rel(τ1, τ2) and τ1, τ2 ∈ Typ. But

since ∆∀α (τ)() is reflexive (Corollary 4.13) we have (G,G) ∈ ∆∀α (τ)() and hence for any r,
(Gτ1, G τ2) ∈ ∆τ (r>>/α). Thus by (35) we have

(Gτ1, G τ2) ∈ ∆τ (r>>/α) & Gτ2 =obs G′ τ2 : τ [τ2/α]

and hence by Lemma 4.11 and Corollary 3.15 that (Gτ1, G
′ τ2) ∈ ∆τ (r>>/α), as required for

(G,G′) ∈ ∆∀α (τ)().

Example 5.5. Let Ω be as in Example 5.3. For any closed ∀-type ∀α (τ) and any τ ′ ∈ Typ,
evaluation of both (Λα (Ω τ)) τ ′ and Ω(∀α (τ)) τ ′ diverges and so

(Λα (Ω τ)) τ ′ =kl Ω(∀α (τ)) τ.′

Hence by Corollary 4.16 and the above theorem, it is the case that Λα (Ω τ) =obs Ω(∀α (τ)) :

∀α (τ).

The extensionality principle for list types is more complicated than the above principles for
function- and ∀-types. We will recover the characterisation of observational congruence of lazy
lists in terms of a notion of bisimilarity to be found, for example, in (Gordon 1995) or (Pitts
1997a). Recall from Section 4 that for a closed type τ ∈ Typ, the term-relation ∆τ list () is
(∆τ ())list and hence is given by the following greatest fixed point.

∆τ list () = ν r (1 + (∆τ () × r))>>.

We will show that this coincides with a different greatest fixed point, which is defined in terms
of PolyPCF evaluation, (−) ⇓ (−) and which aids calculations.

Definition 5.6. Given τ, τ ′ ∈ Typ and r ∈ Rel(τ, τ ′), call a term-relation s ∈ Rel(τ list , τ ′list)

an r-simulation if it satisfies that whenever (L,L′) ∈ s then

L ⇓ nilτ ⇒ L′ ⇓ nilτ ′

L ⇓ H :: T ⇒ ∃H ′, T ′ (L′ ⇓ H ′ :: T ′ & (H,H ′) ∈ r & (T, T ′) ∈ s).
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We say that s is an r-bisimulation if both it and its reciprocal sop = {(L′, L) | (L,L′) ∈ s} are
r-simulations.

Proposition 5.7. If r ∈ Rel(τ, τ ′) is >>-closed, then the term-relation (r)list ∈ Rel(τ list , τ ′list)

of Definition 4.3 is the greatest r-bisimulation.

Proof. Writing

Φr(s)
def
= {(L,L′) | (L ⇓ nilτ ⇒ L′ ⇓ nilτ ′) & ∀H,T (L ⇓ H :: T ⇒

∃H ′, T ′ (L′ ⇓ H ′ :: T ′ & (H,H ′) ∈ r & (T, T ′) ∈ s)}

Ψr(s)
def
= Φr(s) ∩ (Φr(s

op))op

we have to prove that ν sΨr(s) = ν s (1 + (r × s))>>. This can be achieved via the following
lemmas,which hold for any term-relations r ∈ Rel(τ, τ ′) and s ∈ Rel(τ list , τ ′list).
(i) 1 + (r × s) ⊆ Ψr(s) ⊆ (1 + (r × s))>>.
(ii) If r and s are >>-closed, then so is Ψr(s).
The proof of (i) is straightforward. For (ii) we first prove

(Id , Id) ∈ Ψr(s)
> (36)

(IsConsτ , IsConsτ ′) ∈ Ψr(s)
> (37)

(S, S′) ∈ r> ⇒ (S ◦ Headτ , S′ ◦ Headτ ′) ∈ Ψr(s)
> (38)

(S, S′) ∈ s> ⇒ (S ◦ Tailτ , S′ ◦ Tailτ ′) ∈ Ψr(s)
> (39)

where

IsConsτ
def
= Id ◦ case−of {nil⇒Ω τ list | h :: t⇒nilτ}

Headτ
def
= case−of {nil⇒Ω τ | h :: t⇒h}

Tailτ
def
= case−of {nil⇒Ω τ | h :: t⇒ t}

and Ω is as in Example 2.6. From (38) we get

(L,L′) ∈ Ψr(s)
>> ⇒ (Headτ [L],Headτ ′ [L′]) ∈ r>> (40)

and similarly from (39)

(L,L′) ∈ Ψr(s)
>> ⇒ (Tailτ [L],Tailτ ′ [L′]) ∈ s>> (41)

(where we use the notation −[−] from Definition 3.4 for applying a frame to a term). Then (36),
(37), (40) and (41) can be used to prove (ii), making use of Corollary 3.15 applied to the Kleene
equivalences

Headτ [L] =kl H

Tailτ [L] =kl T

}

if L ⇓ H :: T .

Now if s is an r-bisimulation, i.e. if s ⊆ Ψr(s), then by (i), s ⊆ (1 + (r × s))>> and thus
s ⊆ (r)list , by definition of (r)list . So to see that (r)list is the greatest r-bisimulation, it just
remains to check that it is itself an r-bisimulation. It is only now that we use the assumption that
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r is >>-closed. Note that by (13), (r)list is also >>-closed; so by (ii), Ψr((r)list) is >>-closed
and hence

Ψr((r)list) = Ψr((r)list)
>>

⊇ (1 + (r × (r)list))>> by (i)
= (r)list

as required.

Theorem 5.8 (List type extensionality). For all τ ∈ Typ and L,L′ ∈ Term(τ list), L =obs

L′ : τ list if and only if (L,L′) ∈ s for some s ∈ Rel(τ list , τ list) satisfying that whenever
(M,M ′) ∈ s then
— M ⇓ nilτ if and only if M ′ ⇓ nilτ

— if M ⇓ H :: T , then M ′ ⇓ H ′ :: T ′ for some H ′ and T ′ with H =obs H ′ : τ and (T, T ′) ∈ s

— if M ′ ⇓ H ′ :: T ′, then M ⇓ H :: T for some H and T with H =obs H ′ : τ and (T, T ′) ∈ s.

Proof. Since by Theorem 4.15 (−) =obs (−) : τ coincides with ∆τ (), a term-relation
s ∈ Rel(τ list , τ list) with the above property is precisely a ∆τ ()-bisimulation (Definition 5.6).
Thus L and L′ are related by some such term-relation if and only if they are related by the great-
est ∆τ ()-bisimulation, which by the previous proposition is (∆τ ())list . This is by definition
∆τ list (), and by Theorem 4.15 again, this is (−) =obs (−) : τ list .

This theorem provides a coinduction principle for PolyPCF list types which can be used to
prove properties of lazy lists like those considered in (Pitts 1997a, Section 3) for example. We
use it in the next section to prove Example 2.8 concerning polymorphic versus inductive list
types.

6. Examples: null, unit and list types

In this section we use Theorem 4.15 to give proofs of the properties of null , unit , and list types
claimed in Examples 2.6–2.8.

Null Type

Proof of Example 2.6. Suppose G is a closed term of type null
def
= ∀α (α). We have to show

that G =obs Ω : null , where Ω
def
= Λα (fix(λx : α (x))). By Theorem 5.4 and (29), it suffices to

show for all τ ∈ Typ that Gτ =obs fix(λx : τ (x)) : τ . For this, by Corollary 4.17 it suffices to
show for all S ∈ Stack(τ) that S > (Gτ) does not hold, because evaluation of fix(λx : τ (x))

does not converge.
From Corollary 4.13 we have (G,G) ∈ ∆∀α (α)() = ∀ r (r>>). In other words, for all τ, τ ′ ∈

Typ and r ∈ Rel(τ, τ ′) we have
(Gτ,G τ ′) ∈ r>>. (42)

Given τ , we use (42) with τ ′ = τ list and r the one-element term-relation

r
def
= {(Ω τ , Ω(τ list))}.
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For any S ∈ Stack(τ), let S′ ∈ Stack(τ list) be a frame stack that diverges when applied to any
term of type τ list , say

S′ def
= Id ◦ (case − of {nil⇒Ω(τ list) | h :: t⇒Ω(τ list)}).

Now neither S > Ω τ nor S′
> Ω(τ list) hold, because of the divergence properties of Ω. There-

fore by definition of r, we have (S, S ′) ∈ r>. Combining this with (42) yields S > (Gτ) ⇔

S′
> (Gτ list). But S′ was chosen so that S′

> L does not hold for any L ∈ Term(τ list).
Therefore S > (Gτ) does not hold either, as required.

In order to prove Examples 2.7 and 2.8 we use the following source of >>-closed term-
relations.

Lemma 6.1 (Graphs of frame stacks are >>-closed). For all τ, τ ′ ∈ Typ, suppose S ∈

Stack(τ, τ ′) is a frame stack with argument type τ and result type τ ′. Then the term-relation
graphS ∈ Rel(τ, τ ′) defined by

graphS
def
= {(M,M ′) | S M =obs M ′ : τ ′}.

is >>-closed. (The application operation S,M 7→ S M was given in Definition 3.4.)

Proof. We have to show that (graphS)>> ⊆ graphS . Note that by Theorem 4.15

graphS = {(M,M ′) | (S M,M ′) ∈ ∆τ ′()}. (43)

Let S′@S denote the result of appending the frames in S to a frame stack S ′ (as defined in the
proof of Theorem 3.6). Then an induction on the length of S yields

(S′@S) > M ⇔ S′
> (S M). (44)

From (43) and (44) we get

(S′, S′′) ∈ (∆τ ′())> ⇒ (S′@S, S′′) ∈ (graphS)>

and hence that
(N,N ′) ∈ (graphS)>> ⇒ (S N,N ′) ∈ (∆τ ′())>>.

But by Lemma 4.11, ∆τ ′() is >>-closed. Therefore if (N,N ′) ∈ (graphS)>>, then (S N,N ′) ∈

∆τ ′() and hence (N,N ′) ∈ graphS , as required.

Unit Type

Proof of Example 2.7. Suppose G is a closed term of type unit
def
= ∀α (α → α). Combining

Theorems 5.2 and 5.4 with Examples 5.3 and 5.5, and with the beta-conversions (28) and (29),
to establish the claim in this example it suffices to show for all τ ∈ Typ and M ∈ Term(τ) that
either

Gτ M =obs Ω τ : τ (45)

or

Gτ M =obs M : τ. (46)
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Given τ ∈ Typ and M ∈ Term(τ), let S ∈ Stack(unit list , τ) be the frame stack

S
def
= Id ◦ (case − of {nil⇒M | h :: t⇒M})

and consider graphS ∈ Rel(unit list , τ) as in Lemma 6.1. By Corollary 4.13 we have (G,G) ∈

∆unit () = ∀ r (r>> → r>>). So since by Lemma 6.1 graphS is >>-closed, we have

(G unit list , G τ) ∈ graphS → graphS . (47)

Using the beta-conversion (30), we have (nilunit ,M) ∈ graphS . Therefore from (47) we get
that (G unit list nilunit , G τ M) ∈ graphS , i.e. that

case (G unit list nilunit)of {nil⇒M | h :: t⇒M} =obs Gτ M : τ. (48)

Now either G unit list nilunit ⇓ V for some V , or not. In the first case we get

case (G unit list nilunit )of {nil⇒M | h :: t⇒M} =kl M : τ

and in the second we get

case (G unit list nilunit )of {nil⇒M | h :: t⇒M} =kl Ω τ : τ.

Then by Corollary 4.16 and (48), the first possibility yields (46), whereas the second yields (45).

List Types

Proof of Example 2.8. Let L(α), I and J be as defined in Example 2.8. By Theorem 5.1, to
prove

α, ` : αlist ` J α (I α `) =obs ` : αlist

α, g : L(α) ` I α (J α g) =obs g : L(α)

it suffices to show for all τ ∈ Typ, L ∈ Term(τ list), and G ∈ Term(L(τ)) that

J τ (I τ L) =obs L : τ list (49)

and

I τ (J τ G) =obs G : L(τ).

For the latter, in view of the definition of L(τ) it suffices to show for all τ ′ ∈ Typ, M ′ ∈

Term(τ ′), and F ∈ Term(τ → τ ′ → τ ′) that

I τ (J τ G) τ ′ M ′ F =obs Gτ ′ M ′ F : τ ′. (50)

We tackle (49) first. Applying the beta-conversion properties (28), (29), and (32) to the defini-
tions of I and J yields

I τ L τ ′ M ′ F =obs caseLof {nil⇒M ′ | h :: t⇒F h (I τ t τ ′ M ′ F )} : τ list (51)

(for all L, M ′, and F of appropriate type) and then

J τ (I τ L) =obs caseLof {nil⇒nilτ | h :: t⇒h :: (J τ (I τ t))} : τ list . (52)
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From (52) it follows that s
def
= {(L,L′) | L =obs J τ (I τ L′) : τ list} satisfies the bisim-

ulation conditions in Theorem 5.8 and hence by that theorem it is contained in =obs. Since
(J τ (I τ L), L) ∈ s, we have (49).

Turning to the proof of (50), consider the frame stack S ∈ Stack(τ list , τ ′) defined by

S
def
= Id ◦ (case − of {nil⇒M ′ | h :: t⇒ (F h) (I τ t τ ′ M ′ F )}).

In view of (51), we have S L =obs I τ L τ ′ M ′ F : τ list and therefore

rM ′,F
def
= {(L,M ′′) | I τ L τ ′ M ′ F =obs M ′′ : τ ′}

is a >>-closed member of Rel(τ list , τ ′) by Lemma 6.1. So for each G ∈ Term(L(τ)), since by
Corollary 4.13

(G,G) ∈ ∆L(τ)() = ∀ r (r>> → (∆τ () → r>> → r>>) → r>>)

we have that

(Gτ list , G τ ′) ∈ rM ′,F → (∆τ () → rM ′,F → rM ′,F ) → rM ′,F .

From (51) and the definition of rM ′,F we get that N
def
= Λα (nilα) and C

def
= Λα (λh : α (λ t :

αlist (h :: t))) satisfy

(N τ,M ′) ∈ rM ′,F and (C τ, F ) ∈ ∆τ () → rM ′,F → rM ′,F

and hence
(Gτ list (N τ) (C τ) , G τ ′ M ′ F ) ∈ rM ′,F .

So by definition of rM ′,F we have I τ(Gτ list (N τ) (C τ)) τ ′ M ′ F =obs Gτ ′ M ′ F : τ ′, from
which (50) follows by definition of J .

7. Example: existential types

Example 2.8 shows that in PolyPCF, inductive lists types are observationally isomorphic to poly-
morphic list types. In this section we give another example of this phenomenon by extending
PolyPCF with existential types ∃α (τ) (Mitchell and Plotkin 1988) equipped with a standard
operational semantics, and proving that they are observationally isomorphic to the polymorphic
types ∀α′ (∀α ((τ → α′) → α′)) (where α′ /∈ ftv(τ)).

PolyPCF with Existential Types

Extend the grammar of PolyPCF (Fig. 1) with a type-former for existential types

τ ::= · · ·

| ∃α (τ) ∃-type

and operations for constructing and deconstructing terms of such types

M ::= · · ·

| pack τ,M as ∃α (τ) ∃-type constructor
| openM asα, x inM ∃-type destructor.
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The explicit typing information in packed terms is there to preserve the ‘uniqueness of type’
property mentioned in Note (iii) in Fig. 2. Free occurrences of α in τ become bound in the type
∃α (τ); and free occurrences of α and x in M become bound in the term openE asα, x inM .
The type assignment relation of Fig. 2 is extended by adding the rules

Γ ` M : τ1[τ2/α]

Γ ` pack τ2,M as∃α (τ1) : ∃α (τ1)

Γ ` E : ∃α (τ1) Γ, α, x : τ1 ` M : τ2

Γ ` openE asα, x inM : τ2

.

Recall that such rules are only applied to judgements that are well-formed in the sense of Note (i)
in Fig. 2. In particular, in the second of the two rules given above, since the notation Γ, α means Γ

properly extended by α, α does not occur free in Γ and hence not in τ2 either (by well-formedness
of the conclusion of the rule). This condition that α is not allowed to occur free in τ2 in the second
rule is what distinguishes an existential type from a type-indexed dependent sum, where there
is free access both to the type component as well as the term component of a packed term: see
(Mitchell and Plotkin 1988, p 474 et seq) for a discussion of this point.

We extend the evaluation relation of Fig. 3 by declaring that packed terms are values

pack τ,M as∃α (τ) ⇓ pack τ,M as∃α (τ)

and adding the following rule for ∃-type destructors:
E ⇓ pack τ ′,M ′ as∃α (τ) M [τ ′/α,M ′/x] ⇓ V

openE asα, x inM ⇓ V
.

The associated notion of observational congruence is just as in Theorem 2.3, though of course
the compatibility properties in Fig. 4 have to be extended with obvious clauses for the two new
term-forming operations.

Turning to the material in Section 3, we have to extend the notion of frame stack (Defini-
tion 3.2) by adding a new form of frame:

F ::= · · · | (open−asα, x inM)

with typing rule
Γ ` S : τ ′

( τ ′′ Γ, α, x : τ ` M : τ ′

Γ ` S ◦ (open−asα, x inM) : ∃α (τ) ( τ ′′
.

Then the results in that section continue to hold provided we extend the definition of (−) > (−)

by adding the following two rules to those in Fig. 7
S = S′ ◦ (open−asα, x inM) S′

> M [τ ′/α,M ′/x]

S > pack τ ′,M ′ as ∃α (τ)

S ◦ (open−asα, x inM) > E

S > openE asα, x inM

(or equivalently, by adding the single (redex,reduct)-pair (R,R′) where

R = open (pack τ ′,M ′ as ∃α (τ))asα, x inM and R′ = M [τ ′/α,M ′/x]
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to the definition of the transition relation in the proof of Theorem 3.6). In particular, we have the
closure operation (−)>> on term-relations for the extended language, with its various properties.

Now we come to the delicate part. We extend the logical relation of Section 4 to the language
with existential types by adding the following clause to Fig. 8.

∆∃α (τ)(~r/~α)
def
= (∃ r (∆τ (r>>/α,~r/~α)))>>. (53)

As well as the closure operation (−)>>, this makes use of the following action of ∃ on term-
relations.

Definition 7.1 (Action of ∃ on term-relations). Let τ1 and τ ′
1 be PolyPCF types with at most a

single free type variable, α say. Suppose R is a function mapping term-relations r ∈ Rel(τ2, τ
′
2)

(any τ2, τ
′
2 ∈ Typ) to term-relations R(r) ∈ Rel(τ1[τ2/α], τ ′

1[τ
′
2/α]). Then we can form a term-

relation ∃ r (R(r)) ∈ Rel(∃α (τ1),∃α (τ ′
1)) as follows.

∃ r (R(r))
def
= {(pack τ2,M as∃α (τ1),pack τ ′

2,M
′ as∃α (τ ′

1)) |

∃ r ∈ Rel(τ2, τ
′
2) ((M,M ′) ∈ R(r))}.

Note that ∃ r (R(r)) only contains values (i.e. packed terms). Thus it makes some sense to
take the >>-closure of this construct in (53) when defining the logical relation at ∃-types. (The
use of r>>/α, rather than r/α in (53) is for the same reasons as in clause (16): see Remark 4.4.)
However, the precise justification for the definition is that it permits Proposition 4.6 (the Funda-
mental Property of the logical relation) to go through for the extended language. The compatibil-
ity properties of the extended logical relation with respect to ∃-type constructors and destructors
follow from properties of Definition 7.1 with respect to (−)>> which are analogous to those for
list types in Lemmas 4.9 and 4.10; we omit the details.

From the fundamental property for ∆ we deduce that Theorem 4.15 (characterisation of =obs

in terms of the logical relation), Corollary 4.16 (=kl implies =obs), Corollary 4.17 (coincidence
of =obs with =ciu) and the results of Section 5 go through for the extended language. Two simple
consequences of these results which we will need in a moment are beta- and eta-conversions for
∃-types:

Γ ` open (pack τ ′,M ′ as∃α (τ))asα, x inM =obs M [τ ′/α,M ′/x] : τ ′′ (54)
Γ ` E =obs openE asα, x in (packα, xas ∃α (τ)) : ∃α (τ) (55)

where
Γ ` M ′ : τ [τ ′/α] Γ, α, x : τ ` M : τ ′′ Γ ` E : ∃α (τ).

These observational congruences hold because their closed instances are valid Kleene equiva-
lences.

Definability of ∃-types

We aim to show that each existential type

ε
def
= ∃α (τ)
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is in bijection, up to =obs, with the polymorphic type

ε′
def
= ∀α′ (∀α (τ → α′) → α′)

(where α′ /∈ ftv(τ)). For simplicity, we assume that ∃α (τ) is closed. Define I ∈ Term(ε→ ε′)

and J ∈ Term(ε′ → ε) to be the terms

I
def
= λ e : ε (Λα′ (λ g : ∀α (τ → α′) (open easα, x in g α x)))

J
def
= λ g′ : ε′ (g′ ε P ),

where P
def
= Λα (λx : τ (packα, xas ε)) ∈ Term(∀α (τ → ε)).

Theorem 7.2. ε is observationally isomorphic to ε′ in the sense that J ◦ I
def
= λ e : ε (J (I e))

and I ◦ J
def
= λ g : ε′ (I (J g)) are observationally congruent to the identity functions on ε and ε′

respectively.

Proof. Using the various extensionality results of Section 5, it suffices to prove for all E ∈

Term(ε) that
J (I E) =obs E : ε (56)

and for all G′ ∈ Term(ε′), τ ′ ∈ Typ, and G ∈ Term(∀α (τ → τ ′)) that

I (J G′) τ ′ G =obs G′ τ ′ G : τ ′. (57)

Using the definitions of I and J and applying the beta-conversions (28) and (29) several times
we get

J (I E) =obs openE asα, x in (packα, xas ε) : ε

so that (56) holds because of the eta-conversion (55). Similarly, after various beta-conversions
(57) is equivalent to

open (G′ ε P )asα, x inGα x =obs G′ τ ′ G : τ ′. (58)

To see that this holds, consider the frame stack S ∈ Stack(ε, τ ′) given by

S
def
= Id ◦ (open−asα, x inGα x)

and the >>-closed term-relation graphS ∈ Rel(ε, τ ′) associated with it as in Lemma 6.1. We
claim that

(P,G) ∈ ∀ r (∆τ (r>>/α) → graphS). (59)
For, given any τ2, τ

′
2 ∈ Typ, r ∈ Rel(τ2, τ

′
2), and (M,M ′) ∈ ∆τ (r>>/α), we have

((pack τ2,M as ε), (pack τ ′
2,M

′ as ε)) ∈ ∃ r (∆τ (r>>/α)) by Definition 7.1
⊆ (∃ r (∆τ (r>>/α)))>>

def
= ∆ε() since ε

def
= ∃α (τ).

Hence by Theorem 4.15 (for the extended language)

(pack τ2,M as ε) =obs (pack τ ′
2,M

′ as ε) : ε.
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From this and the definition of P we get via the beta-conversions (28) and (29) that

P τ2 M =obs pack τ ′
2,M

′ as ε : ε. (60)

By (54) we have ((pack τ ′
2,M

′ as ε), G τ ′
2 M ′) ∈ graphS . Then since graphS is >>-closed

(Lemma 6.1) from this and (60) we conclude via Corollary 3.15 that (P τ2 M,Gτ ′
2 M ′) ∈

graphS . Since this holds for all r and (M,M ′) ∈ ∆τ (r>>/α), we do indeed have (59).
Now since ∆ε′() is reflexive (Corollary 4.13),

(G′, G′) ∈ ∆ε′() = ∀ r′ (∀ r (∆τ (r>>/α) → r′
>>

) → r′
>>

).

Hence (G′ ε,G′ τ ′) ∈ ∀ r (∆τ (r>>/α) → graphS) → graphS (using the fact that graphS =

(graphS)>>). So by (59) we have (G′ ε P,G′ τ ′ G) ∈ graphS . Therefore by definition of S we
do indeed have (58).

8. Conclusion

The notion of contextual equivalence of programs has a final, as opposed to initial, character—in
that terms are identified as much as possible within some observational framework. Therefore it
is reasonable to expect ∀-types to have strong parametricity properties with respect to such a no-
tion of equivalence. The work of Mitchell and Moggi on the maximally consistent model of PLC
(see Mitchell 1996, Section 9.3.2 et seq) vindicates this expectation, and the work presented here
provides further evidence, this time in a context more directly relevant to functional program-
ming. It seems that in the presence of fixpoints, polymorphic types have very rich properties
up to contextual equivalence and that operationally-based logical relations provide a convenient
way of proving these properties. To not obscure the ideas with too many syntactic details, we
chose here to focus just upon the definability up to observational congruence of list types and
existential types. But similar results can be derived using our techniques for other common type
constructs, such as products, sums, and covariant recursive types built from them. In the case
of covariant recursive types (sometimes called ‘algebraic data types’) one cannot proceed as we
did in Section 4 and define the requisite logical relation (∆τ | τ ∈ Typ) by induction on the
structure of τ—because the clause for a recursive type involves the relation at structurally more
complicated types. Instead one can define all the relations simultaneously using the Tarski fixed
point theorem: covariance of the recursive types ensures the monotonicity of the operator whose
fixed point specifies the required family of relations. In the case of general mixed-variance re-
cursive types, this method is not available (because the operator is no longer monotone) and the
existence of logical relations of the kind we need is much harder to establish. One way to proceed
is via a syntactical analogue of the technique developed in (Pitts 1996) for recursively defined
domains. This has been carried out for a single, top-level recursive type by (Birkedal and Harper
1997) (although without the benefit of the (−)> machinery). Indeed, using the analysis of Freyd
(1992), general recursive types à la Plotkin’s FPC with their usual operational semantics (Plotkin
1985) should be observationally isomorphic to PolyPCF types.

These kind of applications are certainly just a small selection of the results which can be proved
using the machinery of Sections 3 and 4 (see also (Pitts and Stark 1998) for example). The
Galois connection (−)> between term-relations and stack-relations (Definition 3.9) seems the
most interesting ingredient of that machinery. One of its roles is to tie the operational semantics
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Vanilla PCF
(call-by-name evaluation; termination at function types is not observable)

∆τ1→τ2
(~r)

def
= ∆τ1

(~r) → ∆τ2
(~r)

where in general

r1 → r2
def
= {(F, F ′) | ∀ (A, A′) ∈ r1 ((F A, F ′ A′) ∈ r2)}.

‘Lazy’ PCF
(call-by-name evaluation; termination at function types is observable)

∆τ1→τ2
(~r)

def
= (λ ∆τ1

(~r) (∆τ2
(~r)))>>

where in general

λ r1 (r2)
def
= {(λ x : τ1 (M), λ x : τ1 (M ′)) |

∀ (A, A′) ∈ r1 ((M [A/x], M ′[A′/x]) ∈ r2)}.

Call-by-value PCF
(call-by-value evaluation; hence termination at function types is necessarily observable)

∆τ1→τ2
(~r)

def
= (λv ∆τ1

(~r) (∆τ2
(~r)))>>

where in general

λv r1 (r2)
def
= {(λ x : τ1 (M), λ x : τ1 (M ′)) |

∀ (V, V ′) ∈ r1 with V, V ′ values ((M [V/x], M ′[V ′/x]) ∈ r2)}.

Fig. 9. Some actions of → on term-relations

into the logical relation. This idea is reinforced in Fig. 9, where we mention some alternative
actions of → on term-relations (cf. Definition 4.1) which fit contextual equivalence for ‘lazy’
and call-by-value PCF. Of course in each case, the definition of − > − and hence of (−)>>,
changes to match the changed operational semantics and/or observational scenario; and in the
second case the notion of frame stack is different as well. The full details of this style of logical
relation for a call-by-value version of PolyPCF can be found in (Pitts 1998), which uses it to
explore extensionality principles for existential types.

As mentioned in Section 3, another role of the (−)> operation is to provide a syntactic ver-
sion of the domain-theoretic notion of admissibility (i.e. of a subset being bottom-containing and
closed under least upper bounds of ascending chains). The recent upsurge in operational tech-
niques in the semantics of higher order programming languages has been fuelled to a certain
extent by developing syntactical versions of domain-theoretic methods (see (Mason, Smith, and
Talcott 1996) and (Birkedal and Harper 1997) for example). Here it may be interesting to go
in the opposite direction. The Galois connection (−)> arose from purely operational consider-
ations (in fact, as a way of dealing with dynamic allocation of local state in the logical relation
introduced in (Pitts and Stark 1998)); but it may be useful to use a denotational version of (−)>

for ‘extensional collapses’ when constructing models of polymorphism and recursion. Denota-
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tionally, strict continuous functions play the role of frame stacks (evaluation contexts). So given
domains D and D′, choosing to take ‘observations’ in the two-element domain I = {⊥,>} with
⊥ v >, we may consider the evident Galois connection between relations R ⊆ D × D′ and
relations S ⊆ (D ( I) × (D′

( I) induced by

f > d
def
⇔ f(d) = >

where D ( I denotes the usual domain of strict continuous functions from D to I . Which
relations on D×D′ are closed for this Galois connection? It is not hard to see that such relations
are admissible in the usual sense. Winskel (private communication) has given a simple example to
show that the converse is false; and Abadi (2000) gives an interesting, inductive characterisation
of the >>-closed relations.
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