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Abstract. Working in the fragment of Martin-L6fs extensional type theory ]-12] which has 
products (but not sums) of dependent types, we consider two additional assumptions: firstly, that 
there are (strong) equality types; and secondly, that there is a type which is universal in the sense 
that terms of that type name all types, up to isomorphism. For such a type theory, we give 
a version of Russell's paradox showing that each type possesses a closed term and (hence) that all 
terms of each type are provably equal. We consider the kind of category theoretic structure which 
corresponds to this kind of type theory and obtain a categorical version of the paradox. A special 
case of this result is the degeneracy of a locally cartesian closed category with a morphism which is 
generic in the sense that every other morphism in the category can be obtained from it via pullback. 

Introduction 

At the heart of the categorical approach to logic lies the ability to identify 
certain kinds of logical theory with particular kinds of category-theoretic 
structure. Indeed, the search for such logic-category correspondences has 
formed a major part of the subject to date. Once achieved, such an 
identification has its uses in both directions: sometimes algebraic techniques 
can be applied to the category-theoretic structures to yield results about the 
logical theoreis; at other times proof-theoretic or model-theoretic results for the 
logic yield new properties of the categories involved. This note illustrates in 
a minor way this latter aspect of the subject. Consider the following 
category-theoretic result: 

PROPOSITION. Let C be a locally cartesian closed category (that is, C has 
finite limits and for each object X in C, the slice category C /X  is cartesian closed). 
Suppose further that C contains a generic family, which by definition is 
a morphism t: G-~U with the property that any other morphism f:  A ~ X  is 
a pullback of  t along some morphism X--> U. Then it is the case that C is 
degenerate: every object in C is isomorphic to the terminal object. 

We will give a proof of this proposition which relies upon the correspon- 
dence established by Seely [14] between locally cartesian closed categories and 
theories over a (strong) version of Martin-L6fs system [12] of dependent types, 
with sums, products and equality types. Recall that under this correspondence 
the dependent types A [x] [x e X] of a theory are modelled by morphisms 
A ~ X  in the category and substitution is modelled by (chosen) pullback 

1 The financial support of the Royal Society in London is gratefully acknowledged. 
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operations (which we assume given when specifying the structure of a locally 
cartesian closed category). Then the assumption that C has a generic family 
t: G-~U translates into the assumption ,that the type theory possesses 
a universal type (o r "type of all types") in the following sense: 

There is a constant type Type whose terms are intended to name all the 
types, up to isomorphism; Type is modelled by the object U in C. There is 
a dependent type T[u] giving the actual type named by u e Type; this is 
modelled by t: G ~ U  in C. Whenever A is a type derivable in the theory, 
possibly dependent on some variables ~ say (and modelled by A ~ X  in C), 
a constant nA(~) e Type is introduced along with function constants and axioms 
to make A [2] isomorphic to T[na(~)] (rather than actually equal to  it). Since 
the result of substituting nA(~2 ) for u in T[u] is modelled in C by forming the 
pullback of t :  G ~ U  along the morphism f: X ~ U  modelling na(YO, the 
provable isomorphism A [2] ~ T [nA(2)] in the type theory means that in C the 
morphism A--,X is isomorphic to the (chosen) pullback of t alongf(an d hence 
is a pullback of t along f). 

The proof of the proposition proceeds by giving a type-theoretic version of 
Russell's paradox. In this version, the roles of equality and universally 
quantified predicates are played as usual by equality and product types. The 
role of the powerset operation is played by the function type ( - ) - - .  Type; and 
the role of negation is played by the function type ( - ) ~  A, where A is a fixed, 
but arbitrary type. In this form, the paradox produces (via an application of 
Cantor's familiar diagonal argument) a closed term of type A. Since A was 
arbi4!rary, we conclude that all types possess closed terms; since in particular 
this can be applied to equality types, we conclude further that all terms of any 
particular type are provably equal. Back in the locally cartesian closed 
category, this means that all objects possess aglobal section and that all parallel 
pairs of morphisms are equal - from which degeneracy follows immediately. 

The type,theoretic version of the paradox we present does not use 
de/pendent sums. (A slightly simpler argument could be given using sums.e) As 

/a result, we in fact prove a sharper result (Proposition 1.5) of which the above 
proposition is a special case. 

The use we make of Russell's paradox in this paper should be contrasted 
with Girard's proof [6] of the inconsistency of Martin-L6fs original theory of 
types with a universal type, which used a type theory version of the 
Burali-Forti paradox. Recently there has been renewed interest from the 
computer science community in  type theories with a universal type, but 
without equality types: see [2], [13] and [3]. Coquand [4] and Howe [7] 
analyse Girard's version of the paradox and show in particular that it can be 
carried out in type theory with just dependent products and a universal type. 
So such a type theory is "inconsistent" in the sense that every type possesses 

z Added in proof, such an argument has been given independently by Boom [1]. We are 
grateful to A. S. Troelstra for bringing the existence of this preprint to our attention. 
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a closed term; but since there are no equality types, it does not follow as above 
that al l terms areprovably equal. Indeed there are highly non-trivial models of 
this kind of type theory: see [3], [9] and [15] for example. 

Our version of Russell's paradox gives an inconsistency proof considerably 
less complex than Girard's paradox, but the argument makes use of equality 
types satisfying strong rules (modelled categorically by diagonal morphisms 
A = (id, id): A - - . A  x xA). It would be interesting to know whether a version 
of the argument can be given which does not use these strong equality types, 
for the following reason. Currently it is not known whether a fixpoint 
combinator is definable in type theory with just dependent products and 
a universal type. Howe [7] establishes that the proof of Girard's paradox can 
be made to yield a term which is a "looping" combinator, but definitely not 
a fixpoint combinator. Now the paradox we give here produces a closed term 
of an arbitrary type A by establishing the stronger property that B --- (B ~ A) 
for some B constructed from A. As we recall below (in 2.1), such an 
isomorphism implies that A has a fixed point property (so that in particular the 
fixed point of the identity on A yields a closed term of type A). Thus if such 
a version of Russell's paradox were possible in the fragment without strong 
equality types, it would yield a fixpoint combinator for that fragment. 

1. Types and categories 

We will be working with the fragment of Martin-L6fs extensional theory of 
types [12] that concerns product and equality types. We refer the reader to 
Troelstra [16], who provides a useful formalization of Martin-L6fs systems;. 
for convenience we will adopt most of the notation used there. Thus 
judgements-in-context will be written 

F ~ O ,  

where F is a context and O is of the form "A type", "s ~ A", "A = B", or 
"s = t e A". However, the equality type for s, s 'e  A will be denoted by I A Is, s'] 
(rather than by I(A, s, 0); and the application of a term s e 1-I x e A.B of product 
type to a term t ~ A will be denoted simply by the juxtaposition st (rather than 
by Ap(s, t)). 

The categorical semantics we use for these theories is based upon the 
approach developed in 1-15], which in turn is a refinement of the kind of 
semantics presented in [!4] where types B[x]  depending on x e A  are 
interpreted as morphisms ~B[x] I x ~ A~ ~ ~A~ in a category. For the kind of 
type theory considered by Seely in [14], the categories are locally cartesian 
closed and any morphism can appear as the interpretation of a type. For 
other (simpler) type theories, the morphisms interpreting types belong to 
a distinguished class with given properties. We refer the reader to [9, Section 2] 
for a discussion of this kind of semantics and its relation to similar approaches 
(such as that of Cartmell [5]). 
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1.1. Product types. As explained in [9, Section 2], systems of dependent 
types closed only under the formation of products can be modelled by 
a category C with finite products together with a collection A of morphisms in 
C satisfying the following two conditions (where for each X e C, A (X) denotes 
the full subcategory of the slice category C/X whose objects are the morphisms 
in A with codomain X): 

(1) I f  a: A ~ X  is in A, f:  Y ~ X  is any morphism in C and 

g 
B >A 

Y,  >X 
f 

is a pullback square, then b is also in A. Moreover, there is a pullback square 
for each such a and f: we will denote by f*(a): Y• xA-~ Y the result of 
pulling a back along f 

(2) I f  a: A ~ X is in A, then the pullback functor a*: A (X) ~ A (A) (whose 
existence is guaranteed by (1)) has a right adjoint, denoted by 

a,:  A ( A ) ~  A(X). 

Moreover, these right adjoints satisfy the Beck-Chevalley condition for 
pullback squares in C, namely that for the pullback square (,), the canonical 
natural transformation f * o a ,  ~ b ,  og* is an isomorphism. 

The constant types A (those depending on no free variables) are modelled by 
objects ~A~ in C for which the unique morphism from ~A~ to the terminal 
object I, is in A; types B[x] depending on a variable of a constant type A, are 
modelled in C by a-morphisms with codomain ~A~, i.e. by objects of A(~A~); 
and so on for further type dependencies. If B(x) is modelled by the A-morphism 
~B[x]lx ~ A~ ~ ~A~, then terms t ~B[x] are modelled by morphisms 
~A~-~B[x][x~A~ in C whose composition with ~B[x]Ix~A~-~A~ is the 
identity on ~A~; the operation of substituting a term for a variable in a type is 
modelled via the pullbacks of (1). Given C[x, y] dependent on x ~ A  and 
y ~ B [x], modelled by A-morphisms c: ~C [x, y] Ix ~ A, y ~ B [x]~ ~ ~B [x] ix 
~A~ and b: [~B[x]lx~A~ ~ A ~ ,  the product 1--[yEB[x].C[x, y] is modelled 
by the A-morphism b,(e) given by (2). 

If C and A are as above, then there is a corresponding type theory with 
products which we can use to describe appropriate properties of the category: 
the theory will have type constants naming the morphisms in A and function 
constants of various types naming the morphisms in C. From the above 
discussion it is clear that the only objects X of C which can be denoted in this 
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type theory are those for which there is a finite composable chain of 
A-morphisms starting with X and ending with the terminal object 1. Therefore 
we impose a further condition: 

(3) For each object X in C, the unique morphism X---, 1 belongs to the class 
of  morphisms obtained from A by closing under composition in C. 

1.2. Equality types. If now we consider extensional type theories with 
equality types IA[X, X'] [A type, x e A, x'~ A] (satisfying the strong rules of 
[123 or [-143) as well as products, then the corresponding condition on A is: 

(4) For each morphism a: A ~ X in A,forming the pullback of  a against itself 

A x x  A '> A 

A >X 
Q 

the diagonal morphism A: A ~ A x x A is in A. (A is the unique morphism 
whose composition with both rq and rc z is the identity on A.) 

Thus if a: A ~ X  models a type A(x) dependent on x e X ,  then 
~ A [ x ] l x e X ,  y e A ( x ) ~ A [ x ] [ x e X ~  is rc2: A x x A - ~ A  

and  ~Iatxj[Y, Y ' ] l x e X ,  y e A [ x ] ,  y' e A [ x ] ~ [ A [ x ] [ x e X ,  y e A [ x ] ~  
is A: A ~ A x x A .  

1.3. REMARKS. Let us note some properties of the categories A (X) when 
C and A satisfy conditions (1) to (4): 

(i) The main point of condition (1) is that pullbacks in C of A-morphisms 
along arbitrary morphisms exist and are again in A. However, the 
condition is phrased in such a way as to imply also that A is "replete", i.e. 
that the composition of an A-morphism on either side with an isomor- 
phism again results in an A-morphism. 

(ii) Conditions '(1) to (4) do not force the existence of anything: the empty 
collection of morphisms in the trivial category 1 (with one object and one 
morphism) satisfy the conditions. (Note that in (3), by definition the class 
of morphisms obtained from A by closing under composition contains all 
identity morphisms, since these are given by finite composable chains of 
A-morphisms of zero length !) 

(iii) We are not assuming that A is closed under composition: such an 
assumption would correspond to having dependent sums satisfying strong 
rules in the type theory -- see Section 2 of [9], which contains a discussion 
of the categorical semantics of dependent sums for various strengths of 

8 - -  S t u d i a  L o g i c a  3/89 
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rules. Since A is not necessarily closed under composition, condition (1) 
does not imply that each category A(X) has binary products. Never- 
theless, a special case of condition (2) (corresponding to the formation of 
the exponential A ~ B -- I-I x ~ A.B in the type theory) gives objects which 
are categorical exponentials for whatever products there are: thus given 
a: A ~ X  and b: B ~ X  in A, we can form the object a,(a*(b)) in A(X), 
which we denote by (A ~ x  B) ~ X .  (Whether or not the product functor 
( - )  x x A: A (X) ~ A (X) exists, the morphism (A ~ x  B) ~ X has a univer- 
sal property in  C by virtue of being the value of the right adjoint a ,  at 
a*(b).) 

1.4. Universal type. As explained in the Introduction, we consider the 
theory of the kind of universal type which is a type of names of types with every 
type isomorphic to a named one. Thus the rules are 

F ~ A type 

Type type u ~ Type ~ T [u] type F ~ n A Oc) ~ Type 

F ~ A type 

I" ~ i A ('A) e A ~ T In  A (3~)'] 

F ~ A type 

F ~ j A ( X ) o i A ( X )  = i d e a  

F ~ A type 

r =~JA ('~) E T In  A (3r --~ A 

F => A type 

F ~ iA(~)OjA(Y) = id ~ T I-nA(~)] 
where ~ is the list of variables occurring in the context F, id abbreviates 2x. x, 
jA(X)OiA(X) abbreviates 2y.jA(x)(iA(x)y ) and similarly for ia(2)Oja(2). It is 
convenient to write 

F ~ A ~_ r[nA(~)] 

for the combined conclusions of the last four rules. 
The condition on C and A corresponding to these rules is: 

(5) There is an object U in A(1) and an object t: G ~ U  in A(U) with the 
property that for any X ~  C and any a: A--+X in A(X), there is some 
f:  X ~ U in C with f*(t)  _~ a in A(X); in other words, t has the property that 
any other morphism in A can be obtained from it by a pullback. 

Applying condition (5) to the A-morphism U ~ 1 gives a morphism u: 1 ~ U 
such that the pullback of t along u is U ~ I. (Thus U contains a name for itself.) 
Also, applying (4) to U ~ 1 gives that the diagonal A: U--, U x U is in A, 
Pulling this diagonal back along (u, u): 1 ---, U x U gives that the identity on 
I is in A. Hence by (1), A contains all isomorphisms. In fact A consists only of 
isomorphisms, because we can prove: 

1.5. PROPOSITION. Let C be a category with finite products and A a collec- 
tion of  morphisms o f  C Satisfying conditions (1) to (5) above. Then C is 
degenerate: every object in C is isomorphic to the terminal object. 
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The proposition mentioned in the Introduction is the special case when 
A consists of all morphisms in C. (When A = morC, (1) and (2) are equivalent 
to C being locally cartesian closed; cf. Remark 1.3(iii).) 

2. Proof of the proposition 

2.1. Fixed point properties. The degeneracy of C in Proposition 1.5 will be 
demonstrated by establishing that the objects a: A--> X of the categories A (X) 
(Xs  C) have internal fixpoints - which is to say that there is a morphism 
Y: ( A - . x  A ) ~ A  in A(X) which is equal to the composition of 
(id, Y): (A -~x A) ~ (A ~ x  A) x x A with the evaluation morphism 
ev: (A -~x A) x A ~ A .  In other works there is a term Y ( f ) e A  in the type theory 
with 

fE  A ~ A ~ f ( Y ( f ) )  = Y ( f )  ~ A. 

The existence of internal fixed points can be deduced from several stronger 
properties on an object: see [15, Section 1.5], [8] and [10] for several such 
properties. The one that concerns us here is that of reflexivity. We will say that 
a: A ~ X  in A(X) is reflexive if there is some other object B ~ X  in A(X) and 
a retraction 

B 

(B-xA) (B-xA) 

X 

Given such a retraction, we can take the fixpoint operator Y: (A ~ x  A) -~ A to 
be ~d( i (2y . f (d (y ) ) ) )eA[ feB~A~,  where d(y) is  the diagonal term r(y)y. 

The degeneracy of C follows from the combination of the existence of such 
fixpoint morphisms and conditions (3) and (4) in Section 1. For we can apply 
Y to the global element of (A ~ x  A ) - ~ X  determined by the identity on A, to 
obtain a morphism X ~ A  whose composition with a is the identity on 
X (which is to s ay  in the type theory that all types possess closed terms). 
Applying this observation to the monomorphism A : A ~ A x x A (which we can 
do by virtue of condition (4)), we conclude that it is actually an isomorphism; 
consequently a is a monomorphism and hence also an isomorphism (since it 
has a right inverse). Thus A consists entirely of isomorphisms and therefore by 
(3) every object is isomorphic to the terminal object. 

So to complete the proof of Proposition 1.5 it remains to construct, for each 
A ~ X  in A another object B - * X  of A(X) with (B-*xA) a retract of B over X. 
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In fact we will construct B ~ X so that (B ~ x A )  is isomorphic to B over X. The 
construction will be specified using the type theory corresponding to C and 
A as in Section 1. Thus for each derivable judgement 

F ~ A type 

we will give a type expression B for which  one also has 

F ~ B type and F ~ B -~ (B -~ A). 

(Recall from 1.4 that the second of these expressions is a short-hand for 
asserting the existence of term expressions l and m for which one can prove 

F ~ I E B  ~ ( B ~  A), F ~ r n e ( B ~  A ) ~  B, 

F = ~ I o m = i d ~ ( B ~ A ) ~ ( B ~ A )  and F ~ m o I = i d e B - , , B . )  

2.2. Cantor's diagonal argument. To motivate the type theory argument 
we are about to give, we first consider the result in (constructive) higher order 
predicate logic on which it is based. The kind of categories which correspond to 
theories in this logic are the elementary toposes: see [11, Part  II]. If E is a topos 
(with subobject classifier (2) in which there is an object E and a monomorphism 
m: ( 2 z ~ 3 ,  then we can carry out Cantor's diagonal argument to see that E is 
necessarily degenerate. Indeed, w e m a y  do this in the internal logic of  E by 
starting with either of the following formulas (i.e. terms of type (2) involving 
a free variable x of type ~: 

- = r e ( x ) - .  7 (x  x ) ) ,  

G(x) - = r e ( x )  A 7 ( x e X ) ) .  

These formulas give corresponding terms P - {x~Etrc(x)} and S = {xeEla(x)} 
of type t2 z, and E satisfies 

m(P) E P ~-* Tr(m(P)) 

*--, VX~f2Z(m(P) = re(X) ~ 7 (m(P)e X)) 

,--,VXst2Z(P = X--, 7(m(P)eX))  (since m is mono) 

7 (m (P) e P) 

and similarly Et=m(S)~S~-~7(m(S)~S). From either of these it is easy to 
deduce that E satisfies L (falsity) and hence is degenerate. 

2.3. Translation into type theory. 
argument in 2.2 we replace 

predicates 

universal quantification (V) 

In the type-theoretical version of the 

by dependent types, 

by dependent products (H), 
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and 

implication 

falsity 

negation (-t)  
the type of propositions (f2) 

the membership predicate (x e X) 

by function exponentiation, 

by an arbitrary type A, 

by ( - ) ~ A ,  

by Type, 

by the type T [ X x ] .  

It remains to find a type Z and an injection m: (~--+ Type)~-~. If we allow the 
use of dependent  sums, then we can take 

3 =_ ~ u e  Type. r [ u ]  and m: X e ( ~  Type)w.(ne,  ie(X))  e Z ,  

where ~b - (~ ~ Type), and n and i are as in 1.4. (As we remarked in 1.3 (iii), the 
assumption that  the type theory has dependent sums is equivalent to assuming 
that A is closed under compositi0~n in C; in this case the constant type N is 
modelled in C by the object G in condition (5) of 1.4.) With these definitions, 
the predicates n(x) and o-(x) in 2.2 are translated into the following dependent 
types: 

P Ix] - IJ  x ~ (~ ~ Type). (I z Ix, ( n~, i~ (X))  ] ~ (T  [Xx]  ~ A)) 
/ 

S [x] =- ~ X  e (~ --, Type). (Iz Ix, (he,  i~(X))] x (T [Xx]  --, A)). 

Starting with either of P[x]  or Six] ,  the analogue of the argument in 2.2 
produces a type B and an isomorphism B - (B--, A), as required. However, we 
can do without this use of dependent sums and still get the same' result. First 
note that 

~b = "~ ~ Type = ~ I - [ue  r y p e . ( r [ u ]  ~ Type) 

which does not involve a sum; so let us redefine �9 to be this product  type. We 
have also to remove the use of the equality type Iz at ~. Since each x ~ ~ is 
provably equal to a pair (u, v) where u e Type and v e T [u], the use of Ig can 
be replaced by separate uses of/Type and Irt,l. So for each type expression A, 
we can define a type expression in the product-equality fragment which will 
play the role of the predicate rc in 2.2, namely: 

R [u, v] - I Type [U, n~] ~ I~ X @ ~. (I r~,l [V, i~ (X)] -~ (T [(Xu) v] ~ A)) 

(where we have taken Irype[U, n,~] outside the product  because it does not 
depend on X). Using the rules of the product-equality fragment of the system 
M L  o in [16] augmented by the rules in 1.4 for the universal type, from 

F ~ A type 

we can prove 

F, u ~ Type, v ~ T [u] =~ R [u, v] type. 

This is not  completely trivial and in particular uses the rules concerning type 
equality judgements (the judgements of the form "A = B") to justify the 
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appearance of iv(v)e T[nv]  in the equality type for T[u].  Consequently we 
have: 

F, u ~ Type, v ~ T [u] => ng (u, x) ~ Type. 

Hence defining 

We have 

r - 2u.,~v. nR (u, v). 

r = * . r e O  and hence also F = ~ i v ( r ) e T [ n v ] .  

Using the properties of equality types and the fact that i v has an inverse 
(namely Jr), on substituting n v for u and iv(r ) for v in R [u, v] we find that the 
following isomorphisms are derivable in the context of F: 

g In v, ir (r)] 

- -  I Tvpe [nv, nv] ~ YI x e e.(IT[,r [iv(r), i v(X)] ~ ( r  [(Xnv)i v(r)] ~ A)) 

= ]7Ix e e.  (I v IX, r] -+ (T [(Xnv)i v (r)] ~ A)) 

r [(rnv)iv(r)] ~ A. 

But by definition of r, we have 

F ~ (my)iv(r) = nR(nv, iv(r)). 

Therefore 

F ~ T[(rnv)iv(r)] = T[nR(n  v, iv(r)) ] ~ R[nv ,  iv(r)] 

and hence from above we have that 

r ~ R [ n v ,  iv(r)] - (R[n  v, iv(r)] ~A) .  

Thus whenever we have F ~ A  type, we can define B - R[nv ,  iv(r)] and 
derive 

F ~ B type and F ~ B ~- (B-~A); 

and as we indicated in 2.L this is sufficient to prove Proposition 1.5. 
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