
On the Observable Properties ofHigher Order Functions thatDynamically Create Local Names(preliminary report)Andrew Pitts1 Ian Stark2University of Cambridge Computer Laboratory,Pembroke Street, Cambridge CB2 3QG, EnglandTel: +44 223 334629 Fax: +44 223 334678Email: fAndrew.Pitts,Ian.Starkg@cl.cam.ac.ukAbstractThe research reported in this paper is concerned with the problem of reasoningabout properties of higher order functions involving state. It is motivated by thedesire to identify what, if any, are the di�culties created purely by locality of state,independent of other properties such as side-e�ects, exceptional termination and non-termination due to recursion. We consider a simple language (equivalent to a fragmentof Standard ML) of typed, higher order functions that can dynamically create freshnames. Names are created with local scope, can be tested for equality and can bepassed around via function application, but that is all.We demonstrate that despite the simplicity of the language and its operational se-mantics, the observable properties of such functions can be very subtle. Two methodsare introduced for analyzing Morris-style observational equivalence between expres-sions in the language. The �rst method introduces a notion of `applicative' equivalenceincorporating a syntactic version of O'Hearn and Tennent's relationally parametricfunctors and a version of representation independence for local names. This applica-tive equivalence is properly contained in the relation of observational equivalence,but coincides with it for �rst order expressions (and is decidable there). The secondmethod develops a general, categorical framework for computationally adequate mod-els of the language, based on Moggi's monadic approach to denotational semantics.We give examples of models, one of which is fully abstract for �rst order expressions.No fully abstract (concrete) model of the whole language is known.
1Supported by UK SERC grant GR/G53279 and CEC ESPRIT project CLICS-II2Supported by UK SERC studentship 91307943 and CEC SCIENCE project PL910296

1 IntroductionProgramming languages combining higher order features with the manipulation of localstate present severe problems for the traditional techniques of programming languagesemantics and logics of programs. For denotational semantics, the problems manifestthemselves as a lack of abstraction in existing semantic models: some expressions thatare observationally equivalent (i.e. that can be interchanged in any program without af-fecting its behaviour when executed) are assigned di�erent denotations in the model. Foroperational semantics, the problems manifest themselves partly in the fact that simpletechniques for analyzing observational equivalence in the case of purely functional lan-guages (such as Milner's `Context Lemma' [9], or more generally, notions of applicativebisimulation [1]) break down in the presence of state-based features. Furthermore, opera-tionally based approaches to properties of programs are often inconveniently intensional,e.g. the familiar congruence properties of equational logic fail to hold. (See [7, Sect. 5(A)],for example.) These problems have been intensively studied for the case of local variablesin block-structured, Algol-like languages and to a lesser extent for the case of languagesinvolving the dynamic creation of mutable locations (such as ML-style references). See[20, 2, 8, 3, 21, 15, 16, 7, 4]. Our interest in this subject stems primarily from a desireto improve and deepen the techniques which are available for reasoning about programbehaviour in the `impure' functional language Standard ML [10].Our motivation here is to try to identify what, if any, are the di�culties createdpurely by locality of state, independent of other properties such as side-e�ects, exceptionaltermination and non-termination due to recursion. Accordingly we consider higher orderfunctions which can dynamically create fresh names of things, but ignore completely whatkind of thing (references, exceptions, etc.) is being named. Names are created with localscope, can be tested for equality, and are passed around via function application, butthat is all. Because of this limited framework, there is some hope of obtaining de�nitiveresults|fully abstract models and complete proof techniques. As the vehicle for this studywe formulate an extension of the call-by-value, simply typed lambda calculus, called thenu-calculus and introduced in Sect. 2. In ML terms, it contains higher order functionsover ground types bool and unit ref|the latter being the type of dynamically createdreferences to the unique element of type unit. This acts as a type of `names' becauseonly one thing can be (and is) stored in such a reference, so that its only characteristicis its name. We have purposely excluded recursion from the nu-calculus and as a resultany closed expression evaluates to an essentially unique canonical form. Indeed, the nu-calculus appears at �rst sight to be an extremely simple system. On closer inspection,we �nd that nu-calculus expressions can exhibit very subtle behaviour with respect to anappropriate notion of observational equivalence. Thus our �rst contribution is somewhatin the spirit of Meyer and Seiber [8]: we observe that even for this extremely simple case oflocal state there are observationally equivalent expressions which traditional denotationaltechniques will fail to identify (Example 2.8).In Sect. 3 we introduce a notion of `logical relation' for the nu-calculus incorporatinga version of representation independence for local names. Our technique is a syntacticversion of the relationally parametric semantics of O'Hearn and Tennent [16]. There arealso interesting similarities with Plotkin and Abadi's parametricity schema for existentialtypes [19, Theorem 7]. We use our version of logical relations to establish the terminationproperties of the nu-calculus (Theorem 3.3) and to provide a useful, notion of `applicative'equivalence between nu-calculus expressions which implies observational equivalence (The-

orem 3.5). In fact the two notions of equivalence coincide for expressions of �rst order types(Theorem 3.8) and are decidable there, but di�er for higher order types (Example 3.7).The denotational semantics of the nu-calculus is considered in Sect. 4. FollowingMoggi [12], we make use of categorical monads to enforce a distinction between denota-tions of values (expressions in canonical form) and denotations of computations (arbitraryexpressions). This is helpful, since it allows us to identify explicitly and simply whatstructure is needed in a model to give a static meaning for the key dynamic aspect of thenu-calculus, the action of computing a new name (see equations (10){(12)). Our main re-sult here (Theorem 4.2) is to identify some simple structure on a category equipped with astrong monad su�cient to guarantee that the nu-calculus can be modelled in the categoryin a computationally adequate way. Thus if two nu-calculus expressions have equal denota-tions in such a category, then necessarily they are observationally equivalent. An instanceof this categorical structure can be obtained by adapting Moggi's [11] `dynamic allocation'monad to O'Hearn and Tennent's category of relationally parametric functors [16]. Thismodel is fully abstract at �rst order types, but not so at higher types. Other instancesof the categorical structure are known and can be used to establish subtle, higher orderobservational equivalences (such as (3)). Whilst no concrete model is known to be fullyabstract for the whole of the nu-calculus, we conjecture that a term-model construction on(a suitable extension of) the syntax of the nu-calculus yields an instance of the categoricalstructure which is fully abstract.2 The nu-calculusSyntactically, the nu-calculus is a kind of simply typed lambda calculus. The types, �,are built up from a ground type o of booleans and a ground type � of names, by formingfunction types, �!�0. Expressions take the formM ::= x variablej n namej true j false truth valuesj if M then M else M conditionalj M =M equality of namesj �n : M local name declarationj �x : � : M function abstractionj MM function applicationwhere x 2 Var, an in�nite set whose elements are called variables, and n 2 Nme, anin�nite set (disjoint from Var) whose elements are called names. Function abstraction isa variable-binding construct (occurrences of x in M are bound in �x : � : M), whereaslocal name declaration is a name-binding construct (occurrences of n in M are bound in�n : M). We write Var(M) and Nme(M) for the �nite subsets of Var and Nme consistingof the free variables and the free names in an expression M . Henceforward, we implicitlyidentify expressions that di�er up to �-conversion of bound variables and bound names.We denote by M [M 0=x] (respectively M [M 0=n]) the result of substituting an expressionM 0 for all free occurrences of x (respectively n) in M .Expressions will be assigned types via typing assertions of the forms;� `M : �

(x 2 dom(�))s;� ` x : �(x) (n 2 s)s;� ` n : � (b = true; false)s;� ` b : os;� ` B : o s;� `M : � s;� `M 0 : �s;� ` if B then M else M 0 : � s;� ` N : � s;� ` N 0 : �s;� ` (N = N 0) : os� fng;� `M : �s;� ` �n : M : � s;�� [x : �] `M : �0s;� ` �x : � : M : �!�0 s;� ` F : �!�0 s;� `M : �s;� ` FM : �0Table 1: Rules for assigning types in the nu-calculuswhere s is a �nite subset of Nme, � is a �nite function from variables to types, � is a type,and M is an expression satisfying Nme(M) � s and Var(M) � dom(�) (the domain ofde�nition of �). The rules generating the valid typing assertions are given in Table 1. Inthese rules s�fng indicates the �nite set of names obtained from s by adjoining n 62 s; and�� [x : �] denotes the �nite function obtained by extending � by mapping x 62 dom(�) to�. Clearly, if s;� `M : � holds, then � is uniquely determined by s, � and M . We writeExp�(s) def= fM j s; ; `M : �gfor the set of closed nu-calculus expression of type � with free names in the set s. Thesubset Can�(s) � Exp�(s)of canonical nu-calculus expressions of type � with free names in the set s consists of thoseclosed expressions which are either names (in s), or the booleans constants true and false,or function abstractions.We give the operational semantics of the nu-calculus in terms of an inductively de-�ned evaluation relation which matches the computational behaviour of equivalent MLexpressions. The ML equivalent of the expression �n : M islet n=ref() in M end(using the ML type unit ref for the type of names). In other words the e�ect of evaluating�n : M should be to create a fresh name n and then use it in evaluating M . Whereas inthe de�nition of ML [10] environments are used to bind identi�ers (variables) to addresses(names), here we have chosen to simplify the form of the evaluation relation by using`extended' expressions containing names explicitly. It would be possible to simplify thesyntax of the nu-calculus even further by identifying the syntactic category of names withthat of variables of type �. We choose not to do so because names and variables havedi�erent semantic properties. For example, the operational semantics we give commuteswith arbitrary substitutions on variables, but only with restricted forms of substitutionson names (viz. essentially just permutations of names).An appropriate notion of state for this simple language is just a �nite subset of Nme,indicating the names which have been created so far. So we will use an evaluation relation

(CAN) s ` C +� C(COND1) s ` B +o (s1)true s� s1 `M +� (s2)Cs ` if B then M else M 0 +� (s1 � s2)C(COND2) s ` B +o (s1)false s� s1 `M 0 +� (s2)C 0s ` if B then M else M 0 +� (s1 � s2)C 0
(EQ) s ` N +� (s1)n s� s1 ` N 0 +� (s2)n0s ` (N = N 0) +o (s1 � s2)�nn0(LOCAL) s� fng `M +� (s1)Cs ` �n : M +� (fng � s1)C
(APP) s ` F +�!�0 (s1)�x : � : M 0 s� s1 `M +� (s2)Cs� s1 � s2 `M 0[C=x] +�0 (s3)C 0s ` FM +�0 (s1 � s2 � s3)C 0

Table 2: Rules for evaluating nu-calculus expressions

of the form s `M +� (s0)C (1)where s and s0 are disjoint �nite sets of names, M 2 Exp�(s) and C 2 Can�(s � s0).The intended meaning of (1) is: `in state s, expression M evaluates to canonical form C,creating fresh, local names s0 in the process'. The rules for generating the relation aregiven in Table 2. In rule (EQ) we use the notation �nn0 , where�nn0 def= (true if n = n0false if n 6= n0It is important to note that the rules in Table 2 refer to the collection of judgements asin (1) that are well-formed, i.e. satisfy the conditions mentioned above. For example, inrule (LOCAL) the well-formedness of the hypothesis and the conclusion entail that n isnot an element of either s or s1.The rules follow the state convention of Standard ML [10], i.e. order of evaluationis from left to right, with state accumulating sequentially. In fact, because we are deal-ing with state that can be created but cannot be mutated, some of this sequentialityis spurious. For example, in rule (COND1) the second hypothesis can be strengthenedby removing s1, without a�ecting the collection of valid instances of evaluation; similarstrengthenings can be made to the second hypotheses of (COND2), (EQ) and (APP).It is easy to see that evaluation is deterministic up to renaming created names, in thefollowing sense:Lemma 2.1 If s `M +� (s1)C and s `M +� (s2)C 0, then there is a bijection R : s1 $ s2so that C 0 is �-convertible with the expression C[n0=n j (n; n0) 2 R].The initial state s in the evaluation (1) has the structural properties of an a�nelinear logic context, in the sense that derived rules of weakening and exchange are valid,but a rule of contraction is not. For example when M is n = n0 and C is false, thenfn; n0g ` M +o (;)C is valid, but fng ` M [n=n0] +o (;)C[n=n0] is not. (Compare the usemade of a�ne linear logic by O'Hearn in [14].)The evaluation relation (1) can be used to de�ne a Morris-style contextual equivalencebetween nu-calculus expressions: two expressions are equivalent if they can be interchangedin any program without a�ecting the observable result of evaluating it. Here we will takea `program' to be a closed expression of type o, and the possible observable results ofevaluating a program to be the booleans true and false, disregarding any local names thatare created in the process of evaluation. (It would not change the notion of observationalequivalence given below if we also allowed programs to be of type � and observable resultsto include pre-existing names.) In the following de�nition, as usual the `context' B[�] isan expression in which some subexpressions have been replaced by a place-holder, �; andthen B[M] denotes the result of �lling the place-holder with an expression M .De�nition 2.2 (Observational equivalence) Given M1;M2 2 Exp�(s), we writes `M1 �� M2to mean that for all B[�] and all b 2 ftrue; falseg,9s1(s ` B[M1] +o (s1)b) , 9s2(s ` B[M2] +o (s2)b) :In this case we say that M1 and M2 are observationally equivalent.

The following result shows that one need only consider contexts that immediatelyevaluate their arguments in order to establish observational equivalence. It is the analogueof Theorem (ciu) in [4].Lemma 2.3 s ` M1 �� M2 if and only if for all b 2 ftrue; falseg and all �x : � : B 2Can�! o(s)9s1(s ` (�x : � : B)M1 +o (s1)b) , 9s2(s ` (�x : � : B)M2 +o (s2)b) :The following instances of observational equivalence are easily established using the lemma.Corollary 2.4 (i) If M 2 Exp�(s) and n 62 s, then s ` �n : M �� M .(ii) If M 2 Exp�(s� fng � fn0g), then s ` �n : �n0 : M �� �n0 : �n : M .(iii) If s ` M +� (s0)C, then s ` M �� �s0 : C. Here �s0 : C stands for �n1 : : : �nk : Cif s0 = fn1; : : : ; nkg for some k > 0, and stands for C if s0 = ;. (By part (ii), up toobservational equivalence, it does not matter which order we enumerate the elementsof s0 in �s0 : C.)(iv) If s; [x : �] `M : �0 and C 2 Can�(s), then s ` (�x : � : M)C ��0 M [C=x].In the next section we will show that evaluation of nu-calculus expressions alwaysterminates (Theorem 3.3). It follows from this and the above Corollary that, up to obser-vational equivalence, the only closed expressions of type o are true and false and the onlyclosed expression of type � not involving any free names isnew def= �n : n :However, at higher types things become rapidly more complicated. The following exam-ple gives in�nitely many expressions of type �! � which are mutually observationallyinequivalent.Example 2.5 For each p � 1, consider the nu-calculus expression of type �! � which�rst creates p+1 local names n0; : : : ; np and then acts as the function cyclically permutingthese names and mapping any other name to n0:Fp def= �n0 : : : �np : �x : � : if x = n0 then n1 elseif x = n1 then n2 else� � �if x = np then n0 else n0 :Then ; ` Fp 6��! �Fp0 whenever p 6= p0, becauseBq def= �f : �! � : �n : (f (q+2)(n) = f(n))has the property that for all q 2 f1; : : : ; pg, ; ` BqFp +o (fn0; : : : ; np; ng)true if and onlyif q = p. (In Bq, f (q+2) indicates f iterated q + 2 times.)

Example 2.6 Here is a simple example to illustrate the fact that local name declarationand function abstraction in general do not commute up to observational equivalence. Theexpressions M def= �n : �x : � : n and N def= �x : � : �n : nare not observationally equivalent, because B def= �f : �! � : (fnew = fnew) has theproperty that ; ` BM +o (fn; n1; n2g)true whereas ; ` BN +o (fn; n1; n2g)false.Example 2.7 The rule (APP) in Table 2 embodies a form of strict, or `call-by-value',application. Part (iv) of Corollary 2.4 shows that the appropriate restricted form ofbeta-conversion (Plotkin's �v [18]) holds up to observational equivalence. Although thereis no non-termination in our simple language, the general form of beta-conversion failsfor the nu-calculus, because of the dynamics of name creation. For example, the betaredex (�x : � : x = x)new is not observationally equivalent to the corresponding reductnew = new since ; ` (�x : � : x = x)new +o (fn1g)true; ` (new = new) +o (fn1; n2g)false :For the simple functional language PCF, Milner's context lemma [9] shows that obser-vational equivalence may be established by testing just with applicative contexts|those ofthe form [�]C1C2 : : : Ck. Not surprisingly, this fails in the nu-calculus. For example, theexpressions Fp are in fact indistinguishable by such applicative contexts, even though theycan be distinguished by more complicated contexts (like Bq([�])) which carry out `anony-mous' manipulation of the private names n0; : : : ; np. It would seem that the properties ofhigher order functions which create and pass around private names can be quite subtle.Two contrasting examples of observational equivalence, more subtle than those in Corol-lary 2.4, are given below. The �rst one illustrates the fact that local names are alwaysdistinct from externally supplied names; the second illustrates the fact that any two localnames are indiscernible by externally supplied boolean tests. (This second equivalence isquite delicate|it certainly would not hold in languages where evaluation of functions canhave side-e�ects on mutable state.) Operational and denotational methods for provingsuch observational equivalences of nu-calculus expressions will be developed in the rest ofthis paper.Example 2.8; ` �n : �x : � : (x = n) ��! o �x : � : false (2); ` �n : �n0 : �f : �! o : (fn = fn0) �(�! o)! o �f : �! o : true : (3)In (3), the boolean equality test fn = fn0 is an abbreviation forif fn then (if fn0 then true else false) else (if fn0 then false else true) :3 Representation independence for local namesThis section develops a notion of (binary) logical relation for the nu-calculus and showshow to use it to establish instances of observational equivalence between nu-calculus ex-pressions.

Given �nite subsets s1; s2 � Nme of names, we write R : s1
 s2 to indicate that R is(the graph of) a partial bijection from s1 to s2. In other words, R � s1 � s2 satis�esm1 R m2 ^ n1 R n2) (m1 = n1,m2 = n2) : (4)(We use in�x notation for binary relations.) Writing s� s0 for the union of disjoint sets,note that R � R0 : s1 � s01
 s2 � s02 when R : s1
 s2 and R0 : s01
 s02. The identity(partial) bijection, Is : s
 s, is given by:n1 Is n2 , n1 = n2 : (5)De�nition 3.1 For each type � we de�ne a family of binary relations between canonicalexpressions (R� � Can�(s1)�Can�(s2) j R : s1
 s2)by induction on the structure of � as in (7), (8) and (9) below; clause (9) makes use ofassociated relations between expressions, R� � Exp�(s1)� Exp�(s2) de�ned by (6).M1 R� M2 , 9R0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) : (6)s1 `M1 +� (s01)C1 ^ s2 `M2 +� (s02)C2 ^C1 (R�R0)� C2b1 Ro b2 , b1 = b2 (7)n1 R� n2 , n1 R n2 (8)�x : � : M1 R�!�0 �x : � : M2, (9)8R0 : s01
 s02; C1 2 Can�(s1 � s01); C2 2 Can�(s2 � s02) :C1 (R�R0)� C2)M1[C1=x] (R �R0)�0 M2[C2=x](It is implicit in (6) and (9) that each s0i is required to be disjoint from si.)Clause (9) of the de�nition is a syntactic version of O'Hearn and Tennent's approachto relational parametricity in [16]. The main interest in the de�nition lies in clause (6)where the relation R� on expressions is de�ned in terms of the relation R� on canonicalexpressions. This clause embodies a form of `representation independence' for the dynam-ically created local names. (Cf. Plotkin and Abadi's parametricity schema for existentialtypes [19, Theorem 7].)The family (R� j �) is a form of binary `logical relation' for nu-calculus expressions.Since we choose in (7) to take the logical relation to be the identity at the ground typeo, the whole family is determined by what we take at the other ground type �. We wishrelated expressions to be mapped to related expressions by any nu-calculus function, andwe have to impose the restriction (4) on the relation R to ensure this property holds for thefunction testing equality of names. The following proposition expresses this fundamentalproperty of our notion of logical relation. It is proved by induction on the derivation oftyping assertions.

Proposition 3.2 Suppose s; [x1 : �1; : : : ; xk : �k] `M : � :Then for all R : s1
 s2 with s1 and s2 disjoint from s, and for all Ci 2 Can�i(s � s1)and C 0i 2 Can�i(s� s2) (i = 1; : : : ; k) one has k̂i=1Ci (Is �R)�i C 0i!)M [C1=x1; : : : ; Ck=xk] (Is �R)� M [C 01=x1; : : : ; C 0k=xk]where Is is the identity partial bijection, de�ned in (5).Theorem 3.3 (Termination) For all closed expressions M , of type � and with freenames in the set s say, there is some set of names s0 (disjoint from s) and some canonicalexpression C 2 Can�(s� s0) such that s `M +� (s0)C.Proof The k = 0 case of Proposition 3.2 implies that M (Is)� M for all M 2 Exp�(s).Termination follows from this, given the de�nition of R� in (6). �We now show how the fundamental property of our notion of logical relation embodiedin Proposition 3.2 can be used to establish observational equivalences.De�nition 3.4 (Applicative equivalence) We say that two expressions M1;M2 2Exp�(s) are applicatively equivalent if M1 (Is)� M2.Theorem 3.5 Applicative equivalence implies observational equivalence.Proof Suppose M1 (Is)� M2. We employ Lemma 2.3 to see that M1 and M2 areobservationally equivalent. By (6) there is some R : s1
 s2, and C1; C2 with s ` Mi +�(si)Ci (i = 1; 2) and C1 (Is �R)� C2. Then for any �x : � : B 2 Can�! o(s), applyingProposition 3.2 we get B[C1=x] (Is �R)o B[C2=x]. Hence by (6) again, there is someR0 : s01
 s02 and b1; b2 with s� si ` B[Ci=x] +o (s0i)bi (i = 1; 2) and b1 (Is �R�R0)o b2,i.e. with b1 = b2 (by (7)). Applying the rules in Table 2, we deduce that s ` (�x : � :B)Mi +o (si � s0i)bi with b1 = b2. Thus Lemma 2.3 and the deterministic nature of theevaluation relation (Lemma 2.1) imply that M1 �� M2. �Example 3.6 Theorem 3.5 provides quite a powerful method for establishing some ob-servational equivalences, since (Is)� is much easier to deal with than ��. For example,the observational equivalence (2) can be established by this method. For withC1 def= �x : � : (x = n) and C2 def= �x : � : falseit is not hard to see that C1 (I; �R)�! o C2 where R : fng
 ; is necessarily the emptypartial bijection; hence �n : C1 (I;)�! o C2, as required.However, not every observational equivalence can be established via Theorem 3.5, asthe following example shows. Thus applicative equivalence is in general a strictly weakerrelation than observational equivalence.

Example 3.7 The pair of second order expressions in (3) are observationally equivalent(this can be established via the denotational methods sketched in Sect. 4), but they are notrelated by (I;)(�! o)! o. For the only possible partial bijection R : fn; n0g
 ; is R = ;;but �f : �! o : (fn = fn0) and �f : �! o : true are not related by (I; � R)(�! o)! o,because for the canonical expressions C1 and C2 de�ned in Example 3.6, C1 (I; �R)�! oC2, whereas it is not the case that (fn = fn0)[C1=f] (I; �R)o true[C2=f].Nevertheless, the converse of Theorem 3.5 does hold when � is a �rst order type, i.e. ofthe form �k!�k�1!� � �!�0 with each �i either � or o.Theorem 3.8 Observational equivalence coincides with applicative equivalence for expres-sions of �rst order types.Proof We have to show that s `M1 �� M2 implies M1 (Is)� M2 for �rst order �. Herewe merely indicate the key idea of the proof. By Theorem 3.3, s `Mi +� (si)Ci for someCi 2 Can�(s� si) (i = 1; 2). De�ne R � s1� s2 to consist of those pairs of names (n1; n2)for which there is some s; x : � ` N : � with s� si ` N [Ci=x] +� (s0i)ni for each i = 1; 2.The assumption that s `M1 �� M2 implies that R is a partial bijection. For this R (andusing the fact that � is �rst order) it is possible to show that C1 (Is �R)� C2. ThusM1 (Is)� M2. �Given that the observable behaviour of nu-calculus expressions of such �rst order typescan be complicated (see Example 2.5), the theorem is non-trivial. As a corollary of thetheorem we obtain the following result.Corollary 3.9 The relation of observational equivalence between nu-calculus expressionsof �rst order type is decidable.Proof In view of the theorem, it su�ces to see that the relations R� are decidable for�rst order �. For this, it is su�cient to establish the decidability of the relations R� (for�rst order �) since Theorem 3.3 ensures that we can calculate s01 and s02 in clause (6),and then there are only �nitely R0 for which a decidable property has to be checked. Thedecidability of R� can be established by induction on the structure of the �rst order type�, the base cases being trivial, and the induction step following from the fact that clause(9) can be simpli�ed as follows when � 2 fo; �g:C1 Ro!�0 C2 , 8b 2 ftrue; falseg : C1b R�0 C2bC1 R�!�0 C2 , 8(n1; n2) 2 R : C1n1 R�0 C2n2^ C1n (R� Ifng)�0 C2nwhere in the last clause n is some name not in s1 [s2. �4 Denotational semanticsIn this section we sketch our approach to the denotational semantics of the nu-calculus andsummarize the main results. We make use of Moggi's monadic approach to denotationalsemantics [12]. The nu-calculus will be modelled in cartesian closed categories C equippedwith, amongst other things, a strong monad T . Our notation for this categorical structureand its associated internal language (the `computational lambda calculus') will be as in

[17, Sect. 2]. In particular, nu-calculus function types and associated expressions areinterpreted via Moggi's call-by-value translation of simply typed lambda calculus intocomputational lambda calculus: see [17, Table 5]. To model the type of booleans weassume the coproduct 1+1 of the terminal object 1 exists in C. For adequacy of the model(Theorem 4.2) we require C to have all �nite limits and for the coproduct 1+1 to be stableand disjoint (and hence also for C to have a strict initial object 0); these are standardconcepts from categorical logic|see [13, Chap. 1, Sect. 4]. To model the type of nameswe assume C contains a decidable object N . Decidability means that there is morphismeq : N �N �! 1 + 1 classifying the diagonal subobject of N , i.e. hid; idi : N � N � Nis the pullback along eq of the left coproduct insertion true : 1 �! 1 + 1. The morphismeq is used to interpret the equality test on names (as in the de�nition of [[op(e1; e2)]] in[17, Table 5]). It remains to explain how local name declaration expressions �n : M aremodelled.In general, the use of categorical monads permits abstraction away from a detailedrepresentation of state in denotational descriptions of languages with imperative features(see Wadler [22]). For the nu-calculus, the relevant notion of state is hardly very com-plicated. Nevertheless we �nd that the type-theoretic distinction between denotationsof values (expressions in canonical form) and denotations of computations (arbitrary ex-pressions) enforced by a monad is helpful, since it allows us to identify explicitly andsimply what structure is needed in C to give a static meaning for the key dynamic as-pect of the nu-calculus, the action of computing a new name. We do this by requir-ing T (N) to possess a global element new : 1 �! T (N) such that for any morphismse : X � (1 + 1) �N �N �! T (X 0), f : X �N �N �! T (X 0) and g : X �! T (X 0) thefollowing equations in the internal language of C are satis�ed:[x : X;n : N] ` let n0(new in e(x; eq(n; n0); n; n0) = (10)let n0(new in e(x; false; n; n0)[x : X;n : N;n0 : N] ` let n(new in (let n0(new in f(x; n; n0)) = (11)let n0(new in (let n(new in f(x; n; n0))[x : X] ` let n(new in g(x) = g(x) (12)where in (10) false : 1 �! 1+1 is the right coproduct insertion. These equations could beexpressed equivalently, but less comprehensibly, via commutative diagrams asserting theequality of various morphisms in C. Equation (10) expresses statically the fundamentalrequirement that evaluating new produces something new. Equations (11) and (12) cor-respond respectively to properties (ii) and (i) in Corollary 2.4. (They are automaticallysatis�ed if the monad is respectively commutative and a�ne|see [5].)Given the above structure in the category C, for each nu-calculus type � one gets anobject [[�]] of C by de�ning:[[o]] def= 1 + 1 [[�]] def= N [[�!�0]] def= [[�]]! T ([[�0]]) :And for each valid typing assertion s;� ` M : � one can de�ne, by induction on thestructure of M , a morphism in C of the form[[M]] : [[s]]� [[�]] �! T ([[�]])where [[s]] and [[�]] are the �nite products[[s]] def= Yn2sN [[�]] def= Yx2dom(�)[[�(x)]] :

In particular, each M 2 Exp�(s) gives rise to a morphism [[M]] : N jsj �! T ([[�]]) (wherejsj denotes the number of elements of the �nite set s). When M is a canonical expression,this morphism factors through the unit of the monad at [[�]], � : [[�]] �! T ([[�]]).Proposition 4.1 (Soundness) Using �nite limits in C, for each s form the subobject6=(s)� N jsj in C corresponding to the conjunction[x1 : N; : : : ; xjsj : N] ` ^1�i6=j�jsj(eq(xi; xj) = false) :Then for each valid evaluation s `M +� (s0)C, the morphisms[[M]] �6=(s) def= �6=(s)� N jsj [[M]]�! T ([[�]])�[[�s0 : C]] �6=(s) def= �6=(s)� N jsj [[�s0:C]]�! T ([[�]])�are equal (i.e. [[M]] and [[�s0 : C]] are equal when applied to distinct jsj-tuples). Inparticular, when s = ; (so that M contains no free names), ; ` M +� (s0)C implies[[M]] = [[�s0 : C]].This Proposition together with the termination property Theorem 3.3 and the compo-sitional nature of the denotational semantics yield:Theorem 4.2 (Adequacy) Let the category C be a model of the nu-calculus as describedabove which is non-degenerate, in the sense that 0 6�= 1 and � : (1 + 1) �! T (1 + 1) isa monomorphism. Then for all M1;M2 2 Exp�(s), [[M1]] �6=(s)= [[M2]] �6=(s) implies thats `M1 �� M2.Thus instances of this kind of categorical structure can be used to establish the validityof observational equivalences via denotational equalities.Examples 4.3 We list, without giving details, various examples of models satisfying therequirements of Theorem 4.2.(i) C is the category of pullback preserving functors from the category Iof �nite ordinalsand injective functions to the category Set of all sets and functions. The monad Tis one of Moggi's `dynamic allocation' monads [11]: the value of T at a functor X isthe functor T (X) sending the �nite ordinal n to the quotient setT (X)(n) def= f(m;x) j m 2 N ^ x 2 X(n+m)g=�where (m1; x1) � (m2; x2) if and only if there are injective functions fi : mi � m(i = 1; 2) with X(idn + f1)(x1) = X(idn + f2)(x2). The object of names N is theinclusion functor I ,! Set. Although this model is adequate, it is far from beingfully abstract: for example neither pair of observationally equivalent expressions inExample 2.8 is equated in this model.(ii) The model in (i) can be modi�ed to incorporate O'Hearn and Tennent's semanticnotion of `relational parametricity' [16, Sect. 6], where the relations one takes for Iarethe partial bijections used in Sect. 3. A dynamic allocation monad can be de�ned onparametric functors which mimicks the key de�nition (6) of Sect. 3. Drawing upon

Theorem 3.8, we are able to show that the resulting model is fully abstract for �rstorder expressions, i.e. in this model the implication in Theorem 4.2 can be reversedwhen � is �rst order. However, the model is not fully abstract for the whole of thenu-calculus, since in fact the expressions in (3) are not equated.(iii) The category C in (i) is known to be equivalent to the category of continuous G-setsfor the topological group G of permutations of N topologized as a subspace of Bairespace NN (see [6, Lemma 1.8] for example). In this guise, one can modify the modelin (i) by considering G-PERs instead of G-sets|that is, continuous G-sets given byquotienting N by a partial equivalence relation, andG-equivariant functions which aretracked by partial recursive functions. This model gives a means of establishing theobservational equivalence (3), since it can be shown that no morphism to T (1 + 1)in it distinguishes between the denotations of these two terms (even though thedenotations are in fact distinct). Observational equivalence then follows by applyingLemma 2.3.None of the above models is fully abstract for the whole of the nu-calculus, in the sensethat the implication in Theorem 4.2 can be reversed (i.e. [[M1]] �6=(s)= [[M2]] �6=(s) holdsin the model if and only if s ` M1 �� M2). Indeed we do not know of any `concrete'model that is fully abstract. However we conjecture that a term-model construction on (asuitable extension of) the syntax of the nu-calculus yields an instance of the categoricalstructure which is fully abstract.AcknowledgementsWe are grateful to Eugenio Moggi, Peter O'Hearn, Allen Stoughton and Robert Tennent formaking their unpublished work available to us. We have bene�ted frommany conversationswith them on the topic of this paper.References[1] S. Abramsky. The Lazy Lambda Calculus. In D. Turner (ed.), Research Topics inFunctional Programming (Addison-Wesley, 1990), pp 65{116.[2] H.-J. Boehm. Side-e�ects and aliasing can have simple axiomatic descriptions, ACMTrans. Prog. Lang. Syst. 7(1985) 637{655.[3] M. Felleisen and D. P. Friedman. A Syntactic Theory of Sequential State, TheoreticalComputer Science 69(1989) 243{287.[4] F. Honsell, I. A. Mason, S. Smith and C. Talcott. A Variable Typed Logic of E�ects.In Proc. Computer Science Logic 1992, Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1993), to appear.[5] B. Jacobs. Semantics of Weakening and Contraction. Preprint, May 1992.[6] P. T. Johnstone. Quotients of Decidable Objects, Math. Proc. Camb. Philos. Soc.93(1983) 409{419.[7] I. A. Mason and C. Talcott. References, local variables and operational reasoning.In Proc. 7th Annual Symp. on Logic in Computer Science, Santa Cruz, 1992 (IEEEComputer Society Press, Washington, 1992) pp 186{197.

[8] A. Meyer and K. Sieber. Towards fully abstract semantics for local variables: prelim-inary report. In Conf. Record 15th Symp. on Principles of Programming Languages,San Diego, 1988 (ACM, New York, 1988) pp 191-203.[9] R. Milner. Fully abstract models of typed �-calculi. Theoretical Computer Science4(1977) 1{22.[10] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML (MIT Press,1990).[11] E. Moggi. An Abstract View of Programming Languages. Lecture Notes, July 1989,46pp.[12] E. Moggi. Notions of Computation and Monads, Information and Computation93(1991) 55{92.[13] M. Makkai and G. E. Reyes. First Order Categorical Logic, Lecture Notes inMath. Vol. 611 (Springer-Verlag, Berlin, 1977).[14] P. W. O'Hearn. A Model for Syntactic Control of Interference, Mathematical Struc-tures in Computer Science, to appear.[15] P. W. O'Hearn and R. D. Tennent. Semantics of Local Variables. In M. P. Four-man, P. T. Johnstone and A. M. Pitts (eds), Applications of Categories in ComputerScience, L.M.S. Lecture Note Series 177 (Cambridge University Press, 1992), pp 217{238.[16] P. W. O'Hearn and R. D. Tennent. Relational Parametricity and Local Variables. InConf. Record 20th Symp. on Principles of Programming Languages, Charleston, 1993(ACM, New York, 1993) pp 171{184.[17] A. M. Pitts. Evaluation Logic. In G. Birtwistle (ed.), IVth Higher Order Workshop,Ban�, 1990, Workshops in Computing (Springer-Verlag, Berlin, 1991), pp 162{189.[18] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical com-puter Science 1(1975) 125{159.[19] G. D. Plotkin and M. Abadi. A Logic for Parametric Polymorphism. In Proceedingsof the Conference on Typed Lambda Calculus and its Applications, Utrecht, 1993,Lecture Notes in Computer Science Vol. 664 (Springer-Verlag, Berlin, 1993) pp 361-375.[20] J. C. Reynolds. Syntactic Control of Interference. In Conf. Record 5th Symp. onPrinciples of Programming Languages, Tucson, 1978 (ACM, New York, 1978) pp 39{46.[21] R. D. Tennent. Semantic Analysis of Speci�cation Logic, Information and Computa-tion 85(1990) 135{162.[22] P. Wadler. ComprehendingMonads. In Proc. 1990 ACM Conf. on Lisp and FunctionalProgramming (ACM, New York, 1990) pp 61{78.

