Operationally-Based Theories of
Program Equivalence

Andrew Pitts

Contents
1 Introduction 241
2 Contextual Equivalence L. 243
3 Smilaityand Bismilarity 257
4 Rational Completeness and Syntactic Continuity 271
5 Further Directions, 278
A Proof of the Operational Extensionality Theorem 283

1 Introduction

This article describes some mathematical methods for verifying properties of pro-
grams in higher-order, functional languages. We focus on methods for reasoning
about equivalence of expressions. Such methods are often based upon a denota-
tional semantics of the programming language in question, using the mathematical
theory of domains (Scott 1982; Plotkin 1981a). Here | will describe some methods
which are based upon operational semantics (Plotkin 1981b). These operationally-
based techniques have severa attractive features. For example, there is relatively
little mathematical overhead involved in developing the basic theory—in contrast
with that needed to devel op the existence and properties of recursively defined do-
mains, the sine qua non of denotational semantics. On the other hand, domain
theory provides an extremely powerful tool for analysing recursive program con-
structs. | believethat any serious attempt to develop auseful theory for verification
of program properties hasto involve both operational and denotational techniques.

Highlights The main purpose of this article is to advertise the usefulness, for
proving equivalences between functional programs, of co-inductive techniques
more familiar in the context of concurrency theory (de Roever 1978; Park 1981,
Milner 1989). They were imported into the world of lambda calculus and func-
tiona programming by severa people: see Dybjer and Sander (1989); Abramsky
(1990); Howe (1989, Howe (1996); Egidi, Honsell, and della Rocca (1992); and
Gordon 1994. | will aso present proofs of some ‘domain-theoretic’ properties

241

242 Pitts

of the operational semantics. To keep things ssimple, but non-trivial, the example
programming language used throughout is an extension of PCF (Plotkin 1977)
with products and lazy lists. The technical highlights are:

e An‘operationa extensionality’ theorem (Theorem 3.8) for the example pro-
gramming language. Thisis a generalisation of the context lemma of Mil-
ner (1977) and characterises ground contextual equivalence as a certain co-
inductively defined notion of bisimilarity. This result yields a co-induction
principle for proving instances of contextual equivaence, whose utility we
illustrate with severa examples (section 3). The use of ground contextual
equivalence introduces some differences between the appropriate notion of
bisimilarity and the ‘applicative bismulation’ studied by Abramsky (and
Howe) for ‘lazy’ lambdacalculi. Asfar as| know Gordon (1995a) was the
first person to give an operational extensionality theorem for ground con-
textual equivalence in non-strict, recursively typed languages. His notion
of bisimilarity is based upon a labelled transition system for the language.
Here we use a notion of bisimilarity based simply upon the evaluation (or
‘big-step’) semantics. Each approach hasits uses. The proof of operational
extensionality we give uses an adaptation of a method due to Howe (1989,
Howe (1996); we postponeit to an Appendix in order not to interrupt the pa-
per’sflow. However, itisthetechniquerather than theresult for the particular
example language which isimportant, and so we urge readers not to neglect
this Appendix.

e A proof of some order-theoretic properties of fixpoint recursion with respect
to the contextual preorder (section 4). They are syntactic analogues of the
w-chain completeness and continuity properties used in domain-theoretic
denotational semantics. Although these properties of the contextual preorder
can be derived from a computationally adequate denotational semantics of
the language, in keeping with the spirit of thisarticle | give a proof directly
from the operational semantics. Mason, Smith, and Talcott (1996) carry out
asimilar program based on atransition (or ‘small-step’) semantics, whereas
here | use the evaluation semantics.

Prerequisites We assume the reader is familiar with some flavour of functional
progranming. The textbooks by Abelson and Susman (1985), Paulson (1991),
and Bird and Wadler (1988) all provide good introductions. | will also assume
familiarity with the use of inductive definitionsto specify the syntax and operational
semantics of programming languages (especially ones based upon typed lambda
calculus). Therecent text books by Gunter (1992) and Winskel (1993) both provide
good introductions to this topic (and much else besides).

Acknowledgements | have had many stimulating discussionswith Andrew Gor-
don on the topic of operationally-based notions of bisimilarity and co-induction.

Operationally-Based Theories of Program Equivalence 243

Hislecture notes (1995b) provide a somewhat different perspective on many of the
topics covered here, and are recommended. Much of the material which followsis
areworking of other people's work: sources are given in the text as appropriate.
Any errors are, of course, al my own work.

2 Contextual Equivalence

Loosely speaking, two expressions M and M’ of a programming language are
contextually equivalent if any occurrences of M and M’ in complete programs
can be interchanged without affecting the results of executing the programs. To
formalise this for a particular language (as will be done in Definition 2.9 below),
one hasto specify precisely how programs are executed, i.e. specify an operational
semantics, and one has to specify what the observable results of execution should
be. Thesetwo key ingredients of contextual equivalence account for the fact that it
is often referred to in the literature as observational, or operational, equivalence.
Aswe shall seelater (section 5), changing either of the parameters may or may not
affect the properties of the resulting notion of contextual equivalence.

For most of this article we study properties of contextual equivalence with re-
spect to asimple functional programming language for recursively defined, higher
order functions and lazy lists. We coin the acronym PCFL for this language—
standing for * Programming Computable Functions on pairs and lazy Lists'. Asthe
name suggests, PCFL is obtained from PCF (Plotkin 1977), the mother of all toy
programming languages, by adding type constructorsfor pairsand lazy lists. It has
the property of being extremely simple (so that the theory to be developed is not
obscured by too many syntactical and semantical complications) whilst containing
some potentially infinite data structures, for which co-inductive techniques seem
particularly effective.

PCFL syntax

PCFL isalanguage of termsof varioustypes (integers, booleans, function, product,
and list types). Function definitions and recursive definitionsin PCFL are handled
anonymously, rather than through some explicit mechanism of environments bind-
ing identifiersto their definitions. Thissimplifiesthetheoretical development at the
expense of making PCFL terms somewhat unwieldy.

The terms are built up from constants (for boolean and integer values and for
the empty list) and variables, using the constructs which are given in Figure 1
and whose intended meaning is as follows. if B then M else N isaterm which
evaluateslike M or N, according to whether the boolean term B evaluatesto true
or false. M op N isabinary operation or relation applied to two integer expressions.
Az . F(x) is aname for the function mapping = to F(z). F A isthe function F’
applied to the argument A. fixx . F'(x) is arecursively defined term, solving the

244

Pitts

M:= =z variables
| b booleans
| if M then M else M boolean conditional
| n numeras
| MopM arithmetic operation
| Az. M function abstraction
| MM function application
| fixz. M fixpoint recursion
| (M, M) pairing
| fst(M) first projection
| snd(M) second projection
| il empty list
| M:M conslist
| case Mof {nil > M |z:x— M} list conditional

where
x € Var afixed, infinite set of variables,

beB Y {true, false} the set of booleans,

neZ{ .. ,-21,012...}

OPE{:,_,:,S,---}

the set of integers,

afixed, finite set of arithmetic
operation and relation symbols.

Figure 1. PCFL syntax

fixpoint equation z = F(z). (M, N) isthe ordered pair with first and second
components M and N. fst(P) isthe first component of the pair P. snd(P) isthe
second component of the pair P. H :: T isthelist with head H and tail 7. Finaly,
case Lof {nil - M | h::t — N(h, t)} isatermwhich evaluateslike M or N(H,T),
according to whether the term L of list type evaluates to the empty list nil, or to a
non-empty list H :: T'.

More precisely, the PCFL terms are given by the syntax trees generated by the
grammar in Figure 1, modulo a-equivalence. Recall that two expressionsin acal-
culus with variable binding constructs are called a-equivalent if they are syntac-
tically identical up to renaming of bound variables. In PCFL, function abstraction,
fixpoint recursion and list destructors are variable binding constructs: occurrences
of x in M areboundin Az . M and fix x . M, whilst occurrencesof handtin N are

Operationally-Based Theories of Program Equivalence 245

boundin case L of {nil— M | h::t — N}. Any other occurrences of variables are
free.

Warning Any reasonable semantics of a programming language with binding
constructs will identify a-equivalent expressions. So since we are here concerned
with semantic rather than implementation issues, we take the terms of the language
PCFL to be a-equivalence classes of syntax trees. It would probably be better, both
from an implementation as well as a semantic point of view, to use amore abstract
form of representation without explicit bound variables—such as de Bruijn’s nota-
tion (see Barendregt 1984, Appendix C). However such a representation tends to
be hard to read, so we will stick with the more familiar form of syntax given in
Figure 1. But be warned that we will not make a notational distinction between a
PCFL syntax tree and the term (a-equivalence class) it determines.

Notation 2.1. Wewill usethefollowing notation for the finite set of free variables
of aPCFL term:

fvar(M) ' the set of free variables of M.

If M and N are PCFL termsand z isavariable, then N[M /x] will denote the PCFL
term resulting from substituting A for all free occurrencesof z in N. Asusua with
calculi with variable binding constructs, this operation of substitution is induced
by textual substitution at the level of syntax trees, taking care to avoid capture of
freevariables (i.e. one must pick arepresentative tree for NV whose bound variables
arenot in fvar(M)). More generally, given alist M, ..., M, of termsand alist
x1,...,x, of distinct variables

N[Mi/zy,..., My/z,], orjust N[M /4]

will denote the result of simultaneously substituting each term M; in thelist for al
free occurrencesin N of the corresponding variable z;.

PCFL type assignment

Thetermsof Plotkin’s PCF (1977) contain explicit type information. For PCFL we
have chosen to |eave out typeinformation from theterms. Nevertheless, PCFL isa
typed language, in the sense that we will only consider atermto bewell formed if it
can be assigned atype, given an assignment of typesto the free variables occurring
in theterm. PCFL -types are given by the following grammar:

oun= 7 ground type
| o—0o function type
| oxdo product type

| o] list type

246 Pitts

where

v = bool type of booleans
| int type of integers.

A PCFL typing assertion takesthe form
'EM:o (2.1

where I' is a finite partial function from variables to types, M is a PCFL term,
and o isatype. The type assignment relation for PCFL consists of all typing
assertions that can be derived from the axioms and rules in Figure 2. If (2.1) is
derivable, we smply say that it isvalid. The notation I', z : ¢ used in the rule
(+ abs) denotes the partial function which properly extends I" by mapping = to o.
Implicitinitsuseisthe assumptionthat - isnotin dom (T"), the domain of definition
of I'. With this notational convention, strictly speaking the side condition on the
rule is unnecessary, but has been included for people who only look at Figure 2
without reading the preceding sentence. Similar remarks apply to the rules (- fix)

and (- case). If dom(T") consistsof thedistinct variablesxy, . . ., z, and T'(z;) = o;

say, then we will sometimeswrite (2.1) asz; : 01,...,2, : 0, = M : 0.

Lemma22. (i) If ' = M : oisavalid typing assertion, then fvar(M) C
dom(T).

(i) fTFM:oandz & dom(T),thenT,z: o' = M : o (for any o).

@ii) If °,I" = M : o and fvoar(M) C dom(T'),thenT - M : 0. Here (and
elsawhere), I', I indicates the union of the partial functionsI” and I/, under
the assumption that their domains of definition are digoint.

(iv v U T'EM;:0;fori=1,...,nandT’,z; : 01,...,2, : 0, = N : 0, then
Fi—N[Ml/xl,...,Mn/xn]:a.

Proof. Parts (i), (ii) and (iii) are proved by induction on the derivation of I' - M :
o. Part (iv) is proved by induction on the derivationof I', zy : 04,...,2, : 0, I
N : o, using part (ii). O

Definition 2.3. Let Exp,(T") denote the set of PCFL terms that can be assigned
typeo, givenT:
Ezp,(T) < {M |T+ M : o).

By part (i) of the above lemma, any M € Ezxp,(T") hasits free variables contained
in dom(T"). In particular, inthe case I isthe empty partial function, A/ isaclosed
term, that is, one with no free variables. (A term which does have free variablesis
caled open.) We will write Ezp,, for Exp,(T') inthis case. The elementsof Ezp,,
are called the closed PCFL terms of type . A closed termistypeableif it belongs
to Ezp,, for sometypeo.

Operationally-Based Theories of Program Equivalence

'+xz:0 (if Tisdefined a x with value o)
'Eb:bool (ifbeB)

I' = B : bool I'EM, :o I'EM,:o
I' = if Bthen M, else M, : o
L'En:int (ifne€Z)

I'= M :int I'= M, :int
' Miop Ms:vy
Cx:obFM:o
'FXe.M:o—o
'FF:0—0 '-A:o
'FFA:0
bx:oFF:o
I'Ffixe. F:o
I'EM, :o C'HM,:o
L'H (M, Ms):0x%xdo
'FP:oxo
['Ffst(P):o
'FP:oxo
I'Fsnd(P): o
[F il : [o]

(if v istheresult type of op)

(x & dom(T'))

(x & dom(T"))

'FH:o CET: o]
'FH:T:|o]

'EL:[o] TEM;:0" T,h:ot:[o]F My:o'
[case Lof {nil— M, | h::t— My} : o

Figure 2: Rulesfor type assignment in PCFL

Evaluation of PCFL terms

247

(F var)
(+ booal)

(+ cond)
(F int)

(— op)

(- abs)

(— app)

(- fix)

(~ pair)

(F fst)

(- snd)
(F nil)

(+ cons)

(h,t & dom(T)) (- case)

Typically, a program in atyped functional language consists of some definitions
(usualy, recursive definitions) of data of various types, together with a term of
a type whose values are printable (integers, booleans, character strings, etc) to

248 Pitts

clcC (| can)
B || true M| C (I cond)
if B then M, else M, || C
B || false M, || C (I cond2)
if B then M, else M, || C
My | ny My yn,
M, op M, | (if ¢ = ny op ny) (Ul op)
Fly .M M[A/z] |} C (I o)
FA|C P
Flfixz.F/z] | C _
f
fixe . F | C (1)
P (M, M. M, | C
U (M, My) 1 (U fst)
fst(P) | C
P (M, M. My | C
(M, My) 2) (I snd)
snd(P) | C
L | nil M, | C
AL (4 caset)
case Lof {nil > M; | h:t— My} | C
LIH:T M,[H/h,T C
U o[H/h, T/t] (I case2)

case Lof {nil > M, | h::t— My} || C
Figure 3: Rulesfor evaluating PCFL terms

be evaluated modulo the given definitions. In PCFL definitions are given anony-
mously within a term, and we take the types with printable values to be just the
ground types, bool and int. Therefore, a PCFL program is defined to be a closed
term of ground type.

Executing such aprogram consists of eval uating the term to see which integer or
booleanit denotes, if any. The processof evaluation will usually involveevaluation
of subexpressions of non-ground type. There are at least two standard ways to
specify this process of evaluation: by means of atransition relation between terms
and by means of an evaluation relation between terms and termsin canonical form.
Both are examples of the structural operational semantics of Plotkin (1981b), in as
much as the inductive definition of the relation follows the structure of the term
being evaluated. Here we will use the second (and more abstract) approach, and

Operationally-Based Theories of Program Equivalence 249

give an inductively defined evaluation relation.The relation takes the form
M|C
where M and C are closed, typeable PCFL termsand C' isin canonical form:
Cu=b|n| x. M| (M,M)|nil|M:: M.

The evaluation relation isinductively defined by the axioms and rulesin Figure 3.

The canonical forms and evaluation rules embody certain choices which have
been made about how PCFL programsbehave: eval uation doesnot continueunder a
lambdaabstraction, or within the componentsof apair or list-cons; and an argument
is passed unevaluated to the body of alambda abstraction in function application.
Of course, these choices affect the properties of contextual equivalence for PCFL.
Other choicesand their effect on theories of program equivalence will be discussed
in section 5.

Proposition 2.4. Evaluation is deterministic and preservestyping, that is
(i) (Determinacy) If M || C'and M |} C',thenC' = C".
(if) (Subject reduction) If M || C'and M € FEzp,,thenC € Exp,.

Proof. Both propertiescan easily be proved by induction onthederivation of M {|C'
(using Lemma 2.2(iv)). O

Exercise 2.5. Terms of type [¢] in PCFL are notations for potentialy infinite lists
of the data described by terms of type 0. Here is how the standard example of the
infinite list of natural numbers, [0, 1,2, ...] can be coded in PCFL. Consider the
terms

nats < fix (.0 map(Azx .z + 1)¢

map o fixm . Af .\
case £ of {nil = nil | h::t— fh::mft}

head % M. case ¢ of {nil — L | h::t—h}
tail © AC . case £ of {nil = nil | h::t >t}
1 Y fixa .o
Show that for any types o and o'
0FL:o
O+ head : [o] = o
0 tail : [o] — [0]
O map: (oc—o')— ([o] = [0'])

250 Pitts

and hencethat () - nats : [int]. Prove that nats is anotation for the infinite list
[0,1,2,...]inthesensethat for all n € N, head(tail" nats) |} n, where

tail® def ANC.T

tail™™ & Az tail(tail™ x).

PCFL contexts

Recall the informal definition of contextual equivalence with which we began this
section. For our example language PCFL, so far we have decided upon what con-
stitutes a program (namely, a closed term of ground type) and what the observable
results of execution should be (namely, the integer or boolean constant to which
the program evaluates, if any). It remains to formalise the notion of interchang-
ing occurrences of termsin programs. To do so, we use ‘ contexts —syntax trees
containing parameters (or place-holders, or ‘holes'’) which yield a term when the
parameters are replaced by terms. Thusthe PCFL contexts, C, are the syntax trees
generated by the grammar in Figure 1 augmented by the clause

Cu=---|p

where p ranges over some fixed set of parameters. Note that the syntax trees
of PCFL terms are particular contexts, namely the ones with no occurrences of
parameters.

Context substitution C'[C/p] will denote the PCFL context obtained from acon-
text C' by replacing all occurrences of p with the context C. It should be em-
phasised that this form of substitution may well involve capture of free variables
in C by binding variables in C'. For example, if C = x and C' = Az .p, then
C'[C/p] = Ax.z. For thisreason, the operation of substituting C for p does not
preserve therelation =* of a-equivaence. For exampleif z and y are distinct vari-
ables, then Az.p = \y.p, but (Az.p)[z/p] = Az.x £* A\y.x = (\y.p)[z/p].
However, one can easily prove by induction on the structure of C’ that

C1 =*Cy = C'[Cy/p] =" C'[C1/p].

In other words, substituting a-equivalent contexts resultsin a-equivalent contexts.
It follows that the operation of substituting for a parameter in a context induces a
well-defined operation on a-equivaence classes of PCFL syntax trees, that is, on
PCFL terms.

It is possible to give atreatment of contexts and contextual equivalence which
does not descend below the level of abstraction of a-equivalence classes of expres-
sions (or equivalently, atreatment which appliesto expressions using de Bruijnin-
dicesrather than explicit bound variables), at the expense of introducing ‘function
variables' . Theinterested reader isreferred to (Pitts 1994, Section 4).

Operationally-Based Theories of Program Equivalence 251

Notation 2.6. Most of thetimewewill use contextsonly involving asingle param-
eter, which we write as —. We write C[—] to indicate that C is a context containing
no parameters other than —. If M isaPCFL term, then C[M] will denote the term
resulting from choosing a representative syntax tree for M, substituting it for the
parameter in C, and forming the a-equivalence class of the resulting PCFL syntax
tree (which from the remarks above, isindependent of the choice of representative
for M).

Typed contexts Wewill assumegiven afunctionthat assignstypesto parameters.
We write —, to indicate that a parameter — hastype . Just aswe only consider a
PCFL term to be well-formed if it can be assigned atype, we will restrict attention
to contexts that can be typed. The relation

'EC:o

assigning atype o to acontext C given afinite partial function I' assigning typesto
variables, isinductively generated by axioms and rules just like those in Figure 2
together with the following axiom for parameters:

'e—,:0. (2.2

Warning: when the axioms and rules of Figure 2 are applied to syntax trees rather
than «a-equivalence classes of syntax trees (as is the case when typing contexts),
it should be borne in mind that they enforce a separation between free and bound
variables and hence are not closed under a-equivalence. For example, if z # vy,
thenz : int = A\y. —; @ int — int iSavalid typing assertion, whereas « : int -
AT . —int @ int — int iSNOL.

Definition 2.7. Let Ctz,(I") denote the set of PCFL contexts that can be assigned
typeo, given T

Ctz, (D)€ {C|T+C: o}
We write Ctz,, for Ctz,((). GivenC[—,] € Ctz,.(I"), we write traps(C[—,]) for
the set of variablesthat occur in C[—] associated to binders containing the hole —,

within their scope. Thus any free variables of M in traps(C[—,|) become bound
inC[M].

The operation M — C[M] of substituting a PCFL term for a parameter in a
context to obtain anew PCFL term respects typing in the following sense.

Lemma 2.8. Suppose M € Exp (T, T"), C[—,] € Ctz,(T), and that dom(T") C
traps(C[—5]). ThenC[M] € Exp.(T).

Proof. By induction on the derivation of I' - C[—,] : ¢. O

252 Pitts

Definition 2.9 (Ground contextual equivalence). Asusual, let I' be afinite par-
tial function from variablesto PCFL types. Given M, M' € Exp ('), wewrite

I'F M <sd M
to mean that for al C[—,| € Ctz e With dom (L) C traps(C|—,])
Vb e B(CIM] 4 b= C[M']{D)
and for al C[—,] € Ctz i With dom(T') C traps(C[—,])
Vn € Z(CIM]In = CIM']|n).

(Notethat by virtueof Lemma2.8, C[M] and C[M'] areindeed closed terms of type
v whenC[—,| € Ctz., satisfies dom(T") C traps(C[—,]).)

The relation <&"d will be caled the ground contextual preorder between
PCFL terms (of the same type, given a typing of their free variables). Ground
contextual equivalence isthe symmetrization of thisrelation:

DM)\ (D M <E M & T M <8 M),

In section 5 we will consider some variations on the notion of contextual equiva
lence, in which contexts of non-ground type are used. Until then we will drop the
adjective ‘ground’ and just refer to <&"d and =84 asthe contextual preorder and
contextual equivalence. For closed terms M, M' € Ezp,, we will just write

M Sgnd Ml and M ggnd M/
for) = M <&d M’ and) = M =284 M’ respectively.

Remark 2.10. The relations of contextual preorder and contextual equivaence
remain the same if in Definition 2.9 we restrict to contexts yielding terms of type
bool only, or of type int only, or restrict attention to evaluation to afixed integer or
boolean constant, or just to convergence to something. For example

[M <5 M & VC[-] (CIM] {42 = C[M'] | 42). (2.3

To seerthis, given any context C[—], for each n € Z note that the context

Cn[—] o if C[—] = nthen 42 else 0

has the property that for all M
Cu[M] I 42 < C[M] |} n.

Similarly, the contexts

Cirue[—] Lef i C[—] then 42 else 0

Cralse|—] lef if C[—] then 0 else 42

o

Operationally-Based Theories of Program Equivalence 253

satisfy

Ctrue[M] UQ = C[M] U true
Craise[M] || 42 & C[M] |} false.

Property (2.3) followsimmediately.

Exercise 2.11. Writing M1},,, tomean 3n € Z (M | n), show that

int
I'EM <8 M < VC[-] (CIM],, = C[Myy).-

[Hint: note that | “ fix v .z isaclosed term (typeable to any type) which does
not evauate to anything. (Why?) Given any C[—], use L to define a new context
C'[—] satisfying for any M that C'[M]{},,, if and only if C[M] | 42. Now use
Remark 2.10.]

Properties of PCFL contextual equivalence

Having given the precise definition of contextual equivalence for our example
language PCFL we must now develop its theory—its general properties which
one can use to establish that particular PCFL terms are, or are not, contextually
equivalent. To show that two terms are not contextually equivaent isusually quite
easy: onejust hasto find asuitable context of ground typefor which thetermsyield
different resultswhen therulesfor evaluation in Figure 3 are applied. For example,
thefact that 0:: (1 ::nil) and 0 :: nil are contextually inequivalent terms of type [int],
iswitnessed by the context C[—] ' head (tail—), where head and tail aretheterms
defined in Exercise 2.5. For C[0:: (1 :: nil)] |} 1, whereas C[0 :: nil] does not evaluate
to anything.

The job of establishing that a contextual equivaence does hold can be much
harder. For example, =&"¢ satisfies 3-conversion:

T (Az. M) A5 M[A/x]

wherel',z : o M : o' andT" - A : 0. However, it is not immediately obvious
from Definition 2.9 why thisis so. The problem lies mainly in the quantification
over all contexts that occurs in the definition of <&"d and =24, One might try
to construct a proof which proceeds by induction on the structure of contexts, but
it is not so easy to find a sufficiently strong inductive hypothesis to make all the
steps (involving eval uation of subexpressionsat non-ground types) go through. We
will take up the challenge of such problems seriously in the next section when we
introduce PCFL bisimilarity—another, and more tractable, notion of equivalence
which turns out to coincide with PCFL contextual equivalence. We conclude this
section by stating some of the properties of <&d and =" that will be proved in
these notes.

254
(In)equational logic

I'FM:o=TFM<® M
CHEM<EM&DEM <8M")=T+M <&M
CTFM<®IM&ETFM <8 M) e TF M=)

ToiobM<BM =Tk M <8 . M
To:okF M <8 M =T fixe. M <8 fixy. M’
CHL<E L &THM<E M

&T,h:o,t: o] FN <5 N

=T+ (case Lof {nil » M |h:t—N}) <&
(case L' of {nil > M' | h::t— N'})

TFM<EIYM&ETC) =T M <8 M
TFM<® M &T,2:0FN:o

= '+ N[M/z] <& N[M'/x]
FI—M:U&F,x:UI—Ngi?dN'

= T+ N[M/z] <& N'[M/z]

Pitts

(2.4)
(2.5)
(2.6)

(2.7)
(2.8)
(2.9)

(2.10)
(2.11)

(2.12)

Properties (2.4)—(2.9) areall straightforward consequences of the definition of <&d
and =&, By contrast, (2.12) is not so straightforward to establish, because the
operation N — N[M/x] is not necessarily of the form N — C[N] for some
context C[—]. Thefact that (2.12) holdsisintimately tied up with thefact that PCFL
contextual equivalence satisfies the 5-rule (2.13) given below: see LemmaA.10.

B-rules

T,x:0FM:o'&TFA:0)=TF (\z. M)A M[A/z]
CEM:0&THM:0')=

(D & fst((M, M")) 228" M & T + snd((M, M')) =25 M)
CEM:0'"&T,h:o,t:[o]FN:0")=

T+ case nil of {nil = M | h=t— N} 258 0
TFH:0&THT:[0]&THFM:0' & h:0,t:[o]F N:0o')=

(2.13)
(2.14)

(2.15)

(2.16)

Operationally-Based Theories of Program Equivalence 255

T+ case H :: T of {nil = M | h=:t — N} 225 N[H/h, T/t]
CTFM:0&THM :0)= (2.17)

(T I if true then M else M’ =84 M &

[| if false then M else M’ =84)[')

(nopn'=c¢)=0Fnopn §§nd c (2.18)

Thefact that these 3-rules are valid follows from the characterisation of 226" in
terms of PCFL bisimilarity to be given in the next section (Theorem 3.8). For in
each case, (closed instantiations of) the term on the | eft hand side of =& evaluates
toacanonical C'if and only if (closed instantiationsof) the right hand term eval uates
to the same canonical form. Thus each of (2.13)—(2.18) follows from the fact,
shown in Proposition 3.9, that ‘Kleene equivalence’ is contained in the relation
of contextual equivalence, together with the first of the following extensionality
properties.

Extensionality properties
Fordl N,N' € Exp,(z1 :01,...,2Ty : 0,):

T 00, ..., Ty 0y F N <IN &
VM, € Eup, ..., M, € Exp, (N[M/z] <& N'[M/7]) (2.19)

For al M, M' € Exp., (v aground type):
M <B4 M & Ve(Me= M) (2.20)
Fordl F, F' € Exp,_,
F<f F' oVAc Ep, (FA<EF A) (2.21)

—o—0a’

Foral P,P' € Fxp,, -

p<td pre

—O0X0o

fst(P) <& fst(P') & snd(P) <& snd(P') (2.22)

For a” L,L, € Exp[g]

L<B L& (Lnil = L' §nil) &
VH,T(LVH:T=3H' T (L' JH =T &

H<EH &T <80 T)) (223)

Analogous extensionality properties hold by construction for the notion of PCFL
similarity introduced in the next section. Thus (2.19)—2.23) will follow once we
have proved that this coincides with <&d (Theorem 3.8).

256 Pitts

The n-rule for functions and the surjective pairing rule for products follow by
combining these extensionality properties with the corresponding -rules:

TFF:0—=0 &zdgdom)=>TFF2 Oz . F)z (2.24)

—o—a’

I'FP:oxo =TFP" (fst(P),snd(P)) (2.25)

oxo!

Unfolding recursiveterms

Do:obFM:o=TFfixe. M =& Mfixo. M/ (2.26)
This holds for the same reason as the -rules given above—it is an instance of

‘Kleene equivalence’, and so will follow from Proposition 3.9 below.

Syntactic bottom

Theterm | % fix 2 . = acts asaleast element with respect to <&"d:
I'FM:o=TF1L<MM (2.27)

Asfor the previous property, thiswill be deduced from Proposition 3.9.

Rational completeness and syntactic continuity

In addition to the unfolding property (2.26), terms of theform fix x . F” enjoy aleast
prefixed point property: if F € Exp, (x: o) and M € Exp,, then

F[M/z] <8 M = fixz . F <8 M. (2.28)

Sands (1995, Appendix) gives adirect, operationally-based proof of the analogous
property of recursive functionsdefinitions, making use of atransition relation rather
than just an evaluation relation. We will deduce this least prefixed point property
from a stronger property which we now explain.

For each natural number n, let fix™z . F' be the term given as follows:

fix0yq . 4,

fix(g F Flfix™z . F/x].
It follows from (2.11) and (2.27) that these terms form an ascending chain
1L =fixOz . F <& fixWy p<end ...

We claim that fix = . F' isaleast upper bound with respect to <&"4 for thischain. In
other words, for each M € Ezp,,

fixz . F <89 M < Vn (fixMz . F <8 M), (2.29)

Operationally-Based Theories of Program Equivalence 257

Thusthe collection of PCFL terms preordered by <8¢ enjoysarestricted amount of
chain-compl eteness. Moreover, the operations of PCFL preserve these |east upper
bounds: for each context C[—] it isthe case that

Clfixz . F] <84 M & Vn (C[fix™Mz . F] <8 M). (2.30)

Properties (2.29) and (2.30) will be proved in Section 4, using operationally-based
methods (which seem different from those used for the same purpose in (Smith
1992; Mason, Smith, and Talcott 1996)). Such properties can also be established
via an adequate denotational semantics of PCFL—see (Pitts 1994) for example.

Notethat (2.28) can be deduced from (2.29), sinceif F[M /z] <& M, then one
can show by induction on n that fix™z . F <¢"d M. Thebase case n = 0 isjust
(2.27); and the induction step follows from the hypothesis using (2.11) and (2.5).

3 Similarity and Bisimilarity

Look again at the extensionality properties (2.19)—(2.23) which we claim hold of
the contextual preorder, <&, Property (2.21) expressesthe preordered version of a
familiar extensionality property for functions—namely that two functions are equal
if (and only if) they yield equal resultswhen applied to any argument. In particular,
(2.21) servesto express <" at afunctiontype (o —o”) intermsof <&"d at asimpler
type (¢"). For the simply typed language PCF, — isthe only type constructor and a
typical PCF typetakestheformo; — (05— ... (0, =) ...) with~ aground type
andn > 0. Consequently, for this simpler |language one can express the contextual
preorder at any typein termsof application and evaluation of terms of ground type:

Milner’s Context Lemma for PCF. For any closed PCF terms M and M’

M <8 M &

—o1—=(o2—...(on—7)...)

VAl,,An,C(MAlAn UQ: M,AlAnUQ)
Proof. See Milner (1977). O

For PCFL with itstypes of (potentialy infinite) lists, [¢], the situation is not so
straightforward. Property (2.23) does not serve to define <&"! at alist type [o] in
terms of <&"¢ at type o, since the occurrence T’ gﬁf]d T’ on the right hand side
of the bi-implication is not necessarily ‘simpler’ (for any measure of simplicity)
than the occurrence L <#' I’ on the left hand side. (For example, when I =
fix(.0:: 0 € Ezpp,y, then LY 0:: L, so T inthis case is syntactically identical
to L.) In other words, there may be many binary relations between closed PCFL
terms which satisfy (2.23). The crucial observation is not just that <&"¢ issuch a
relation, but that it is the greatest such—indeed, is the greatest relation satisfying
just the left-to-right implication in (2.23).

258 Pitts

Greatest post-fixed points of monotone operators

Recdll that a complete lattice is a partialy ordered set (X, <) for which every
subset S C X hasaleast upper bound, \/ S, with respect to <:

VxGX(\/ng@VSGS(SSx)).

(Asiswell known, thisis equivalent to requiring that every subset has a greatest
lower bound.)

A monotone operator on (X, <) isafunction ® : X — X satisfying
Ve, o' € X (x <2’ = $(x) < P(a')).
The greatest post-fixed point of @ isthe (necessarily unique) element v(®) of X
satisfying
(@) < O(v(P)) (31)
Ve e X (x < ®(z) =z < v(d)). (3.2

Theorem 3.1 (Tarski-Knaster Fixed Point Theorem). Every monotone oper-
ator ® on a complete lattice (X, <) possesses a greatest post-fixed point, v(®P).
This element isin fact the greatest element of the set {z € X | x = ®(z)} of fixed
points of ®.

Proof. The proof is probably familiar to you, but in case not, hereitis.
Themonotonicity of ® ensuresthat theleast upper bound of any set of post-fixed
pointsfor ® isagain a post-fixed point. It follows that

(@) = \/{z € X |z < ()}
isthe greatest post-fixed point of . Since
r=0(z) =2 < P(x) =z < v(d)

to prove the second sentence of the theorem, it suffices to see that v(®) is afixed
point of . Since it is a post-fixed point, it suffices to show that ®(v(P)) <
v(®). But sincev(®) < ®(v(®P)) and & is monotone, one has that ®(v(®)) <
O(P(v(D))), thatis, @(v(P)) isapost-fixed point of . Since v(®) isthe greatest
such we have (v (®)) < v(®P), asrequired. O

Definition 3.2. Throughout this section we will be concerned with one particular
complete lattice, (Rel, <). The elements of Rel are type-indexed families R =
(R, | o) of binary relations R, between the closed PCFL terms of type o. Thus
each component of R isasubset R, C Fzp, x Exp,. Thepartia ordering on Rel
is defined to be set-theoretic inclusion in each component:

R <R Evo(R, CR,).

Clearly, the least upper bound of a subset of Rel is given by set-theoretic unionin
each component.

Operationally-Based Theories of Program Equivalence 259

PCFL simulations and bisimulations
Given R € Rel, theelements (R) and [R] of Rel are defined as follows.

def

B(R)yp B E Vb €B(B b= B |Lb) (3.39)
N(R),, N EVneZ(Nin= N {n) (3.3b)
F(R), ., F'&VAc Emp, (FAR, F'A) (3.3¢)
P (R),. .. P' & fst(P) R, fst(P') & snd(P) Ry snd(P’) (3.3d)
L(R), L' (LY nil = L' |} nil) (3.3¢)

&YH,T(LVH:T=
JH' T (LY H' = T' & HRy H' & T Rip T))

B[Ry B E Vb€ B(B b B) (3.43)
N[Rl, NEvnezZ(Nyine N |§n) (3.4b)
FR], . F'&VAc Erp, (FAR, F'A) (3.4¢)
P[R],., P & fst(P) R, fst(P') & snd(P) R, snd(P") (3.4d)
LIR], L'E (Linil & L' nil) (3.4¢)

&VYH,T(LVH:T =
SH, T (L VH' = T' & HRy H' & TRy T'))
&YH',T" (L' | H =T =
SH,T(LYH=T & HR, H & T Ry T")).

Clearly, R — (R) and R — [R] are both monotone operators on Rel. So we
can apply Theorem 3.1 and form their greatest (post-)fixed points.

Definition 3.3. A family of relations S € Rel satisfying S < (S) will be called a
PCFL simulation; the greatest such will be called PCFL similarity and written
<. A family of relations B € Rel satisfying B < [B] will be called a PCFL
bisimulation; the greatest such will be called PCFL bisimilarity and written ~.

Let us spell out what the conditions S < (S) and B < [B] mean. A PCFL
simulation S isspecified by atype-indexed family of binary relations, S, C Ezp, x
Ezp,, satisfying the conditionsin Figure 4. A PCFL bisimulation is specified by
a type-indexed family of binary relations, B, C Fzp, x Exp,, satisfying the
conditionsin Figure 5.

Note in particular that the notion of (bi)simulation requires one to consider
evaluation at ground and list types, but not at product and function types. The
reason for thisisthat we wish to obtain anotion of bisimilarity which coincideswith
PCFL contextual equivalence as defined in the previous section. Some variations
on the definition of =284 and the corresponding changesin a coextensive notion of
bisimilarity will be considered in 5.

260

(B Spout B'& By b) = B' b
(NSiu NN & N|n)= Nln
F Sy F' = VA€ Exp, (FAS, F' A)
P8,y P'= (fst(P) S, fst(P') & snd(P) S,/ snd(P"))
(L S L' & L §nil) = L' | nil
(LB L'& LVH:=T) =
SH,T (L' W H' = T' & H B, H & T By T')

Figure 4. Simulation conditions

(B Byoot B'& BUb) = B' b
(B Byoot B & B' V) = BV
(NBint N'& N {§n)= Nln
(N Bi N'& N'§n) = NI
FB, . F'=VA€ FEzp, (FAB, F'A)
P B,y P' = (fst(P) B, fst(P') & snd(P) B, snd(P"))
(L By L' & L Y nil) = L' § nil
(L By L' & L' Y nil) = L § nil
(LB L'& LVH:T)=
SHT (L VH =T & HB, H & T By T')
(LB L'& L' H =T =
SH,T(LUH =T & HB, H & T By T').

Figure 5: Bisimulation conditions

Pitts

(sm1)
(sm?2)
(sm3)
(sm4)
(sm5)
(sm6)

(bis 1a)
(bis 1b)
(bis 24)
(bis 2b)

(bis3)

(bis 4)
(bis5a)
(bis 5b)
(bis 6a)

(bis 6b)

Remark 3.4. Notethat by Theorem 3.1, PCFL similarity and bisimilarity arefixed
points (rather than just post-fixed points) of their associated monotone operators,
that is, < = (=) and ~ = [~].

Proposition 3.5 (Co-induction principlefor ~ and <). Given M, M' € Ezp,,
to provethat M ~, M’ holds, it suffices to find a PCFL bisimulation 3 such that
M B, M'. Smilarly, to prove M <, M, it sufficesto find a PCFL simulation S
with M S, M'.

Proof. If B < [B], then B < ~ (since ~ is the greatest post-fixed point of [—]), so

Operationally-Based Theories of Program Equivalence 261

that B, C ~,. Thusif M B, M',then M ~, M'. O

Once we have proved that bisimilarity and contextua equivalence coincide for
PCFL this proposition will provide a powerful tool for proving contextua equiva
lences. For the moment, we useit to establish some basic facts about (bi)similarity,
thelast of which depends very much upon the deterministic nature of evaluationin
PCFL.

Proposition 3.6. PCFL similarityisapreorder and PCFL bisimilarityistheequiv-
alence relation induced by it. In other words, for all types o and all closed terms
M,M',M" € Exp,, onehas:

(i) M=, M
(i) (M <, M' & M' <, M") = M <, M"
(i) M ~, M' & (M <, M' & M' =<, M).

Proof. Notethat theelement of Rel whose component at typeo is{(M, M) | M €
FEzp,} istrivially a PCFL simulation. So (i) holds by Proposition 3.5. Similarly,
to prove (ii), it suffices to check that

{(M,M") € Ezp, X Exp, | IM' € Exp, (M <, M' & M' <, M")}

determines a PCFL simulation. But this follows immediately from the fact that <
isitself a PCFL simulation.

For (iii), note that since ~ satisfies the bisimulation conditions in Figure 5,
both {(M,M") | M ~, M} and {(M,M') | M' ~, M} determine PCFL
simulations. Hence both are contained in <, and thus we have the |eft-to-right
implication in (iii). Conversely, the fact that < isa PCFL simulation and the fact
that evaluation in PCFL is deterministic (Proposition 2.4(i)) together imply that
{(M,M") | M =<, M & M <, M} satisfies the conditions in Figure 5, and
henceiscontained in ~,,. O

Weextend < and ~ from closed termsto all typeable PCFL termsby considering
closed instantiations of open terms. (Cf. the property (2.19), whichwe are claming
the contextual preorder satisfies.) It is convenient to introduce a notation for this
process.

Definition 3.7. SupposeR € Rel. For any finitepartial function I" assigning types
to variables

I':2zy =01, 290 09,...,0, — Oy
for any type o, and for any terms N, N’ € Ezp (T'), define

r-NRN' &
VM, € Exp,,,..., M, € Exp, (N[M/ZR, N'[M/7]) (3.5)

262 Pitts

We will call R° the open extension of R. Applying this constructionto < and ~,
we get relations <° and ~° on open terms, which we will still call similarity and
bisimilarity respectively.

Armed with these definitions, we can state the co-inductive characterisation of
contextual equivaence for PCFL.

Theorem 3.8 (Operational Extensionality for PCFL). Contextual preorder (re-
spectively, equivalence) coincides with similarity (respectively, bisimilarity):

PEM <M &THM=;M
TEM2 M & TFM~ M.

In particular, the following co-induction principle for 224 holds:

To prove that two closed PCFL terms are contextually equivalent, it
sufficesto find a PCFL bisimulation which relates them.

The proof of this theorem will be given in the next section. In the rest of this
section we explore some of its consequences and then give some examples of the
use of co-induction to prove contextua equivalences.

First note that in view of the definition of <° from <, the extensionality prop-
erty (2.19) of <& jsan immediate consequence of Theorem 3.8. The other exten-
sionality properties (2.20)—2.23) aso follow from the theorem, using the fact that
< =(3)

Proposition 3.9 (Kleene equivalence). For each type o consider the following
binary relationson Ezp,:

M<M M Eve(Mio= MC0)

M2 A8 <K& M <
If M =X M’ holds we will say that M and M’ are K leene equivalent.! Then

M<EM =M<, M (3.6)
M=M= M~, M. (3.7)

Hence in view of Theorem 3.8, Kleene equivalent closed PCFL terms are contex-
tually equivalent.

Proof. Property (3.7) followsfrom property (3.6) by Proposition 3.6(iii). For (3.6),
it suffices to check that the relations { (M, M') | M <X M'} (for each type o)
satisfy the conditionsin Figure 4.

! Following Harper (1995), this terminology is adopted from the logic of partially defined ex-
pressions, where two such expressions are commonly said to be ‘Kleene equivalent’ if thefirst is
defined if and only if the second is, and in that case they are equal.

Operationally-Based Theories of Program Equivalence 263

Clearly the conditions (sim 1) and (sim 2) follow immediately from the defini-
tion of <. The conditions (sim 5) and (sim 6) are almost as straightforward, just
needing the additional fact that < isreflexive (whichisevident from the definition
of <),

To verify the condition (sim 4), supposethat P <} P’ holds. For any C, if
fst(P)J}C thenthisevaluation can only have been deduced by an application of rule
(U fst) inFigure 3, sothereareterms M; € Exp,. (i = 1,2) suchthat P} (M., My)
and M, || C. Thensince P <X P’ itisthecasethat P' || (M, M>) and hence
that fst(P’) | C. Thusfor any C, fst(P) |} C impliesfst(P’) || C, which isto say
that fst(P) <}! fst(P’). Similarly, one can deducethat snd(P) <k snd(P’). Thus
condition (sim 4) does indeed hold.

The proof of the simulation condition at function types, (sim 3), islike that for
product types, and is omitted. O

The following Kleene equivalences al follow immediately from the definition
of evaluation in PCFL (where we have suppressed type information).

(Az. M)A =M M[A/z]
fst((M, M')) =M M
snd((M, M')) =M p
case nil of {nil =M | h:t— N} =K M

case H :: T of {nil =M | h=:t— N} =N N[H/h,T/t]
if true then M else M’ 22} M
if false then M else M’ =2t Af!

nopn' =K

fixo . M =M Mlfixx . M/z].

nopn'

By the proposition, theseare also valid for PCFL similarity; and since <° isdefined
from < by taking closed instantiations, it followsthat <° satisfiesthe 5 rules (2.13)—
(2.18) and the unfolding rule (2.26). Thus by (one half of) Theorem 3.8, <&
satisfies these rules as well.

Similarly, thefact that 1. = fix z . = does not evauate, immediately implies
1L<Mm

holds for any M € FEzp,. Hence property (2.27) is also a consequence of the
proposition combined with Theorem 3.8.

264 Pitts

Proposition 3.10 (Co-induction at list types). For anytyper, call abinaryrela-
tionR C Exp|, x Ezp, a[r|-bisimulation if whenever L R L'

L nil = L' || nil (3.8)

L' | nil = L | nil (3.9)
LUVH:T=3H T'(H=Y"H &TRT) (3.10)
L'VH =T =3H,TH=""H &TRT. (3.12)

Thenfor any L, L' € Ezpp,;, L =283" L' if and only if thereis some [r]-bisimulation
Rwith LR L'

Proof. First note that by Theorem 3.8, 228" isa PCFL bisimulation (since it coin-
cideswith ~). In particular it satisfies conditions (bis 5a)—(bis 6b) of Figure 5, and
therefore {(L,L') | L %Ff}d L'} isa[r]-bisimulation. This givesthe ‘only if’ part
of the proposition.

Conversely, if R isa[r]-bisimulation, then the fact that 26" satisfies the con-
ditionsin Figure 5 and R satisfies (3.8)—«3.11) impliesthat

aer [RU{(L, L) | L= '} if o =[r]
Tl {(M, M) | M =g ') otherwise

defines a PCFL bisimulation. Thusif L R L', then L B L', so L %ﬁd L' by

Theorem 3.8. O
Examples

Hereisagraded series of examplesillustrating the use of the co-induction principle
of Proposition 3.10.

Example 3.11. For any type 7, the following contextual equivalenceisvalid.
f:7—=1,2:7F map f (iterate f) %Fﬁd iterate f (f x) (3.12)
where

map o fixm . Af.A.
case £ of {nil = nil | h::t—(fh):(mft)}
iterate < fixi Af. Az . = (i f(fx)).

(Notethat O = map : (1 — 1) — ([r] = [7]) ard O - iterate : (1 — 1) = 7 — [7],
for any type.)

Operationally-Based Theories of Program Equivalence 265

Proof. Intuitively, iterate f « is a notation for the infinite list [z, fz, f(fx),...]
and map f applies f to each component of alist. So one would expect that both
map f (iterate f x) and iterate f (f x) denotethelist [fz, f(fx), f(f(fz)),...].
So the contextual equivalence (3.12) is intuitively reasonable. Let us see how to
prove that it holds using the co-inductive characterisation of =&nd,

First note that in view of the extensionality property (2.19) of =& (which as

noted above, follows from Theorem 3.8), to prove (3.12) it suffices to show for all
7,F € Erp._,,and M € Ezp_ that

map F (iterate F' M) ~; iterate F' (F' M). (3.13)

We deduce this from Proposition 3.10 by constructing a suitable [7]-bisimulation,
R. Infact we do not haveto look very far for R inthiscase, sincethe pairsof terms
we are interested in already constitute a [r]-bisimulation! Let us verify that for

R {(map F (iterate F' M), iterate F (F M)) | F € Ezp,._,. & M € Ezp_}

if LR L', then conditions (3.8)—(3.11) are satisfied.

If L R L', then by definition of R we havethat L = map F (iterate F' M) and
L' = iterate F (F M), for someterms M and F'. Using the evaluation rulesin
Figure 3 together with the definitions of iterate and map, one obtains

iterate F' M || M :: (iterate F (F M))
L' = iterate F (F M) |} (F M) :: (iterate F (F (F M)))
L = map F (iterate F M) |} (F M) :: (map F (iterate F (F M))).

So by determinacy of evaluation (Proposition 2.4(i)),if L || C,thenC = H : T
withH = F M andT = map F (iterate F' (F' M)). Butweknowthat L' || H':: T"
with H' = F M = H and T' = iterate F (F (F M)), and hence with H =" f’
(since =84 isreflexive) and TR T" (by definition of R). So conditions (3.8) and
(3.10) are satisfied (the first onetrivially, because by determinacy of |}, L does not
evaluate to nil). A symmetrical argument starting with the assumption that L' |} C’
showsthat conditions (3.9) and (3.11) arealso satisfied by R. So R isindeed a[r]-
bisimulation, and since it relates the terms in which we are interested, the proof is
complete. O

The next example makes use of mathematical induction in order to verify that a
particular relation has the properties required of a bisimulation.

266 Pitts

Example 3.12. Define

2ip € fixz. AN case € of
{nil = nil
| h::t—case ¢’ of {nil — nil
| Bt — (h,h') szt t'}}
from d:effixf.)\x.)\y.x:: (f(z+y)y)
suc & Az .z +1
plus © Nz fst(z) + snd(z)
nats < fix (.0 (map sucl)
where map isasinthe previousexample. (Notethat () - zip : [o]— ([0']—[o x0'])
U

for any typeso and o’; and () - from : int — (int — [int]), 0 - suc : int — int,
0+ plus : (int x int) — int, and O - nats : [int].) Then

map plus (zip nats nats) %ﬁr:ti] from02 (3.14)

Proof. Consider thefollowing closed PCFL terms, defined by inductiononn € N:

def def def

Ny =0 Ey =0 Lo = nats
Ny L suc N, E, def E,+2 L,y def map suc L,
From the definition of from and F,, it follows directly that
from E, 2| E, :: (from E, 11 2) (3.15)
From the definition of map, nats, L,,, and N, it follows by induction on n that
Ly Ny Ly

Therefore, using the definition of zip, we have that
2ip Ly L 4 (Nu, Np) 2 (2ip Ly L)
and from the definition of map that
map plus (zip Ly, Ly,) |} plus (N, Ny) = (map plus (zip Lyy1 Lyy1)) (3.16)

Finally, note that by induction on n, plus (N,,, N,,) isKleene equivalent to £,,, and
hence by Proposition 3.9

plus (N,,, N,,) =™ B (3.17)

—int

R {(map plus (zip L,, L,,), from E,, 2) | n € N}

then properties (3.15), (3.16), and (3.17) together with determinacy of evaluation
(Proposition 2.4(i)) show that R is a [int]|-bisimulation. Since by definition of L
and Ey, R relates the two terms of type [int] in which we are interested, the proof
of (3.14) viaProposition 3.10 is compl ete. O

Operationally-Based Theories of Program Equivalence 267

In the next example, in order to verify that a certain relation is a bisimulation
we make use of the congruence property of =8¢ namely that if two terms are
contextually equivalent and they are substituted for a parameter in a context, the
resulting terms are also contextually equivalent. (Thisis an easy consequence of
the definition of contextual equivalence.)

Example 3.13 (The ‘take-lemma’). For any type T andterms L, L' € Eup;,, the
following property holds.

Vn € N(taken L %“‘[gnd Tltaken L") = L %ﬁrﬁd L (3.18)

where

take %< fix f. Ax . M .if x = 0 then nil else

case (of {nil »nil |hzt—h=(f(x—1)1)}

(Notethat () - take : int — ([7] — []), for any type T.)

This property allows one to establish instances of contextual equivalence be-
tween list expressions by appeal to mathematical induction: to prove L %Fﬁd L' it
suffices to prove

take 0 L =80 take 0 L/ (3.19)

taken L %Fﬁd taken L' = taken + 1L %Fﬁd taken + 1L’ (3.20)

For the informal theory of equality of functional programs discussed by Bird and
Wadler (1988), this induction principle is called the ‘ take-lemma (see loc. cit.,
section 7.5.1). Itisused tojustify equalitieslikethe onesin the previous examples.
But why isthe take-lemmavalid? Aswe now show, if “equal” means contextually
equivalent, then one can prove the validity of this principle by appealing to the co-
inductive characterisation of 22&"d at list types given by Proposition 3.10. (Seeaso
Gordon 1995b, Section 4.6.)

Proof. Fixingthetyper, defineR C Euxp;,) X Ezp, by:
RS {(L, L) | ¥n € N(take n L 28" taken L)}

| claim that R satisfies the conditions (3.8)—(3.11) required of a [7]-bisimulation.

First note that the evaluation rulesin Figure 3 imply the following properties of
take. Foraln € N, H € Ezp.,and L, T € Ezp,:

taken + 1L nil < L | nil (3.21)
taken +1LVH T < 3T (LY H =T & T =take(n+1—-1)T") (3.22)

Now suppose L R L, that is, for all n € N, taken L =8¢ taken L.

To see that R satisfies (3.8), suppose L |} nil. Then by (3.21), take 1 L | nil.

Since L R L', by definition of R, take 1 L %fﬁd take 1 L'. Since =& jsa PCFL

268 Pitts

bisimulation (by Theorem 3.8), it follows that take 1 L' |} nil and hence by (3.21)
again, that ' |} nil. A symmetrical argument showsthat R also satisfies (3.9).

To seethat R satisfies (3.10), suppose L || H ::T. Thenby (3.22), forany n € N
wehave taken + 1 LI} H :: (take (n +1—1)T). Since LR L', by definition of R,
taken+ 1L =" taken + 1 I'. So since=#"! isa PCFL bisimulation, it follows
that there areterms H', T" with

taken+ 1L} H' = T" & H =" H' & take (n+1—1)T =5 T".
By (3.22) again, L' |} H' :: T' for someterm T" with 7" = take (n +1—1)T". We

have to check that 7" R 7'. Note that for al n we have take (n+1 — 1) T %fﬁd

T" = take(n+1 — 1) T". To conclude from thisthat Vn € N(take nT 2
take nT"), we use the congruence property (2.11) of =&"¢ (which as we noted in
section 2 is an easy consequence of the definition of 22&74), It allows us to infer
take(n+1—-1)T %ﬁd taken T from the fact that (n +1 — 1) =8 p. (The
latter holds by Proposition 3.9, since evidently n + 1 — 1 is Kleene equivalent to
n.) A symmetrical argument shows that R also satisfies (3.11).

We have now established that R is a[r]-bisimulation. So by Proposition 3.10,

foral L, L' € Eupy,, if LR L' then L =3 I, as required for (3.18). O

The next example is somewhat more challenging than the previous ones, in as
much as the verification of the bisimulation condition involves an induction on the
depths of proofs of evaluation. We write

M"C

to indicate that there is a proof tree for M |} C' (built out of the axioms and rules
in Figure 3) whose depth isless than or equal to n. If the reader prefers, one can
give a dlightly more abstract definition of the relations ||* (n € N): they are
simultaneously inductively defined by axioms and rules obtained from those in
Figure 3 by replacing |} by || in each axiom and each hypothesis of arule, and
by replacing |} by || in the conclusion of each rule. Clearly it is the case that

M C e IneN(MUY"C) (3.23)

Example 3.14. For any type 7, the following contextual equivalenceisvalid.

w:T—=bool,v:T—T,0:[T]F
filter u (map v 0) %fﬁd map v (filter (uowv)) (3.24)

where map isasin Example 3.11 and

filter ' fix f. \u. M. case £ of
{nil—=nil | h=t—ifuhthenh: (fut)else fut}

uovdéf)\x.u(vx)

(Notethat) + filter : (1 — bool) — ([7] = [r]) andthatu : 7 = 7", v : 7= 7' F
uow:T— 7" forany typesr, 7', 7".)

Operationally-Based Theories of Program Equivalence 269

Proof. Intuitively, the expression filter u is a notation for the function on lists
which removes elements of the list which fail the boolean test «. Itisan inherently
partial function, because as one progressively evaluates an input lazy list, one may
never find an element passing the bool ean test with which to begin the output list. It
ismainly for this reason that (3.24) is harder to prove than the previous examples.

Just asin Example 3.11, to prove (3.24) it suffices to prove for all types 7, and
closedtermsU € Exp,_,,,, andV € Exp__, _, that

filter U (map V' L) ~;) map V (filter (U o V') L) (3.25)

holdsforall L € Ezp. Givent, U,and V, define R C Ezp(,; x Ezp, by:

R {(filter U (map V' L), map V (filter (U o V') L)) | L € Ezp,}.

To establish (3.25), by Proposition 3.10 it suffices to show that this R is a [r]-
bisimulation. Instead of proving that the conditions (3.8)—3.11) hold for R directly
(which does not seem possible—try it and see), we can deduce them via (3.23),
using the following properties of |":

VL (filter U (map V' L) }" nil = map V (filter (U o V') L) |} nil) (3.26)
VL (map V (filter (U o V') L) " nil = filter U (map V' L) | nil) (3.27)

VL, H,T (filter U (mapV L) " H :: T = (3.28)
AT (map V (filter UoV)L)y H:=T' & TRT"))
VL, H,T' (map V (filter (UoV)L)|"H :: T" = (3.29)

aT (filter U (mapV L)y H::T & TR T'))

Each of (3.26)—3.29) can be proved by induction on »n. We give the argument for
(3.28) and leave the other three as exercises.

So assumeinductively that (3.28) holdsfor al n < m. If filter U (map V' L) ™
H :: T, then by definition of filter, m > 2 and there areterms H;, T} so that

mapV LI 2 H, =T, (3.30)
if U H, then H, :: (filter U T)) else filter UT, }™ * H :: T (3.31)

Then by definition of map, for (3.30) to hold, it must be the case that m > 4 and
there are terms H,, T5 so that

LI™*H,:T, (3.32)
H, =V Hy and T = map V5. (333)

On the other hand, since (3.31) holds, it must be the case that either U H, |} true or
U H, | false. We treat each case separately.

270 Pitts

CaseU H; | true. Inthiscase (3.31) holds because
H=H, and T = filterUT. (3.34)

Combining thiswith (3.33) we get (U o V') H, |} true. Then together with (3.32),
thisyields

filter (U o V') L} Hy :: filter (U o V)T,
and hence
map V (filter (U o V) L)V Hy:: (map V (filter (U o V') T3)).

Since by (3.33) and (3.34) wehave H = V Hy and T = filter U (map V' T3), it
follows that

map V (filter (U o V) L) H :: (map V (filter (U o V) Ty))
TR mapV (filter (U o V) Ty).
So the conclusion of then = m case of (3.28) holdswith T" = map V' (filter (U o
V) Ty).

CaseU H, | false. Inthiscase(3.31) holdsbecausem > 3 and filter U Ty {}™ *
H :: T. Hence by (3.33), filter U (map V' T3) 4™ H :: T. So by induction
hypothesisthere is some 75 with

map V (filter (U o V) Ty) |} H :: T3 (3.35)
TR Ts. (3.36)

By definition of map, for (3.35) to hold, it must be the case that there are terms
H4, T, with

filter (UoV)Ty y Hy = Ty (3.37)
H=VH; and T3 =mapV Tj. (3.38)

Sinceweareassuming that U H, |} false, by (3.33) wealso have (U o V') H, |} false.
Then by (3.32) and (3.37), we have filter (U o V') L |} Hy :: T and hence

map V (filter (U o V)L) |V Hy:: (map V' T}).
So by (3.36) and (3.38)
map V (filter (UoV)L)| H T3 & T R Ts.

Thus the conclusion of the n = m case of (3.28) holdswith 7" = T3. O

Operationally-Based Theories of Program Equivalence 271

Exercises

Consider the following PCFL terms.

map < fixm . Au. A . case £ of {nil=nil | h:t— (uh): (mut)}
nats < fix (.0 map(A\x .z + 1)¢
from déffixf.)\x.)\y.x:: (f(z+y)y)
append & fixa . M.\ . case £ of {nil=¢ |h:t—h:(atl)}
interleave = fixi . M. M. case £ of {nil = €' | ht—hz (i £1)}
val € Xz .z il
lift “ fix f . M. M . case £ of {nil = nil | h:: t = append(uh)(f wt)}

uovdg)\x.u(vx).

Prove the following contextual equivalences.

0 F nats %ﬁr:ti} from01 (3.39)
z:int = fromxl %F;;:} interleave (from x 2) (from (x + 1) 2) (3.40)
zr:Tu: T — [T liftu (val x) %’FTD,? fx (3.41)
0[] & lift val € 2800 (3.42)
w:t— [=[]0 [T F

lift ((lift v) o u) € 22855 lift v (lift u () (3.43)

These last three equivalences are respectively the 3, n and associativity identities
for theKleidli triple corresponding to the (strong) monad structure of lazy lists (see
Moggi 1991 and Wadler 1992). Prove (3.41) by applying Proposition 3.9. Prove
(3.42) and (3.43) by constructing suitable bisimulations. (3.43) is quite challeng-
ing: you will need to employ techniques like those in Example 3.14, involving an
induction over depths of proofs of evaluation, in order to verify the bisimulation
conditions. (See also Gordon 1995b, Section 4.5.)

4 Rational Completeness and Syntactic Continuity

Inthissection we provethat the PCFL contextual preorder <&"¢ satisfiesthe proper-
ties (2.29) and (2.30) mentioned at the end of section 2—namely that each fixpoint
term fix z . F' is the least upper bound with respect to <&"d of a canonically asso-
ciated chain of approximations, and these least upper bounds are preserved by the
PCFL language constructs.

272 Pitts

Althoughit is beyond the scope of these notesto pursue the topic, these proper-
tiesform the basisfor transferring various domain-theoretic verification techniques
(such as the induction principle of Scott 1993, section 3) from the denotational se-
mantics of afunctional languageto thelanguageitself equipped with an operational
semantics. Whichisnot to say that the denotational semanticsof alanguageiswith-
out its uses. Indeed one way to establish (2.29) and (2.30) is viaa computationally
adequate denotational semantics of PCFL: cf. (Pitts 1994). Here we give a proof
directly from the operational semantics of PCFL, as specified by the evaluation re-
lation of Figure 3. Mason, Smith, and Talcott (1996) achieve similar results for
an untyped, call-by-value functional language, making use of a one-step transition
relation rather than an evaluation relation. The differences between the language
treated in loc. cit. and the one used in these notes are not particularly relevant to
the proof of the properties in question: the method given below could easily be
adapted to untyped languages and/or ones with call-by-val ue function application.
It can aso be used to prove completeness and continuity properties for some of the
variations on contextual preordering and similarity mentioned in section 5.

Asin loc. cit., the proof of (2.29) and (2.30) given here hinges upon a certain
‘compactness’ property of |} with respect to fixpoint terms (Corollary 4.6). How-
ever, we deduce this compactness property from an apparently stronger property of
evaluation, Proposition 4.5, which seemsto be new. Unfortunately, it isbeyond the
scope of these notes to present further applications of Proposition 4.5.

Notational conventions. Throughout this section we will consider a particular
fixpoint term fix x . F', of type 7 say, and use the following abbreviations.
Ey Cr i@y) S r 2

Fppy & fix"t0g F < F[F, /2]

F, © s F .
We will only consider PCFL contextsinvolving parameters of typer. Asusual, we
write M[p] to indicate such a context whose parameters are contained in the list
pP=pi,-..,px Of pairwisedistinct parameters. Given ak-tupleii = (nq,...,ng)
of natural numbers then we will make the following abbreviations.

Finally, the length of alist p of parameters will be denoted by |p|.

Definition 4.1. For each k, we partialy order the set N* of %-tuples of natural
numbers componentwise from the usual ordering on N:

Operationally-Based Theories of Program Equivalence 273

A subset I C N issaid to be cofinal in N* if and only if for all 7 € N* thereis
some i’ € I withi < 7'. We will write P..¢(IN¥) for the set of all such cofinal
subsets of N*.

Note that by induction on n using (2.27) and (2.11), one can prove
F,<®F . :7 and F,<®"MF, :r
and hence that for each unary context C|p], thereis a <#"d-ascending chain
C[Fy] <89 C[Fy] <8 C[Fy) <* - -

bounded above by C[F,,]. Weaimto show that C[F,,] isinfact theleast upper bound
of thischain. If that is the case, then note that more generally if C involves several
parameters p, then for any cofinal subset I C NPI, C[F,] will be the least upper
bound of the set {C[F};] | @ € I}. Infact it turnsout to be convenient to prove this
stronger least upper bound property directly and then deduce (2.30) (and hence also
(2.29)) as a specia case.

The following notion of evaluation is somewhat technical: its introduction is
justified below by Proposition 4.5.

Definition 4.2 (Evaluation of contexts, mod F'). Given PCFL contexts M|p]
and C[p'], we write M[p] |}*" C[p] to mean that for al I € Po¢(NIFl)

il | 7 e I & M[F5] |l C[Fa]} € Peor(NPHFD)

Notethat therelation M[p]{}" C[p"] ispreserved under renaming the parameters g
and, independently, the parameters p’. Asthe following lemmashows, the relation
is also preserved under addition or subtraction of extra parameters.

Lemma 4.3.
MBI Clp] & Mpd) U7 ClF'd] .

Proof. This property follows from the definition of |}* together with simple prop-
erties of cofinal subsets of N*. O

Lemma 4.4. Therelation |}” satisfies the following analogues of the axioms and
rulesfor PCFL evaluation givenin Figure 3.

(i) IfCisincanonical form(thatis, aconstant, lambda abstraction, pair, or cons
expression), then C[p] | C[p].

(i) 1f B[p] " true[] and M [p] .* C[p"], then (if Bthen M else M,)[] |} C[F'].
(iii) 1f B[])" false[] and M, [5]|}" C[p'], then (if Bthen M else M) [p] " C[F"].
(iv) If M;[p] 4" n;[] fori = 1,2, then (M, op My)[p] " ¢[], where c = n; opn,.

274 Pitts

W) If FI 4" (Az . M)[F'] and M[A/][pp'] 4 C[p"], then (F A)[p] I C[p"].
(Vi) If M(fixz. M/z][p] I C[F], then (fixz. M)[p] ¥ C[F].
(vii) 1 Pp] 4" (M, Mo)[F'] and M, [p'] U7 C["], then fst(P)[B] U C[5"].
(viii) 1fP[E] U7 (Mo, Mo)[p'] and M:[p'] 4 C[p"], thensnd(P)[p] U C[p"].
(iX) 1f L[p] 4" nil[] and M, [p] U7 C[§], then
(case £ of {nil — M, | h::t— My} [F] I C[p'].
() 1f L] V" (K T)[F') and Mo[H/h, T/1][B5'] 4" C[5"], then
(case £ of {nil— M | h::t— M,y})[p] |7 C[p"].

Proof. Each property follows from combining the corresponding evaluation rule
in Figure 3 with the definition of L*". We give the argument for the last case (x),
and leave the others as exercises for the reader. So suppose

LIV (H T)[*'] (4.1)
Ma[H/h, T/H[F] 4" C[p"] (4.2)

In order to verify that (case £ of {nil — M, | h::t — My})[p] ¥ C[p"], we have
to show for any I € Ps(NP!) that

{iin" |7 € I & (case L of {nil > M | h::t— Mo})[Fa] § C[Fm]} (4.3)
isacofinal subset of NIFI+F"I But given such an I, by (4.1)
I (i | it e I & L[F5) 4 (1= T)[Fa)}
isacofina subset of NIFI+F'l, Then by (4.2) applied to I’
" {ia'd" | i € I' & Mo[H/h, T /][Faw] U ClE]}

isa cofinal subset of NIPI+IF'I+18"1 gnd hence
" 4 def {—»—»// | IR (—»—»/ 11 [//)}

isacofina subset of NIFI+IF"l
Now if 7iri” € I, thenii € I and for some 7’ it isthe case that

ﬁ[Fﬁ] U (7‘[o T) [Fﬁl] == H[Fﬁ/] o T[Fﬁl]
Mol F5][H[Fw]/h, T[Fw/t] = Ma[H/h, T /t][Fam] {} C[Fy]

and hence by (| case?)
(case L of {nll — M1 | h t—)MQ})[Fﬁ] U C[Fﬁ”]

Thus (4.3) contains I and hence is also a cofinal subset of NIPI*IP"| | as required.
O

Operationally-Based Theories of Program Equivalence 275
Proposition 4.5. For all PCFL contexts M |p], if M|F,]{C thenthereisa context
C[p'] with C' = C[F,] and M[p] |.* C[p"].

Proof. The proof isby induction on the derivation of M|[F,]| C. More precisely,
we show that

EL{(M,C) | VM[p] (M = M[F,] = C[§] (C = C[F,] & M[p] 4" C[F'])}

is closed under the axioms and rules of Figure 3 inductively defining |}.

Case({ can). SinceF, isnotincanonical form,if C'isaclosed termincanonical
formand C' = C[F,], thenthe context C must itself bein canonical form, and hence
C[p] ¥ C[p] by Lemma4.4(i). Hence (C,C) € & for any closed canonical C.

Case (| fix). Supposethat (M[fixz.M/x],C) is an element of £; we wish to
show that (fixz . M, C') istoo. So suppose
fixz. M = M[F,] (4.4)

for some context M|p]. We have to find C[p'] such that C' = C[F,] and M[p] ||"
C[p']. For (4.4) to hold it must be the case that either

(A) M = p;isoneof theparametersinpandfixz . M = F,(= fixx . F')—without
loss of generality we may assumethat M = F;

or
(B) M isof theform fixz . M'[p] and M = M'[F,].

We consider each case in turn.

(A). LetN[p]bethecontext F[p/z]. ThusN[F,]| = F[F,/x] = M[fixx . M/z].
Then since by the induction hypothesis (M([fixxz . M/z],C) € &, thereis some

context C[p’] with

C =C[F,)] (4.5)
Npl " C[p" (4.6)
In view of (4.5), to complete this case it suffices to show that M) |}* C[p"]. Since

M = p;, by Lemma4.3 thisisequivalent to showing that p[p] |}* C[§"]. So for each
I € P.o¢(N) we have to show that

276 Pitts

isacofinal subset of N'*I¥'|, Butif I iscofina inN, sois

JY M n+1el

and hence from (4.6)
J Y nii | n e J & N[F,] I C[Fu]}
isacofina subset of N'+I7'l, But if nii’ € J' thenn + 1 € I and

NF,] = F[F,/x] by definition of A/
= I'n+1 by definition of F;, ;.

Thusif nii" € J' then (n+1)7’ isan element of (4.7). Since .J" iscofind, it follows
that (4.7) isaswell. This completes the induction step in case (A).

(B). By assumption, M|[fixx . M/x] = M'[fixx . M'/x][F,]. Then by theinduc-
tion hypothesis (M [fixz . M /z], C') € &, thereis some context C[p’] with
C =C[F,)]
M'lfixz . M'/x][B] | C[p]

and hence by Lemma 4.4(vi)

M) = fixz . M'[3] 4 C[§').

This compl etes the induction step in case (B).

Thusin either case we have (fixx . M, C') € £, and so we have completed the
induction step for case ({} fix).

Case({} condl). Supposethat (B,true) and (M, C') are both elementsof £. We
have to show that (if B then M else M, C') € £. So suppose

if B then M, else My = MIF,)] (4.8)

for some context M 5]. We have to find C[p'] such that C' = C[F,,] and M[p] ||*
clp).
For (4.8) to hold it must be the case that M = if B then M, else M, for some
contexts B, and M, (i = 1, 2) satisfying
B = B[F,)] (4.9

Since (B, true) € &, (4.9) implies that there is some context C; [p;| with

true = C[F,] (4.12)
B[p] I Ci1[p1] (4.12)

Operationally-Based Theories of Program Equivalence 277

Now (4.11) can only hold because C; = true, in which case from (4.12) and
Lemma 4.3 we conclude that

B[p] |7 true[] (4.13)

Since (M, C) € &, (4.10) impliesthat there is some context C[p'] with

C = C[F,] (4.14)
MBI Clp. (4.15)

Applying Lemma 4.4(ii) to (4.13) and (4.15) yields
M(p] = (if B then M else M,)[p] " C[P]

which together with (4.14) isthe desired conclusion.

Remaining cases. they are all similar to the previous case, using the appropriate
clause of Lemma4.4 in each case. O

Corollary 4.6 (A ‘compactness property of evaluation). For any PCFL con-
text M p| of ground type, if M(fixz.F] || ¢, then M[fix™z . F] || ¢ for some
n € N

Proof. Suppose M|F,] |} ¢. Then by the previous proposition there is a context
C[p'] such that M|[p] |* C[p'] and C[F,] = c¢. The latter equation can only hold
because C = ¢, and hence (using Lemma4.3) we have Mp] |7 ¢[]. Taking I = N
inthe definition of ||**, thismeansthat {n | M[F,]{ ¢} isacofinal subset of N. So
in particular it isanon-empty subset, that is, thereissomen € N with M[F,] |} ¢,
asrequired. O

We can now compl ete the proof of the rational completeness (2.29) and syntactic
continuity property (2.30) of the PCFL contextual preorder.

Theorem 4.7. For anyfixpointtermfixz . F € Ezp_, definethetermsfix™z . F €
Ezp, (n € N) by
fixOp . Y | ¥ o
fix(g p Flfix™z . F/x].
Then for any type o, context C[—,| € Ctz,,andterm M € Ezp,,

Clfixz. F] <B4 M : 0 & Vn € N(C[fix™x. F] <# M : o).

278 Pitts

Proof. We mentioned at the beginning of this section that property (2.27) of L
combined with the precongruence property of <#"d imply that fix™z . F <ed
fixz. F : 7 and hence that C[fix™xz . F] <& C[fixz.F] : 0. The = direction
of the theorem follows from this by transitivity of <&"d,

Conversely, suppose C[fix™z . F] <8 M : ¢ holdsfor al n € N. Wewishto
show that C[fix x . F] <84 M : o, that is, for any context V'[—] of ground type and
any constant ¢, if N[C[fixz . F]] || ¢ then N[C[M]] § ¢. Butif N[C[fixx. F]] | ¢,
then by Corollary 4.6 applied to the context N'[C[—]], thereissomen € N with
N[C[fix™z . F]] | c. SinceC[fix™xz . F] <4 M : o, it followsthat N'[M] |} ¢, as
required. O

Exercise 4.8. In view of the Operational Extensionality Theorem 3.8, we could
have stated the above theorem using PCFL similarity, <, rather than <&"d, Give
a direct proof that < satisfies the rational completeness and syntactic continuity
properties by proving that S € Rel isaPCFL simulation, where for each type o
we define
S, (M, M) | IMIP] € Clzy, I € Peot(NPI) (M = M[F,] &
Vi € I (M[Fz] <, M"))}.

Exercise 4.9. Provethefollowing converse of Proposition 4.5, by inductiononthe
derivation of M[Fj] || C:

For all contexts M[p] and al 77 € NF', if M[F5] | C then there is
some canonical context C[p'] and some 7’ € NP | with C' = C[F}»/] and
M[F,] | C[F,].

5 Further Directions

In this section we discuss, very briefly and without going into details, the extent to
which the co-inductive characterisation of PCFL contextual equivalence in terms
of bisimilarity is stable with respect to change of program equivalence, or of pro-
gramming language.

‘Lazy’ contextual equivalence

Asthe name suggests, the definition of PCFL ground contextual equivalence (Defi-
nition 2.9) involves observing convergence of evaluation only in contexts of ground
type. A strictly finer notion of contextual equivalence is obtained if we relax this
condition and observe convergence at any type.

T M Vo Eyr c[—,] € Cta, (CIM)) < C[M']))

Operationally-Based Theories of Program Equivalence 279

where by A} we mean 3C (M | C). Clearly
TEMa M :g=TFM= M 0.
However, the converse does not hold. For example we have
Ap. L==snd | oo (5.1)

by (2.21); but Az . L 2% | : o — o', because the |eft-hand side does evaluate
whereas the right-hand side does not. Similarly,

(L, 1y=ed | o x o (5.2)

holds by (2.21), whereas (L, 1) 2% | : o x o',

It is possible to modify the notion of bisimulation to get a co-inductive charac-
terisation of =212,

Theorem 5.1. Let ~' bethe greatest element of Rel satisfying conditions (bis 1a),
(bis 1b), (bis 2a), (bis 2b), (bis 5a), (bis 5b), (bis 6a), and (bis 6b) from Figure 5
together with the following conditions at function and product types:

(FByyor FF & Fl Ax. M) = (bis 3q)
. M (F'J e . M' & VA € Exp, (M[A/z] B, M'[A/x]))

(FByyoo FF& F' | Az. M") = (bis 3b)
Ne. M (F) \x.M & VA€ Exp, (M[A/z] B,y M'[A/z]))

(P Byxor P' & P | (M, My)) = (bis 4a)
AMy, My (P} (M, M) & My By My & My By My)

(P B,y P& P' || (M7, M,)) = (bis 4b)

AMy, My (P |} (M, M) & My B, M| & My By My).
Defining ~'° from ~ asin Definition 3.7, then
M M :oeTFM~ M.

The relation ~' is a version for PCFL of Abramsky’s notion of applicative
bismulation which he developed in his work with Ong on the untyped, ‘lazy’
lambda calculus (Abramsky 1990; Abramsky and Ong 1993). The above theorem
can be proved using the operationally-based methods devel oped by Howe (1989,
Howe (1996) and which we employ in the Appendix. to prove the coincidence of
~end gnd ~.

Conver gencetesting

The n-rule (2.24) and the surjective pairing property (2.25) say that every closed
PCFL term of function or product typeisground contextually equivalenttoatermin

280 Pitts

canonical form. Thisisthe essential difference between 228" and =%+, and we can
remove it by augmenting PCFL syntax with term-formers for testing convergence
to canonical form at such types. Consider the extension of PCFL whose terms are
given by the grammar of Figure 1 extended as follows:

M :=---|ispr(M) | isfn(M).
The type assignment and evaluation rules for ispr and isfn are:
'FP:oxo 'FF:0—0
[Fispr(P) : bool [Fisfn(P) : bool
PU (M, M) Flixe. M
ispr(P) | true isfn(F) | true

Then Theorem 5.1 continuesto hold, but now it isthe case that 2!4%¥ coincideswith
our original notion of ground contextual equivalence, 28",

Note. Anaogous convergence testers for ground and list types aready exist in
PCFL, namely

i5b00l[— pool] L5 — poot then true else true
iSint[— ing ef if —int = 0 then true else true
islist[—[o]] o case —o1 Of {nil = true | h::t — true}.

An alternative way to alter PCFL to make =4 and 22#*¢ coincide (while still
retaining the validity of Theorem 5.1) is to use the elimination forms for product
and function types which correspond systematically to their introduction forms of
pairing and function abstraction respectively. (See Martin-Lof 1984, Preface; and
the ‘do-it-yourself’ type theory of Backhouse, Chisholm, Malcolm, and Saaman
1989.)

For product types the eliminator takes the form
split P as (x1,xs) in E
with free occurrences of x; and x, in E bound in the elimination term. Its typing
and evaluation rules are as follows.
I'EP:oy Xoy ey :01,29:00F E o
['Fsplit Pas(xy,z9)inE: o
PU<M1,M2> E[Ml/l"l,MQ/%]UC
split P as (z1,x9) in E | C

The projections fst and snd, and the convergence tester ispr are al definable from
it:

p oy X oy b fst(p) 2 split pas (zy, 25) in2y : 0y

>~

p: oy X oy b snd(p) = split pas (w1, 1) in 2y : 0y

~

p oy X oy b ispr(p) 229 split p as (21, 25) in true : bool

Operationally-Based Theories of Program Equivalence 281

For functiontypes, the systematic eliminator invol ves some extra syntactic com-
plications. It isprobably for thisreason that it islesswell-known in functional pro-
gramming than in Type Theory. It takes the form

funsplit F'as Az . &(x) in E

where £ belongs to a new syntactic category of function variables. Free occur-
rences of £ in E are bound in the elimination term and = isabound variable (really
itisjust adummy variableto make the syntax morereadable). Thetyping and eval-
uation rules for the function eliminator are as follows.

'EF:op— 09 V(o) oo E o
['F funsplit Fas Az .&(x)inE : o
funsplit Pas Az . &(z)in E L C

The typing rule makes use of extended typing assumptions to the left of + that
involve assigning ‘arities’ to function variables. For example, in the rule above
&(o1) @ o9 isan assumption that £ is a unary function variable which applies to
terms of type o, to yield terms of type o5. The evaluation rule makes use of an
extended notion of substitution, namely that of substituting a ‘ meta-abstraction’
(x) M for afunctionvariable inaterm E: weleaveitsdefinitiontotheimagination
of thereader. Function application and the convergence tester for function typesare
definable using the function eliminator:

froi—=09,a: 0 fa=" funsplit f as \z.&(z)iné(a) : o9
f oy — oy Fisfn(f) = funsplit f as Az . £(x) in true : bool

Note. The systematically derived eliminator for list types is the case expression
which we built into the original syntax of PCFL. We have been discussing how to
augment the syntax of PCFL to make convergence at compound types more ob-
servable. Going in the opposite direction, it is possible to remove observability of
convergence at list types, without reducing expressive power, by replacing the case
expression by head(L) and tail(L) expressions, together with a semi-decision test
for emptinessisnil(L) (which is boolean-vaued” and diverges unless L |} nil). The
properties of =8¢ gre altered thereby—for example, an ‘n-rule’ for lists becomes
valid:

L=t qil:[o] v 3H,T(L="H:T:[o]).

In order to retain the validity of the Operational Extensionality Theorem 3.8, one
has to change the notion of bisimilarity by replacing conditions (bis 5a), (bis 5b),
(bis6a), and (bis 6b) by one analogous to that for product types:

L B[U] L =
isnil(L) Byoor isnil(L') & head(L) B, head(L') & tail(L) By, tail(L').

2Redlly isnil(L) should be of unit type, but we did not include a unit typein PCFL.

282 Pitts

Strict function application

Therule (I} app) in Figure 3 describes non-strict, or call-by-name function appli-
cation. The strict, or call-by-valueruleis

Flixx.M AlC M[C/z]}D
FAUD

If onealtersthe notion of evaluation by replacing ({} app) by thisrule, then of course
the properties of =8¢ change. The Operational Extensionality Theorem can be
retained provided one aters the notion of bisimilarity at function types appropri-
ately, by using conditions (bis 3a) and (bis 3b) given above with the universal quan-
tification which occurs in them restricted to range over closed terms in canonical

form. The proof of thisand other operationally-based propertiesfor strict functional
languages can be developed along the lines indicated in these notes by systemati-
cally restricting the use of substitution of termsto substitution of termsin canonical

form.? In other words, one carries along the idea that variables in strict languages
implicitly range over values (that is, canonical forms). See aso (Egidi, Honsall,
and della Rocca 1992).

Recursive types, polymor phic types, no types

We built only one kind of recursive data—Ilazy lists—into our example language
PCFL, because it is sufficient to illustrate some of the complications which such a
feature introduces. Animportant complicationisthat in going from asimply typed
language like PCF to ones with more complex type systems, one may loose the
ability to define a notion of interest (such as some extensional notion of program
equivalence, for example) by induction on the structure of the types. The co-
inductive techniques used to prove the Operational Extensionality Theorem 3.8 for
PCFL were originally developed for untyped languages. We have seen how they
adapt to onesimpleform of recursive data, and infact they extend very easily to give
similar results for languages with general forms of recursively defined type. See
Gordon (1995a, 1996), for example. As Rees (1994) shows, they can aso be used
to give operational extensionality results for languages with polymorphic types.

L anguages with state

One can extend the methods described in this article to lambda-calculus based
imperative programming languages—such as Idealised Algol (Reynolds 1981),
Scheme (Abelson and Susman 1985), or Standard ML (Milner, Tofte, and Harper
1990). For work based directly on contextual equivalence for a Scheme-like lan-
guage, see (Mason and Talcott 1991; Mason and Talcott 1992). For work employ-
ing various notionsof bisimilarity and operationally-based |ogical relations applied

350 one should replace fixpoint terms by recursive function termsin a strict version of PCFL.

Operationally-Based Theories of Program Equivalence 283

to ML- and Algol-like languages, see (Pitts and Stark 1993; Ritter and Pitts 1995;
Stark 1995; Pitts 1996; Crole and Gordon 1996).

Concerning the status of Operational Extensionality theoremsfor functional lan-
guages with state, the situation is as follows. With some simplifying assumptions,
an evauation relation for such languages can take the general form

s,M|s',C

where s isastate, M an expression to be evaluated, C' the canonical form resulting
from evaluation, and s’ the state which results from the evaluation. A state might
give the current values (which may well be complicated objects, such as closures,
in the case of Scheme or Standard ML) of some storage locations, for example.
If the language is such that it can be given an operational semantics in which the
shape (the number of locations, say) of the final state s’ is always the same as that
of theinitial state s, then it seemsthat a co-inductive characterisation of contextual
equivalence can usualy be given. Thisisthe caseif the language has global vari-
ables, but no constructs for locally declared state. Lesstrivialy, it isalso the case
for ‘block-structured’ languages, such as Algol. On the other hand, languages like
Standard ML, which involve dynamically created references, certainly do not have
this nice property that the ‘ state shape’ does not grow under evaluation. Accord-
ingly, for Standard ML there are various notions of bisimilarity known which are
congruences for the language and (hence) are contained in contextual equivalence,
but so far none is known which actually coincides with contextual equivalence.

Refined notions of bisimulation

One very important topic has not been treated in these notes—namely the devel op-
ment of various refinements of the notion of bisimulation (such as *bisimulation-
up-to-bisimilarity’) which can makethe job of establishing specific instancesof ap-
plicative bisimilarity much easier. Thistopic is addressed in (Gordon 1995b, sec-
tion 4), to which the reader isreferred.

A Proof of the Operational Extensionality Theorem

This appendix is devoted to the proof of Theorem 3.8, which says that the PCFL
ground contextual preorder (Definition 2.9) coincides with the open extension of
PCFL similarity (Definition 3.3). The proof will be split into two parts:

(&) Proof that the open extension <° of similarity (Definition 3.7) is a PCFL
precongruence.

(b) Proof that the ground contextual preorder <&"¢, when restricted to closed
terms, isa PCFL simulation.

284 Pitts

For part (a) we employ an adaptation of amethod dueto Howe (1989, Howe (1996).
From part (a) we show that one can easily deduce that I' = M <° M’ implies
[+~ M <& M, and part (b) givesthe converse.

Congruence properties of similarity

Roughly speaking, a PCFL congruence is a binary relation between (open) terms
which respects the usual laws of equational reasoning. Thus the relation should be
an equivalence relation which is preserved by the operation of substituting aterm
for aparameter in acontext. When dealing with typed terms (aswe are) it isnatural
to restrict to relations which only relate terms of the sametype. Since typing takes
place in the presence of an assignment of typesto free variables, we include some
‘structural’ properties (such as weakening and preservation under the operation of
substitutingtermsfor free variables) in the definition of congruence. Also, sincewe
areinterested in properties of the contextual preorder, we place the emphasison the
notion of ‘ precongruence’ —which is a congruence minus the symmetry property.
Thefollowing definition formul ates the notion of PCFL precongruence solely with
PCFL terms, rather than with PCFL contexts. The lemma which follows it gives
the precise sense in which a precongruence respects the operation of substitution
into contexts.

Suppose R is family of binary relations Rr, C Ezp,(I') x Ezp,(T'), indexed
by variabletypingsI” and typeso. Asusua, wewill writeI' = M R, M' toindicate
that a pair of terms (M, M') isintherelation Ry, .

Definition A.1. RisaPCFL precongruencerelation if it hasthefollowing prop-
erties.

MR, M &TCT')=T'F MR, M (A1)
CFEM:0&T,2:0F- NRy N')=THF N[M/zx] Ry N'[M/x] (A.2)
P-M:o=TFMR, M (A.3)
CTFEFMR,M &THM R, M"Y =T+ MR, M" (A.4)
CTEFMR,M&T,x:0FN:0")=THF N[M/x] Ry N[]M'/z] (A.5)
P,z ok MRy M =T+ A\e. MRy Az M (A.6)
r:oF MR, M'= T+ fixe. M R, fixx. M’ (A.7)
PFLR, L &TFMRy M &T,h:o,t:[o]FNRy N

=T'F (case Lof {nil =M |h::t—N}) Ry (A.8)

(case L' of {nil > M' | h::t— N'})
R isaPCFL congruencerelation if in addition it is symmetric:

r-MR, M'=TFM R, M.

Operationally-Based Theories of Program Equivalence 285

Modulo (A.4), property (A.5) is equivalent to saying that the non variable-
binding syntax constructors of PCFL preserve the precongruence relation. For
example, for application one has:

(O FRyso F'&THAR, A') = '+ (FA) R, (F' 4).

Then (A.6)—(A.8) extend this preservation property to the variable-binding con-
structs of the language. As the following lemma shows, these properties are all
special cases of preservation of the precongruence relation by the operation of sub-
stituting for a parameter in a context.

LemmaA.2. Supposethat R isa PCFL precongruence relation. Suppose further
that ', I - M R, M', that C[—,] € Ctz,(T'), and that the variablesin dom(I")
all occur as the bound variables of bindersin C which contain the parameter —,
within their scope. (Cf. the statement of Lemma 2.8; in particular by that lemma,
C[M]and C[M'] areelements of Ezp_,([').) ThenT' = C[M] R, C[M].

Proof. The proof is by induction on the derivation of I' - C[—,] : o', and is
omitted. 0

We aim to show:

Theorem A.3. PCFL similarity, <°, is a precongruence, and hence (by Proposi-
tion 3.6(iii)) PCFL bisimilarity is a congruence.

It ispossibleto prove Theorem A.3 by indirect means, making use of adomain-
theoretic denotational semantics for PCFL. Abramsky (1990) takes such a route
to prove the congruence property for his notion of applicative bisimulation for the
untyped lambda calculus. The proof we give here is based directly upon the opera-
tional semantics of PCFL and isaminor adaptation of the method given by Howe
(1989, Howe (1996). An adaptation is needed because Howe's proof concerns no-
tions of bisimulation matching contextual equivaences in which convergence of
function and product expressions to canonical form is observable. Thisis not the
casefor PCFL contextual equivalence as defined above. Thisisthe reason why the
n-rules (2.24) and (2.25) hold. It is pleasant that such properties hold, but the main
reason for choosing to treat this variant of contextual equivalence hereisto alow
adirect comparison with Milner and Plotkin’s classic work on PCF (Milner 1977,
Plotkin 1977). Gordon (1995a) gets aresult like Theorem 3.8 for PCFL contextual
equivaence (indeed for alanguage with general forms of recursive type), but for a
notion of bisimilarity (avery useful notion, asloc. cit. shows) based upon acertain
labelled transition system.

Proofs of congruence for bisimilarities arising from labelled transition systems
for reactive systems (such as for CCS (Milner 1989, 4.4), for example) suggest
the following strategy for proving Theorem A.3. Let S denote the * precongruence
closure’ of <°, that is, the smallest PCFL precongruence containing <°. To seethat
<° isaprecongruence, it would suffice to show that S = <°; and by definition S

286

Fz:obax=<*N:o (if T,z:0Fz=<]N)
Fe:obb=5,, N (f THbL=P,N)
Fl_szoolB,
I'F M, <5 M
DM, <% M, (if T+ if B then
pp (i Bthen . Mieke ;<G N)
Mielse My | —°
F'kn=<: N (if TFn=<%,N)

—nt —nt

L M <4, M
L+ M, <3, M,

int

Fl—MlopMQ jf;N

LxiobEM= M
(if THXe.M <2, N)
XM =<2, N

—0—0

THF<t, ., F

—o—0o’

DhA<: A
TFFA<, N

oo M=ZEM

I'Efixe. M <, N

(if Tk M opMj=2N)

(if T+ F A <% N)

(if TFfixxe.M' <2 N)

Figure 6: Definition of <*, begun

Pitts

(2" var)
(=* boal)

(=* cond)

(=" int)

(X* op)

(=" abs)

(X" app)

(=" fix)

contains <°, it would be enough to provethat S C <°. Since S satisfies (A.2), to
establish thisinclusion, it is enough to prove that S restricted to closed termsisa
PCFL simulation. Unfortunately, it isnot clear how to provethis. Instead wefollow
Howe, and define an auxiliary relation, <*, which is not quite the precongruence
closure (for onething, it is not transitive), but which permits the proof-strategy we

have outlined to go through.
Definition A.4. Therelation

I'FM=<*N (MN € Ep,(I))

isinductively defined by the axiomsand rulesin Figures 6 and 7.

LemmaA.b. (i) fI'FM < M andT' - M’ <2 M", then T' = M <% M".

(i) fT+ M : o, thenT - M <* M.

(iii) 1f T M <2 M’ thenT - M <% M.

Operationally-Based Theories of Program Equivalence 287

T M, < M,
[M, <5, M) e
- P (f T+ (M, My =2, N) (=" pain
T (M, M) <%0 N

— 0 X0
—O0X0o

rFP<: P
(it T+ fst(P) < N) (<" fst)
[F fst(P) <% N
r-pP=xt P
it T+ snd(P)) < N) (<* snd)
['Fsnd(P) < N
Chnil <t N (f TFnil < N) (=* nil)
THH < H
PET =T (=* cons)

(if THH =T =< N)
'-H:T jf‘g] N
THL<, L
rr 2 5o M (if I - case L' of
T, h:o,t:[o] F My <% M, ! Case L' o e
ol M 25 M (il M bty (57 69)

case L of {nil—M . <°, N)
<% —oa'
FI_(|h::t—>M2}>—”N

Figure 7: Definition of <*, completed

(iv) fT - M <* M'andT,z : ¢ = N <! N’ thenT + N[M/z] <%
N'[M'/x].

Proof. Part (i) is proved by induction on the derivation of I' = A <* M' from
the axioms and rules in Figures 6 and 7. Part (ii) is proved by induction on the
derivation of I' = M : o from the axioms and rules in Figure 2. Part (iii)
follows from the first two parts. Part (iv) is proved by induction on the derivation
of ',x : o = N <% N’,using part (iii) and the fact (evident from the definition of
=<° from <) that <° satisfies property (A.2). O

LemmaA.6. (i) If0+b=; , B, then B|b.

— bool

(i) IF0F n<* N, then N | n.

—nt

(iii)y If0 - F =<, _, F',thenforall A € Ezp,,0 - F A <%, F' A.

—o—a’

(iv) If0 - P <, P then() + fst(P) <* fst(P') and i snd(P) =%, snd(P").

—oxa’

(V) 10+ nil <2 L, then L { nil.

(Vi) If0 = H =T <7, L,then L H' :: T' for some H',T" with§ = H < H'

andp =T <t T

288 Pitts

Proof. For part (i), if = b =<3 , B holds, it must have been deduced using

—bool

(%* bool), so 0 - b <5, B holds, that is, b <4, B. Then since < isasimulation
and b} b, it followsfrom condition (sm 1) in Figure 4 that B |} b, asrequired. The
argument for parts (ii) and (v) issimilar.

Part (iii) follows by applying rule (<* app) from Figure6 with A’ = Aand N =
F A, using the reflexivity of <* (LemmaA.5(ii)) and <° (via Proposition 3.6(i)).
Similarly, part (iv) follows by applying the rules (<* fst) and (=* snd).

Finally for part (vi),if 0 - H:: T =}, L holdsit can only have been deduced
by an application of rule (<* cons). So there areterms H"” and 7" with

0-H < H" (A.9)
0T <t T" (A.10)

[o

OFH":T" jfa] L
and hence
H'::T" =01 L- (A.1D)

The simulation property (sim 6a) of < applied to (A.11) and H" :: T" || H" ::
T" implies that there are further terms H' and 7" with L | H' :: T', H" =<,
H',and T" =5 T'. Thelast two properties combined with (A.9), (A.10), and
LemmaA.5(i) yieldd = H <3 H'and 0 - T' <7, 1", asrequired. O

The following lemma gives the key property of <* permitting the proof of
Theorem A.3 to go through. It is the analogue of (Howe 1989, Theorem 1). In
the proof of the lemma we will make use of the Kleene preorder, <X, defined in
Proposition 3.9 together with the fact, established in that proposition, that <! is
contained in PCFL similarity.

LemmaA.7. If M | Cand) + M <% N, then() - C' <% N.

Proof. The proof is by induction on the derivation of M |} C. For once we will
give the details of the induction proof in some detail, sinceit is quite delicate. To
be more precise, we will show that

EY{(M,C)|Vo,N@F M <:N =0+ C <% N)}

is closed under the axioms and rules in Figure 3 and hence contains the evaluation
relation, as required.

Case({} can). Trivid.

Operationally-Based Theories of Program Equivalence 289

Case () condl). Supposethat (B,true) and (M, C) arein £. We have to show
that (if B then M, else M, C') € £. So suppose

() - if B then M else My <* N (A.12)

This can only have been deduced by an application of rule (<* cond), so there are
terms B', M|, and M, with

OB <, B, 0FM <M (fori=1,2) (A.13)
and
if B’ then M else M) <, N (A.14)
Since (B, true), (M, C) € &, from (A.13) we get
0+ true <3,,, B’ (A.15)
DEC =M (A.16)

By LemmaA.6(i), from (A.15) we have B’ |} true. Hence by definition of <X,
M, <X'if B’ then M] else M,

holds. Therefore by Proposition 3.9 we have
M =, if B' then M| else M

which combined with (A.14) and transitivity of <, yidds M; <, N.
Lemma A.5(i) plus (A.16) implies®) - C =<* N. So we have shown that
(A.12)implies) - C' <% N, forany N ando. Thus (if Bthen M else M, C) € £,
as required.

Case (} cond2) issimilar to the previous case.

Case ({} op). Suppose (M;,n;) € € fori = 1,2, and that

O+ M, op My <X N (A.17)
We must show that

DFc= N (A.18)

where ¢ & ny op ne. Now (A.17) must have been deduced by an application of
rule (<X* op) to

0= M; <5, M (i=1,2) (A.19)

—int 7

M! op M} <, N (A.20)
for someterms M7, M. Since (M;,n;) € &€,from(A.19)itfollowsthat () - n, <*

—int
M! and hence by LemmaA.6(ii) that M! || n,. Thusby rule (| op), M| op M, |} c
and therefore ¢ <X' M op M, (by definition of <*'). Then from Proposition 3.9,
(A.20), and transitivity of <, we havethat c <, N and hence (by LemmaA.5(iii))

that (A.18) does indeed hold.

290 Pitts

Case (|} app). Suppose (F,\x. M), (M[A/z],C) € £ and that

0-FA=, N (A.21)
We must show that

D-C =N (A.22)

Now (A.21) must have been deduced by an application of (<* app) to

D-F =<, F (A.23)
DA< A (A.24)

and
F'A" <, N (A.25)

for someterms F', A’. Since (F, Az . M) € £,0 = Az . M =<*, F" holdsby (A.23).
This can only have been derived by an application of (<* abs) to

r:ob- M= M (A.26)
and
Av. M =, o F' (A.27)
for some term M'. Applying Lemma A.5(iv) to (A.24) and (A.26), we have that
0 F M[A/z] =% M'[A’/z]. Thensince (M[A/z],C) € &, it follows from this
that
D= C =k M'[A)x] (A.28)

Since < isaPCFL simulation, from property (sim 3) in Figure 4 applied to (A.27),
we get

(Az. M)A <, F' A’ (A.29)

Note that by definition of <, we aways have M'[A"/z] <X (\z.M')A’ and
hence by Proposition 3.9,) = M'[A"/z] <, (Ax.M")A’. Combining this with
(A.25), (A.29) and transitivity of <, we get M'[A, /2] <, N. Lemma A.5(i)
applied to thisand (A.28) yields (A.22), as required.

Operationally-Based Theories of Program Equivalence

Case ({} fix). Suppose (M[fixz.M/z],C) € € and that
O fixe. M <2 N
We must show that
0-C =, N
Now (A.30) must have been deduced by an application of (<* fix) to
riobM=<tM
and

fixe M' <, N

291

(A.30)

(A.31)

(A.32)

(A.33)

for some term M’'. Applying (=* fix) to (A.32) and fixx . M’ <, fixz. M’ (us-
ing the fact that < isreflexive), we get) - fixx. M <* fixz. M'. Applying
LemmaA.5(iv) to thisand (A.32) yields) = M[fix z . M/x] <% M'[fixz . M'/z].

Then since (M |[fixx . M/x],C) € £, we deduce that

0+ C < Mfixz. M'/z]

(A.34)

Note that by definition of <*!, one always has M'[fixz . M'/z] <X fixz . M’, and
hence also M'[fixx . M' /x| <, fixx.M' (by Proposition 3.9). Combining this
with (A.33), we get M'[fixz. M'/z] <, N. Applying Lemma A.5(i) to this and

(A.34) yields (A.31), asrequired.

Case (| fst). Suppose (P, (M, My)), (M;,C) € € and that
O+ fst(P) <; N
We must show that
DFC =, N
Now (A.35) must have been deduced by an application of (<* fst) to
D-P =<, P
and
fst(P') <,, N
for someterm P'. Since (P, (M, M,)) € &, from (A.37) we get

0= (M, My) <% P

—01 X029

(A.35)

(A.36)

(A.37)

(A.38)

292 Pitts

This must have been deduced by an application of (<* pair) to
O M <5 M (i=1,2) (A.39)
<M{?M£> j01><172 P, (A4O)
for someterms M, M. Since (M, C) € &£, from (A.39) we get
DEC =5 M (A.41)
Since < isaPCFL simulation, it satisfiesproperty (ssm4) in Figure4, and so (A.40)
implies
fst((M}, M3)) =0, fst(P') (A.42)

Note that by definition of <", one always has M| <} fst((M{, M3)), and hence
and hence also M, =<, fst({M], M})) (by Proposition 3.9). Combining thiswith
(A.38) and (A.42) we get M| <,, N. Applying LemmaA.5(i) to thisand (A.41)
yields (A.36), as required.

Case (| snd) issimilar to the previous case.

Case (|} casel) issimilar to the case for ({} condl), but using the fact (evident
from the definition of <) that if L’ |} nil, then M| <X, case L' of {nil— M] |
h:t— M}

Case(|} case?) issimilartothecasefor (|} app), but using the fact (evident from
the definition of <) thatif L' || H' :: T", then
M[H'/h, T'/t] <5 case L' of {nil = M, | h::t — M,}.
This completes the proof of LemmaA.7. O
Proposition A.8. For all I, o, M, N
I'-M=<2N&TDEHM=<EN.

Proof. We have aready proved the left to right implication in part (iii) of
Lemma A.5. For the converse, note that by part (iv) of that lemma, and by
the construction of <° from < (Definition 3.7), it suffices to prove the implication
just for closed terms:

OFM=<:N= M=,N.

By the co-induction principle for < (Proposition 3.5), it suffices to show that S is
aPCFL simulation, where

S, € {(M,N) |0+ M <% N}.

But the fact that S < (S) follows immediately by combining Lemmas A.6 and
A.7. O

Operationally-Based Theories of Program Equivalence 293

We can now complete the proof of Theorem A.3.

Proof of Theorem A.3. We have seen that <, and hence also <°, is reflexive and
transitive. So it just remains to see that <° has properties (A.1), (A.2), and (A.5)—
(A.8) of Definition A.1. The weakening property (A.1) is an immediate conse-
guence of the construction of <° from <. For the other properties, it suffices by
Proposition A.8 to check that they hold for <*. The substitution properties (A.2)
and (A.5) are both instances of LemmaA.5(iv) (using reflexivity of <*, established
in part (ii) of that lemma). Finaly, (A.6)—(A.8) hold for <* by construction. For
example, if ',z : o = M <%, M', thenby (<* abs) (taking N = Az . M’ and using
the fact that <° isreflexive) onehasT' = Az . M <*_. , Ax. M. O

—0—0

Corollary A.9. ForalT,o, M, N
'FM=<N=TFM<&N.

Proof. SupposeI" + M =<° N and that C[—,] is a context for which C[M] and
C[N] are closed terms of ground type, v say. Since by Theorem A.3 <° isa
precongruence relation, it follows from Lemma A.2 that () = C[M] <2 C[N], that
is, C[M] <, C[N]. Soif C[M] | ¢, then by the simulation properties (sim 1) and
(sm2) of < itisasothecasethat C[N]) ¢. Sincethisholdsfor any C[—,], we
havethat T+ M <& N. O

The PCFL contextual preorder isasimulation

Referring back to the beginning of this section, we have now completed part (a)
of the proof of Theorem 3.8, and it remains to prove part (b)—the fact that <&"d
isa PCFL simulation. The reader will be relieved to know that this part is quite
straightforward in comparison with part (a).

Define S € Rel by:
def nd
Se = {(M,N) |0+ M <8¢ N}.

We wish to show that S < (S). We check each of the simulation properties in
Figure 4 in turn.

Property (sim 1). Suppose M Sy, N andthat M |} b. Applying the definition of

<end with the context C[— po0] 0 Showsthat N |} b.

Property (sm 2). isjust like the previous case.

294 Pitts

Property (sm 3). Suppose F' S,_,,» F' andthat A € Ezp,. Given any context
C[—] forwhichC[F Al and C[F" A] are closed termsof ground type, let C'[—,_,]
be the context obtained by substituting (—,_,,-) A for —,, throughout C. Thus
C'[F] = C[F A] and similarly with F” for F'. Then

CIFAllc=CI[F]lc sinceC'[F] = C[F A]
= C'[F']|c since() - F <& F
= C[F' Al ¢ sinceC'[F'] = C[F" A].

Thus(- F A <% F' A, thatis, F A S, F' A, asrequired.

Property (Sm 4). The proof is like the previous case, but using C'[—, x¢,] %=

Clfst(— o x05)], ANA theNn C'[— 4, xoy] = Clsnd(— 4, x0,)]-

Property (sm5). Suppose L Sy, L' and that L |} nil. Consider the context

Cl—1v]] & case —1o] Of {nil = true | h:: t — false}.

Notethat C[L] |} true if and only if L |} nil, and similarly for L'. Soif L |} nil, since

OF L gﬁf]d L', it followsthat C[L'] |} true and hence L' | nil.

Property (sm 6). Suppose L S, L' andthat L |} H :: T. Arguing just asinthe
previous case, we havethat L |} H' :: T" for someterms H', T". We have to show

that O - H <& H'and 0 = T <) T

We make use of PCFL expressionsfor the functions for taking the head and tail
of alist:
head A0 . case € of {nil— L | h::t—h}
tail © A0 . case £ of {nil —nil | h::t—t}
where
1Y fix e .
Since L |} H :: T, it follows from the definition of =*! (in Proposition 3.9) that

OFH=head L and O+ T 25, tail L

[o

and similarly for L', H', T". We saw in Proposition 3.9 that <" is contained in <.
Hence by Corollary A.9 we have

Ot H=g"head, and O+ T =5 tail L

Operationally-Based Theories of Program Equivalence 295

andsimilarlyfor L', H', T'. By an argument similar to that given abovefor property
(sm 3) of <&, thefact that () - L <f2* L’ holdsimplies that

0+ head L <8 head L' and O+ tail L <8\ tail L.
Putting all these fact together we have:

H 22" pead L <8 head L' =28 H'
T 22e0d g4 [<& pqq0 [x28nd T

sothat - H <& H' and) - T gf;nd T', as required.

o]

This completes the verification that <&"¢ restricted to closed terms is a PCFL
simulation. Hence we have that it is contained in PCFL similarity:

D-M<EIN=0FM=<N (A.43)

In order to complete the proof of the Operational Extensionality Theorem, we must
extend this implication from closed to open terms. To do this we need to verify
that the substitutivity property (2.12) holds for <&"d, As mentioned on page 254,
this property is essentially a consequence of the fact that 3-conversion holds up to
contextual equivalence for PCFL.

Lemma A.10. <& satisfies property (2.12), that is, if T,z : o = N <& N,
thenitisthe casethat T' - N[M/x] <%* N'[M/z] holds, for any M € Exp,(T).
Proof. For any C[—,], since C[(Az . N)M] is of the form C'[N] with C'[—,/] &
Cl(Az.)M],itfollowsthat T,z : o = N <®' N’ implies

T (\z. N)M <54 (\z. N')M. (A.44)

We noted on page 263 that as a consequence of Proposition 3.9 ~° satisfiesthe 3-
rule for function application; hence by Corollary A.9 one has

I+ N[M/z] <5 (Ae. N)M and T+ (Az. N)M <59 N'[M/z].

Combining these with (A.44) and transitivity of <& yieldsT" - N[M/xz] <%
N'[M/z]. O

Suppose z : oy, ...,&, : 0, b M <&9 N holds. Then for any M; € Eup,,
(i=1,...,n), by applying the lemma repeatedly we get M [M /Z] <& N[M /Z],
and hence by (A .43) that M[M /7] <, N[M /. Thusby definition of <°, we have
I' = M =<2 N. Therefore the converse of Corollary A.9 does indeed hold and we
have completed the proof of Theorem 3.8.

296 Pitts

References

Abelson, H. and G. J. Susman (1985). Srructure and Interpretation of Computer Pro-
grams. MIT Press.

Abramsky, S. (1990). The lazy A-caculus. In D. A. Turner (Ed.), Research Topics in
Functional Programming, Chapter 4, pp. 65-117. Addison Wesley.

Abramsky, S. and C.-H. L. Ong (1993). Full abstraction in the lazy lambda calculus.
Information and Computation 105, 159-267.

Backhouse, R., P. Chisholm, G. Macolm, and E. Saaman (1989). Do-it-yourself type
theory. Formal Aspects of Computing 1, 19-84.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics (revised ed.).
North-Holland.

Bird, R. and P. Wadler (1988). Introduction to Functional Programming. Prentice-Hall.

Crole, R. L. and A. D. Gordon (1996). Relating operational and denotational semantics
for input/output effects. Technical Report 1996/5, University of Leicester Depart-
ment of Mathematics and Computer Science.

de Roever, W. P. (1978). On backtracking and greatest fixed points. In E. J. Neuhold
(Ed.), Formal Description of Programming Concepts, pp. 621-639. North-Holland,
Amsterdam.

Dybjer, P. and H. P. Sander (1989). A functional programming approach to the spec-
ification and verification of concurrent systems. Formal Aspects of Computing 1,
303-319.

Egidi, L., F.Honsdll, and S. R. dellaRocca (1992). Operational, denotational and logical
descriptions: acase study. Fundamenta Informaticae 26, 149-169.

Gordon, A. D. (1994). Functional Programming and Input/Output. Distinguished Dis-
sertations in Computer Science. Cambridge University Press.

Gordon, A. D. (19954q). Bisimilarity asatheory of functional programming. In Eleventh
Conference on the Mathematical Foundations of Programming Semantics, New
Orleans, 1995, Volume 1 of Electronic Notes in Theoretical Computer Science.
Elsevier.

Gordon, A. D. (1995b, June). Bisimilarity asatheory of functional programming. Mini-
course. Notes Series BRICS-NS-95-3, BRICS, Department of Computer Science,
University of Aarhus.

Gordon, A. D. and G. D. Rees (1996, January). Bisimilarity for afirst-order calculus
of objects with subtyping. In Conference Record of the 23rd ACM Symposium on
Principles of Programming Languages, S Petersburg Beach, Florida, pp. 386-395.
ACM Press.

Gunter, C. A. (1992). Semantics of Programming Languages. Structures and Tech-
niques. Foundations of Computing. MIT Press.

Harper, R. (1995). A relational proof of correctness of CPS conversion. Draft Version
of 9 June, 1995.

Operationally-Based Theories of Program Equivalence 297

Howe, D. J. (1989). Equality in lazy computation systems. In 4th Annual Symposiumon
Logic in Computer Science, pp. 198-203. IEEE Computer Society Press, Washing-
ton.

Howe, D. J. (1996, February). Proving congruence of bisimulation in functiona pro-
gramming languages. I nformation and Computation 124(2), 103-112.

Martin-Lof, P. (1984). Intuitionistic Type Theory. Bibliopolis, Napali.
Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics to

domain theory. Information and Computation. To appear. Revised and extended
version of (Smith 1992).

Mason, I. A.and C. L. Talcott (1991). Equivalence in functional languages with effects.
Journal of Functional Programming 1, 287-327.

Mason, |. A. and C. L. Talcott (1992). References, local variables and operational rea
soning. In Proceedings of the 7th Annual Symposium on Logicin Computer Science,
pp. 186-197. IEEE Computer Society Press.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. Theoretical Computer
Science 4, 1-22.

Milner, R. (1989). Communication and Concurrency. Prentice Hall.
Milner, R., M. Tofte, and R. Harper (1990). The Definition of Sandard ML. MIT Press.

Moggi, E. (1991, July). Notions of computation and monads. |nformation and Compu-
tation 93(1), 55-92.

Park, D. (1981). Concurrency and automata on infinite sequences. In P. Deussen (Ed.),
Proceedings of the 5th GI-Conference on Theoretical Computer Science, Volume
104 of Lecture Notes in Computer Science, pp. 167-183. Springer-Verlag, Berlin.

Paulson, L. C. (1991). ML for the Working Programmer. Cambridge University Press.

Pitts, A. M. (1994, December). Some notes on inductive and co-inductive techniques
in the semantics of functional programs. Notes Series BRICS-NS-94-5, BRICS,
Department of Computer Science, University of Aarhus. vi+135 pp, draft version.

Pitts, A. M. (1996). Reasoning about local variables with operationally-based logical
relations. In 11th Annual Symposium on Logic in Computer Science, pp. 152-163.
|EEE Computer Society Press, Washington.

Pitts, A. M. and |. D. B. Stark (1993). Observable properties of higher order functions
that dynamically create local names, or: What's new? In Mathematical Founda-
tions of Computer Science, Proc. 18th Int. Symp., Gdansk, 1993, Volume 711 of
Lecture Notes in Computer Science, pp. 122-141. Springer-Verlag, Berlin.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Cont+
puter Science 5, 223-255.

Plotkin, G. D. (19814). Post-graduate lecture notes in advanced domain theory (incor-
porating the “Pisa Notes’). Dept. of Computer Science, Univ. of Edinburgh.

Plotkin, G. D. (1981b). A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University.

298

Rees, G. (1994, April). Observational equivalence for a polymorphic lambda calculus.
Unpublished note.

Reynolds, J. C. (1981). The essence of Algol. In J. W. de Bakker and J. C. van Vliet
(Eds.), Algorithmic Languages. Proceedings of the International Symposium on
Algorithmic Languages, pp. 345-372. North-Holland, Amsterdam.

Ritter, E. and A. M. Pitts (1995). A fully abstract trandation between a A-cal culus with
reference types and Standard ML. In 2nd Int. Conf. on Typed Lambda Cal culus and
Applications, Edinburgh, 1995, Volume 902 of Lecture Notesin Computer Science,
pp. 397-413. Springer-Verlag, Berlin.

Sands, D. (1995). Total correctness by loca improvement in the transformation of func-
tiona programs. To appear (ashort version appears in the proceedings of POPL’ 95).

Scott, D. S. (1982). Domains for denotational semantics. In M. Nielson and E. M.
Schmidt (Eds.), Automata, Languages and Programming, Proceedings 1982, Vol-
ume 140 of Lecture Notes in Computer Science. Springer-Verlag, Berlin.

Scott, D. S. (1993). A type-theoretical aternative to ISWIM, CUCH, OWHY . Theoret-
ical Computer Science 121, 411-440.

Smith, S. F. (1992). From operationa to denotational semantics. In S. Brookes et al
(Ed.), 7th International Conference on Mathematical Foundations of Programming
Semantics, Pittsburgh PA, Volume 598 of Lecture notes in Computer Science, pp.
54-76. Springer-Verlag, Berlin.

Stark, 1. D. B. (1995). Names and Higher-Order Functions. Ph. D. thesis, University
of Cambridge. Also published as Technical Report 363, University of Cambridge
Computer Laboratory, April 1995.

Wadler, P. (1992). Comprehending monads. Mathematical Sructures in Computer Sci-
ence 2, 461-493.

Winskel, G. (1993). The Formal Semantics of Programming Languages. Foundations
of Computing. Cambridge, Massachusetts: The MIT Press.

