
Nominal Unification

Christian Urban a Andrew M. Pitts a Murdoch J. Gabbay b

aUniversity of Cambridge, Cambridge, UK
bINRIA, Paris, France

Abstract

We present a generalisation of first-order unification to the practically important case of
equations between terms involving binding operations. A substitution of terms for vari-
ables solves such an equation if it makes the equated terms α-equivalent, i.e. equal up to
renaming bound names. For the applications we have in mind, we must consider the simple,
textual form of substitution in which names occurring in terms may be captured within the
scope of binders upon substitution. We are able to take a “nominal” approach to binding in
which bound entities are explicitly named (rather than using nameless, de Bruijn-style rep-
resentations) and yet get a version of this form of substitution that respects α-equivalence
and possesses good algorithmic properties. We achieve this by adapting two existing ideas.
The first one is terms involving explicit substitutions of names for names, except that here
we only use explicit permutations (bijective substitutions). The second one is that the uni-
fication algorithm should solve not only equational problems, but also problems about the
freshness of names for terms. There is a simple generalisation of classical first-order uni-
fication problems to this setting which retains the latter’s pleasant properties: unification
problems involving α-equivalence and freshness are decidable; and solvable problems pos-
sess most general solutions.

Key words: Abstract Syntax, Alpha-Conversion, Binding Operations, Unification

1 Introduction

Decidability of unification for equations between first-order terms and algorithms
for computing most general unifiers form a fundamental tool of computational logic
with many applications to programming languages and computer-aided reasoning.
However, very many potential applications fall outside the scope of first-order uni-
fication, because they involve term languages with binding operations where at
the very least we do not wish to distinguish terms differing up to the renaming
of bound names. There is a large body of work studying languages with binders
through the use of various λ-calculi as term representation languages, leading to

Preprint submitted to Elsevier Science 16 July 2004

higher-order unification algorithms for solving equations between λ-terms mod-
ulo αβη-equivalence. However, higher-order unification is technically complicated
without being completely satisfactory from a pragmatic point of view. The reason
lies in the difference between substitution for first-order terms and for λ-terms.
The former is a simple operation of textual replacement (sometimes called graft-
ing [1], or context substitution [2, Sect. 2.1]), whereas the latter also involves re-
namings to avoid capture. Capture-avoidance ensures that substitution respects α-
equivalence, but it complicates higher-order unification algorithms. Furthermore it
is the simple textual form of substitution rather than the more complicated capture-
avoiding form which occurs in many informal applications of “unification modulo
α-equivalence”. For example, consider the following schematic rule which might
form part of the inductive definition of a binary evaluation relation ⇓ for the ex-
pressions of an imaginary functional programming language:

app(fn a.Y,X) ⇓ V

let a = X in Y ⇓ V
. (1)

Here X , Y and V are metavariables standing for unknown programming language
expressions. The binders fn a.(−) and let a = X in (−) may very well capture
free occurrences of the variable named a when we instantiate the schematic rule
by replacing the metavariable Y with an expression. For instance, using the rule
scheme in a bottom-up search for a proof of

let a = 1 in a ⇓ 1 (2)

we would use a substitution that does involve capture, namely

[X := 1, Y := a, V := 1]

in order to unify the goal with the conclusion of the rule (1)—generating the new
goal app(fn a.a, 1) ⇓ 1 from the hypothesis of (1). The problem with this is that
in informal practice we usually identify terms up to α-equivalence, whereas textual
substitution does not respect α-equivalence. For example, up to α-equivalence, the
goal

let b = 1 in b ⇓ 1 (3)

is the same as (2). We might think (erroneously!) that the conclusion of rule (1)
is the same as let b = X in Y ⇓ V without changing the rule’s hypothesis—
after all, if we are trying to make α-equivalence disappear into the infrastructure,
then we must be able to replace any part of what we have with an equivalent part.
So we might be tempted to unify the conclusion with (3) via the textual substitu-
tion [X := 1, Y := b, V := 1], and then apply this substitution to the hypothesis to
obtain a wrong goal, app(fn a.b, 1) ⇓ 1. Using λ-calculus and higher-order unifi-
cation saves us from such sloppy thinking, but at the expense of having to make
explicit the dependence of metavariables on bindable names via the use of function

2

variables and application. For example, (1) would be replaced by something like

app (fnλa.F a) X ⇓ V

letX (λa.F a) ⇓ V (4)

or, modulo η-equivalence

app (fnF) X ⇓ V

letX F ⇓ V
.

(5)

Now goal (3) becomes let 1 λb.b ⇓ 1 and there is no problem unifying it with the
conclusion of (5) via a capture-avoiding substitution of 1 for X , λc.c for F and 1
for V .

This is all very fine, but the situation is not as pleasant as for first-order terms:
higher-order unification problems can be undecidable, decidable but lack most
general unifiers, or have such unifiers only by imposing some restrictions [3];
see [4] for a survey of higher-order unification. We started out wanting to com-
pute with binders modulo α-equivalence, and somehow the process of making
possibly-capturing substitution respectable has led to function variables, applica-
tion, capture-avoiding substitution and βη-equivalence. Does it have to be so? No!

For one thing, several authors have already noted that one can make sense of
possibly-capturing substitution modulo α-equivalence by using explicit substitu-
tions in the term representation language: see [1,5–9]. Compared with those works,
we make a number of simplifications. First, we find that we do not need to use
function variables, application or βη-equivalence in our representation language—
leaving just binders and α-equivalence. Secondly, instead of using explicit substitu-
tions of names for names, we use only the special case of explicit permutations of
names. The idea of using name-permutations, and in particular name-swappings,
when dealing with α-conversion was described in [10] and there is growing evi-
dence of its usefulness (see [11–13], for example). When a name substitution is
actually a permutation, the function it induces from terms to terms is a bijection;
this bijectivity gives the operation of permuting names very good logical proper-
ties compared with name substitution. Consider for example the α-equivalent terms
fn a.b and fn c.b, where a, b and c are distinct. If we apply the substitution [b 7→a] (re-
naming all free occurrences of b to be a) to them we get fn a.a and fn c.a, which are
no longer α-equivalent. Thus renaming substitutions do not respect α-equivalence
in general, and any unification algorithm using them needs to take extra precautions
to not inadvertently change the intended meaning of terms. The traditional solution
for this problem is to introduce a more complicated form of renaming substitution
that avoids capture of names by binders. In contrast, the simple operation of name-
permutation respects α-equivalence; for example, applying the name-permutation
(a b) that swaps all occurrences of a and b (be they free, bound or binding) to the
terms above gives fn b.a and fn c.a, which are still α-equivalent. We exploit such
good properties of name-permutations to give a conceptually simple unification

3

algorithm.

In addition to the use of explicit name-permutations, we also compute symbolically
with predicates expressing freshness of names for terms. Such predicates certainly
feature in previous work on binding (for example, Qu-Prolog’s not free in
predicate [8], the notion of “algebraic independence” in [14, Definition 3], and the
“non-occurrence” predicates of [15]). But once again, the use of such a freshness
predicate based upon name swapping rather than renaming, which arises naturally
from the work reported in [10,16], gives us a simpler theory with good algorith-
mic properties. It is easy to see why there is a need for computing with freshness,
given that we take a “nominal” approach to binders. (In other words we use con-
crete versions of binding and α-equivalence in which bound entities are named ex-
plicitly, rather than using de Bruijn-style representations, as for example in [1,7].)
A basic instance of our generalised form of α-equivalence identifies fn a.X with
fn b.(a b)·X provided b is fresh for X , where the subterm (a b)·X indicates an ex-
plicit permutation—namely the swapping of a and b—waiting to be applied to X .
We write “b is fresh for X” symbolically as b # X; the intended meaning of this
relation is that b does not occur free in any (ground) term that may be substituted
for X . If we know more about X we may be able to eliminate the explicit permuta-
tion in (a b)·X; for example, if we knew that a # X holds as well as b # X , then
(a b)·X can be replaced by X .

It should already be clear from these simple examples that in our setting the appro-
priate notion of term-equality is not a bare equation, t ≈ t′, but rather a hypothetical
judgement of the form

∇ ` t ≈ t′ (6)

where ∇ is a freshness environment—a finite set {a1 # X1, . . . , an # Xn} of
freshness assumptions. For example

{a # X, b # X} ` fn a.X ≈ fn b.X (7)

is a valid judgement of our nominal equational logic. Similarly, judgements about
freshness itself will take the form

∇ ` a # t . (8)

Two examples of valid freshness judgements are {a # X} ` a # fn b.X and
∅ ` a # fn a.X .

The freshness environment ∇ in judgements of the form (6) and (8) expresses fresh-
ness conditions that any textual substitution of terms for variables must respect in
order for the right-hand side of the judgement to be valid after substitution. This
explicit use of freshness makes the operation of textual substitution respect our
generalised form of α-equivalence. For example, if we were naı̈vely to regard the
terms fn a.X and fn b.X as α-equivalent, then applying for example the capturing
substitution [X := a] or [X := b] results into two terms that are not α-equivalent

4

anymore. (A similar observation partly motivates the work in [17].) However, if we
assume a # X and b # X as in (7), then all problematic substitutions are ruled out.
In this way we obtain a version of α-equivalence between terms with variables that
is respected by textual substitutions (see Lemma 2.14 below), unlike the traditional
notion of α-equivalence.

Summary

We will represent languages involving binders using the usual notion of first-order
terms over a many-sorted signature, but with certain distinguished constants and
function symbols. These give us terms with: distinguished constants naming bind-
able entities, that we call atoms; terms a.t expressing a generic form of binding
of an atom a in a term t; and terms π·X representing an explicit permutation π
of atoms waiting to be applied to whatever term is substituted for the variable X .
Section 2 presents this term-language together with a syntax-directed inductive def-
inition of the provable judgements of the form (6) and (8) which for ground terms
(i.e. ones with no variables) agrees with the usual notions of α-equivalence and
“not a free variable of”. However, on open terms our judgements differ from these
standard notions. Section 3 considers unification in this setting. Solving equalities
between abstractions a.t ≈? a′.t′ entails solving both equalities t ≈? (a a′)·t′ and
freshness problems a #? t′. Therefore our general form of nominal unification
problem is a finite collection of individual equality and freshness problems. Such a
problem P is solved by providing not only a substitution σ (of terms for variables),
but also a freshness environment ∇ (as above), which together have the property
that ∇ ` σ(t) ≈ σ(t′) and ∇ ` a # σ(t′′) hold for each individual equality t ≈? t′

and freshness a #? t′′ in the problem P . Our main result with respect to unifica-
tion is that solvability is decidable and that solvable problems possess most general
solutions (for a reasonably obvious notion of “most general”). The proof is via a
unification algorithm that is very similar to the first-order algorithm given in the
now-common transformational style [18]. (See [19, Sect. 2.6] or [20, Sect. 4.6] for
expositions of this.) Section 4 considers the relationship of our version of “unifi-
cation modulo α-equivalence” to existing approaches. Section 5 assesses what has
been achieved and the prospects for applications.

Quiz

To appreciate the kind of problem that nominal unification solves, you might like
to try the following quiz about the λ-calculus [21] before we apply our algorithm
to solve it at the end of Section 3.

Assuming a and b are distinct variables, is it possible to find λ-terms M1, . . . ,M7

that make the following pairs of terms α-equivalent?

5

(1) λa.λb.(M1 b) and λb.λa.(aM1)
(2) λa.λb.(M2 b) and λb.λa.(aM3)
(3) λa.λb.(bM4) and λb.λa.(aM5)
(4) λa.λb.(bM6) and λa.λa.(aM7)

If it is possible to find a solution for any of these four problems, can you describe
what all possible solutions for that problem are like? (The answers are given in
Example 3.8.)

2 Nominal equational logic

We take a concrete approach to the syntax of binders in which bound entities are
explicitly named. Furthermore we do not assume that the names of bound entities
are necessarily variables (things that may be substituted for), in order to encompass
examples like the π-calculus [22], in which the restriction operator binds channel
names and these are quite different from names of unknown processes. Names of
bound entities will be called atoms. This is partly for historical reasons (stemming
from the work by the second two authors [10]) and partly to indicate that the in-
ternal structure of such names is irrelevant to us: all we care about is their identity
(i.e. whether or not one atom is the same as another) and that the supply of atoms
is inexhaustible.

Although there are several general frameworks in the literature for specifying lan-
guages with binders, not all of them meet the requirements mentioned in the pre-
vious paragraph. Use of the simply typed λ-calculus for this purpose is common;
but as discussed in the Introduction, it leads to a problematic unification theory.
Among first-order frameworks, Plotkin’s notion of binding signature [23,24], be-
ing unsorted, equates names used in binding with names of variables standing for
unknown terms; so it is not sufficiently general for us. A first-order framework that
does meet our requirements is the notion of nominal algebras in [15]. The nominal
signatures that we use in this paper are a mild (but practically useful) generalisation
of nominal algebras in which name-abstraction and pairing can be mixed freely in
arities (rather than insisting as in [15] that the argument sort of a function symbol
be normalised to a tuple of abstractions).

Definition 2.1. A nominal signature is specified by: a set of sorts of atoms (typical
symbol ν); a disjoint set of sorts of data (typical symbol δ); and a set of function
symbols (typical symbol f), each of which has an arity of the form τ → δ. Here τ
ranges over (compound) sorts given by the grammar τ ::= ν | δ | 1 | τ × τ | 〈ν〉τ .
Sorts of the form 〈ν〉τ classify terms that are binding abstractions of atoms of sort
ν over terms of sort τ . We will explain the syntax and properties of such terms in a
moment.

6

Example 2.2. Here is a nominal signature for expressions in a small fragment of
ML [25]:

sort of atoms: vid

sort of data: exp

function symbols: vr : vid → exp

app : exp × exp → exp

fn : 〈vid〉exp → exp

lv : exp × 〈vid〉exp → exp

lf : 〈vid〉((〈vid〉exp) × exp) → exp .

The function symbol vr constructs terms of sort exp representing value identifiers
(named by atoms of sort vid); app constructs application expressions from pairs of
expressions; fn, lv and lf construct terms representing respectively function ab-
stractions (fn x => e), local value declarations (let val x = e1 in e2 end) and
local recursive function declarations (let fun f x = e1 in e2 end). The arities of
the function symbols specify which are binders and in which way their arguments
are bound. For example, in the expression (let fun f x = e1 in e2 end) there is
a binding occurrence of the value identifier f whose scope is both of e1 and e2;
and a binding occurrence of the value identifier x whose scope is just e1. These
binding scopes are reflected by the argument sort of the function symbol lf. This
kind of specification of binding scopes is of course a feature of higher-order ab-
stract syntax [26], using function types ν→τ in simply typed λ-calculus where we
use abstraction sorts 〈ν〉τ . We shall see that the latter have much more elementary
(indeed, first-order) properties compared with the former.

Definition 2.3. Given a nominal signature, we assume that there are countably
infinite and pairwise disjoint sets of atoms (typical symbol a) for each sort of atoms
ν, and variables (typical symbol X) for each sort of atoms ν and each sort of data
δ. The terms over a nominal signature and their sorts are inductively defined as
follows, where we write t : τ to indicate that a term t has sort τ .

Unit value 〈〉 : 1.
Pairs 〈t1, t2〉 : τ1 × τ2, if t1 : τ1 and t2 : τ2.
Data f t : δ, if f is a function symbol of arity τ → δ and t : τ .
Atoms a : ν, if a is an atom of sort ν.
Atom-abstraction a.t : 〈ν〉τ , if a is an atom of sort ν and t : τ .
Suspension π·X : τ , if π = (a1 b1)(a2 b2) · · · (an bn) is a finite list whose elements

(ai bi) are pairs of atoms, with ai and bi of the same sort, and X is a variable of
sort τ , where τ is either a sort of data or a sort of atoms (i.e. τ ::= ν | δ).

Recall that every finite permutation can be expressed as a composition of swappings
(ai bi); the list π of pairs of atoms occurring in a suspension term π·X specifies a
finite permutation of atoms waiting to be applied once we know more about the
variable X (by substituting for it, for example). We represent finite permutations
in this way because it is really the operation of swapping which plays a fundamen-

7

tal rôle in the theory. Since, semantically speaking, swapping commutes with all
term-forming operations, we can normalise terms involving an explicit swapping
operation by pushing the swap in as far as it will go, until it reaches a variable (ap-
plying the swapping to atoms that it meets on the way); the terms in Definition 2.3
are all normalised in this way, with explicit permutations “piled up” in front of
variables giving what we have called suspensions. In case the permutation π in a
suspension is the empty list, we just write X for π·X .

Definition 2.4. The permutation action, π·t, of a finite permutation of atoms π
on a term t is defined as in Figure 1, making use of the following notations. The
composition of a permutation π followed by a swap (a b) is given by list-cons,
written (a b) :: π. (Note that we apply permutations to terms on the left, and hence
the order of the composition is from right to left.) The composition of π followed by
another permutation π′ is given by list-concatenation, written as π ′@π. The identity
permutation is given by the empty list []; and the inverse of a permutation is given
by list reversal, written as π−1.

Permutation actions have excellent logical properties (stemming from the fact that
they are bijections). We exploit these properties in our definition of α-equivalence
for terms over a nominal signature, which is respected by substitution of terms for
variables even though the latter may involve capture of atoms by binders. To do
so we will need to make use of an auxiliary relation of freshness between atoms
and terms, whose intended meaning is that the atom does not occur free in any
substitution instance of the term. As discussed in the Introduction, our judgements
about term equivalence (t ≈ t′) need to contain hypotheses about the freshness of
atoms with respect to variables (a # X); and the same goes for our judgements
about freshness itself (a # t). Figure 2 gives a syntax-directed inductive definition
of equivalence and freshness using judgements of the form

∇ ` t ≈ t′ and ∇ ` a # t

where t and t′ are terms of the same sort over a given nominal signature, a is
an atom, and the freshness environment ∇ is a finite set of freshness constraints
a # X , each specified by an atom and a variable. Rule (≈-suspension) in Figure 2
makes use of the following definition.

Definition 2.5. The disagreement set of two permutations π and π ′ is the set of
atoms ds(π, π′)

def
= {a | π·a 6= π′

·a}.

Note that every disagreement set ds(π, π′) is a subset of the finite set of atoms
occurring in either of the lists π and π′, because if a does not occur in those lists,
then from Figure 1 we get π·a = a = π′

·a. To illustrate the use of disagreement
sets, consider the judgement

{a # X, c # X} ` (a c)(a b)·X ≈ (b c)·X .

8

[]·a
def
= a

((a1 a2) :: π)·a
def
=

a1 if π·a = a2

a2 if π·a = a1

π·a otherwise

π·〈〉
def
= 〈〉

π·〈t1, t2〉
def
= 〈π·t1, π·t2〉

π·(f t)
def
= f (π·t)

π·(a.t)
def
= (π·a).(π·t)

π·(π′
·X)

def
= (π@π′)·X

Fig. 1. Permutation action on terms, π·t.

∇ ` 〈〉 ≈ 〈〉
(≈-unit)

∇ ` t1 ≈ t′1 ∇ ` t2 ≈ t′2

∇ ` 〈t1, t2〉 ≈ 〈t′1, t
′
2〉

(≈-pair)

∇ ` t ≈ t′

∇ ` f t ≈ f t′
(≈-function symbol) ∇ ` t ≈ t′

∇ ` a.t ≈ a.t′
(≈-abstraction-1)

a 6= a′ ∇ ` t ≈ (a a′)·t′ ∇ ` a # t′

∇ ` a.t ≈ a′.t′
(≈-abstraction-2)

∇ ` a ≈ a
(≈-atom)

(a # X) ∈ ∇ for all a ∈ ds(π, π′)

∇ ` π·X ≈ π′
·X

(≈-suspension)

∇ ` a # 〈〉
(#-unit)

∇ ` a # t1 ∇ ` a # t2

∇ ` a # 〈t1, t2〉
(#-pair)

∇ ` a # t

∇ ` a # f t
(#-function symbol)

∇ ` a # a.t
(#-abstraction-1)

a 6= a′ ∇ ` a # t

∇ ` a # a′.t
(#-abstraction-2)

a 6= a′

∇ ` a # a′
(#-atom)

(π−1
·a # X) ∈ ∇

∇ ` a # π·X
(#-suspension)

Fig. 2. Inductive definition of ≈ and #.

This holds by applying rule (≈-suspension) in Figure 2, since the disagreement set
of the permutations (a c)(a b) and (b c) is {a, c}.

Remark 2.6 (Freshness environments). Note that the freshness environment on
the left-hand side of judgements in the rules in Figure 2 does not change from hy-
potheses to conclusion. So in the same way that we assume variables have attached
sorting information, we could dispense with the use of freshness environments en-
tirely by attaching the freshness information directly to variables. However, we find
the use of freshness environments more elegant (for one thing, without them two
variables with the same name but different freshness information would have to be
regarded as different). They also make life simpler when we come on to nominal
unification problems and their solutions in the next section.

9

Below we sketch a proof that ≈ is an equivalence relation. At first sight this prop-
erty might be surprising considering the “unsymmetric” definition of the rule (≈-
abstraction-2). However it holds because of the good logical properties of the rela-
tion ≈ with respect to permutation actions. Although reasoning about ≈ is rather
pleasant once equivalence is proved, establishing it first is rather tricky—mainly
because of the large number of cases, but also because several facts needed in the
proof are interdependent. 1 We first show that permutations can be moved from one
side of the freshness relation to the other by forming the inverse permutation, and
that the freshness relation is preserved under permutation actions.

Lemma 2.7.

(1) If ∇ ` a # π·t then ∇ ` π−1
·a # t .

(2) If ∇ ` π·a # t then ∇ ` a # π−1
·t .

(3) If ∇ ` a # t then ∇ ` π·a # π·t .

PROOF. (1) and (2) are by routine inductions on the structure of t, using the fact
that π·a = b iff a = π−1

·b ; (3) is a consequence of (2) and the fact that permuta-
tions are bijections on atoms.

According to the definition of the permutation action given in Figure 1, if we push
a permutation inside a term, we need to apply the permutation to all atoms we
meet on the way. Suppose we apply two distinct permutations, say π and π ′, to
a term t, then in general π·t and π′

·t are not α-equivalent—the disagreement set
ds(π, π′) characterises all atoms which potentially lead to differences. However,
if we assume that all atoms in ds(π, π′) are fresh for t, then we can infer that the
permutation actions produce equivalent terms. This is made precise in the following
lemma.

Lemma 2.8. Given any π and π′, if ∇ ` a # t holds for all a ∈ ds(π, π′), then
∇ ` π·t ≈ π′

·t.

PROOF. By induction on the structure of t, for all π and π ′ simultaneously, using
the fact about disagreement sets that for all atoms a, b, if a ∈ ds(π, (π·b π ′

·b) :: π′)
then a ∈ ds(π, π′).

An example of this lemma is that ∇ ` π·(a b)·t ≈ (π·a π·b)·π·t is a valid judge-
ment, because the disagreement set ds(π@(a b) , (π·a π·b) :: π) is empty.

1 In addition some further simple properties of permutations and dis-
agreement sets need to be established first. A machine-checked proof
of all results using the theorem prover Isabelle can be found at
http://www.cl.cam.ac.uk/users/cu200/Unification.

10

The next lemma shows that ≈ respects the freshness relation.

Lemma 2.9. If ∇ ` a # t and ∇ ` t ≈ t′, then ∇ ` a # t′.

PROOF. Routine induction on the definition of ≈ using Lemma 2.7.

For showing transitivity of the relation ≈, it will be necessary to define a measure
that counts all term constructors occurring in a term.

Definition 2.10. The size of a term t is the natural number |t| defined by:

|π·X|, |a|, |〈〉|
def
= 1

|a.t|, |f t|
def
= 1 + |t|

|〈t1, t2〉|
def
= 1 + |t1| + |t2|

Notice that the size of a term is preserved under permutation actions (i.e. |π·t| = |t|)
and respected by the relation ≈ in the sense that if ∇ ` t ≈ t′ then |t| = |t′|.

Theorem 2.11 (Equivalence). ∇ ` − ≈ − is an equivalence relation.

PROOF. Reflexivity is by a simple induction on the structure of terms. Transitivity
is by an induction on the size of terms: a slight complication is that many subcases
need to be analysed (for example five subcases when dealing with abstractions) and
also that transitivity needs to be shown by mutual induction with the fact that ≈ is
preserved under permutation actions, that is

given any π, if ∇ ` t ≈ t′ then ∇ ` π·t ≈ π·t′ . (9)

We illustrate the proof of transitivity for the case when ∇ ` a1.t1 ≈ a2.t2 and
∇ ` a2.t2 ≈ a3.t3 hold, with a1, a2 and a3 all distinct atoms, and we have to prove
∇ ` a1.t1 ≈ a3.t3. By the (≈-abstraction-2) rule we can infer from the assumptions
the following facts:

(i) ∇ ` t1 ≈ (a1 a2)·t2 (ii) ∇ ` a1 # t2

(iii) ∇ ` t2 ≈ (a2 a3)·t3 (iv) ∇ ` a2 # t3

Below we give the steps that prove ∇ ` a1.t1 ≈ a3.t3.

11

(a) ∇ ` (a1 a2)·t2 ≈ (a1 a2)(a2 a3)·t3 by (iii) and IH (9)

(b) ∇ ` t1 ≈ (a1 a2)(a2 a3)·t3 by (i), (a) and IH (transitivity)

(c) ds((a1 a2)(a2 a3) , (a1 a3)) = {a1, a2} by definition

(d) ∇ ` a1 # (a2 a3)·t3 by (ii), (iii) and Lemma 2.9

(e) ∇ ` a1 # t3 by (a2 a3)·a1 = a1, (d) and Lemma 2.7(i)

(f) ∇ ` (a1 a2)(a2 a3)·t3 ≈ (a1 a3)·t3 by (c), (iv), (e) and Lemma 2.8

(g) ∇ ` t1 ≈ (a1 a3)·t3 by (b), (f) and IH (transitivity)

(h) ∇ ` a1.t1 ≈ a3.t3 by (e), (g) and (≈-abstraction-2)

The other cases are by similar arguments. Symmetry is then by a routine induction
on the definition of ≈ using Lemma 2.8 and transitivity.

Now it is relatively straightforward to obtain the following properties of our equiv-
alence relation with respect to permutation actions.

Corollary 2.12.

(1) ∇ ` t ≈ π−1
·π·t′ if and only if ∇ ` t ≈ t′ .

(2) ∇ ` t ≈ π·t′ if and only if ∇ ` π−1
·t ≈ t′ .

(3) Given any π and π′, if ∇ ` π·t ≈ π′
·t then for all a in ds(π, π′) we have

∇ ` a # t.

PROOF. (i) follows immediately from Lemma 2.8 and transitivity; (ii) follows
from (9) and (i); and (iii) is by a routine induction on the structure of t using
Lemma 2.9.

The main reason for using suspensions in the syntax of terms is to enable a def-
inition of substitution of terms for variables that allows capture of free atoms by
atom-abstractions while still respecting α-equivalence. The following lemma es-
tablishes this. First we give some terminology and notation for term-substitution.

Definition 2.13. A substitution σ is a sort-respecting function from variables to
terms with the property that σ(X) = X for all but finitely many variables X . We
write dom(σ) for the finite set of variables X satisfying σ(X) 6= X . If dom(σ) con-
sists of distinct variables X1, . . . , Xn and σ(Xi) = ti for i = 1..n, we sometimes
write σ as

σ = [X1 := t1, . . . , Xn := tn]. (10)

We write σ(t) for the result of applying a substitution σ to a term t; this is the
term obtained from t by replacing each suspension π·X in t (as X ranges over

12

dom(σ)) by the term π·σ(X) got by letting π act on the term σ(X) using the
definition in Figure 1. For example, if σ = [X := 〈b, Y 〉] and t = a.(a b)·X , then
σ(t) = a.〈a, (a b)·Y 〉. Given substitutions σ and σ ′, and freshness environments ∇
and ∇′, we write

(a) ∇′ ` σ(∇) and (b) ∇ ` σ ≈ σ′ (11)

to mean, for (a), that ∇′ ` a # σ(X) holds for each (a # X) ∈ ∇ and, for (b),
that ∇ ` σ(X) ≈ σ′(X) holds for all X ∈ dom(σ) ∪ dom(σ′).

Lemma 2.14 (Substitution). Substitution commutes with the permutation action:
σ(π·t) = π·(σ(t)). Substitution also preserves ≈ and # in the following sense:

(1) if ∇′ ` σ(∇) and ∇ ` t ≈ t′, then ∇′ ` σ(t) ≈ σ(t′);
(2) if ∇′ ` σ(∇) and ∇ ` a # t, then ∇′ ` a # σ(t).

PROOF. The first sentence follows by a routine induction on the structure of t. The
second follows by induction on the definition of ≈ and # using Lemma 2.8.

We claim that the relation ≈ defined in Figure 2 gives the correct notion of α-
equivalence for terms over a nominal signature. This is reasonable, given Theo-
rem 2.11 and the fact that, by definition, it satisfies rules (≈-abstraction-1) and (≈-
abstraction-2). Further evidence is provided by the following proposition, which
shows that for ground terms ≈ agrees with the following more traditional defini-
tion of α-equivalence.

Definition 2.15 (Naı̈ve α-equivalence). Define the binary relation t =α t′ between
terms over a nominal signature to be the least sort-respecting congruence relation
satisfying a.t =α b.[a 7→b]t whenever b is an atom (of the same sort as a) not oc-
curring at all in the term t. Here [a 7→b]t indicates the result of replacing all free
occurrences of a with b in t.

Proposition 2.16 (Adequacy). If t and t′ are ground terms (i.e. terms with no
variables and hence no suspensions) over a nominal signature, then the relation
t =α t′ of Definition 2.15 holds if and only if ∅ ` t ≈ t′ is provable from the rules
in Figure 2. Furthermore, ∅ ` a # t is provable if and only if a is not in the set

13

FA(t) of free atoms of t, defined by:

FA(〈〉)
def
= ∅

FA(〈t1, t2〉)
def
= FA(t1) ∪ FA(t2)

FA(f t)
def
= FA(t)

FA(a)
def
= {a}

FA(a.t)
def
= FA(t) − {a}.

PROOF. The proof is similar to the proof of [10, Proposition 2.2].

For non-ground terms, the relations =α and ≈ differ! For example a.X =α b.X
always holds, whereas ∅ ` a.X ≈ b.X is not provable unless a = b. This disagree-
ment is to be expected, since we noted in the Introduction that =α is not preserved
by substitution, whereas from Lemma 2.14 we know that ≈ is.

3 Unification

Given terms t and t′ of the same sort over a nominal signature, can we decide
whether or not there is a substitution of terms for the variables in t and t′ that makes
them equal in the sense of the relation ≈ introduced in the previous section? Since
instances of ≈ are established modulo freshness constraints, it makes more sense
to ask whether or not there is both a substitution σ and a freshness environment ∇
for which ∇ ` σ(t) ≈ σ(t′) holds. As for ordinary first-order unification, solving
such an equational problem may throw up several equational subproblems; but an
added complication here is that because of rule (≈-abstraction-2) in Figure 2, equa-
tional problems may generate freshness problems, i.e. ones involving the relation
#. We are thus led to the following definition of unification problems for nominal
equational logic.

Definition 3.1. A unification problem P over a nominal signature is a finite set of
atomic problems, each of which is either an equational problem t ≈? t′ where t
and t′ are terms of the same sort over the signature, or a freshness problem a #? t
where a is an atom and t a term over the signature. A solution for P consists of a
pair (∇, σ) where ∇ is a freshness environment and σ is a substitution satisfying

• ∇ ` a # σ(t) for each (a #? t) ∈ P and
• ∇ ` σ(t) ≈ σ(t′) for each (t ≈? t′) ∈ P .

We write U(P) for the set of all solutions of a problem P . (∇, σ) ∈ U(P) is a most
general solution for P if given any other solution (∇′, σ′) ∈ U(P), then there is a

14

substitution σ′′ satisfying ∇′ ` σ′′(∇) and ∇′ ` σ′′◦σ ≈ σ′. (Here we are using the
notation of (11); and σ′′ ◦ σ denotes the substitution composition of σ followed by
σ′′, given by (σ′′ ◦ σ)(X)

def
= σ′′(σ(X)).) A solution (∇, σ) ∈ U(P) is idempotent

provided ∇ ` σ ◦ σ ≈ σ.

We describe an algorithm which, given any nominal unification problem, decides
whether or not it has a solution and if it does, returns a most general (and idem-
potent) solution. The algorithm uses labelled transformations, directly generalising
the presentation of first-order unification in [19, Sect. 2.6] which in turn is based
upon the approach in [18]. (See also [20, Sect. 4.6] for a detailed exposition, but
not using labels.) We use two types of labelled transformation between unification
problems, namely

P
σ

=⇒ P ′ and P
∇

=⇒ P ′

where the substitution σ is either the identity ε, or a single replacement [X := t];
and where the freshness environment ∇ is either empty ∅, or a singleton {a # X}.
The legal transformations are given in Figure 3. This figure uses the notation P]P′

to indicate the union of problems P and P ′ that are disjoint (P ∩ P ′ = ∅); and the
notation σP to indicate the problem resulting from applying the substitution σ to
all the terms occurring in the problem P .

Algorithm. Given a unification problem P , the algorithm proceeds in two phases.2

In the first phase it applies as many σ
=⇒ transformations as possible (non-determin-

istically). If this results in a problem containing no equational subproblems, then
it proceeds to the second phase; otherwise it halts signalling failure. In the second
phase it applies as many ∇

=⇒ transformations as possible (non-deterministically). If
this does not result in the empty problem, then it halts signalling failure; otherwise
overall it has constructed a transformation sequence of the form

P
σ1=⇒ · · ·

σn=⇒ P ′ ∇1=⇒ · · ·
∇m=⇒ ∅ (12)

(where P ′ does not contain any equational subproblems) and the algorithm returns
the solution (∇1 ∪ · · · ∪ ∇m, σn ◦ · · · ◦ σ1).

To show the correctness of this algorithm, we first establish that all sequences of
unification transitions must terminate.

Lemma 3.2. There is no infinite series of unification transitions.

PROOF. Since every reduction sequence consists of two (possibly empty) subse-
quences, namely one containing only σ

=⇒-steps and the other only ∇
=⇒-steps, we

can show termination for both subsequences separately. For every unification prob-
lem P we define a measure of the size of P to be the lexicographically ordered pair

2 See Remark 3.9 for discussion of this use of two phases.

15

(≈?-unit) {〈〉 ≈? 〈〉}] P
ε

=⇒ P

(≈?-pair) {〈t1, t2〉 ≈? 〈t′1, t
′
2〉}] P

ε
=⇒ {t1 ≈? t′1, t2 ≈? t′2} ∪ P

(≈?-function symbol) {f t ≈? f t′}] P
ε

=⇒ {t ≈? t′} ∪ P

(≈?-abstraction-1) {a.t ≈? a.t′}] P
ε

=⇒ {t ≈? t′} ∪ P

(≈?-abstraction-2) {a.t ≈? a′.t′}] P
ε

=⇒ {t ≈? (a a′)·t′, a #? t′} ∪ P

provided a 6= a′

(≈?-atom) {a ≈? a}] P
ε

=⇒ P

(≈?-suspension) {π·X ≈? π′
·X}] P

ε
=⇒ {a #? X | a ∈ ds(π, π′)} ∪ P

(≈?-variable)
{t ≈? π·X}] P

{π·X ≈? t}] P

σ
=⇒ σP with σ = [X := π−1

·t]

provided X does not occur in t

(#?-unit) {a #? 〈〉}] P
∅

=⇒ P

(#?-pair) {a #? 〈t1, t2〉}] P
∅

=⇒ {a #? t1, a #? t2} ∪ P

(#?-function symbol) {a #? f t}] P
∅

=⇒ {a #? t} ∪ P

(#?-abstraction-1) {a #? a.t}] P
∅

=⇒ P

(#?-abstraction-2) {a #? a′.t}] P
∅

=⇒ {a #? t} ∪ P provided a 6= a′

(#?-atom) {a #? a′}] P
∅

=⇒ P provided a 6= a′

(#?-suspension) {a #? π·X}] P
∇

=⇒ P with ∇ = {π−1
·a # X}

Fig. 3. Labelled transformations.

of natural numbers (n1, n2), where n1 is the number of different variables used in
P , and n2 is the size (see Definition 2.10) of all equational problems in P , that is

n2
def
=

∑

(t≈?t′)∈P

|t| + |t′| .

In every σ
=⇒-step this measure decreases: the (≈?-variable) transition eliminates

(completely) one variable from the unification problem, and therefore n1 decreases;
the (≈?-suspension) transition may eliminate a variable and also decreases the size
n2; all other transitions leave the number of variables unchanged, but decrease n2.
For the ∇

=⇒-steps the size
∑

(a#?t)∈P

|t|

decreases in every step. Taking both facts together means that every reduction se-
quence must terminate.

The following lemmas help us to show that the algorithm gives correct results upon

16

termination.

Lemma 3.3. If ∇ ` σ(π·X) ≈ σ(t) then ∇ ` σ ◦ [X := π−1
·t] ≈ σ.

PROOF. We have to prove that both substitutions agree (modulo ≈) on all vari-
ables in dom(σ) ∪ {X}. The only interesting case is for the substitutions applied
to X , when we need to show that ∇ ` σ(π−1

·t) ≈ σ(X). By Lemma 2.14 we
can commute the permutation to the outside and move it to the other side of ≈
by Lemma 2.12—this gives ∇ ` σ(t) ≈ π·σ(X). The case then follows from
the assumptions by symmetry and commuting the permutation inside the substitu-
tion.

Lemma 3.4. Given a unification problem P , (∇, σ) ∈ U(σ ′P) holds if and only if
(∇, σ ◦ σ′) ∈ U(P).

PROOF. Simple calculation using the fact that σ(σ ′(t)) = (σ ◦ σ′)(t).

The following two lemmas show that the unification transformations can be used
to determine whether or not solutions exists and to describe all of them if they do
exist.

Lemma 3.5.

(i) If (∇′, σ′) ∈ U(P) and P
σ

=⇒ P ′, then (∇′, σ′) ∈ U(P ′) and ∇′ ` σ′◦ σ ≈
σ′.

(ii) If (∇′, σ′) ∈ U(P) and P
∇

=⇒ P ′, then (∇′, σ′) ∈ U(P ′) and ∇′ ` σ′(∇).

PROOF. We just give the details for two unification transitions: the case for (≈?-
suspension) follows from Lemma 2.12(iii); and the (≈?-variable) case is a conse-
quence of Lemmas 3.3 and 3.4.

Lemma 3.6.

(i) If (∇′, σ′) ∈ U(P ′) and P
σ

=⇒ P ′, then (∇′, σ′ ◦ σ) ∈ U(P).

(ii) If (∇′, σ′) ∈ U(P ′), P
∇

=⇒ P ′ and ∇′′ ` σ′(∇), then (∇′ ∪∇′′, σ′) ∈ U(P).

PROOF. Once again, we just give the details for two unification transitions: the
(≈?-suspension) case follows from Lemma 2.8; and the (≈?-variable) case follows
from Lemma 3.4 and the fact that t[X := π−1

·t] = t, which holds by the side-
condition on the (≈?-variable) transition about the non-occurrence of X in t.

17

The following theorem establishes the correctness of the nominal unification algo-
rithm and is the central result of the paper.

Theorem 3.7 (Correctness). Given a unification problem P

(i) if the algorithm fails on P , then P has no solution; and
(ii) if the algorithm succeeds on P , then the result it produces is an idempotent

most general solution.

PROOF. When failure happens it is because of certain subproblems that mani-
festly have no solution (namely in the first phase, a ≈? a′ with a 6= a′, and
π·X ≈? f t or f t ≈? π·X with X occurring in t; in the second phase, a #? a).
Therefore part (i) is a consequence of Lemma 3.5. For part (ii) one gets that a se-
quence like (12) exists, and thus (∇, σ) = (∇1∪· · ·∪∇m, σn ◦ · · · ◦σ1) is in U(P)
by Lemma 3.6 and the fact that (∅, ε) ∈ U(∅). Furthermore from Lemma 3.5, we get
that any other solution (∇′, σ′) ∈ U(P) satisfies ∇′ ` σ′(∇) and ∇′ ` σ′ ◦ σ ≈ σ′,
so that (∇, σ) is indeed a most general solution. Since one of those solutions is the
most general solution (∇, σ), we also know that ∇ ` σ ◦ σ ≈ σ and hence that
(∇, σ) is idempotent.

We now apply the nominal unification algorithm to solve the quiz questions from
the Introduction.

Example 3.8. Using the first three function symbols of the nominal signature of
Example 2.2 to represent λ-terms, the Quiz at the end of the Introduction translates
into the following four unification problems over that signature, where a and b are
distinct atoms of sort vid and X1, . . . , X7 are distinct variables of sort exp:

P1
def
= {fn a.fn b.app〈X1, vr b〉 ≈? fn b.fn a.app〈vr a,X1〉},

P2
def
= {fn a.fn b.app〈X2, vr b〉 ≈? fn b.fn a.app〈vr a,X3〉},

P3
def
= {fn a.fn b.app〈vr b,X4〉 ≈? fn b.fn a.app〈vr a,X5〉},

P4
def
= {fn a.fn b.app〈vr b,X6〉 ≈? fn a.fn a.app〈vr a,X7〉}.

Applying the nominal unification algorithm described above, we find that

• P1 has no solution;
• P2 has a most general solution given by ∇2 = ∅ and σ2 = [X2 := vr b,X3 :=
vr a];

• P3 has a most general solution given by ∇3 = ∅ and σ3 = [X4 := (a b)·X5];
• P4 has a most general solution given by ∇4 = {b # X7} and σ3 = [X6 :=

(b a)·X7].

18

P1

ε

=⇒ {fn b.app〈X1, vr b〉 ≈? fn b.app〈vr b, (a b)·X1〉, a #? fn a.app〈vr a, X1〉} (≈?-abstraction-2)
ε

=⇒ {app〈X1, vr b〉 ≈? app〈vr b, (a b)·X1〉, a #? fn a.app〈vr a, X1〉} (≈?-abstraction-1)

· · · · · · · · ·
ε

=⇒ {X1 ≈? vr b, vr b ≈? (a b)·X1, a #? fn a.app〈vr a, X1〉} (≈?-pair)
σ

=⇒ {vr b ≈? vr a, a #? fn a.app〈vr a, vr b〉} with σ = [X1 := vr b] (≈?-variable)
ε

=⇒ {b ≈? a, a #? fn a.app〈vr a, vr b〉} (≈?-function symbol)

FAIL

P4

ε

=⇒ {fn b.app〈vr b, X6〉 ≈? fn a.app〈vr a, X7〉} (≈?-abstraction-1)
ε

=⇒ {app〈vr b, X6〉 ≈? app〈vr b, (b a)·X7〉, b #? app〈vr a, X7〉} (≈?-abstraction-2)

· · · · · · · · ·
ε

=⇒ {b ≈? b, X6 ≈? (b a)·X7, b #? app〈vr a, X7〉} (≈?-function symbol)
ε

=⇒ {X6 ≈? (b a)·X7, b #? app〈vr a, X7〉} (≈?-atom)
σ

=⇒ {b #? app〈vr a, X7〉} with σ = [X6 := (b a)·X7] (≈?-variable)
∅

=⇒ {b #? 〈vr a, X7〉} (#?-function symbol)

· · · · · · · · ·
∅

=⇒ {b #? a, b #? X7} (#?-function symbol)
∅

=⇒ {b #? X7} (#?-atom)
∇

=⇒ ∅ with ∇ = {b # X7} (#?-suspension)

Fig. 4. Example derivations

Derivations for P1 and P4 are sketched in Figure 4. Using the Adequacy property
of Proposition 2.16, one can interpret these solutions as the following statements
about the λ-terms mentioned in the quiz.

Quiz answers
(1) There is no λ-term M1 making the first pair of terms α-equivalent.
(2) The only solution for the second problem is to take M2 = b and M3 = a.
(3) For the third problem we can take M5 to be any λ-term, so long as we take

M4 to be the result of swapping all occurrences of a and b throughout M5.
(4) For the last problem, we can take M7 to be any λ-term that does not contain

free occurrences of b, so long as we take M6 to be the result of swapping
all occurrences of b and a throughout M7, or equivalently (since b is not
free in M7), taking M6 to be the result of replacing all free occurrences of
a in M7 with b.

Remark 3.9 (Separation of the algorithm into two phases). We organised the
algorithm into two phases: equation-solving followed by freshness-solving. Note
that the second phase is crucial for the soundness of the algorithm. Consider for ex-
ample the unification problem consisting of two terms which are not α-equivalent:

{a.b ≈? b.a} (13)

After applying the transformation (≈?-abstraction-2) one needs to solve the prob-

19

lem {a ≈? a, a #? a}, whose first component is solved by (≈?-atom). Failure is
only signalled by the algorithm in the second phase when attempting to solve the
unsolvable freshness problem {a #? a}. The second phase, i. e. solving all fresh-
ness problems, ensures that the unifiers calculated by the algorithm are sound with
respect to our notion of α-equivalence.

We used this separation of the algorithm into two phases in order to make the cor-
rectness proof easier. More efficient algorithms would seek to minimise the amount
of redundant calculations before failures are signalled, by solving freshness prob-
lems more eagerly. However, care needs then to be taken to not remove freshness
constraints from problems too early. For example, consider the following unifica-
tion problem, which has no solution.

{a #? X, a ≈? X} (14)

If one applies first (#?-suspension) followed by (≈?-variable), then one gets a
wrong result, namely ({a # X}, [X := a]). The problem is that the substitution
[X := a] has not been properly propagated to the freshness constraint a # X . If
freshness problems are solved more eagerly, then proper propagation of substitu-
tions into freshness constraints needs to be taken into account.

Remark 3.10 (Atoms are not variables). Nominal unification unifies variables,
but it does not unify atoms. Indeed the operation of identifying two atoms by re-
naming one of them to be the other does not necessarily preserve the validity of
the judgements in Figure 2. For example, ∅ ` a.b ≈ c.b holds if b 6= a, c; but
renaming b to be a in this judgement we get ∅ ` a.a ≈ c.a, which does not hold
so long as a 6= c. Referring to Definition 2.3, you will see that we do allow vari-
ables ranging over sorts of atoms; and such variables can be unified like any other
variables. However, if A is such a variable, then it cannot appear in abstraction po-
sition, i.e. as A.t. This is because we specifically restricted abstraction to range over
atoms, rather than over arbitrary terms of atom sort. Such a restriction seems nec-
essary to obtain single, most general, solutions to nominal unification problems.
For without such a restriction, because of rule (≈-abstraction-2) in Figure 2 we
would also have to allow variables to appear on the left-hand side of freshness re-
lations and in suspended permutations. So then we would get unification problems
like {(AB)·C ≈? C}, where A, B and C are variables of atom sort; this has two
incomparable solutions, namely (∅, [A := B]) and ({A # C,B # C}, ε).

20

4 Related work

Higher-order pattern unification

Most previous work on unification for languages with binders is based on forms
of higher-order unification, i.e. solving equations between λ-terms modulo αβη-
equivalence (=αβη) by capture-avoiding substitution of terms for function vari-
ables. Notable among that work is Miller’s higher-order pattern unification used
in his Lλ logic programming language [3]. This kind of unification retains the good
properties of first-order unification: a linear-time decision procedure and existence
of most general unifiers. This good behaviour of higher-order pattern unification
is the result of equations being solved only modulo =αβ0η (where β0-equivalence
is the restricted form of β-equivalence that identifies (λx.M)y and M [y/x] with y
being a variable) and of λ-terms being restricted such that function variables may
only be applied to distinct bound variables. An empirical study by Michaylov and
Pfenning [27] suggests that most unifications arising dynamically in higher-order
logic programming satisfy Miller’s restrictions, but that it rules out some useful
programming idioms.

The main difference between higher-order pattern unification and nominal unifica-
tion is that the former solves a set of equations by calculating a capture-avoiding
substitution, while the latter calculates a possibly-capturing substitution and some
freshness constraints. Moreover, unifiers in higher-order pattern unification solve
equations with respect to =αβ0η; whereas in nominal unification, unifiers solve
equations with respect to the equivalence ≈ defined in Figure 2, which agrees
with α-equivalence on ground terms (see Proposition 2.16), but differs from it on
open terms, since unlike α-equivalence, it is respected by possibly-capturing sub-
stitutions (see Lemma 2.14). For us, the main disadvantage of higher-order pattern
unification is the one common to most approaches based on higher-order abstract
syntax that was discussed in the Introduction: one cannot directly express the com-
mon idiom of possibly-capturing substitution of terms for metavariables. Instead
one has to encode metavariables X as function variables applied to distinct lists of
(bound) variables, X x1 . . . xn, and use capture-avoiding substitution. At first sight,
there seems to be a simple encoding for doing that. Consider for example the purely
equational nominal unification problem

a.X ≈? b.b (15)

which is solved by (∅, [X := a]). The literal encoding as the higher-order pattern
unification problem λa.X =αβ0η?λb.b does not work of course, because there is no
capture-avoiding substitution that solves this problem. However, X can be made
dependent on a yielding the unification problem

λa.(Xa) =αβ0η? λb.b (16)

21

which is solved by the capture-avoiding substitution of λc.c for X . If one further
applies to λc.c the atom a used by the encoding, then one can read back the orig-
inal solution [X := a] by applying some β-reductions. There are however several
problems with this encoding. First, the encoding in general results in a quadratic
blow-up in the size of terms. For example the nominal unification problem

a.b.〈X,Y 〉 ≈? a.b.〈a, b〉 (17)

solved by the unifier (∅, [X := a, Y := b]) needs to be encoded so that X and Y
depend on both a and b. This gives the higher-order pattern problem

λa.λb.〈X a b, Y a b〉 =αβ0η? λa.λb.〈a, b〉 . (18)

In the general case, the encoding needs to make metavariables dependent on all
atoms occurring in a nominal unification problem, regardless of whether they actu-
ally occur in an individual equational problem. For example, if X occurs elsewhere
within the scope of abstractions of c, d, e and f , then X needs to be encoded as
(X a b c d e f) even though an individual equational problem might contain only a
and b. Secondly, and more importantly, we cannot see how to encode our freshness
constraints using this kind of higher-order patterns. (Note that in nominal unifi-
cation, freshness constraints do not necessarily come from analysing abstractions,
rather they can be chosen arbitrarily.)

A more promising target for a reduction of nominal unification to some form of
higher-order pattern unification is λσ, a λ-calculus with de-Bruijn indices and ex-
plicit substitutions. Dowek et al [28] present a version of higher-order pattern uni-
fication for λσ in which unification problems are solved, as in nominal unification,
by textual replacements of terms for variables; however a “pre-cooking” operation
ensures that the textual replacements can be faithfully related to capture-avoiding
substitutions. It seems possible that the freshness (as well as the equational) prob-
lems of nominal unification can be encoded into higher-order pattern unification
problems over λσ, using a non-trivial translation involving the use of the shift oper-
ator and the introduction of fresh unification variables. The details of this encoding
still remain to be investigated. Furthermore, it is not clear to us how to translate
solutions obtained via the encoding back into solutions of the original nominal
unification problem. But even if it turns out that it is possible to reduce nominal
unification to the algorithm of Dowek et al, the calculations involved in translating
our terms into λσ patterns and then using higher-order pattern unification seem far
more intricate than our simple algorithm that solves nominal unification problems
directly. The conclusion we draw is that an encoding of nominal unification prob-
lems into higher-order pattern unification problems (using de Bruijn indices and
explicit substitutions) might be possible, but such an encoding is no substitute in
practice for having the simple, direct algorithm we presented here.

22

Hamana’s β0-unification of λ-terms with “holes”

Hamana [5,29] manages to add possibly-capturing substitution to a language like
Miller’s Lλ. This is achieved by adding syntax for explicit renaming operations and
by recording implicit dependencies of variables upon bindable names in a typing
context. The mathematical foundation for Hamana’s system is the model of binding
syntax of Fiore et al [24]. The mathematical foundation for our work appeared at
the same time (see [10]) and is in a sense complementary. For in Hamana’s system
the typing context restricts which terms may be substituted for a variable by giving
a finite set of names that must contain the free names of such a term; whereas
we give a finite set of names which the term’s free variables must avoid. Since α-
conversion is phrased in terms of avoidance, i.e. freshness of names, our approach
seems more natural if one wants to compute α-equivalences concretely. On top of
that, our use of name permutations, rather than arbitrary renaming functions, leads
to technical simplifications. In any case, the bottom line is that Hamana’s system
seems more complicated than the one presented here and does not possess most
general unifiers.

Qu-Prolog

The work [8,9] on unification in Qu-Prolog is most closely related to that reported
here. Qu-Prolog is a mature logic programming language addressing many prob-
lems we set out in the Introduction. To begin with, Qu-Prolog’s unification algo-
rithm unifies terms modulo α-equivalence and may produce solutions that, as in
nominal unification, depend on freshness constraints (in Qu-Prolog such constraints
are represented by a predicate called not free in). Furthermore, metavariables
are substituted in a possibly-capturing manner. However, there are also a number
of differences between nominal unification and unification in Qu-Prolog. The most
obvious difference is that the term language in Qu-Prolog is richer than our term
language over nominal signatures; for example Qu-Prolog allows variables in bind-
ing position and permits explicit substitutions of terms for variables. This richness
of the term language leads to a number of difficulties. First, the unification problems
in Qu-Prolog are only semi-decidable (whereas the nominal unification problems
are decidable) and as a result the algorithm employed in Qu-Prolog can leave as
unsolved some unification problems that are “too difficult”. This means the unifi-
cation transformations in Qu-Prolog, while shown not to delete any solutions nor
to introduce any new ones, do not always lead to problems from which an explicit
solution can be obtained. Secondly, as we illustrated in Remark 3.10, the possibil-
ity of forming terms with unification variables in binding position means that most
general solutions may not exist.

Another difference arises from the fact that in Qu-Prolog binders are renamed via

23

capture-avoiding substitutions. This means that fresh names need to be introduced
during unification in order to respect α-equivalence. This is not necessary in nomi-
nal unification, because the permutation operation already respects α-equivalence.
In fact the introduction of fresh atoms during unification leads to a more compli-
cated notion of most general solution. Consider the following variant of the (≈?-
abstraction-2) transformation:

(≈?-abstraction-2′) {a.t ≈? a′.t′}]P
ε

=⇒ {(a b)·t ≈? (a′ b)·t′, b #? t, b #? t′}∪P

which is applicable provided a 6= a′ and b is a fresh atom, not occurring elsewhere
in the problem. This rule is essentially the refinement step that unifies two ab-
stracted terms in Qu-Prolog (see [8, Page 105]). If we were to use (≈?-abstraction-
2′) instead of (≈?-abstraction-2) in our nominal unification algorithm, then when
applied to the problem

{ a.X ≈? b.Y } (19)

it would produce the solution ({a # Y, c # Y }, [X := (a c)(b c)·Y]). While this
solution solves the problem, it is not a most general solution according to Defini-
tion 3.1—we lost the information that c is a completely fresh atom. On the other
hand, applying transformation (≈?-abstraction-2) to (19) leads to ({a # Y }, [X :=
(a b)·Y])—a most general solution.

Overall, the theory of Qu-Prolog’s unification is more complex than that of nomi-
nal unification: in nominal unification we do not need to resort to a semantic notion
of α-equivalence in order to show the correctness of the nominal unification algo-
rithm; and the use of permutations makes our ≈-relation much simpler compared
with Qu-Prolog’s use of the traditional notion of α-equivalence extended to terms
with metavariables.

5 Conclusion and Future Work

In this paper we have proposed a new solution to the problem of computing possibly-
capturing substitutions that unify terms involving binders up to α-conversion. To do
so we considered a many-sorted first-order term language with distinguished col-
lections of constants called atoms and with atom-abstraction operations for bind-
ing atoms in terms. This provides a simple, but flexible, framework for specify-
ing binding operations and their scopes, in which the bound entities are explicitly
named. By using variables prefixed with suspended permutations, one can have
substitution of terms for variables both allow capture of atoms by binders and re-
spect α-equivalence (renaming of bound atoms). The definition of α-equivalence
for the term language makes use of an auxiliary freshness relation between atoms
and terms which generalises the “not a free atom of” relation from ground terms
to terms with variables; furthermore, because variables stand for unknown terms,

24

type Gamma (var X) A :- mem (pair X A) Gamma.
type Gamma (app M N) B :- type Gamma M (arrow A B),

type Gamma N A.
type Gamma (lam x.M) (arrow A B) / x#Gamma :-

type (pair x A)::Gamma M B.

mem A A::Tail.
mem A B::Tail :- mem A Tail.

Fig. 5. An example αProlog program

hence with unknown free atoms, it is necessary to make hypotheses about the fresh-
ness of atoms for variables in judgements about term equivalence and freshness.
This reliance on “freshness”, coupled with name-swapping rather than renaming,
lead to a new notion of unification problem in which instances of both equiva-
lence and freshness have to be solved by giving term-substitutions and (possibly)
freshness conditions on variables in the solution. We showed that this unification
problem is decidable and unitary.

Cheney, Gabbay and Urban [30,31] are investigating the extent to which nominal
unification can be used in resolution-based proof search for a form of first-order
logic programming for languages with binders (with a view to providing better
machine-assistance for structural operational semantics). Such a logic program-
ming language should permit a concrete, “nominal” approach to bound entities in
programs while ensuring that computation (which in this case is the computation
of answers to queries) respects α-equivalence between terms. This is illustrated
with the Prolog-like program in Figure 5, which implements a simple typing algo-
rithm for λ-terms. The third clause is the interesting one. First, note the term (lam
x.M), which unifies with any λ-abstraction. The binder x, roughly speaking, has
in the “nominal” approach a value which can be used in the body of the clause, for
example for adding (pair x A) to the context Gamma. Secondly, the freshness
constraint x#Gamma ensures that Gamma cannot be replaced by a term that con-
tains x freely. Since this clause is intended to implement the usual rule for typing
λ-abstractions

{x : A} ∪ Γ . M : B

Γ . λx.M : A ⊃ B

its operational behaviour is given by: choose fresh names for Gamma, x, M, A and
B (this is standard in Prolog-like languages), unify the head of the clause with the
goal formula, apply the resulting unifier to the body of the clause and make sure that
Gamma is not replaced by a term that contains freely the fresh name we have chosen
for x. Similar facilities for functional programming already exist in the FreshML
language, built upon the same foundations: see [13] and www.freshml.org. We
are also interested in the special case of “nominal matching” and its application to
term-rewriting modulo α-equivalence.

25

A note on complexity

If these applications show that nominal unification is practically useful, then it be-
comes important to study its complexity. The presentations of the term language
in Section 2 and of the algorithm in Section 3 were chosen for clarity and to make
the proof of correctness 3 easier, rather than for efficiency. One source of increased
efficiency is to delay the application of permutations: instead of pushing permuta-
tion inside terms until they reach suspension as we do here, one should just push
them under the first constructor (pairing, function symbol application, or atom-
abstraction) in order to proceed with the next step of decomposition. However, the
main inefficiency of the algorithm presented in Section 3 comes from the lack of
sharing in terms and substitutions. Thus the unification problem taken from [32]

{f(X1, X1) ≈? X2, f(X2, X2) ≈? X3, . . . , f(Xn−1, Xn−1) ≈? Xn}

which illustrates that the naı̈ve algorithm for classical first-order unification has
exponential time complexity, also applies to the algorithm for nominal unification
given here. If one adapts a representation for terms using techniques developed
in [32] or [18], which are based on directed acyclic graphs, then one easily arrives
at an algorithm with quadratic time complexity. The reason for the quadratic, rather
than linear, time-complexity is that permutations need to be applied to some atoms
when deciding whether the rules (≈?-abstraction-1) or (≈?-abstraction-2) are ap-
plicable, and these permutations (represented as lists of swappings) might grow
linearly with the number of nodes. Using a representation of permutations that al-
lows for a more efficient calculation of their action on atoms does not improve
the quadratic time complexity, because it makes the operation of composing two
permutations become linear, while this can be done in constant time when using
the list-of-swappings representation. For higher-order patterns, Qian managed to
developed a unification algorithm with linear time-complexity [33]. It seems that
adapting Qian’s algorithm to nominal unification via an encoding of nominal terms
into higher-order patterns as discussed in Section 4 will not solve this problem. For
the encoding makes the resulting higher-order patterns quadratically longer than
the original nominal terms, so this method would only provide another algorithm
with quadratic time complexity.

To sum up, there is a version of nominal unification with quadratic time complexity,
but is it is still an open question whether a version can be developed with linear time
complexity.

3 See http://www.cl.cam.ac.uk/users/cu200/Unification for the Is-
abelle proof scripts.

26

Acknowledgements

A preliminary version of this paper appeared as [34]. We thank James Cheney,
Gilles Dowek, Roy Dyckhoff, Dale Miller, Frank Pfenning, Francois Pottier and
Helmut Schwichtenberg for comments on this work. This research was supported
by UK EPSRC grants GR/R29697 (Urban) and GR/R07615 (Pitts and Gabbay).

References

[1] G. Dowek, T. Hardin, C. Kirchner, Higher-order unification via explicit substitutions,
in: 10th Annual Symposium on Logic in Computer Science, IEEE Computer Society
Press, Washington, 1995, pp. 366–374.

[2] C. A. Gunter, Semantics of Programming Languages: Structures and Techniques,
Foundations of Computing, MIT Press, 1992.

[3] D. Miller, A logic programming language with lambda-abstraction, function variables,
and simple unification, Journal of Logic and Computation 1 (1991) 497–536.

[4] G. Dowek, Higher-order unification and matching, in: A. Robinson, A. Voronkov
(Eds.), Handbook of Automated Reasoning, North-Holland, Amsterdam, 2001,
Ch. 16, pp. 1009–1062.

[5] M. Hamana, A logic programming language based on binding algebras, in:
N. Kobayashi, B. C. Pierce (Eds.), Theoretical Aspects of Computer Software,
4th International Symposium, TACS 2001, Sendai, Japan, October 29-31, 2001,
Proceedings, Vol. 2215 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2001, pp. 243–262.

[6] M. Hashimoto, A. Ohori, A typed context calculus, Theoretical Computer Science 266
(2001) 249–271.

[7] M. Sato, T. Sakurai, Y. Kameyama, A simply typed context calculus with first-class
environments, Journal of Functional and Logic Programming 2002 (4).

[8] P. Nickolas, P. J. Robinson, The Qu-Prolog unification algorithm: Formalisation and
correctness, Theoretical computer Science 169 (1996) 81–112.

[9] R. Paterson, Unification of schemes of quantified terms, in: Proc. of UNIF 1990, 1990,
unpublished proceedings.

[10] M. J. Gabbay, A. M. Pitts, A new approach to abstract syntax with variable binding,
Formal Aspects of Computing 13 (2002) 341–363.

[11] L. Caires, L. Cardelli, A spatial logic for concurrency (part II), in: L. Brim, P. Janc̆ar,
M. Kr̆etı́nsḱy, A. Kuc̆era (Eds.), CONCUR 2002 – Concurrency Theory, 13th
International Conference, Brno, Czech Republic, August 20-23, 2002. Proceedings,
Vol. 2421 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2002, pp.
209–225.

27

[12] L. Cardelli, P. Gardner, G. Ghelli, Manipulating trees with hidden labels, in: A. D.
Gordon (Ed.), Foundations of Software Science and Computation Structures, 6th
International Conference, FOSSACS 2003, Warsaw, Poland. Proceedings, Vol. 2620
of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003, pp. 216–232.

[13] M. R. Shinwell, A. M. Pitts, M. J. Gabbay, FreshML: Programming with binders
made simple, in: Eighth ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Uppsala, Sweden, ACM Press, 2003, pp. 263–274.

[14] A. Salibra, On the algebraic models of lambda calculus, Theoretical Computer Science
249 (2000) 197–240.

[15] F. Honsell, M. Miculan, I. Scagnetto, An axiomatic approach to metareasoning on
nominal algebras in HOAS, in: F. Orejas, P. G. Spirakis, J. Leeuwen (Eds.), 28th
International Colloquium on Automata, Languages and Programming, ICALP 2001,
Crete, Greece, July 2001. Proceedings, Vol. 2076 of Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 2001, pp. 963–978.

[16] A. M. Pitts, Nominal logic, a first order theory of names and binding, Information and
Computation 186 (2003) 165–193.

[17] M. Sato, T. Sakurai, Y. Kameyama, A. Igarashi, Calculi of meta-variables, in: M. Baaz
(Ed.), Computer Science Logic and 8th Kurt Gödel Colloquium (CSL’03 & KGC),
Vienna, Austria. Proccedings, Vol. 2803 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2003, pp. 484–497.

[18] A. Martelli, U. Montanari, An efficient unification algorithm, ACM Trans.
Programming Languages and Systems 4 (2) (1982) 258–282.

[19] J. W. Klop, Term rewriting systems, in: S. Abramsky, D. M. Gabbay, T. S. E. Maibaum
(Eds.), Handbook of Logic in Computer Science, Volume 2, Oxford Univerity Press,
1992, pp. 1–116.

[20] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press,
1998.

[21] H. P. Barendregt, The Lambda Calculus: its Syntax and Semantics, North-Holland,
1984.

[22] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (parts I and II),
Information and Computation 100 (1992) 1–77.

[23] G. D. Plotkin, An illative theory of relations, in: R. Cooper, Mukai, J. Perry (Eds.),
Situation Theory and its Applications, Vol. 22 of CSLI Lecture Notes, Stanford
University, 1990, pp. 133–146.

[24] M. P. Fiore, G. D. Plotkin, D. Turi, Abstract syntax and variable binding, in: 14th
Annual Symposium on Logic in Computer Science, IEEE Computer Society Press,
Washington, 1999, pp. 193–202.

[25] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML
(Revised), MIT Press, 1997.

28

[26] F. Pfenning, C. Elliott, Higher-order abstract syntax, in: Proc. ACM-SIGPLAN
Conference on Programming Language Design and Implementation, ACM Press,
1988, pp. 199–208.

[27] S. Michaylov, F. Pfenning, An empirical study of the runtime behaviour of
higher-order logic programs, in: D. Miller (Ed.), Proc. Workshop on the λProlog
Programming Language, University of Pennsylvania, 1992, pp. 257–271, CIS
Technical Report MS-CIS-92-86.

[28] G. Dowek, T. Hardin, C. Kirchner, F. Pfenning, Higher-order unification via explicit
substitutions: the case of higher-order patterns, in: Proc. of JICSLP, 1996, pp. 259–
273.

[29] M. Hamana, Simple β0-unification for terms with context holes, in: C. Ringeissen,
C. Tinelli, R. Treinen, R. M. Verma (Eds.), Proc. of UNIF 2002, 2002, unpublished
proceedings.

[30] J. Cheney, C. Urban, αProlog, a fresh approach to logic programming modulo α-
equivalence, in: J. Levy, M. Kohlhase, J. Niehren, M. Villaret (Eds.), Proc. of UNIF
2003, no. DSIC-II/12/03 in Departamento de Sistemas Informáticos y Computación
Technical Report Series, Universidad Politécnica de Valencia, 2003, pp. 15–19.

[31] M. Gabbay, J. Cheney, A proof theory for nominal logic, in: Nineteenth Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press,
Washington, 2004.

[32] M. S. Paterson, M. N. Wegman, Linear unification, Journal of Computer System
Sciences 16 (2) (1978) 158–167.

[33] Z. Qian, Unification of higher-order patterns in linear time and space, Journal of Logic
and Computation 6 (3) (1996) 315–341.

[34] C. Urban, A. M. Pitts, M. J. Gabbay, Nominal unification, in: M. Baaz (Ed.), Computer
Science Logic and 8th Kurt Gödel Colloquium (CSL’03 & KGC), Vienna, Austria.
Proceedings, Vol. 2803 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 513–527.

29

