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This paper introduces a new higher-order typed constructive predicate logic for 
fixpoint computations, which exploits the categorical semantics of computations 
introduced by Moggi (in “Proceedings, 4th Annual Symposium on Logic in 
Computer Science,” pp. 14-23, IEEE Comput. Sot. Press, Washington, 1989) and 
contains a version of Martin-Lof’s “iteration type” (in “Proceedings, Workshop 
on Semantics in Programming Laguages,” Chalmers University, 1983). The type 
system enforces a separation of computations from values. The logic contains a 
novel form of ftxpoint induction and can express partial and total correctness 
statements about evaluation of computations to values. The constructive nature of 
the logic is witnessed by strong metalogical properties which are proved using a 
category-theoretic version of the “logical relations” method (Plotkin, unpublished 
lecture notes from CSLI Summer School, 1985). c 1992 Academic Press. Inc. 

1. INTRODLJCTI~N 

It is well known that primitive recursion at higher types can be given a 
categorical characterisation in terms of Lawvere’s concept of natural 
number object (Lambek and Scott, 1986). We show that a similar charac- 
terisation can be given for general recursion via lixpoint operators of higher 
types, in terms of a new concept-that of a fixpoint object in a suitably 
structured category. This notion was partly inspired by contemplation of 
Martin-Liif’s non-standard “iteration type” in his domain theoretic inter- 
pretation of type theory (Martin-LGf, 1983). However, the key ingredient 
which allows the formulation of the concept of Iixpoint object is the treat- 
ment of computations using monads introduced by Moggi (1989) where 
there is a distinction between the elements of a type c1 and computations of 
elements of that type-the latter being grouped into a new type Tsc. 
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Moggi’s computational metalanguage IML T (Moggi, 1991) contains the 
following formation rules: 

~1 type 
Tcr type 

M:Cd 
Val(M): Tel 

[x:x] 
E: Tci F(x): Tp 

Let( E, F) : T/? 

Note. These rules, and the others which appear in this paper, are 
presented in natural deduction style. In this section, we present some rules 
with discharged hypotheses in square brackets. In later sections, rules will 
be written using intuitionistic sequents in context, where contexts are lists 
of typed variables. Since there are several unfamiliar variable binding 
operations in the syntax, we will also adopt Martin-LX’s theory of expres- 
sions and arities. For us this will be a a&-lambda calculus over ground 
types TYPE, TERM, and PROP, with abstraction denoted x.e, application 
denoted f(e), substitution denoted e[e’/-x], and a multiple application such 
as (f(e))(e’) abbreviated to f(e, e’); see (Nordstrom, Petersson, and Smith, 
1990), for example. This system will be referred to as the meta-ll-calculus. 
Finally, it should benoted that our syntax is a slight variant of Moggi’s. 

Intuitively, Val(M) is the value M regarded as a trivial computation 
which immediately evaluates to itself; and Let(E, F) denotes the computa- 
tion which first tries to evaluate E to some value M:cl and then proceeds 
to evaluate F(M). These intended meanings are captured by three equa- 
tional axioms: 

Let(Val(M), F) = F(M) 

Let(E, x.Val(x)) = E 

Let( Let(E, F), G) = Let(E, x. Let(F(x), G)). 

In addition, IML, extends the simply typed lampda calculus: there are 
function types CI --f B with lambda abstractions Ax:cr. F(x) and applications 
MN satisfying the usual fl and q equalities. The system also contains 
product types c1 x /I with (surjective) pairing (M, N) and projections 
Fst(M), Snd(M); and it contains a type unit with unique element ( ): 
unit. 

The categorical counterpart of this basic formal system is the notion of 
a “Cartesian closed category equipped with a strong monad T” (Moggi, 
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1989, Sect. 2). We refer to such structures as let Cartesian closed categories, 
or just let-ccc’s 

DEFINITION 1.1. A let-ccc, %‘, is a Cartesian closed category which 
enjoys the following properties: 

l For each object A in %‘, there is an object TA, 

l for each object A in V, there is a morphism ‘la: A + TA, and 

l for each morphism f: A x B --) TC, there is a morphism 

liji( f) : A x TB -+ TC, 

such that the following conditions are satisfied: 

1. Givenf:A+A’and g:A’xB-+TC, then 

lift (go(fxids))=Zif(g)o(fxid,). 

2. Given f: A x B + TC, then Lft(f) 0 (id, x qB) =J 

3. lift(rjeon2)=n,: Ax TB-, TB. 

4. Givenf:AxB-+TC,g:AxC+TD, then 

w(w-t(g)~ (~I,f>)=lift(g)~ (nc,, lift(f)>. 

The above structure is equivalent to specifying a monad (T, q, p) in 
the usual sense (see MacLane, 1971, Chap. VI) together with a strength, 
CI,,,: A x TB + T(A x B) (namely lift(qAxB)). It is possible to give a 
presentation of this variety of category in terms of categorical combinators, 
extending Curien’s ccc combinators for the simply typed lambda calculus 
(Curien, 1986). We will not make direct use of such combinators here, but 
refer the interested reader to Crole and Pitts (1990). 

We complete this introduction by discussing the contents of the rest of 
the paper. In Section 2 we introduce the so called lixpoint type, together 
with some examples. We describe informally an extension of the system 
IML, associated with the lixpoint type, and also how the fixpoint type 
gives rise to the notion of a fixpoint object in a suitably structured 
category. We describe how the formal system may be used to give denota- 
tions to recursively defined programs. In Section 3, we embed the computa- 
tional lambda calculus, now enriched with lixpoint types and terms, 
natural numbers and finite coproducts, in a fragment of an intuitionistic 
predicate calculus with equality. This new logic is tailored for reasoning 
about evaluations of computations to values, and within it one is able to 
express certain partial and total correctness statements. We end the section 
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by stating versions of the existence and disjunction properties for full intui- 
tionistic predicate calculus which are adapted to our logic, and formalise 
the standardness of the natural numbers. In Section 4, we give a categorical 
semantics for the logical system, and prove the usual categorical-logic 
correspondence. Finally, in Section 5, we present a particular model of our 
logical system, and use its internal logic to prove the theorems from 
Section 3. 

2. THE FIXPOINT TYPE 

We begin by discussing the categorical notion of a lixpoint object. 

DEFINITION 2.1. In a let-ccc, a fi.xpoint object is specified by the 
following data: 

l An initial algebra 0: TQ -+ Q for the functor T. Thus for any 
f: TA --f A there is a unique morphism it(f) : Q + A satisfying the com- 
mutative diagram 

TQ”Q 

T(il(.f 1) 
I I 

id/ 1 

TA - A ./ 

l A global element w: 1 + TQ which is the equaliser of ~a and the 
identity on TQ. In other words o is the unique fixed point of 
~,a : TQ + TQ; for any f: A --) TQ, f = qnaf if and only if f = w! (where 
!: A + 1 is the unique morphism from A to the terminal object 1). 

The usual category-theoretic considerations imply that the structure 
52, C, o is determined uniquely up to isomorphism, within the given let-ccc, 
by the above properties. One should also note that 0, being the structure 
morphism for the initial algebra of an endofunctor, is itself an 
isomorphism. A fixpoint object has some characteristics which are 
reminiscent of a natural numbers object. In particular, if one simply has a 
category with finite products and a strong monad, the definition of fixpoint 
object should be strengthened to a parametrised form. This leads to the 
following lemma: 

LEMMA 2.2. In a let-ccc, %‘, the above definition of a fixpoint object is 
equivalent to the following: There is a morphism 0: TQ + Q, such that given 
objects A and C in V, and a morphism f: C x TA + A, then there is a unique 
morphism it(f) : C x D -+ A such that the following diagram commutes: 
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CxTSZA CxQ 

<nc. ltff/tcrl ir(fb)> 

I I 

II(f) 

CxTA - A I‘ 

In addition, there is also a global element o: 1 + TSZ with the same proper- 
ties as in Definition 2.1. 

The basic domain-theoretic example of such a let-ccc with fixpoint object 
is the category of predomains, oV# 10, whose objects are posets possessing 
joins of countably infinite chains, and whose morphisms are Scott- 
continuous functions, i.e., monotonic functions preserving joins of countably 
infinite chains. The objects of O%+G are not required to possess a least 
element; we will refer to them as ocpo’s in this paper. The operation of 
adjoining a least element to an ocpo D to give the lifted ocpo D, = 

WI ldWu{~) gives a strong monad on wV~~O, called the lift monad. 
There is a fixpoint object in o%$~u for the lift monad, namely the ocpo 

Q={O c 1 E-ET}, 

with CT: Q, + Sz the continuous function sending I to 0, [n] to n + 1, and 
[T] to T; and with o = [T] E Q,. 

Some other monads on w%fin that Moggi (1991) points out as arising 
in denotational semantics also possess tixpoint objects. For example the 
exceptions monad T(D) = (D + E), (with E some fixed discrete wcpo of 
exceptions) and the side-effects monad T(D) = S + (D x S), (with S some 
fixed discrete wcpo of states) both possess fixpoint objects. This follows 
from the general theory of solving recursive domain equations in the “O- 
category” setting of Wand and of Smyth and Plotkin (1982). For suppose 
that T is a strong monad on O%&J that is locally Scott-continuous (i.e., the 
action of T on horn ocpo’s is continuous) and that maps ocpo’s to pointed 
wcpo’s (i.e., ocpo’s with least elements). To obtain a fixpoint object for 
such a T, one constructs the initial fixed object for T in the category of 
pointed wcpo’s and embedding-projection pairs by iterating T starting at 
the one-element ocpo, yielding an isomorphism 0: T(sZ) E 0. Then (CA cr) 
is an initial algebra for T: o%+ o + o%+, and dually (Q, a-‘) is a final 
coalgebra for that functor. The initial algebra property gives us the first 
part of the definition of lixpoint object; and Freyd (to appear) has observed 
that the second part of Definition 2.1 is implied by the coalgebra property. 
We record this latter observation as a lemma. 

LEMMA 2.3 (Freyd, 1991). Given a let-ccc, suppose that o : TQ + Q is an 
initial algebra for the functor T (so that in particular, 0 is an isomorphism). 
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Suppose further that 6’ : !2 + TQ is a final coalgebra for T. Then there is 
a global element CO: 1 -+ TQ making a, o, o a fixpoint object for T. 

Proof: The final coalgebra property means that for any g: A --i TA 
there is a unique morphism 2: A -+ 52 satisfying O- ‘g = T( g)g. 

Define o: l+ TQ to be a-‘ril. From the defining property of ql and the 
naturality of q we get 

w = a-‘& = T(q,)ql = qnrj, = (q,a)o. 

If f: A -+ TR is any other morphism satisfying f = (qnaM; we have to see 
that f = w!. But from f = (qpo)f and the naturality of q one has 

Hence by the uniqueness part of the coalgebra property, af = qa and thus 
f = oP1qA. The same argument applies equally well with o! for f: 
Therefore f =aplqA=co!. 1 

Using the correspondence between equational AML,-theories and 
let-ccc’s, one can translate the definition of a tixpoint object into a corre- 
sponding extension of the system IML,. This entails adding a new type 
fix, together with certain term-forming and equality rules, namely 

[x E Ta] 
E E Tfix F(x)Ea NEfix 

weTfix o(E) E fix It,(F, N) E a 

E= Val(a(E)) 

co = Val(a(o)) E=o 

[x E Ta] 

F(x)Ea EE Tfix 

It,(F, o(E))=F(Let(E, n.Val(lt,(F, n)))) 

[xc Ta] [n E fix] [e E Tfix] 

F(x)Ea G(n)Ea G(a(e))=F(Let(e, n.Val(G(n)))) NE~~X 
G(N) = lt,(F, N) 

(The final rule, expressing the uniqueness of It,(F), will be subsumed in the 
next section in an induction rule for the fixpoint type.) 

Fixpoint objects are so called because they enable one to define fixpoint 
terms at all types of the form a + T/?. If one views the denotation of a 
program of type /cI with input data of type a as a term of type a --r T/3, then 
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we have a method for interpreting all recursively defined programs. Indeed, 
we have 

PROPOSITION 2.4 (Definability of Fixpoint Combinators). In the presence 
of a fixpoint object, one may define a term 

which satisfies Y,,,F= F( Y,,,F) for all F: (IX -+ Tfi) -+ c( + Tfl. Indeed, if we 
define 

Y,,=AF: (a + T/3) --) CC+ T/M,,,& a(w)), 

where P is e.(A,(Let(e, f.Ffx))), then 

[f:a-+T/?,x:cr] 

Ffx: T/? 

Y,,BF: LX + Tfl 

and 

[f: c1+ T/?, x:cr] 

Ffx : Tb M: !I 

Y,,,jFM = F( YJ)M 

are derived rules. 

Proof. It is easy to see that the first rule is derivable. For the second 
rule we have 

YFM= It@, a(o))M 

=F(Let(o, n.Val(lt(8, n))))M 

= Let(Let(o, n.Val(lt(p, n))) f.FfM) 

= Let(Let(Val(a(w)), n.Val(lt(p, n))) f.FfM) 

= F It@, o(o))M 

=F(YF)M. 1 

The definition of an initial algebra g: TQ -+ D for a functor T contains 
both an existence and a uniqueness part. The uniqueness part leads to the 
initial T-algebra induction principle (Lehmann and Smyth, 1981, Sect. 5.2): 
to show that a subobject i: Scz Sz is the whole of Sz, it suffices to show that 
the composition aT(i): TS -+ 52 factors through i: S 4 52. 

When the functor T is (0 + 1 on the category of sets, the initial algebra 
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is the natural numbers and the initial T-algebra induction principle is 
equivalent to the usual principle of mathematical induction. What about 
when the functor is lifting on w%@ ? Restricting attention to subobjects of 
domains which are specified by inclusive subsets (those subsets of an ocpo 
which are closed under taking joins of countable chains), we can use the 
fact that whenever i: S 4 Q is an inclusive subset of the ocpo 

it2 = {O c 1 c . . . c T}, 

then (i)l: S, +Q, is just the inclusive subset of Q, given by 

{eESZ, 1 VnER.[n]=e3nES}. 

Then the initiality property of Q yields the following form of the induction 
principle, with SE S2 inclusive: 

VeESZl.(VnEQ.[n]=e3nES)3f7(e)ES 
VnEQ.nES 

Just as least fixed points are definable using the universal property of the 
initial (-),-algebra 52, so is Scott’s induction principle for least fixed points 
(Scott, 1969) derivable from the above rule. 

3. THE FIX LOGICAL SYSTEM 

How can we enrich the system which we were discussing in Section 2? 
One obvious approach is to add a fixpoint type, coproduct types a + B, and 
a natural number type nut to the system AML,; we refer to this extension 
as FIX=. Then we would arrive at a system which extends Godel’s system 
T (Girard, 1989, Chap. 7) but which also admits sound translations of 
Plotkin’s PCF (Plotkin, 1977) with either a call-by-value or a call-by-name 
operational semantics (Moggi, 1988, Sect. 5)). It is essentially the logical 
system FIX= with which we shall concern ourselves for the rest of the 
paper. However, we are aiming for a constructive logic which enables us to 
reason directly about evaluations of computations to values: the logic 
FIX = only captures certain computational intuitions indirectly, by 
containing equations which model the most basic properties one would 
expect computations to obey. This does not provide a system which allows 
on-the-nose reasoning about evaluations of computations, and we achieve 
this aim by embedding FIX= in a fragment of a first order (intuitionistic) 
predicate calculus with equality. An intuitionistic system is defined, rather 
than a classical system, as such a logic captures more closely the 
behavioural properties of computations. For example, the proposition 
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TV(@) is classically identified with 3( l(Q)); however, if we know that a 
certain proposition G(x) is not always true this does not imply that we can 
calculate when it is not true. Within this new predicate calculus, there are 
forms of proposition directly tailored for expressing properties of 
evaluations of computations. 

The fragment we consider has conjunction and universal quantification 
(over elements of a given type), together with certain predicate construc- 
tors which implicitly contain forms of implication, disjunction and existen- 
tial quantification. In order to set up a formal system for our logic, we 
begin by defining a signature for the types, terms and propositions. 

A FIX signature, denoted by Sg, is specified by: 

l A collection of types. The types are built up in the following way. 
We are given a collection of basic ground types, together with the dis- 
tinguished ground types unit, null, nat, and fin. The types are now specified 
by the grammar 

a::=y/axaIa+a)a+aI Tel, 

where y denotes any ground type. 

l A collection of basic function symbols, together with the following 
distinguished function symbols: ( ), (-, -), Fst, Snd, Inl,, InrD, { },, 
{ -, - } A,, App, Val, Let, 0, Sue, ItNat, w, Q, It,. 

l A sorting for each of the basic function symbols, which is a list of 
n + 1 types, and will be written 

f:c?,,...,ci,+C(,+,. 

In the case where n is zero, we write f: CC. We say that f is an n-ary basic 
function symbol when its sorting consists of n + 1 types. 

l A collection of basic relation symbols, together with the following 
distinguished relation symbols: =x, true, false, &, V,, 0, 0, +. 

l A sorting for each of the basic relation symbols, which is a list of n 
types, and will be written 

R:a LX,. , 9 . . . . 

In the case where n is one, we shall write R :a. We say that R is an n-ary 
basic relation symbol when its sorting consists of n types. 

We use the signature Sg to define the types, terms and propositions of 
our logic. Each type is to be regarded as a metaconstant of arity TYPE, each 
n-ary basic function symbol as a metaconstant of arity TERM" + TERM, and 
each n-ary basic relation symbol as a metaconstant of arity TERM" + PROP. 
The distinguished function and relation symbols are metaconstants; the 



180 CROLE AND PITTS 

function symbols representing the simply typed lambda calculus with 
products and natural numbers have their usual arities, as do the relation 
symbols representing equality, truth, falsity, conjunction and universal 
quantification. The remaining metaconstants have the following arities: 

1. c> .:TERM+TERM 

2. (-, -}:(TERM-+TERM) +(TERM+TERM)-+TERM+TERM 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

hll,:TERM--*TERM 

hp:TERM+TERM 

Va I:TERM-+TERM 

Let :TERM+(TERM+TERM)-+TERM 

O:TERM 

(i:TERM+TERM 

It,: (TERM-+TERM)-+TERM+TERM 

q :TERM+(TERM+PROP)+PROP 

O:TERM-+(TERM+PROP)+PROP 

+:(TERM+PR~P)+(TERM+PR~P)+TERM+PRoP 

Remark 3.1. We make the following abbreviations: write FM for 
App(F, M) and FN(M) for ItNat(F, N, M). 

Associated with a FIX signature is a collection of raw terms and raw 
propositions. In addition to the metaconstants described above, the meta-A- 
calculus contains metaconstants which are viewed as object level variables 
of arity TERM. The raw terms are exactly (cr/In equivalence classes of) the 
closed terms of the meta-A-calculus which are of arity TERM and the raw 
propositions are the closed terms of the meta-ll-calculus which are of arity 
PROP. 

A context, r, is a finite list 

[x*:ul, . ..) x,:a,], 

where the variables x,, . . . . x, are distinct. An empty context will be denoted 
by white space. We use the (self explanatory) notation r, X:CI, and r, r’ 
for the concatenation of contexts (where of course x does not occur in r). 
We write 

for the judgement that given the context r, the raw FIX term M is well 
formed and has type u. These judgements are generated by the usual type 
assignment rules for the basic function symbols and the simply typed 
lambda calculus with products, together with the following rules: 
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Note. It will be assumed in all rule schemes that both the hypothesis 
and conclusion are well formed. This, together with the use of the theory 
of expressions and arities, alleviates the need for any side conditions. 

Null Type 

r EM: null 

r t- { M~):~ 

Binary Coproduct Type 

T~M:Ci Tt-N:P 

r~Inl,(M):cc+P r k Inr,(N):a +/I 

r,x:+F(~):y r,y:pt-G(y):7 rkc:a+p 
r k IF, GHCh 

Computation Type 

q--M:ci rtE:Ta f-,x32 p(x):z-p 
r t Val(M): TU r j- Let(E, F) : Tp 

Natural Number Type 

rtdb7t 
r j-0 :nat r t- Suc(M):nut 

rkkf:u r,x:u ~(x):cc q-N:nat 
r t-P(hf):a 

Fix Type 

TkE:Tfix T,x:Ta /-F(x):cr rj-N:fix 
rf--wITfiX r k C(E) fix r t-- It,(F, N) : 01 

We write 
w-prop 

for the judgement that given the context r, the raw proposition @ is well 
formed. These judgements are generated by the usual rules for intuitionistic 
predicate calculus with equality excluding implication and existential quan- 
tification, but augmented by the following rules: 

Universal Modality 

r,x:ct t-@(x)prop TkE:Tct 

r k q (E, @Iprop 
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Existential Modality 

r,x:cc ~@(x)prop rt-E:Tcr 

r k 0(-K @)PW 
Coproduct 

Given a context r, a FIX term (in context Z) is any raw FIX term M 
satisfying r t--M: c( for some (necessarily unique) type a. We refer to CI as 
the type of the FIX term M. A FIX proposition is defined similarly. Now 
that we have the syntax for our FIX logical system, we present rules for 
deducing the validity of the propositions. These rules will be presented in 
a sequent natural deduction style. We use an intuitionistic sequent in 
context as our basic judgement, which takes the form 

Here, /1 is a finite list of propositions. The intended meaning of a judge- 
ment is that one has a deduction of @ which involves a certain number of 
undischarged hypotheses, each of which must occur in the list A. In the 
case that LI is empty, we simply omit the symbol LI from the judgement. A 
FIX theory, Th, is specified by a FIX signature, together with a specific 
collection of sequents in context, which are called the axioms of Th. The 
theorems of Th consist of the least collection of sequents in context which 
contains the axioms of Th, and which is closed under the usual rules of 
equational logic and lambda calculus with surjective pairing (modulo /I 
and q conversion), augmented by the following rules: 

Null Type Falsity 

x:null k false 

Null Type Equations 

r,x:null k F(x):u r tM:null 

Binary Coproduct Type Equations 

r,x:a ä F(X):Y r,-~:p kG(y):y r~kh 
r t- {F, G)WpW)) =? Wf) 

r,x:a kF(x):y r, y:p kG(y):y q-N:p 
r t- {F, G)(lnr,W)) =? G(N) 

r,z:~+fi~fffq~):y rt-c:a+p 
r k {x.H(lnla(x)), .v.H(lnr,(y))}(C)=:, H(C) 
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Computation Type Equations 

Tt-M:a T,x:a tF(x):TP rkE:Ta 

r k Let(Val(M), F) =rp F(M) f t- Let(E, x.Val(x)) =Tz E 

I’t-E:Ta T,x:a kF(x):T/l f, ,v:/3 t--G(y):Ty 
r k Let(Let(E, F), G)=, Let(E, x.Let(F(x), G)) 

183 

Natural Number Type Equations 

f I--M:a r, x:a tF(x):sr 

Fix Type Equations 

T,x:Ta kF(x):a rkE:Tfix 
r k lt,(F, a(E)) =X F(Let(E, n).Val(lt,(F, n))) 

Universal Modality Propositions 

f, x:a,A,Val(x)=, E t@(x) 

r, A k q (E, @I 

Existential Modality Propositions 

r, A t-Val(M)=, E f, A t-@(M) 

r, A k O(E, @I 

r, x:a, A, Val(x) =Ta E, Q(x) t Y r, A k O(E, CD) 

r,nky 

Coproduct Propositions 

r, A k (@ + WC) 

r, x:a, /i, InIp =z+p C, B(x) t- @(F(x)) 

r, y:~,~,Inr,(y)=.+p C, Y(Y) k @(G(Y)) 
r, A t-@o({E G}(C)) 
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Mono Condition 

r, A EVaI(M Val(M’) 

r,npf==,d4' 

Disjoint Sum Condition 

r, A, InI, =a+p Inr,(N) k false 

Modality Condition 

r, A t- Let(E, F) =Ta Val(M) 

r, A t- 0 (E, x.F(x) = Tr Val(M)) 

Nat Induction 

r, A t@(O) r, n:nat, A, Q(n) k @(Sue(n)) 
r, n:nut, A 1 Q(n) 

Fix Induction 

I’, e: Tjix, A, q (e, CD) k @(c(e)) 

r, n:fix, A k Q(n) 

This completes the rules for deriving sequents; we refer to the system as the 
FIX logic. 

Remark 3.2 (Informal Explanation of the FIX Propositions). The FIX 
logic has many features in common with intuitionistic predicate calculus; 
for the latter see Dummett (1977). However, it introduces propositions of 
the forms (@ + Y)(z), 0 (e, a), 0 (e, @), and so we describe informally the 
intended meaning of this syntax. 

For coproduct propositions, (@ + Y)(z), the intended meaning is 

(3x:a.z=lnlp(x)&@(x)) v (3y:fl.z=lnr,(y)& Y(y)), 

which we read as “either it is the case that z is provably equal to InIB 
and that G(x) holds, or it is the case that z is provably equal to Inr,(y) 
and that Y(y) holds.” 
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For the universal modality, q (e, @), the intended meaning is 

Vx:cc.(Val(x)=e=,@(x)), 

which we read as “for all x of type ~1, if it is the case that e is provably 
equal to the value of x then necessarily Q(x) holds.” 

For the existential modality, O(e, @), the intended meaning is 

h:a.Val(x) = e & Q(x), 

which we read as “it is possible that e is provably equal to Val(x) and that 
Q(x) holds.” 

These modalities are special cases of the notion of “evaluation modality” 
introduced in Pitts (1991). Here we equate “evaluation to a value x” with 
“equal to Val(x)” and as a result proof-theoretically stronger properties of 
the modalities are postulated in the FIX logic than are considered in Pitts 
(1991). This enables us to derive the pleasant properties of the FIX logic 
given in Theorems 3.9, 3.11, and 3.12. 

Remark 3.3. Each of the terms FN(M) and It,(F, N) is unique up to 
provable equality in the FIX logic. If one just considers the computational 
lambda calculus enriched with lixpoint types and terms, as we did at the 
beginning of Section 2, then it is necessary to impose a rule making unique- 
ness explicit. However, in the full FIX logic, this uniqueness is derivable 
from the rules for Nat and Fix Induction. 

The FIX logic can be presented using rules which are closely related to 
the categorical semantics given in Section 4. The new system is given by 
substituting the following rules for their counterparts in the FIX logic: 

Equality Propositions 

l-,x:cr,x’:or,A,x=.x’t-@ 
r, x:a,A /-@[x/x’] 

Conjunction Propositions 

r,nta z-,ffkY 

I-,ft~@P&Y 

Universal Quantification Propositions 

f,x:c?,A k@(x) 
r, A t-V,(@) 
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Universal Modality Propositions 

r, x:a, A[Val(x)/e] t-@(x) 

r,e:Tu,AtU(e,@) 

Existential Modality Propositions 

r, x:ct,A[Val(x)/e], Q(x) k Y[Val(x)/e] 

r,e:Tcl,A, O(e,@)t--!P 

Coproduct Propositions 

r, x:a,AClnlB(x)lzl, @(XI k W(x)) C y:BJClnr,(yYzl, VY) I- Q(G(.Y)) 
r,z:c(+B,A (@+ y’)(z) kQ(IC G)(z)) 

THEOREM 3.4. The original FIX logical system and the system defined by 
the collection of adjoint rules are equivalent. 

ProoJ The proof is by routine manipulation of the logical rules. 1 

Now that we have defined the FIX logical system, we state a proposition 
which we make use of in Section 5. 

PROPOSITION 3.5. Within the FIX logical system, the following birules 
are derivable : 

r,n k Y(N) r,x:u,n t- @(x)prop 

r, A F (@ + W(lnrp(N) ’ 

The proof of this proposition involves simple manipulations of the logi- 
cal rules and is omitted. It is worth remarking that in fact the first two of 
the above birules are equivalent to the Mono Condition rule of the FIX 
logic, modulo the other rules. Similarly, the Modality Condition rule is 
equivalent modulo the others to each of the birules 

r, A t- 0 (-5 X. w(x), w 
r, A t- q (LeW, F), @I 

r, A k w, X. w(x), w 
r, A t 0 ( LeW, p), @) 
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Remark 3.6. The induction rule for nat is just the usual principle of 
mathematical induction. The induction rule for fix can be rendered infor- 
mally as: to prove that a property Q(n) holds of all elements n in fix, it is 
sufhcient to prove for all computations e of an element of fix that @(a(e)) 
holds if whenever e evaluates to a value, that value satisfies @. This prin- 
ciple is consistent (see Theorem 4.7), but only because the FIX proposi- 
tions have limited forms. In fact, extending the FIX logic with unrestricted 
intuitionistic negation, implication, or existential quantification renders it 
inconsistent. We call to mind at this point the admissible predicates of LCF 
(Paulson, 1987); predicates of LCF which contain implication and existen- 
tial quantification are not necessarily admissible. 

PROPOSITION 3.7. Extending the FIX logic with intuitionistic implication 
renders the system inconsistent. 

Proof: Since FIX contains falsity (false), adding implication (52 13 Y) 
means that one also has negation (l@ = (@ 13 false)). So consider the 
proposition 

@(n)=l(a(o)=n) 

about n :fix. We sketch the essential details of the proof in an informal 
fashion. 

Q(n) satisfies the hypotheses of Fix Induction. For if Vn = e. 1 (O(O) = n) 
holds then l(o = e), since otherwise we could deduce Vn G w. 1 
(a(o) = n), which is false because Val(n) = o holds for n = a(w). However, 
g is provably a bijection and so from 1 (w = e) we deduce 1 (U(O) = o(e)), 
that is @(a(e)). So the induction principle for fix entails that Q(n) holds 
of all n Efix, and in particular of a(o), which is a contradiction. 1 

PROPOSITION 3.8. Extending the FIX logic with intuitionistic existential 
quantification renders the system inconsistent. 

Proof This proof mimics the ideas which show that the category O$+O 
together with inclusive subsets does not model standard intuitionistic 
predicate calculus (Dummett, 1977). Recall that in w%+, Beck-Chevalley 
conditions fail for left adjoints to projections; for if this is not the case we 
can deduce that such left adjoints take inclusive subsets to inclusive subsets 
by unravelling Beck-Chevalley at a global element in w%+. Then con- 
sidering the ocpo N x Q and inclusive subset ((m, n) I m E N &n E 
Q\(T) & n <m} we can deduce that {n 1 n E Q\ {T} ) is inclusive in Q. 
This is not so. 

Consider the term I 2’ ItTfix(e. Let(e, x.x), g(w)): Tfix and set 

Q(n) 2 3,,,(m.(u.a(Val(u)))“(o(l)))=fi,n. 
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Using the usual rules for intuitionistic existential quantification together 
with the FIX rules we may deduce e, n, e = Val(n), q (e, Cp) k Q(n) t 
@(a(Val(n))) and from (fixin) we have n:fix k@(n). In particular this 
means that 

k 3,,,(m.(u.a(Val(u)))“(a(l))) =fir 44. 

Using (mono) and that 0 is an isomorphism we conclude k I = w. 1 

We will see that the our logic of fixpoint computations is consistent in 
the next section when we come to consider models. We next state some 
metatheorems that witness the constructive nature of the FIX logic and 
suggest its potential as a programming logic. 

THEOREM 3.9 (“Existence Property”). If E is a closed term of type Tee 
then t 3(E, @) is derivable in FIX tf and only if there is a closed term A4 of 
type a for which k E =Tcr Val(M) and k Q(M) are derivable. (In other 
words, a formal proof that E evaluates to a value satisfying @ necessitates 
the existence of a term denoting that value.) 

Remark 3.10. The deduction that t E = Val(M) captures in an exten- 
sional manner the idea that the computation E evaluates to the value M. 
We refer the reader to Section 6 for further comments. 

THEOREM 3.11 (“Disjunction Property”). Zf E is a closed term of 
coproduct type a + j?, @ and !R are properties of CI and /3 and t-- (@ + Y)(E) 
is derivable in FIX, then either k E = oL + B Inl(M) and t Q(M) are derivable 
for some closed term A4 of type cc, or t E == + B Inr(N) and k Y(N) are 
derivable for some closed term N of type j3. 

The Existence Property enables one to produce closed terms of type nut 
from a computation of a number (i.e., a closed term of type Tnat) together 
with a proof that the computation converges. There remains the possibility 
that a closed term of type nut is not a value, i.e., a standard numeral. 
However, this is not so: 

THEOREM 3.12 (Standardness of nat). Every closed term N of type nat 
in the logic FIX is provably equal to a standard numeral SW”(O); that, is 
one may derive k N =nol S&‘(O) in FIX. (The number n is uniquely deter- 
mined by N, because the consistency of FIX (Theorem 4.7) implies that 
SuC(0) and SUP(O) are not provably equal when n # m.) 

These theorems are proved in Section 5. 
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4. CATEGORICAL SEMANTICS 

In proving Theorems 3.9, 3.11, and 3.12, we use the fact that FIX 
theories correspond, in a way to be made precise, to a certain categorical 
structure. This correspondence is very similar to that between intuitionistic 
predicate calculus and a particular variety of hyperdoctrine, for example, 
see Seely (1983). Indeed, there is a natural equivalence between FIX 
theories and FIX hyperdoctrines; thus we begin by giving the definition of 
this variety of hyperdoctrine. 

DEFINITION 4.1. A FIX caregory is a let-ccc with finite coproducts, 
natural numbers object, and lixpoint object, for which each component of 
the unit of the monad is a monomorphism. A FIX hyperdoctrine is specified 
by a FIX-category V (referred to as the base category) together with a 
g-indexed poset, %?: GP’ + ?%cied, where if f: A + B is a morphism in the 
base category %‘, then we denote the corresponding pullback function by 
f * : S’(B) -+ %‘(A), with the libre at an object A denoted by W(A). 

We adopt the following notational convention. If 
/ A-B 

R I I h 

C--,D 

is a commuting square in @? then right Beck-Chevalley conditions are said 
to hold, which will be abbreviated to RBC, if f * :V(B) + %(A) and 
k* :+2(D) + G??(C) have right adjoints, which will often be denoted by Vf 
and Vk, and these adjoints satisfy the identity Vf 0 g* = h* 0 Vk. We use a 
dual convention for left Beck-Chevafley conditions, LBC. 

The indexed poset satisfies the following conditions: 

1. The fibres are pointed meet semi-lattices, where in particular the 
tibre over the initial object of the base category is a singleton. The top ele- 
ment is denoted by T, the bottom element by I, and the meet of elements 
x E %?(A) and y E %‘(A) by x A y E %‘(A). The pullback functions are 
required to preserve meets and top and bottom elements. 

2. RBC holds for all squares of the form 

CxAA C 

where the morphisms rr and rc’ are product projections. 
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3. RBC and LBC hold for all squares of the form 

idxv 
CxA-CxTA 

fxrd 

I I 

fxrd 

C’xA- C’x TA 

Also, the hyperdoctrine enjoys a form of Frobenius Reciprocity, namely 
given xcW(Cx TA) and ~EV(CX A) we have 

3(idxq)((idxq)*(x) A y)=x A 3(idxq)(y). 

These conditions ensure the soundness of the rules for deducing validity of 
universal and existential modality propositions in the FIX logic. 

4. There is an operation + on fibres 

+:%(CxA)x%?(C+B)+V(Cx(A+B)) 

which is natural in C. Suppose we are given elements 

x~%?(Cx A) u~%(cx(A+B)) 

.v~%‘(Cx B) ZE%qCXD) 

and morphisms f : C x A + Dg: C x B + D. Then we demand that 

(i&xi)*(u) A x<(z,,f>*(=) (id,xj)*(u) A y<(nn,, g>*(z) 
u A (x+ Y) G <n, {f I g> j*(z) 

where i: A -+ (A + B) j : B -+ (A + B) are coproduct insertions, 

(CxA)+(CxB)A Cx(A+B) 

is the obvious isomorphism, and 

nA:CxA-+C nn,:Cx B-+C n:Cx(A+B)+C 

are product projections. Finally, {f I g} =def [ji g] 0 #-', where [f, g] 
arises from the coproduct structure of W. Note that if x + y exists, it is 
determined uniquely. These requirements ensure the soundness of the rules 
for deducing validity of coproduct propositions. 

5. LBC holds for 

CxAaCxAxA 

A - AxA J 
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The left adjoint to id x A satisfies the Frobenius Reciprocity condition 

3(idxA)o(idxA)*(x)=x~ 3(idxA)o$(T), 

where x~%(Cx A x A) and rrn,: Cx A + C. (Recall that the pullback func- 
tion 7~: preserves the top element by definition.) These conditions ensure 
the soundness of the rules for equality. 

6. We demand the inequalities 

where T, E %‘(A), T,, E %‘( TA) and T, + B E %‘(A + B) are the top elements 
of the Iibres and i : A + (A + B) j : B -+ (A + B) are coproduct insertions. 
This guarantees the soundness of the mono condition and the disjoint sum 
condition. 

7. Given the morphism 

f:CxTAxBxA+TB 

we demand the inequality 

where T E V( TA ) is the top element of the tibre and 

n,:CxTAxBxTA+B x,:CxTAxBxA+B 

are product projections. This ensures the soundness of the modality 
condition. 

Finally, to complete the definition of the FIX hyperdoctrine, there are two 
fibrewise induction conditions and a coherence condition. The induction 
conditions ensure soundness of the induction rules in the logic and the 
coherence condition guarantees that semantic equality of terms coincides 
with derivable equality in the FIX logic. 

8. Given elements 

XE%qC), JJE%:(CXN), 

we demand that 

x<(id,Oo!)*(y) X*(X)A y<(idxs)*(y) 

x*(.x) d y 
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where 7~: C x N + C is a product projection and 0 : 1 + N s: N --) N are 
given as part of the structure of the natural numbers object in the base 
category. 

9. Given elements 

we demand that 

7c*(X) A v(idx~)(y)<(idxa)*(y) 

d*(x) < y 

where 7c : C x TQ + C rc’ : C x 52 -+ C are product projections and 
0: TQ + 52 is given as part of the structure of the lixpoint object in the base 
category. 

10. Given morphisms f, g: B -+ A, and the diagonal A : A + A x A, 
we ask that 

(f, g)*o3A(T)=T 
f=gin%? 

This completes Definition 4.1. 
A morphism of FIX categories is a functor which preserves the categori- 

cal structure up to isomorphism. A morphism of FIX hyperdoctrines V and 
W’ is specified by a FIX-category morphism between the base categories 
(referred to as the base functor), say F: %? -+ W, together with an indexed 
collection of monotone functions, called fibre morphisms, FA : %?(A) -+ 
V’(FA)A E ob%‘. These monotone functions are required to preserve the 
structure of the libres in a canonical fashion. For example, the pullback 
functions are preserved by the libre morphisms in the sense that given a 
morphism f: A -P B in %, the following square commutes: 

%‘(A) -f% W’(FA) 

I*1 P ))’ 
V(B) T V’W) 

Also, the structure of the libres is preserved by the libre morphisms; for 
example 

l given T E V(A), then FA(T) = T E W(FA), 

l given x, ye%‘(A), then FA(x A y) = F,Jx) A FA( y), 

l given x~%?(Cx A) and y~%?(Cx B), then 

F cxca+Bj(~+y)=Fc.A(~)+Fc.~(~), 
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l and as a final example, given projections 

n:CxA+C and hence F(Tc):F(CXA)+FC, 

then the following diagram commutes: 

%?(A x C) Vn v?(C) 

Fcsdi IF< 

%“(FCxFA)- VF(n) "(") 

The remaining structure of the tibres is preserved in a similar way; we leave 
the details to the reader. 

The definition of a FIX hyperdoctrine is quite involved, and so the first 
task is to give an example. 

EXAMPLE 4.2. The category of predomains, WV+, equipped with the 
lifting monad as described in Section 2, is a FIX category. There is a o%+- 
indexed poset, Y : o%#u~~ + %a&, where 3 takes an ocpo D to the set of 
inclusive subsets of D, which are ordered by inclusion, and 9 takes each 
continuous function f : D -+ D’ to its inverse image function f- ’ restricted 
to inclusive subsets. It is trivial to check that f-’ : $(D’) --t 9(D) is well 
defined and indeed monotone, and that ./ is a functor. We define the 
operations that make O%+O a FIX hyperdoctrine, but omit detailed 
verifications. 

1. With meet given by intersection of inclusive subsets, it is clear that 
each tibre is a pointed meet semi-lattice. It is easy to see that each pullback 
function is a morphism of pointed meet semi-lattices. 

2. The right adjoint to projection is given by restriction of the dual 
image functions to inclusive subsets; that RBC holds is trivial. Finally 
S(0) = {a} is a singleton. 

3. The existence of left adjoints is well known, given by restriction of 
the set theoretic direct image functions to inclusive subsets. The right 
adjoint to 

is given by 

V(idx1):9(CxD)+9(CxD~), 

where for IES(CX D) we define 

V(idxz)(I)ff(idxl)(I)u {(c, L):VCEC}. 
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It is easy to see that this is a good definition and yields the required 
adjoint. Checking RBC and LBC is easy; Frobenius Reciprocity is virtually 
immediate. 

4. Let i: D + D + D’ and j : D’ -+ D + D’ be coproduct insertions. 
Given 

IEY(CX D) and JEY(CX D’), 

we define 

Z+.ZEf 3(idxi)(Z)u3(idxj)(J). 

Note that the librewise induction conditions are satisfied because any 
inclusive subset of an wcpo is an ocpo. 

Remark 4.3. Some other strong monads on O%#O (such as those for 
side-effects and exceptions) were shown in Section 2 to possess lixpoint 
objects. Thus we get other FIX categories based on wcpo’s by changing 
from lifting to one of these other monads. However, the c&$&-indexed 
poset of inclusive subsets will not yield a FIX hyperdoctrine over these FIX 
categories. This is because the notion of FIX hyperdoctrine is tailored to lit 
the FIX logic which treats “evaluation to a value x’ as meaning “equal to 
Val(x).” Such a strict interpretation of evaluation is appropriate for 
a (constructive) treatment of the termination/nontermination aspects of 
computation; but for other aspects, weaker notions of hyperdoctrine 
are needed. (For example, Pitts (1991) gives hyperdoctrine over o%?$o 
possessing appropriate evaluation modalities for the side-effects monad.) 

Next we give the categorical semantics of the FIX logic in a FIX hyper- 
doctrine W. A structure, M, in %? for a given FIX-signature Sg is specified 
by the following data: 

l An object [[ylj for each basic ground type y of Sg, and 

l for each basic function symbol f: txi , . . . . a, + tl, a morphism in V of 
the form [Tfl : [err] x . . . x [or,] -+ [cr], and 

l for each basic relation symbol R: t(i) .., a, an element [R] of a tibre 
of %, where CR] E GfT( [crl] x ... x [a,]). 

For each term in context, we assign a meaning in the base category V in 
the following way. The types are interpreted as objects in the category, 
where the interpretation of a type a is denoted by [cr]. Set 
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l [unit] gf 1, where 1 is the terminal object. 

l I[nu/Z] 2’0, where 0 is the initial object. 

l [nat] 2’ N, where N is the natural numbers object. 

l [fix] dzf $2, where Sz is the tixpoint object. 

. ua x pn ftf [an x upa. 

l [a + pa zf [an + ml. 

l [a + PI $2 [al + [@I. 

l [Tan 25 T[a]. 

Given a context r= [x,:a,, . . . . x,:a,,], we let [fl !Zf [a,] x I.’ x [a,,& 
Then for each context r, term M, and type a for which r k M: a is a valid 
judgement we give a morphism 

[r t M:a] : p-1 --, [a]. 

Note that when M:a is a valid judgement, because the type a is uniquely 
determined by A4 and r, we abbreviate [r k M:a] to just [r. n/rll. The 
semantics of terms-in-context is defined by a structural induction on terms: 

l ur,x:a,r’.xn~f~:~r?]xlla]lxITr’n~caa 
l Let f: a,, . . . . a, -+ a be a basic function symbol; then 

wfw,,..., M,)n gf ufn 
0 ([r.M,], . . . . gr.kq):[z-1 + [a,] x ... x [a,] + [a] 
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where h is the unique morphism arising from the initiality property of the 
natural numbers object together with the morphism 

where f is the unique morphism arising from the initiality property of the 
fixpoint object together with the morphism 

p-.x: n.qx)lj : p-1 x rccfj -+ fun. 

Finally, for each context r and proposition @ for which we can derive 
r k @ prop, we specify an element of a tibre 

where we adopt a similar notation to that for terms in context. The 
semantics of propositions in context is defined using the structure of the 
propositions: 

0 [T.true] %‘TE%?(i[rl]) 

0 [T.falseJ 2’ -L EW([~]) 

l [r.M=.YVI gf ([r.Mj, [r.?Vj)*o3d(T),whereTEV([cc]) 

l [I-.@& u’ll ,z [r.@] A 1r.q 

l [r.v,(@)] gr vn,([r, x:u.@]) 

l [[r.Cl(E,@)j ‘&‘(id, [r.EJ)*~V(idxq)([I’,x:cr.@(x)~) 

l [r.O(E, @)a gf (id, [yr.E4)*03(idx?)(Cr,x:cc.~(x)n) 

. [ZY(@+Y)(M)]I~f(id, [r.Mj)*([yJ-,x:a.@(x)]l+[Z-,y:/?.!P(y)J). 

The categorical semantics interprets substitution of terms in terms, and 
terms in propositions in the usual manner. Indeed we have the following 
two lemmas which make this precise. The first lemma deals with substitu- 
tion of terms for variables in another term: 

LEMMA 4.4. The categorical semantics interprets the substitution of a 
term for a variable in a term via composition in the category. More precisely, 
ifrkkfi:uifori=l,..., nandalsor’tN:B, wherer=[x,:u,,...,x,:cc,], 
we have 

p-.N[&Qq~ = kr’.Ng o (pxf,~, . . . . lp24,n ), 

where the notation N[g/lx’] indicates a simultaneous substitution. 
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The next lemma tells us how substitution of terms for variables in 
propositions is modelled. 

LEMMA 4.5. Let r’ b @ be a FIX proposition in context, where the 
context is P’ = [x, :a,, . . . . x,:x,], and let r k M,:a, for i= 1, ..,, n be FIX 
terms in context. Then 

where the notation @[G/2] indicates a simultaneous substitution. 

If n is a finite list of propositions, each of which is well formed in the 
context r, then let 

p-.d] izf A [yr.oj. 
8 E A 

A structure M is a FIX hyperdoctrine %’ satisfies a sequent in context 
r,n ~--CD if 

[r.ng G p2q 

holds in the libre %3( [r]). Given a FIX theory, Th, then M is called a 
model of the theory if it satisfies all the axioms of Th. 

The categorical semantics of the FIX logic is sound; indeed we have 

PROPOSITION 4.6. Let %2 be a FIX hyperdoctrine, Th a FIX theory, and 
M a model of Th in %7. Then M satisfies any sequent in context which is a 
theorem of Th. 

Proof: We need to check that the collection of sequents in context 
which are satisfied by M is closed under the rules for generating sequents 
in context. The proof uses Lemmas 4.4 and 4.5. 1 

Taking V to be the FIX hyperdoctrine of inclusive subsets over the FIX 
category of wV~~U equipped with the lifting monad, and taking Th to be the 
empty thery in the above proposition, we have: 

THEOREM 4.7. The FIX logical system is consistent, in the sense 
that k false is not provable from the rules given in Section3. 1 

Now that the definition of the semantics is complete, we establish that 
there is a natural equivalence between the syntax and the semantics. We 
need some notation. 

PROPOSITION 4.8. For each FIX theory Th over some FIX-signature Sg, 
we can construct a syntactic FIX hyperdoctrine, which we denote by %?(Th) 
or sometimes just 9. 
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Proof. The base category is constructed from the types and terms of the 
FIX theory: 

l the objects of 9 are the types of the signature Sg, 

l and the morphisms are equivalence classes of terms with at most one 
metavariable, where the equivalence relation is given by provable equality 
in the FIX logic. 

Composition is given by the usual substitution of terms; it is a tedious but 
straightforward task to check that this does define a FIX category. 

We now define an Y-indexed functor to the category of meet semi- 
lattices. We also use 9 to denote the functor. For each object a E F, the 
underlying set consists of equivalence classes of propositions in a single 
variable context, .Y:SI /- Q(x). We often omit the context itself; with this 
convention we define the equivalence relation by 

@(,u) - Y(v) iff Q(x) t- Y(x) and !P(?c) /-- Q(x). 

Then referring to equivalence classes by representatives, we order this set 
by 

Q(x) < Y(y) iff @(x) t- Y(x). 

Given a morphism F:cc + /?, in 9, then the pullback function 
F*:8(/?) -+ F(a) is defined by substitution: F*(@( y)) =def G(F). The 
remaining details are routine verifications. 1 

We also have the following 

PROPOSITION 4.9. Given a FIX hyperdoctrine @, then we can define a 
FIX theory which we denote by Th(V). 

Proof. The basic ground types are the objects of V, and basic function 
symbols copies of the morphisms of V. The basic relation symbols are 
copies of the elements of the hyperdoctrine fibres. This yields a FIX 
signature, and there is an evident canonical structure for this in %‘. The 
axioms of the theory are exactly those sequents in context which are 
satisfied by the canonical structure. The theorems of Th(V) are generated 
by the usual rules. 1 

We state the categorical logic correspondence: 

THEOREM 4.10. Let W be a FIX hyperdoctrine; then there is an 
equivalence of hyperdoctrines 

Eq: ‘%?( Th(%‘)) N %, 
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where Eq is a FIX hyperdoctrine morphism, in the sense that there is a 
categorical equivalence of base categories, and each fibre morphism 

is an isomorphism of pose&. 

5. CATEGORICAL LOGICAL RELATIONS 

Now that we have formalised the correspondence between FIX theories 
and FIX hyperdoctrines, we define a new FIX hyperdoctrine and use it, 
together with its corresponding logic, to prove the theorems which we 
stated at the end of Section 3. 

Remark 5.1. The hyperdoctrine construction which is detailed below 
provides a proof of the Existence and Disjunction properties of FIX in 
much the same way that Freyd’s gluing construction may be used to see 
the existence and disjunction properties of standard intuitionistic predicate 
calculus. Our construction, in essence, packages the technique of logical 
relations, as Freyd’s glued topos packages the techniques of realizability. 

Let 9 be the syntactic hyperdoctrine constructed from the pure FIX 
logic (that is to say the FIX theory with no extralogical axioms) and let 
r: 9 + C&+&P denote the functor which assigns to each object C(EF its 
set T(cr) of global elements equipped with the discrete partial order. We 
construct a new FIX hyperdoctrine, denoted by .Yr(T), using a construc- 
tion that is closely allied to the theory of logical relations. An object 
of P’r(ZJ is a triple (D, 4, a), where D is an object of o?Zfi~, c1 is an 
object of 9 and 4 is an inclusive subset of D x r(a). A morphism 
(D, u, CI) + (D’, a ‘, a’) in Yr(T) is a pair (f, F), where f: D + D’ in 
o%#u, F: c( + U’ in 9, satisfying the following condition: 

VdED.VlMEr(u).dd Mimpliesf(d)d’(FM). 

Finally we need to define an Yr(T)-indexed poset. We denote the libre 
at an object (D, 4, a) by Zr(D, 4, CC). The elements of the Iibre consist of 
all triples (S, 9, G(x)), where 

1. SE Y(D), i.e., S runs over the inclusive subsets of the wcpo D, 

2. @(x)E~(cI), where Q(x) is a representative, 

3. d l 9(SxT,(cc)na), where 
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and the ordering is specified coordinatewise. Given a morphism 

(f,F):(D’,a’,cc’)-t(D,a,a) 

in 29(r), we define the pullback function 

(f, F)* : Yr(D, 3) a) -+ Tr(D’, 9 ‘, a’) 

by 

(f, q*cx 9, @(xl) 5 (f-‘(S), 9 *, Q(F)), 

where 

_a* ef {(d,M)Ef-‘(S)xr~(F)(~‘)n~‘I f(d)aFM}. 

PROPOSITION 5.2. The above recipe produces another FIX hyperdoctrine 
9r( r). 

Proof: We write just Yr for Yr(T). We check that we have defined a 
base FIX category; most of the details are simple calculations, once it is 
clear how one defines the various categorical constructs. The terminal 
object is 

(*, 4 unlf, unit), 

where * a unit idunit. The binary product is given by 

(D, 4) a) x (D’, 4 ‘, a’) gf (D x D’, Q x ) a x a’), 

where (with the obvious notation), 

(4 d’)a x N iff d a Fst(N) and d’ 4 ’ Snd(N). 

It is clear that u x is inclusive, and easy to check the remaining details. 
Exponentials of objects are defined by 

(D’, Ed ‘, a’) + (D, Q, a) dzf (D’ -+ D, 4 ap, CC’ -+ CC), 

where 

f-%p MiffVd’ED’.VL’Ef(~‘).d’a’L’impliesf(d’)~ apo(M,L’) 

and ap is the evaluation morphism in 4. The transpose rule is given by 

(f, F) : (D x D’, 4 x , a x rx’) + (D”, -=I “, a”) 
(cur(f), cur(F)): (D, 4, a) + (D’ + D”, u apr CX’ + a”) 
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and the evaluation morphism is (up, up). Finite coproducts are also defined 
in the same (hopefully now familiar) coordinatewise/logical relations 
manner. The natural numbers object of 3’~ is specified by 

where 

n 4 nar IV iff N= Sue?(O), 

and the zero and successor morphisms are the expected coordinatewise 
ones. We now show for a particular choice of monad, our category Yr 
does indeed become a FIX category. The action of the monad on objects 
is specified by 

T(D, a, Lx) $2 (D,, 4 T, Tu), 

where 

ea.EiffV’d~D.[d]=eimpliesZiM~T(ol).da Mandq,M=E, 

and q =def (1, ~1%): (D, a,~)+(D~,-a, Tel), with I:D+D, the canonical 
inclusion. Finally the lifting rule is 

(f,F):(DxD’,a ,,uxcd)-(D;,-a;, Td’) 

(fi,lift(~)):(DxD;,a~,clxT~‘)~(D’;,a’;,Tcr”) 

where fi(d, Cd’]) =de’f(d, d’) and fi(d I) =def 1. 
Now we show that 2’r does indeed possess a fixpoint object. This will be 

determined up to isomorphism; thus as for the previous constructs we 
exhibit a candidate and show that it satisfies the required properties. The 
expected candidate for the Iixpoint object would be ($2, Q~.~, fix), with 
structure morphism (a, a). By definition of the action of the monad on 
objects, in the relation a$-’ one has I ap 44, for any ME r( Tfix). As 
(a, a) must preserve the relation, then 0 qix CJM must hold, and the action 
of the monad yields [0] 4 $? qaM. Once again (a, a) preserves this, so we 
must have 1 aix a?aM. In general we are forced to have n ++ (aq)“oM. 
Finally, considering that the relation qix has to be a certain inclusive sub- 
set, we are led to the following definition: 

(Q, u~.~, fix) is a fixpoint object for T over Yr, where 

l n dfis N iff ~ME r($x).N= (ar])“M, and 

l Tafi.Y N iff VnEQ\{T}.nafi., N. 

We check that the relation +fi.l is inclusive. Let 8: N + $2 be a function 
satisfying 0(r) d 0(r + 1). Set n, = 0(r), so a chain in “n.Y is given 
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by a sequence n, qir N where NE r( fix). We need to check that 
V TEN n,afi, N. If Vn, is not T we are done. Otherwise, given any 
n E Q\(T), we can choose Y E N such that n, 2 n. As n, dfl.y N, we get 
N= (rny)‘+M= (ay)“(oq)“-” M, and so n a,, N. As n was arbitrary, we are 
done. Now we check that (a, G) is a morphism in P’r, where 
(0, o):(d,, ag Tfix) + (sz, afj.X, fix). We have three cases to cover. 

1. If I ap N then o(l) = 0 a,fi.x ON. 

2. Suppose that [T] a$? yN. Then Taizl N and hence VnE 
Q\{T}.nafi.r N. In particular, we have n - 1 air N, and so there is some 
M~r(fix) for which N= (a~)“~iM, giving oqN= =(a~N=(a~)“M. So 
we have Vn E L?\ { T > .n afi.x oqN, that is T air qN. 

3. This is immediate from the definition of afi.X. 

Finally, we have to verify that our definition yields an initial T-algebra in 
Yr. Take 

The unique mediating morphism for (a, a) has to be (x F) =def 
(it(f), it(F)), whose coordinates are the mediating morphisms in o%& and 
9. First we check that it is a morphism in P’r. Suppose that n afiX N. Then 
for some M we get N= (aq)“M. From the definition of the aT relation, we 
get 

1 aTlift a-‘M 

and so 

f(l)aFlift(qF)o-‘M=FM. 

Now suppose that f(l) a F((~v)~- ‘M, where r 6 n - 1. Clearly 

Cf’(l)l arvlRv)‘-‘M 

and so 

f+‘(l)aF(mj)‘M. 

Inductively we have 

which is what we had to prove. Last, if T afi.x N we need 
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which follows from inclusivity of u. We leave the reader to verify that the 
morphisms 

and 
(a, a):(L?,, up, Tfk) + (Q, -=I,;~, fix) 

constitute a fixpoint object in 49r. 
Now it is time to verify that all the conditions required of the 

Yr-indexed poset hold. We give the constructions of the adjoints and 
operations which appear in the definition of a FIX hyperdoctrine, but omit 
the verification of the conditions which the adjoints and operations satisfy. 
First we define the right adjoint to 

(TC, Fst(z))*:Yr(C,u’,y)~dpr(CxD,a’x a,y”cO 

which we write as 

(with u x an abbreviation for u’ x a), where we define 

Vn(S, 3 x ) Q(z)) 2 (V7c(S), 9”, ) h(@(z))) 
with 

A”, Zf UC, NJ E WS) x L,(@(;,,(Y) 

n u’~V’d~D.VM~~(tx).duMimplies(c,d)~~ (N,M)). 

The right adjoint to 

(idxz,z’dx~)*:~iPr(C~D~,u’x ur,yxTa) 

+.S?r(CxD,u’x~,yxa), 

which we write as 

q :2’r(CxD,u,,yx+&‘r(CxD~,u~,yxTcr) 

(with u x and uz abbreviations for u’ x u and u’ x uT), is defined by 

•(~,_a,,~(u))~f(o(s),~o,, 0(@(u))), 
where 

gx ’ ‘2 {((c, e), (N E))E q (S) x r,,,,,,,(y x T@) 
n -at I b’d~D.VM~~(a).duM,e= [d], 

E=Val(M)implies (c,d)g,(iV,M)j. 

M3:98,2-5 
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We now define the left adjoint to 

(idxr,idxvl)*:~r(CXD~, 4x +,yxTa) 

+B(CxD, a’x a,yxa), 

which we write as 

O:&(CxD, c3,,yxa)~Yr(CxD.,uT,,yxTa), 

where we define 

O(S,~., @(u))= (o(s),g, 0(@(u))) 

with 

q”, 2 ((Cc, e), <N, ~91~ O(S) x Lc~cu,,W Ta) 

n 4: I 3dE D.3ME f(a).e = Cd], 

E= Val(M), (d, c)gx (N, M))}. 

We define the + operation, where 

+:L&‘r(CxD,(1,x u,yxa)x9r(CxD’, dcx a’,yxa’) 

+ diPr(C x (D + D’), dc x (a + -=f ), y x (a + a’)) 

and 

(Z,~,,@(~))EY~(CXD, dcx a,yxa) 

(J, 11>, Y(w)) E Yr(Cx D’, ac x 4, y x a’), 

by taking the sum of these elements to be 

(1-t 4 d3, Q(u) + VW)), 
where 

d3 dzr {((c, e), (N ~9) E U+ 4 x rGcL,)+ ac,,(~ x (a + ~‘1) 
n uc x (a + a’) 1 3dc D.~ME I-(a).e = i(d), 

E = M(M), (c, d) 9, (N, M) or 

3d’~D’.3M’~lJa’).e=j(d’), E=lnr(M’),(c,d’)9, (N,M’)) 

The left adjoint to 

(idxd,idxd)*:L4’r(CxDxD,-=fX,yxaxa) 

+&(CxD,a,,yxa), 
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written as 
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3(idxd):Lzr(CxD,-=l., yxcx)-bLfr(CxDxD,4’,,gxaxa), 

is defined by 

3(idx A)($5 x, Q(u)) fZf (3(idx d)(S), d”, , 3 x d)(@(u))), 

where 

~‘3 Fif {((c, e), (N, E))~Yidxd)(S) x ~3~idxd,,0~u~,(~ xa x Co 

n 4’, 1 Eld~D.M4~T(a).e=d(d), 

E=d(W,(c,d)a. <N,W). I 

We are now in a position to prove the theorems stated in Section 3. We 
need to make one further observation, namely 

PROPOSITION 5.3. The FIX hyperdoctrine F;, arising from the pure FIX 
logic, is initial amongst all FIX hyperdoctrines. 

Proof. This is immediate from the definition of FIX hyperdoctrine 
morphism. i 

Using the initiality of 9, we see that there are FIX hyperdoctrine 
morphisms [--a and I; and in addition there are obvious projections 7c and 
n’, where 

1-j :T-cd&y0 

I:Y+Yr 

These FIX hyperdoctrine morphisms satisfy the following commutative 
diagrams: 
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Let us now prove the Disjunction Property for the FIX logical system. 
First note that the closed term E: CI + /3 corresponds to a morphism 
E: unit + CI + /3 in 9. The action of the base functor part of I: .Y --t 40~ on 
this morphism, using the above commutative diagrams, is 

I(E)=(lIEll,E): (l,a,,,,,unit)~(Ucrli+U811,~~+~,cc+B). 

Also, the following square commutes: 

F(a + B) -+L ~wHl+uBn,~ci+~,~+D) 
6* 

I I 
(I[El, E)f 

P( unit) Lu b Yd*, dunr,, unit) 

The theorem follows by observing the action of the two possible routes 
of the square. Let z be a variable of type c( + p, and consider 
(@ + Y)(z) E 9(cr f /3). Then we have 

L,,(E*((@ + W(z)) = I((@ + W(E)) 

= (U(@ + Yu)(E)l, s,it, (@ + y’)(E)) 

where because k(@ + Y)(E) by hypothesis, and I,,,, preserves greatest 
elements, the relation aunrt must be non-empty. Also, we have 

(UE4, E)*(L+BW+ y’)(z))) 

= CUEa, E)*(II(@ + y)(,-)I, s+,s> (@+ W(z)) 

=(UW’(U(@+ W(Z)I),~+~, (@+ W(E)), 
where 

$+fi = ((*, idunilJE UE’ii-‘(lt(@+ y)(z)ll) 

x =(@ + Y,,l&W n dunit I CCil(*)~,+,Joi~~. 

But this relation is exactly sunir, hence is non-empty, yielding 

U-KU(*) s+fi 6 

that is, 

IICU(*) +x+8 E. 

By definition of the relation qcr+ p this means without loss of generality 
that there is a global element ME r(a), that is a closed term M, for which 

tE=a+B WW, 

and from this we may derive k Q(M) using Proposition 3.5. 
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The proof of the Existence Property is very similar. We take a proposi- 
tion 0 (e, @) E S( Tcr) and use the square 

ITZ S(Tcc)- =wnan., 4733 Ta) 
E’ 

I ! 

CIEJ, El’ 

F(unit) - L”,, gr(l, uunLI, unit) 

As above, this yields 

sm = sx 

= {(*, id)E ilEa-‘(Ie.O(e, @)I) 

x ro (E, @) (unit) n qunir I bTlI(*) s E). 

This has to be non-empty and so 

ITEa sn 6 

that is, 

Hence there is some closed M for which k E=, Val(M) and using 
Proposition 3.5 we have k D(M). 

Finally we prove the Standardness of nut. Let N be a closed term of type 
nat. Using the square 

P(nat) I,,, =!WN -srt natI 
N* 

I I 
(UN. N)* 

F(unit) r h, Lift-( 1, uuni,, unit) 

and arguing in the same way as for the previous two theorems, we 
conclude that 

iIND(*) %z, N, 

and from this we deduce that 

t-N=.., SUCYO), 

using the definition of thee,,! relation in the natural numbers object of 
LZr. This completes the proofs of the theorems from Section 3. 
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We finish this section by remarking that the Existence Property 
expresses a formal adequacy of the FIX logic for the metalanguage. Indeed, 
we have 

COROLLARY 5.4. Given a closed term E of type Ta, it is provably equal 
to a value Val(M), where A4 is a closed term of type a, if and onl-v if the 
c&?/20 interpretation 

is not 1. 

6. CONCLUDING REMARKS 

The predicate xt e[xEa, eE T(a)] of evaluation is implicit in the FIX 
logic, but as was pointed out in Remark 3.2, it is treated here in a very 
“extensional” way as equivalent to Val(x) = e. It is possible to envisage a 
weaker logic than FIX (and a corresponding kind of categorical structure) 
in which x e e [x E a, e E T(a)] is an atomic predicate satisfying 

M-SE N-=F(M) 
Me Val(M) N t (Let(E, F)) 

and in which there are modified rules for the bounded quantifiers. For 
some recent progress in this area we refer the reader to Pitts (1991). There 
are strong connections of FIX to the traditional “axiomatic domain 
theory” of LCF (Paulson, 1987) and to Plotkin’s approach to denotational 
semantics using partial continuous functions (Plotkin, 1985). Our logic 
appears inherently more constructive, since it is based on the notion of 
evaluation of a (possibly non-terminating) computaton to a value, rather 
than on non-termination and on information ordering between (possibly 
partial) computations. However, the precise relatinship between the FIX 
logic and “axiomatic domain theory” has yet to be clarified. 

FIX establishes a novel approach to fixed point equations at the level of 
functions. This technique can be extended to the level of types by using a 
dependently typed logic which contains a universal type and a fixpoint 
type. The fundamental idea is that a recursive type (domain equation) 
induces a recursive function on the universal type. The fixpoint type yields 
a lixpoint for this function; the type coded by this fixpoint corresponds to 
the solution of the domain equation. For details see Crole (1991). 

FIX is not an “integrated” logic-proofs of propositions are external to 
the system. Undoubtedly something to aim for is a system combining 
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features of FIX with those of the Calculus of Constructions (Coquand and 
Huet, 1988) obtaining both the “terms-as-computations” and “terms-as- 
proofs” paradigms in a single (consistent!) system. 
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