
INFORMATION AND COMPUTATION 98, 171-210 (1992)

New Foundations for Fixpoint Computations:
FIX- Hyperdoctrines and the FIX- Logic

ROY L. CROLE* AND ANDREW M. PITTS+

Cornpurer Laboratory, University of Cambridge,
Cambridge CB2 3QG. England

This paper introduces a new higher-order typed constructive predicate logic for
fixpoint computations, which exploits the categorical semantics of computations
introduced by Moggi (in “Proceedings, 4th Annual Symposium on Logic in
Computer Science,” pp. 14-23, IEEE Comput. Sot. Press, Washington, 1989) and
contains a version of Martin-Lof’s “iteration type” (in “Proceedings, Workshop
on Semantics in Programming Laguages,” Chalmers University, 1983). The type
system enforces a separation of computations from values. The logic contains a
novel form of ftxpoint induction and can express partial and total correctness
statements about evaluation of computations to values. The constructive nature of
the logic is witnessed by strong metalogical properties which are proved using a
category-theoretic version of the “logical relations” method (Plotkin, unpublished
lecture notes from CSLI Summer School, 1985). c 1992 Academic Press. Inc.

1. INTRODLJCTI~N

It is well known that primitive recursion at higher types can be given a
categorical characterisation in terms of Lawvere’s concept of natural
number object (Lambek and Scott, 1986). We show that a similar charac-
terisation can be given for general recursion via lixpoint operators of higher
types, in terms of a new concept-that of a fixpoint object in a suitably
structured category. This notion was partly inspired by contemplation of
Martin-Liif’s non-standard “iteration type” in his domain theoretic inter-
pretation of type theory (Martin-LGf, 1983). However, the key ingredient
which allows the formulation of the concept of Iixpoint object is the treat-
ment of computations using monads introduced by Moggi (1989) where
there is a distinction between the elements of a type c1 and computations of
elements of that type-the latter being grouped into a new type Tsc.

* Research supported by a SERC Research Studentship.
‘Research supported by the CLICS project (EEC ESPRIT BR 3003).

171
0890-5401/92 $5.00

643.‘98%3
Copyright ~CI 1992 by Academic Press. Inc.

All rights of reproduction in any form reserved.

172 CROLE AND PITTS

Moggi’s computational metalanguage IML T (Moggi, 1991) contains the
following formation rules:

~1 type
Tcr type

M:Cd
Val(M): Tel

[x:x]
E: Tci F(x): Tp

Let(E, F) : T/?

Note. These rules, and the others which appear in this paper, are
presented in natural deduction style. In this section, we present some rules
with discharged hypotheses in square brackets. In later sections, rules will
be written using intuitionistic sequents in context, where contexts are lists
of typed variables. Since there are several unfamiliar variable binding
operations in the syntax, we will also adopt Martin-LX’s theory of expres-
sions and arities. For us this will be a a&-lambda calculus over ground
types TYPE, TERM, and PROP, with abstraction denoted x.e, application
denoted f(e), substitution denoted e[e’/-x], and a multiple application such
as (f(e))(e’) abbreviated to f(e, e’); see (Nordstrom, Petersson, and Smith,
1990), for example. This system will be referred to as the meta-ll-calculus.
Finally, it should benoted that our syntax is a slight variant of Moggi’s.

Intuitively, Val(M) is the value M regarded as a trivial computation
which immediately evaluates to itself; and Let(E, F) denotes the computa-
tion which first tries to evaluate E to some value M:cl and then proceeds
to evaluate F(M). These intended meanings are captured by three equa-
tional axioms:

Let(Val(M), F) = F(M)

Let(E, x.Val(x)) = E

Let(Let(E, F), G) = Let(E, x. Let(F(x), G)).

In addition, IML, extends the simply typed lampda calculus: there are
function types CI --f B with lambda abstractions Ax:cr. F(x) and applications
MN satisfying the usual fl and q equalities. The system also contains
product types c1 x /I with (surjective) pairing (M, N) and projections
Fst(M), Snd(M); and it contains a type unit with unique element ():
unit.

The categorical counterpart of this basic formal system is the notion of
a “Cartesian closed category equipped with a strong monad T” (Moggi,

FIXPOINT COMPUTATIONS 173

1989, Sect. 2). We refer to such structures as let Cartesian closed categories,
or just let-ccc’s

DEFINITION 1.1. A let-ccc, %‘, is a Cartesian closed category which
enjoys the following properties:

l For each object A in %‘, there is an object TA,

l for each object A in V, there is a morphism ‘la: A + TA, and

l for each morphism f: A x B --) TC, there is a morphism

liji(f) : A x TB -+ TC,

such that the following conditions are satisfied:

1. Givenf:A+A’and g:A’xB-+TC, then

lift (go(fxids))=Zif(g)o(fxid,).

2. Given f: A x B + TC, then Lft(f) 0 (id, x qB) =J

3. lift(rjeon2)=n,: Ax TB-, TB.

4. Givenf:AxB-+TC,g:AxC+TD, then

w(w-t(g)~ (~I,f>)=lift(g)~ (nc,, lift(f)>.

The above structure is equivalent to specifying a monad (T, q, p) in
the usual sense (see MacLane, 1971, Chap. VI) together with a strength,
CI,,,: A x TB + T(A x B) (namely lift(qAxB)). It is possible to give a
presentation of this variety of category in terms of categorical combinators,
extending Curien’s ccc combinators for the simply typed lambda calculus
(Curien, 1986). We will not make direct use of such combinators here, but
refer the interested reader to Crole and Pitts (1990).

We complete this introduction by discussing the contents of the rest of
the paper. In Section 2 we introduce the so called lixpoint type, together
with some examples. We describe informally an extension of the system
IML, associated with the lixpoint type, and also how the fixpoint type
gives rise to the notion of a fixpoint object in a suitably structured
category. We describe how the formal system may be used to give denota-
tions to recursively defined programs. In Section 3, we embed the computa-
tional lambda calculus, now enriched with lixpoint types and terms,
natural numbers and finite coproducts, in a fragment of an intuitionistic
predicate calculus with equality. This new logic is tailored for reasoning
about evaluations of computations to values, and within it one is able to
express certain partial and total correctness statements. We end the section

174 CROLE AND PITTS

by stating versions of the existence and disjunction properties for full intui-
tionistic predicate calculus which are adapted to our logic, and formalise
the standardness of the natural numbers. In Section 4, we give a categorical
semantics for the logical system, and prove the usual categorical-logic
correspondence. Finally, in Section 5, we present a particular model of our
logical system, and use its internal logic to prove the theorems from
Section 3.

2. THE FIXPOINT TYPE

We begin by discussing the categorical notion of a lixpoint object.

DEFINITION 2.1. In a let-ccc, a fi.xpoint object is specified by the
following data:

l An initial algebra 0: TQ -+ Q for the functor T. Thus for any
f: TA --f A there is a unique morphism it(f) : Q + A satisfying the com-
mutative diagram

TQ”Q

T(il(.f 1)
I I

id/ 1

TA - A ./

l A global element w: 1 + TQ which is the equaliser of ~a and the
identity on TQ. In other words o is the unique fixed point of
~,a : TQ + TQ; for any f: A --) TQ, f = qnaf if and only if f = w! (where
!: A + 1 is the unique morphism from A to the terminal object 1).

The usual category-theoretic considerations imply that the structure
52, C, o is determined uniquely up to isomorphism, within the given let-ccc,
by the above properties. One should also note that 0, being the structure
morphism for the initial algebra of an endofunctor, is itself an
isomorphism. A fixpoint object has some characteristics which are
reminiscent of a natural numbers object. In particular, if one simply has a
category with finite products and a strong monad, the definition of fixpoint
object should be strengthened to a parametrised form. This leads to the
following lemma:

LEMMA 2.2. In a let-ccc, %‘, the above definition of a fixpoint object is
equivalent to the following: There is a morphism 0: TQ + Q, such that given
objects A and C in V, and a morphism f: C x TA + A, then there is a unique
morphism it(f) : C x D -+ A such that the following diagram commutes:

FIXPOINT COMPUTATIONS 175

CxTSZA CxQ

<nc. ltff/tcrl ir(fb)>

I I

II(f)

CxTA - A I‘

In addition, there is also a global element o: 1 + TSZ with the same proper-
ties as in Definition 2.1.

The basic domain-theoretic example of such a let-ccc with fixpoint object
is the category of predomains, oV# 10, whose objects are posets possessing
joins of countably infinite chains, and whose morphisms are Scott-
continuous functions, i.e., monotonic functions preserving joins of countably
infinite chains. The objects of O%+G are not required to possess a least
element; we will refer to them as ocpo’s in this paper. The operation of
adjoining a least element to an ocpo D to give the lifted ocpo D, =

WI ldWu{~) gives a strong monad on wV~~O, called the lift monad.
There is a fixpoint object in o%$~u for the lift monad, namely the ocpo

Q={O c 1 E-ET},

with CT: Q, + Sz the continuous function sending I to 0, [n] to n + 1, and
[T] to T; and with o = [T] E Q,.

Some other monads on w%fin that Moggi (1991) points out as arising
in denotational semantics also possess tixpoint objects. For example the
exceptions monad T(D) = (D + E), (with E some fixed discrete wcpo of
exceptions) and the side-effects monad T(D) = S + (D x S), (with S some
fixed discrete wcpo of states) both possess fixpoint objects. This follows
from the general theory of solving recursive domain equations in the “O-
category” setting of Wand and of Smyth and Plotkin (1982). For suppose
that T is a strong monad on O%&J that is locally Scott-continuous (i.e., the
action of T on horn ocpo’s is continuous) and that maps ocpo’s to pointed
wcpo’s (i.e., ocpo’s with least elements). To obtain a fixpoint object for
such a T, one constructs the initial fixed object for T in the category of
pointed wcpo’s and embedding-projection pairs by iterating T starting at
the one-element ocpo, yielding an isomorphism 0: T(sZ) E 0. Then (CA cr)
is an initial algebra for T: o%+ o + o%+, and dually (Q, a-‘) is a final
coalgebra for that functor. The initial algebra property gives us the first
part of the definition of lixpoint object; and Freyd (to appear) has observed
that the second part of Definition 2.1 is implied by the coalgebra property.
We record this latter observation as a lemma.

LEMMA 2.3 (Freyd, 1991). Given a let-ccc, suppose that o : TQ + Q is an
initial algebra for the functor T (so that in particular, 0 is an isomorphism).

176 CROLE AND PITTS

Suppose further that 6’ : !2 + TQ is a final coalgebra for T. Then there is
a global element CO: 1 -+ TQ making a, o, o a fixpoint object for T.

Proof: The final coalgebra property means that for any g: A --i TA
there is a unique morphism 2: A -+ 52 satisfying O- ‘g = T(g)g.

Define o: l+ TQ to be a-‘ril. From the defining property of ql and the
naturality of q we get

w = a-‘& = T(q,)ql = qnrj, = (q,a)o.

If f: A -+ TR is any other morphism satisfying f = (qnaM; we have to see
that f = w!. But from f = (qpo)f and the naturality of q one has

Hence by the uniqueness part of the coalgebra property, af = qa and thus
f = oP1qA. The same argument applies equally well with o! for f:
Therefore f =aplqA=co!. 1

Using the correspondence between equational AML,-theories and
let-ccc’s, one can translate the definition of a tixpoint object into a corre-
sponding extension of the system IML,. This entails adding a new type
fix, together with certain term-forming and equality rules, namely

[x E Ta]
E E Tfix F(x)Ea NEfix

weTfix o(E) E fix It,(F, N) E a

E= Val(a(E))

co = Val(a(o)) E=o

[x E Ta]

F(x)Ea EE Tfix

It,(F, o(E))=F(Let(E, n.Val(lt,(F, n))))

[xc Ta] [n E fix] [e E Tfix]

F(x)Ea G(n)Ea G(a(e))=F(Let(e, n.Val(G(n)))) NE~~X
G(N) = lt,(F, N)

(The final rule, expressing the uniqueness of It,(F), will be subsumed in the
next section in an induction rule for the fixpoint type.)

Fixpoint objects are so called because they enable one to define fixpoint
terms at all types of the form a + T/?. If one views the denotation of a
program of type /cI with input data of type a as a term of type a --r T/3, then

FIXPOINT COMPUTATIONS 177

we have a method for interpreting all recursively defined programs. Indeed,
we have

PROPOSITION 2.4 (Definability of Fixpoint Combinators). In the presence
of a fixpoint object, one may define a term

which satisfies Y,,,F= F(Y,,,F) for all F: (IX -+ Tfi) -+ c(+ Tfl. Indeed, if we
define

Y,,=AF: (a + T/3) --) CC+ T/M,,,& a(w)),

where P is e.(A,(Let(e, f.Ffx))), then

[f:a-+T/?,x:cr]

Ffx: T/?

Y,,BF: LX + Tfl

and

[f: c1+ T/?, x:cr]

Ffx : Tb M: !I

Y,,,jFM = F(YJ)M

are derived rules.

Proof. It is easy to see that the first rule is derivable. For the second
rule we have

YFM= It@, a(o))M

=F(Let(o, n.Val(lt(8, n))))M

= Let(Let(o, n.Val(lt(p, n))) f.FfM)

= Let(Let(Val(a(w)), n.Val(lt(p, n))) f.FfM)

= F It@, o(o))M

=F(YF)M. 1

The definition of an initial algebra g: TQ -+ D for a functor T contains
both an existence and a uniqueness part. The uniqueness part leads to the
initial T-algebra induction principle (Lehmann and Smyth, 1981, Sect. 5.2):
to show that a subobject i: Scz Sz is the whole of Sz, it suffices to show that
the composition aT(i): TS -+ 52 factors through i: S 4 52.

When the functor T is (0 + 1 on the category of sets, the initial algebra

178 CROLE AND PITTS

is the natural numbers and the initial T-algebra induction principle is
equivalent to the usual principle of mathematical induction. What about
when the functor is lifting on w%@ ? Restricting attention to subobjects of
domains which are specified by inclusive subsets (those subsets of an ocpo
which are closed under taking joins of countable chains), we can use the
fact that whenever i: S 4 Q is an inclusive subset of the ocpo

it2 = {O c 1 c . . . c T},

then (i)l: S, +Q, is just the inclusive subset of Q, given by

{eESZ, 1 VnER.[n]=e3nES}.

Then the initiality property of Q yields the following form of the induction
principle, with SE S2 inclusive:

VeESZl.(VnEQ.[n]=e3nES)3f7(e)ES
VnEQ.nES

Just as least fixed points are definable using the universal property of the
initial (-),-algebra 52, so is Scott’s induction principle for least fixed points
(Scott, 1969) derivable from the above rule.

3. THE FIX LOGICAL SYSTEM

How can we enrich the system which we were discussing in Section 2?
One obvious approach is to add a fixpoint type, coproduct types a + B, and
a natural number type nut to the system AML,; we refer to this extension
as FIX=. Then we would arrive at a system which extends Godel’s system
T (Girard, 1989, Chap. 7) but which also admits sound translations of
Plotkin’s PCF (Plotkin, 1977) with either a call-by-value or a call-by-name
operational semantics (Moggi, 1988, Sect. 5)). It is essentially the logical
system FIX= with which we shall concern ourselves for the rest of the
paper. However, we are aiming for a constructive logic which enables us to
reason directly about evaluations of computations to values: the logic
FIX = only captures certain computational intuitions indirectly, by
containing equations which model the most basic properties one would
expect computations to obey. This does not provide a system which allows
on-the-nose reasoning about evaluations of computations, and we achieve
this aim by embedding FIX= in a fragment of a first order (intuitionistic)
predicate calculus with equality. An intuitionistic system is defined, rather
than a classical system, as such a logic captures more closely the
behavioural properties of computations. For example, the proposition

FIXPOINT COMPUTATIONS 179

TV(@) is classically identified with 3(l(Q)); however, if we know that a
certain proposition G(x) is not always true this does not imply that we can
calculate when it is not true. Within this new predicate calculus, there are
forms of proposition directly tailored for expressing properties of
evaluations of computations.

The fragment we consider has conjunction and universal quantification
(over elements of a given type), together with certain predicate construc-
tors which implicitly contain forms of implication, disjunction and existen-
tial quantification. In order to set up a formal system for our logic, we
begin by defining a signature for the types, terms and propositions.

A FIX signature, denoted by Sg, is specified by:

l A collection of types. The types are built up in the following way.
We are given a collection of basic ground types, together with the dis-
tinguished ground types unit, null, nat, and fin. The types are now specified
by the grammar

a::=y/axaIa+a)a+aI Tel,

where y denotes any ground type.

l A collection of basic function symbols, together with the following
distinguished function symbols: (), (-, -), Fst, Snd, Inl,, InrD, { },,
{ -, - } A,, App, Val, Let, 0, Sue, ItNat, w, Q, It,.

l A sorting for each of the basic function symbols, which is a list of
n + 1 types, and will be written

f:c?,,...,ci,+C(,+,.

In the case where n is zero, we write f: CC. We say that f is an n-ary basic
function symbol when its sorting consists of n + 1 types.

l A collection of basic relation symbols, together with the following
distinguished relation symbols: =x, true, false, &, V,, 0, 0, +.

l A sorting for each of the basic relation symbols, which is a list of n
types, and will be written

R:a LX,. , 9

In the case where n is one, we shall write R :a. We say that R is an n-ary
basic relation symbol when its sorting consists of n types.

We use the signature Sg to define the types, terms and propositions of
our logic. Each type is to be regarded as a metaconstant of arity TYPE, each
n-ary basic function symbol as a metaconstant of arity TERM" + TERM, and
each n-ary basic relation symbol as a metaconstant of arity TERM" + PROP.
The distinguished function and relation symbols are metaconstants; the

180 CROLE AND PITTS

function symbols representing the simply typed lambda calculus with
products and natural numbers have their usual arities, as do the relation
symbols representing equality, truth, falsity, conjunction and universal
quantification. The remaining metaconstants have the following arities:

1. c> .:TERM+TERM

2. (-, -}:(TERM-+TERM) +(TERM+TERM)-+TERM+TERM

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

hll,:TERM--*TERM

hp:TERM+TERM

Va I:TERM-+TERM

Let :TERM+(TERM+TERM)-+TERM

O:TERM

(i:TERM+TERM

It,: (TERM-+TERM)-+TERM+TERM

q :TERM+(TERM+PROP)+PROP

O:TERM-+(TERM+PROP)+PROP

+:(TERM+PR~P)+(TERM+PR~P)+TERM+PRoP

Remark 3.1. We make the following abbreviations: write FM for
App(F, M) and FN(M) for ItNat(F, N, M).

Associated with a FIX signature is a collection of raw terms and raw
propositions. In addition to the metaconstants described above, the meta-A-
calculus contains metaconstants which are viewed as object level variables
of arity TERM. The raw terms are exactly (cr/In equivalence classes of) the
closed terms of the meta-A-calculus which are of arity TERM and the raw
propositions are the closed terms of the meta-ll-calculus which are of arity
PROP.

A context, r, is a finite list

[x*:ul, . ..) x,:a,],

where the variables x,, x, are distinct. An empty context will be denoted
by white space. We use the (self explanatory) notation r, X:CI, and r, r’
for the concatenation of contexts (where of course x does not occur in r).
We write

for the judgement that given the context r, the raw FIX term M is well
formed and has type u. These judgements are generated by the usual type
assignment rules for the basic function symbols and the simply typed
lambda calculus with products, together with the following rules:

FIXPOINT COMPUTATIONS 181

Note. It will be assumed in all rule schemes that both the hypothesis
and conclusion are well formed. This, together with the use of the theory
of expressions and arities, alleviates the need for any side conditions.

Null Type

r EM: null

r t- { M~):~

Binary Coproduct Type

T~M:Ci Tt-N:P

r~Inl,(M):cc+P r k Inr,(N):a +/I

r,x:+F(~):y r,y:pt-G(y):7 rkc:a+p
r k IF, GHCh

Computation Type

q--M:ci rtE:Ta f-,x32 p(x):z-p
r t Val(M): TU r j- Let(E, F) : Tp

Natural Number Type

rtdb7t
r j-0 :nat r t- Suc(M):nut

rkkf:u r,x:u ~(x):cc q-N:nat
r t-P(hf):a

Fix Type

TkE:Tfix T,x:Ta /-F(x):cr rj-N:fix
rf--wITfiX r k C(E) fix r t-- It,(F, N) : 01

We write
w-prop

for the judgement that given the context r, the raw proposition @ is well
formed. These judgements are generated by the usual rules for intuitionistic
predicate calculus with equality excluding implication and existential quan-
tification, but augmented by the following rules:

Universal Modality

r,x:ct t-@(x)prop TkE:Tct

r k q (E, @Iprop

182 CROLE AND PITT!3

Existential Modality

r,x:cc ~@(x)prop rt-E:Tcr

r k 0(-K @)PW
Coproduct

Given a context r, a FIX term (in context Z) is any raw FIX term M
satisfying r t--M: c(for some (necessarily unique) type a. We refer to CI as
the type of the FIX term M. A FIX proposition is defined similarly. Now
that we have the syntax for our FIX logical system, we present rules for
deducing the validity of the propositions. These rules will be presented in
a sequent natural deduction style. We use an intuitionistic sequent in
context as our basic judgement, which takes the form

Here, /1 is a finite list of propositions. The intended meaning of a judge-
ment is that one has a deduction of @ which involves a certain number of
undischarged hypotheses, each of which must occur in the list A. In the
case that LI is empty, we simply omit the symbol LI from the judgement. A
FIX theory, Th, is specified by a FIX signature, together with a specific
collection of sequents in context, which are called the axioms of Th. The
theorems of Th consist of the least collection of sequents in context which
contains the axioms of Th, and which is closed under the usual rules of
equational logic and lambda calculus with surjective pairing (modulo /I
and q conversion), augmented by the following rules:

Null Type Falsity

x:null k false

Null Type Equations

r,x:null k F(x):u r tM:null

Binary Coproduct Type Equations

r,x:a ä F(X):Y r,-~:p kG(y):y r~kh
r t- {F, G)WpW)) =? Wf)

r,x:a kF(x):y r, y:p kG(y):y q-N:p
r t- {F, G)(lnr,W)) =? G(N)

r,z:~+fi~fffq~):y rt-c:a+p
r k {x.H(lnla(x)), .v.H(lnr,(y))}(C)=:, H(C)

FIXPOINT COMPUTATIONS

Computation Type Equations

Tt-M:a T,x:a tF(x):TP rkE:Ta

r k Let(Val(M), F) =rp F(M) f t- Let(E, x.Val(x)) =Tz E

I’t-E:Ta T,x:a kF(x):T/l f, ,v:/3 t--G(y):Ty
r k Let(Let(E, F), G)=, Let(E, x.Let(F(x), G))

183

Natural Number Type Equations

f I--M:a r, x:a tF(x):sr

Fix Type Equations

T,x:Ta kF(x):a rkE:Tfix
r k lt,(F, a(E)) =X F(Let(E, n).Val(lt,(F, n)))

Universal Modality Propositions

f, x:a,A,Val(x)=, E t@(x)

r, A k q (E, @I

Existential Modality Propositions

r, A t-Val(M)=, E f, A t-@(M)

r, A k O(E, @I

r, x:a, A, Val(x) =Ta E, Q(x) t Y r, A k O(E, CD)

r,nky

Coproduct Propositions

r, A k (@ + WC)

r, x:a, /i, InIp =z+p C, B(x) t- @(F(x))

r, y:~,~,Inr,(y)=.+p C, Y(Y) k @(G(Y))
r, A t-@o({E G}(C))

184 CROLE AND PITTS

Mono Condition

r, A EVaI(M Val(M’)

r,npf==,d4'

Disjoint Sum Condition

r, A, InI, =a+p Inr,(N) k false

Modality Condition

r, A t- Let(E, F) =Ta Val(M)

r, A t- 0 (E, x.F(x) = Tr Val(M))

Nat Induction

r, A t@(O) r, n:nat, A, Q(n) k @(Sue(n))
r, n:nut, A 1 Q(n)

Fix Induction

I’, e: Tjix, A, q (e, CD) k @(c(e))

r, n:fix, A k Q(n)

This completes the rules for deriving sequents; we refer to the system as the
FIX logic.

Remark 3.2 (Informal Explanation of the FIX Propositions). The FIX
logic has many features in common with intuitionistic predicate calculus;
for the latter see Dummett (1977). However, it introduces propositions of
the forms (@ + Y)(z), 0 (e, a), 0 (e, @), and so we describe informally the
intended meaning of this syntax.

For coproduct propositions, (@ + Y)(z), the intended meaning is

(3x:a.z=lnlp(x)&@(x)) v (3y:fl.z=lnr,(y)& Y(y)),

which we read as “either it is the case that z is provably equal to InIB
and that G(x) holds, or it is the case that z is provably equal to Inr,(y)
and that Y(y) holds.”

FIXPOINT COMPUTATIONS 185

For the universal modality, q (e, @), the intended meaning is

Vx:cc.(Val(x)=e=,@(x)),

which we read as “for all x of type ~1, if it is the case that e is provably
equal to the value of x then necessarily Q(x) holds.”

For the existential modality, O(e, @), the intended meaning is

h:a.Val(x) = e & Q(x),

which we read as “it is possible that e is provably equal to Val(x) and that
Q(x) holds.”

These modalities are special cases of the notion of “evaluation modality”
introduced in Pitts (1991). Here we equate “evaluation to a value x” with
“equal to Val(x)” and as a result proof-theoretically stronger properties of
the modalities are postulated in the FIX logic than are considered in Pitts
(1991). This enables us to derive the pleasant properties of the FIX logic
given in Theorems 3.9, 3.11, and 3.12.

Remark 3.3. Each of the terms FN(M) and It,(F, N) is unique up to
provable equality in the FIX logic. If one just considers the computational
lambda calculus enriched with lixpoint types and terms, as we did at the
beginning of Section 2, then it is necessary to impose a rule making unique-
ness explicit. However, in the full FIX logic, this uniqueness is derivable
from the rules for Nat and Fix Induction.

The FIX logic can be presented using rules which are closely related to
the categorical semantics given in Section 4. The new system is given by
substituting the following rules for their counterparts in the FIX logic:

Equality Propositions

l-,x:cr,x’:or,A,x=.x’t-@
r, x:a,A /-@[x/x’]

Conjunction Propositions

r,nta z-,ffkY

I-,ft~@P&Y

Universal Quantification Propositions

f,x:c?,A k@(x)
r, A t-V,(@)

186 CROLE AND PITTS

Universal Modality Propositions

r, x:a, A[Val(x)/e] t-@(x)

r,e:Tu,AtU(e,@)

Existential Modality Propositions

r, x:ct,A[Val(x)/e], Q(x) k Y[Val(x)/e]

r,e:Tcl,A, O(e,@)t--!P

Coproduct Propositions

r, x:a,AClnlB(x)lzl, @(XI k W(x)) C y:BJClnr,(yYzl, VY) I- Q(G(.Y))
r,z:c(+B,A (@+ y’)(z) kQ(IC G)(z))

THEOREM 3.4. The original FIX logical system and the system defined by
the collection of adjoint rules are equivalent.

ProoJ The proof is by routine manipulation of the logical rules. 1

Now that we have defined the FIX logical system, we state a proposition
which we make use of in Section 5.

PROPOSITION 3.5. Within the FIX logical system, the following birules
are derivable :

r,n k Y(N) r,x:u,n t- @(x)prop

r, A F (@ + W(lnrp(N) ’

The proof of this proposition involves simple manipulations of the logi-
cal rules and is omitted. It is worth remarking that in fact the first two of
the above birules are equivalent to the Mono Condition rule of the FIX
logic, modulo the other rules. Similarly, the Modality Condition rule is
equivalent modulo the others to each of the birules

r, A t- 0 (-5 X. w(x), w
r, A t- q (LeW, F), @I

r, A k w, X. w(x), w
r, A t 0 (LeW, p), @)

FIXPOINT COMPUTATIONS 187

Remark 3.6. The induction rule for nat is just the usual principle of
mathematical induction. The induction rule for fix can be rendered infor-
mally as: to prove that a property Q(n) holds of all elements n in fix, it is
sufhcient to prove for all computations e of an element of fix that @(a(e))
holds if whenever e evaluates to a value, that value satisfies @. This prin-
ciple is consistent (see Theorem 4.7), but only because the FIX proposi-
tions have limited forms. In fact, extending the FIX logic with unrestricted
intuitionistic negation, implication, or existential quantification renders it
inconsistent. We call to mind at this point the admissible predicates of LCF
(Paulson, 1987); predicates of LCF which contain implication and existen-
tial quantification are not necessarily admissible.

PROPOSITION 3.7. Extending the FIX logic with intuitionistic implication
renders the system inconsistent.

Proof: Since FIX contains falsity (false), adding implication (52 13 Y)
means that one also has negation (l@ = (@ 13 false)). So consider the
proposition

@(n)=l(a(o)=n)

about n :fix. We sketch the essential details of the proof in an informal
fashion.

Q(n) satisfies the hypotheses of Fix Induction. For if Vn = e. 1 (O(O) = n)
holds then l(o = e), since otherwise we could deduce Vn G w. 1
(a(o) = n), which is false because Val(n) = o holds for n = a(w). However,
g is provably a bijection and so from 1 (w = e) we deduce 1 (U(O) = o(e)),
that is @(a(e)). So the induction principle for fix entails that Q(n) holds
of all n Efix, and in particular of a(o), which is a contradiction. 1

PROPOSITION 3.8. Extending the FIX logic with intuitionistic existential
quantification renders the system inconsistent.

Proof This proof mimics the ideas which show that the category O$+O
together with inclusive subsets does not model standard intuitionistic
predicate calculus (Dummett, 1977). Recall that in w%+, Beck-Chevalley
conditions fail for left adjoints to projections; for if this is not the case we
can deduce that such left adjoints take inclusive subsets to inclusive subsets
by unravelling Beck-Chevalley at a global element in w%+. Then con-
sidering the ocpo N x Q and inclusive subset ((m, n) I m E N &n E
Q\(T) & n <m} we can deduce that {n 1 n E Q\ {T}) is inclusive in Q.
This is not so.

Consider the term I 2’ ItTfix(e. Let(e, x.x), g(w)): Tfix and set

Q(n) 2 3,,,(m.(u.a(Val(u)))“(o(l)))=fi,n.

188 CROLE AND PITTS

Using the usual rules for intuitionistic existential quantification together
with the FIX rules we may deduce e, n, e = Val(n), q (e, Cp) k Q(n) t
@(a(Val(n))) and from (fixin) we have n:fix k@(n). In particular this
means that

k 3,,,(m.(u.a(Val(u)))“(a(l))) =fir 44.

Using (mono) and that 0 is an isomorphism we conclude k I = w. 1

We will see that the our logic of fixpoint computations is consistent in
the next section when we come to consider models. We next state some
metatheorems that witness the constructive nature of the FIX logic and
suggest its potential as a programming logic.

THEOREM 3.9 (“Existence Property”). If E is a closed term of type Tee
then t 3(E, @) is derivable in FIX tf and only if there is a closed term A4 of
type a for which k E =Tcr Val(M) and k Q(M) are derivable. (In other
words, a formal proof that E evaluates to a value satisfying @ necessitates
the existence of a term denoting that value.)

Remark 3.10. The deduction that t E = Val(M) captures in an exten-
sional manner the idea that the computation E evaluates to the value M.
We refer the reader to Section 6 for further comments.

THEOREM 3.11 (“Disjunction Property”). Zf E is a closed term of
coproduct type a + j?, @ and !R are properties of CI and /3 and t-- (@ + Y)(E)
is derivable in FIX, then either k E = oL + B Inl(M) and t Q(M) are derivable
for some closed term A4 of type cc, or t E == + B Inr(N) and k Y(N) are
derivable for some closed term N of type j3.

The Existence Property enables one to produce closed terms of type nut
from a computation of a number (i.e., a closed term of type Tnat) together
with a proof that the computation converges. There remains the possibility
that a closed term of type nut is not a value, i.e., a standard numeral.
However, this is not so:

THEOREM 3.12 (Standardness of nat). Every closed term N of type nat
in the logic FIX is provably equal to a standard numeral SW”(O); that, is
one may derive k N =nol S&‘(O) in FIX. (The number n is uniquely deter-
mined by N, because the consistency of FIX (Theorem 4.7) implies that
SuC(0) and SUP(O) are not provably equal when n # m.)

These theorems are proved in Section 5.

FIXPOINT COMPUTATIONS 189

4. CATEGORICAL SEMANTICS

In proving Theorems 3.9, 3.11, and 3.12, we use the fact that FIX
theories correspond, in a way to be made precise, to a certain categorical
structure. This correspondence is very similar to that between intuitionistic
predicate calculus and a particular variety of hyperdoctrine, for example,
see Seely (1983). Indeed, there is a natural equivalence between FIX
theories and FIX hyperdoctrines; thus we begin by giving the definition of
this variety of hyperdoctrine.

DEFINITION 4.1. A FIX caregory is a let-ccc with finite coproducts,
natural numbers object, and lixpoint object, for which each component of
the unit of the monad is a monomorphism. A FIX hyperdoctrine is specified
by a FIX-category V (referred to as the base category) together with a
g-indexed poset, %?: GP’ + ?%cied, where if f: A + B is a morphism in the
base category %‘, then we denote the corresponding pullback function by
f * : S’(B) -+ %‘(A), with the libre at an object A denoted by W(A).

We adopt the following notational convention. If
/ A-B

R I I h

C--,D

is a commuting square in @? then right Beck-Chevalley conditions are said
to hold, which will be abbreviated to RBC, if f * :V(B) + %(A) and
k* :+2(D) + G??(C) have right adjoints, which will often be denoted by Vf
and Vk, and these adjoints satisfy the identity Vf 0 g* = h* 0 Vk. We use a
dual convention for left Beck-Chevafley conditions, LBC.

The indexed poset satisfies the following conditions:

1. The fibres are pointed meet semi-lattices, where in particular the
tibre over the initial object of the base category is a singleton. The top ele-
ment is denoted by T, the bottom element by I, and the meet of elements
x E %?(A) and y E %‘(A) by x A y E %‘(A). The pullback functions are
required to preserve meets and top and bottom elements.

2. RBC holds for all squares of the form

CxAA C

where the morphisms rr and rc’ are product projections.

190 CROLE AND PITTS

3. RBC and LBC hold for all squares of the form

idxv
CxA-CxTA

fxrd

I I

fxrd

C’xA- C’x TA

Also, the hyperdoctrine enjoys a form of Frobenius Reciprocity, namely
given xcW(Cx TA) and ~EV(CX A) we have

3(idxq)((idxq)*(x) A y)=x A 3(idxq)(y).

These conditions ensure the soundness of the rules for deducing validity of
universal and existential modality propositions in the FIX logic.

4. There is an operation + on fibres

+:%(CxA)x%?(C+B)+V(Cx(A+B))

which is natural in C. Suppose we are given elements

x~%?(Cx A) u~%(cx(A+B))

.v~%‘(Cx B) ZE%qCXD)

and morphisms f : C x A + Dg: C x B + D. Then we demand that

(i&xi)*(u) A x<(z,,f>*(=) (id,xj)*(u) A y<(nn,, g>*(z)
u A (x+ Y) G <n, {f I g> j*(z)

where i: A -+ (A + B) j : B -+ (A + B) are coproduct insertions,

(CxA)+(CxB)A Cx(A+B)

is the obvious isomorphism, and

nA:CxA-+C nn,:Cx B-+C n:Cx(A+B)+C

are product projections. Finally, {f I g} =def [ji g] 0 #-', where [f, g]
arises from the coproduct structure of W. Note that if x + y exists, it is
determined uniquely. These requirements ensure the soundness of the rules
for deducing validity of coproduct propositions.

5. LBC holds for

CxAaCxAxA

A - AxA J

FIXPOINT COMPUTATIONS 191

The left adjoint to id x A satisfies the Frobenius Reciprocity condition

3(idxA)o(idxA)*(x)=x~ 3(idxA)o$(T),

where x~%(Cx A x A) and rrn,: Cx A + C. (Recall that the pullback func-
tion 7~: preserves the top element by definition.) These conditions ensure
the soundness of the rules for equality.

6. We demand the inequalities

where T, E %‘(A), T,, E %‘(TA) and T, + B E %‘(A + B) are the top elements
of the Iibres and i : A + (A + B) j : B -+ (A + B) are coproduct insertions.
This guarantees the soundness of the mono condition and the disjoint sum
condition.

7. Given the morphism

f:CxTAxBxA+TB

we demand the inequality

where T E V(TA) is the top element of the tibre and

n,:CxTAxBxTA+B x,:CxTAxBxA+B

are product projections. This ensures the soundness of the modality
condition.

Finally, to complete the definition of the FIX hyperdoctrine, there are two
fibrewise induction conditions and a coherence condition. The induction
conditions ensure soundness of the induction rules in the logic and the
coherence condition guarantees that semantic equality of terms coincides
with derivable equality in the FIX logic.

8. Given elements

XE%qC), JJE%:(CXN),

we demand that

x<(id,Oo!)*(y) X*(X)A y<(idxs)*(y)

x*(.x) d y

192 CROLE AND PITTS

where 7~: C x N + C is a product projection and 0 : 1 + N s: N --) N are
given as part of the structure of the natural numbers object in the base
category.

9. Given elements

we demand that

7c*(X) A v(idx~)(y)<(idxa)*(y)

d*(x) < y

where 7c : C x TQ + C rc’ : C x 52 -+ C are product projections and
0: TQ + 52 is given as part of the structure of the lixpoint object in the base
category.

10. Given morphisms f, g: B -+ A, and the diagonal A : A + A x A,
we ask that

(f, g)*o3A(T)=T
f=gin%?

This completes Definition 4.1.
A morphism of FIX categories is a functor which preserves the categori-

cal structure up to isomorphism. A morphism of FIX hyperdoctrines V and
W’ is specified by a FIX-category morphism between the base categories
(referred to as the base functor), say F: %? -+ W, together with an indexed
collection of monotone functions, called fibre morphisms, FA : %?(A) -+
V’(FA)A E ob%‘. These monotone functions are required to preserve the
structure of the libres in a canonical fashion. For example, the pullback
functions are preserved by the libre morphisms in the sense that given a
morphism f: A -P B in %, the following square commutes:

%‘(A) -f% W’(FA)

I*1 P))’
V(B) T V’W)

Also, the structure of the libres is preserved by the libre morphisms; for
example

l given T E V(A), then FA(T) = T E W(FA),

l given x, ye%‘(A), then FA(x A y) = F,Jx) A FA(y),

l given x~%?(Cx A) and y~%?(Cx B), then

F cxca+Bj(~+y)=Fc.A(~)+Fc.~(~),

FIXPOINT COMPUTATIONS 193

l and as a final example, given projections

n:CxA+C and hence F(Tc):F(CXA)+FC,

then the following diagram commutes:

%?(A x C) Vn v?(C)

Fcsdi IF<

%“(FCxFA)- VF(n) "(")

The remaining structure of the tibres is preserved in a similar way; we leave
the details to the reader.

The definition of a FIX hyperdoctrine is quite involved, and so the first
task is to give an example.

EXAMPLE 4.2. The category of predomains, WV+, equipped with the
lifting monad as described in Section 2, is a FIX category. There is a o%+-
indexed poset, Y : o%#u~~ + %a&, where 3 takes an ocpo D to the set of
inclusive subsets of D, which are ordered by inclusion, and 9 takes each
continuous function f : D -+ D’ to its inverse image function f- ’ restricted
to inclusive subsets. It is trivial to check that f-’ : $(D’) --t 9(D) is well
defined and indeed monotone, and that ./ is a functor. We define the
operations that make O%+O a FIX hyperdoctrine, but omit detailed
verifications.

1. With meet given by intersection of inclusive subsets, it is clear that
each tibre is a pointed meet semi-lattice. It is easy to see that each pullback
function is a morphism of pointed meet semi-lattices.

2. The right adjoint to projection is given by restriction of the dual
image functions to inclusive subsets; that RBC holds is trivial. Finally
S(0) = {a} is a singleton.

3. The existence of left adjoints is well known, given by restriction of
the set theoretic direct image functions to inclusive subsets. The right
adjoint to

is given by

V(idx1):9(CxD)+9(CxD~),

where for IES(CX D) we define

V(idxz)(I)ff(idxl)(I)u {(c, L):VCEC}.

194 CROLE AND PITTS

It is easy to see that this is a good definition and yields the required
adjoint. Checking RBC and LBC is easy; Frobenius Reciprocity is virtually
immediate.

4. Let i: D + D + D’ and j : D’ -+ D + D’ be coproduct insertions.
Given

IEY(CX D) and JEY(CX D’),

we define

Z+.ZEf 3(idxi)(Z)u3(idxj)(J).

Note that the librewise induction conditions are satisfied because any
inclusive subset of an wcpo is an ocpo.

Remark 4.3. Some other strong monads on O%#O (such as those for
side-effects and exceptions) were shown in Section 2 to possess lixpoint
objects. Thus we get other FIX categories based on wcpo’s by changing
from lifting to one of these other monads. However, the c&$&-indexed
poset of inclusive subsets will not yield a FIX hyperdoctrine over these FIX
categories. This is because the notion of FIX hyperdoctrine is tailored to lit
the FIX logic which treats “evaluation to a value x’ as meaning “equal to
Val(x).” Such a strict interpretation of evaluation is appropriate for
a (constructive) treatment of the termination/nontermination aspects of
computation; but for other aspects, weaker notions of hyperdoctrine
are needed. (For example, Pitts (1991) gives hyperdoctrine over o%?$o
possessing appropriate evaluation modalities for the side-effects monad.)

Next we give the categorical semantics of the FIX logic in a FIX hyper-
doctrine W. A structure, M, in %? for a given FIX-signature Sg is specified
by the following data:

l An object [[ylj for each basic ground type y of Sg, and

l for each basic function symbol f: txi , a, + tl, a morphism in V of
the form [Tfl : [err] x . . . x [or,] -+ [cr], and

l for each basic relation symbol R: t(i) .., a, an element [R] of a tibre
of %, where CR] E GfT([crl] x ... x [a,]).

For each term in context, we assign a meaning in the base category V in
the following way. The types are interpreted as objects in the category,
where the interpretation of a type a is denoted by [cr]. Set

FIXPOINT COMPUTATIONS 195

l [unit] gf 1, where 1 is the terminal object.

l I[nu/Z] 2’0, where 0 is the initial object.

l [nat] 2’ N, where N is the natural numbers object.

l [fix] dzf $2, where Sz is the tixpoint object.

. ua x pn ftf [an x upa.

l [a + pa zf [an + ml.

l [a + PI $2 [al + [@I.

l [Tan 25 T[a].

Given a context r= [x,:a,, x,:a,,], we let [fl !Zf [a,] x I.’ x [a,,&
Then for each context r, term M, and type a for which r k M: a is a valid
judgement we give a morphism

[r t M:a] : p-1 --, [a].

Note that when M:a is a valid judgement, because the type a is uniquely
determined by A4 and r, we abbreviate [r k M:a] to just [r. n/rll. The
semantics of terms-in-context is defined by a structural induction on terms:

l ur,x:a,r’.xn~f~:~r?]xlla]lxITr’n~caa
l Let f: a,, a, -+ a be a basic function symbol; then

wfw,,..., M,)n gf ufn
0 ([r.M,], gr.kq):[z-1 + [a,] x ... x [a,] + [a]

196 CROLE AND PITTS

where h is the unique morphism arising from the initiality property of the
natural numbers object together with the morphism

where f is the unique morphism arising from the initiality property of the
fixpoint object together with the morphism

p-.x: n.qx)lj : p-1 x rccfj -+ fun.

Finally, for each context r and proposition @ for which we can derive
r k @ prop, we specify an element of a tibre

where we adopt a similar notation to that for terms in context. The
semantics of propositions in context is defined using the structure of the
propositions:

0 [T.true] %‘TE%?(i[rl])

0 [T.falseJ 2’ -L EW([~])

l [r.M=.YVI gf ([r.Mj, [r.?Vj)*o3d(T),whereTEV([cc])

l [I-.@& u’ll ,z [r.@] A 1r.q

l [r.v,(@)] gr vn,([r, x:u.@])

l [[r.Cl(E,@)j ‘&‘(id, [r.EJ)*~V(idxq)([I’,x:cr.@(x)~)

l [r.O(E, @)a gf (id, [yr.E4)*03(idx?)(Cr,x:cc.~(x)n)

. [ZY(@+Y)(M)]I~f(id, [r.Mj)*([yJ-,x:a.@(x)]l+[Z-,y:/?.!P(y)J).

The categorical semantics interprets substitution of terms in terms, and
terms in propositions in the usual manner. Indeed we have the following
two lemmas which make this precise. The first lemma deals with substitu-
tion of terms for variables in another term:

LEMMA 4.4. The categorical semantics interprets the substitution of a
term for a variable in a term via composition in the category. More precisely,
ifrkkfi:uifori=l,..., nandalsor’tN:B, wherer=[x,:u,,...,x,:cc,],
we have

p-.N[&Qq~ = kr’.Ng o (pxf,~, lp24,n),

where the notation N[g/lx’] indicates a simultaneous substitution.

FIXPOINT COMPUTATIONS 197

The next lemma tells us how substitution of terms for variables in
propositions is modelled.

LEMMA 4.5. Let r’ b @ be a FIX proposition in context, where the
context is P’ = [x, :a,, x,:x,], and let r k M,:a, for i= 1, ..,, n be FIX
terms in context. Then

where the notation @[G/2] indicates a simultaneous substitution.

If n is a finite list of propositions, each of which is well formed in the
context r, then let

p-.d] izf A [yr.oj.
8 E A

A structure M is a FIX hyperdoctrine %’ satisfies a sequent in context
r,n ~--CD if

[r.ng G p2q

holds in the libre %3([r]). Given a FIX theory, Th, then M is called a
model of the theory if it satisfies all the axioms of Th.

The categorical semantics of the FIX logic is sound; indeed we have

PROPOSITION 4.6. Let %2 be a FIX hyperdoctrine, Th a FIX theory, and
M a model of Th in %7. Then M satisfies any sequent in context which is a
theorem of Th.

Proof: We need to check that the collection of sequents in context
which are satisfied by M is closed under the rules for generating sequents
in context. The proof uses Lemmas 4.4 and 4.5. 1

Taking V to be the FIX hyperdoctrine of inclusive subsets over the FIX
category of wV~~U equipped with the lifting monad, and taking Th to be the
empty thery in the above proposition, we have:

THEOREM 4.7. The FIX logical system is consistent, in the sense
that k false is not provable from the rules given in Section3. 1

Now that the definition of the semantics is complete, we establish that
there is a natural equivalence between the syntax and the semantics. We
need some notation.

PROPOSITION 4.8. For each FIX theory Th over some FIX-signature Sg,
we can construct a syntactic FIX hyperdoctrine, which we denote by %?(Th)
or sometimes just 9.

198 CROLE AND PITTS

Proof. The base category is constructed from the types and terms of the
FIX theory:

l the objects of 9 are the types of the signature Sg,

l and the morphisms are equivalence classes of terms with at most one
metavariable, where the equivalence relation is given by provable equality
in the FIX logic.

Composition is given by the usual substitution of terms; it is a tedious but
straightforward task to check that this does define a FIX category.

We now define an Y-indexed functor to the category of meet semi-
lattices. We also use 9 to denote the functor. For each object a E F, the
underlying set consists of equivalence classes of propositions in a single
variable context, .Y:SI /- Q(x). We often omit the context itself; with this
convention we define the equivalence relation by

@(,u) - Y(v) iff Q(x) t- Y(x) and !P(?c) /-- Q(x).

Then referring to equivalence classes by representatives, we order this set
by

Q(x) < Y(y) iff @(x) t- Y(x).

Given a morphism F:cc + /?, in 9, then the pullback function
F*:8(/?) -+ F(a) is defined by substitution: F*(@(y)) =def G(F). The
remaining details are routine verifications. 1

We also have the following

PROPOSITION 4.9. Given a FIX hyperdoctrine @, then we can define a
FIX theory which we denote by Th(V).

Proof. The basic ground types are the objects of V, and basic function
symbols copies of the morphisms of V. The basic relation symbols are
copies of the elements of the hyperdoctrine fibres. This yields a FIX
signature, and there is an evident canonical structure for this in %‘. The
axioms of the theory are exactly those sequents in context which are
satisfied by the canonical structure. The theorems of Th(V) are generated
by the usual rules. 1

We state the categorical logic correspondence:

THEOREM 4.10. Let W be a FIX hyperdoctrine; then there is an
equivalence of hyperdoctrines

Eq: ‘%?(Th(%‘)) N %,

FIXPOINT COMPUTATIONS 199

where Eq is a FIX hyperdoctrine morphism, in the sense that there is a
categorical equivalence of base categories, and each fibre morphism

is an isomorphism of pose&.

5. CATEGORICAL LOGICAL RELATIONS

Now that we have formalised the correspondence between FIX theories
and FIX hyperdoctrines, we define a new FIX hyperdoctrine and use it,
together with its corresponding logic, to prove the theorems which we
stated at the end of Section 3.

Remark 5.1. The hyperdoctrine construction which is detailed below
provides a proof of the Existence and Disjunction properties of FIX in
much the same way that Freyd’s gluing construction may be used to see
the existence and disjunction properties of standard intuitionistic predicate
calculus. Our construction, in essence, packages the technique of logical
relations, as Freyd’s glued topos packages the techniques of realizability.

Let 9 be the syntactic hyperdoctrine constructed from the pure FIX
logic (that is to say the FIX theory with no extralogical axioms) and let
r: 9 + C&+&P denote the functor which assigns to each object C(EF its
set T(cr) of global elements equipped with the discrete partial order. We
construct a new FIX hyperdoctrine, denoted by .Yr(T), using a construc-
tion that is closely allied to the theory of logical relations. An object
of P’r(ZJ is a triple (D, 4, a), where D is an object of o?Zfi~, c1 is an
object of 9 and 4 is an inclusive subset of D x r(a). A morphism
(D, u, CI) + (D’, a ‘, a’) in Yr(T) is a pair (f, F), where f: D + D’ in
o%#u, F: c(+ U’ in 9, satisfying the following condition:

VdED.VlMEr(u).dd Mimpliesf(d)d’(FM).

Finally we need to define an Yr(T)-indexed poset. We denote the libre
at an object (D, 4, a) by Zr(D, 4, CC). The elements of the Iibre consist of
all triples (S, 9, G(x)), where

1. SE Y(D), i.e., S runs over the inclusive subsets of the wcpo D,

2. @(x)E~(cI), where Q(x) is a representative,

3. d l 9(SxT,(cc)na), where

200 CROLE AND PITTS

and the ordering is specified coordinatewise. Given a morphism

(f,F):(D’,a’,cc’)-t(D,a,a)

in 29(r), we define the pullback function

(f, F)* : Yr(D, 3) a) -+ Tr(D’, 9 ‘, a’)

by

(f, q*cx 9, @(xl) 5 (f-‘(S), 9 *, Q(F)),

where

_a* ef {(d,M)Ef-‘(S)xr~(F)(~‘)n~‘I f(d)aFM}.

PROPOSITION 5.2. The above recipe produces another FIX hyperdoctrine
9r(r).

Proof: We write just Yr for Yr(T). We check that we have defined a
base FIX category; most of the details are simple calculations, once it is
clear how one defines the various categorical constructs. The terminal
object is

(*, 4 unlf, unit),

where * a unit idunit. The binary product is given by

(D, 4) a) x (D’, 4 ‘, a’) gf (D x D’, Q x) a x a’),

where (with the obvious notation),

(4 d’)a x N iff d a Fst(N) and d’ 4 ’ Snd(N).

It is clear that u x is inclusive, and easy to check the remaining details.
Exponentials of objects are defined by

(D’, Ed ‘, a’) + (D, Q, a) dzf (D’ -+ D, 4 ap, CC’ -+ CC),

where

f-%p MiffVd’ED’.VL’Ef(~‘).d’a’L’impliesf(d’)~ apo(M,L’)

and ap is the evaluation morphism in 4. The transpose rule is given by

(f, F) : (D x D’, 4 x , a x rx’) + (D”, -=I “, a”)
(cur(f), cur(F)): (D, 4, a) + (D’ + D”, u apr CX’ + a”)

FIXPOINT COMPUTATIONS 201

and the evaluation morphism is (up, up). Finite coproducts are also defined
in the same (hopefully now familiar) coordinatewise/logical relations
manner. The natural numbers object of 3’~ is specified by

where

n 4 nar IV iff N= Sue?(O),

and the zero and successor morphisms are the expected coordinatewise
ones. We now show for a particular choice of monad, our category Yr
does indeed become a FIX category. The action of the monad on objects
is specified by

T(D, a, Lx) $2 (D,, 4 T, Tu),

where

ea.EiffV’d~D.[d]=eimpliesZiM~T(ol).da Mandq,M=E,

and q =def (1, ~1%): (D, a,~)+(D~,-a, Tel), with I:D+D, the canonical
inclusion. Finally the lifting rule is

(f,F):(DxD’,a ,,uxcd)-(D;,-a;, Td’)

(fi,lift(~)):(DxD;,a~,clxT~‘)~(D’;,a’;,Tcr”)

where fi(d, Cd’]) =de’f(d, d’) and fi(d I) =def 1.
Now we show that 2’r does indeed possess a fixpoint object. This will be

determined up to isomorphism; thus as for the previous constructs we
exhibit a candidate and show that it satisfies the required properties. The
expected candidate for the Iixpoint object would be ($2, Q~.~, fix), with
structure morphism (a, a). By definition of the action of the monad on
objects, in the relation a$-’ one has I ap 44, for any ME r(Tfix). As
(a, a) must preserve the relation, then 0 qix CJM must hold, and the action
of the monad yields [0] 4 $? qaM. Once again (a, a) preserves this, so we
must have 1 aix a?aM. In general we are forced to have n ++ (aq)“oM.
Finally, considering that the relation qix has to be a certain inclusive sub-
set, we are led to the following definition:

(Q, u~.~, fix) is a fixpoint object for T over Yr, where

l n dfis N iff ~ME r($x).N= (ar])“M, and

l Tafi.Y N iff VnEQ\{T}.nafi., N.

We check that the relation +fi.l is inclusive. Let 8: N + $2 be a function
satisfying 0(r) d 0(r + 1). Set n, = 0(r), so a chain in “n.Y is given

202 CROLE AND PITTS

by a sequence n, qir N where NE r(fix). We need to check that
V TEN n,afi, N. If Vn, is not T we are done. Otherwise, given any
n E Q\(T), we can choose Y E N such that n, 2 n. As n, dfl.y N, we get
N= (rny)‘+M= (ay)“(oq)“-” M, and so n a,, N. As n was arbitrary, we are
done. Now we check that (a, G) is a morphism in P’r, where
(0, o):(d,, ag Tfix) + (sz, afj.X, fix). We have three cases to cover.

1. If I ap N then o(l) = 0 a,fi.x ON.

2. Suppose that [T] a$? yN. Then Taizl N and hence VnE
Q\{T}.nafi.r N. In particular, we have n - 1 air N, and so there is some
M~r(fix) for which N= (a~)“~iM, giving oqN= =(a~N=(a~)“M. So
we have Vn E L?\ { T > .n afi.x oqN, that is T air qN.

3. This is immediate from the definition of afi.X.

Finally, we have to verify that our definition yields an initial T-algebra in
Yr. Take

The unique mediating morphism for (a, a) has to be (x F) =def
(it(f), it(F)), whose coordinates are the mediating morphisms in o%& and
9. First we check that it is a morphism in P’r. Suppose that n afiX N. Then
for some M we get N= (aq)“M. From the definition of the aT relation, we
get

1 aTlift a-‘M

and so

f(l)aFlift(qF)o-‘M=FM.

Now suppose that f(l) a F((~v)~- ‘M, where r 6 n - 1. Clearly

Cf’(l)l arvlRv)‘-‘M

and so

f+‘(l)aF(mj)‘M.

Inductively we have

which is what we had to prove. Last, if T afi.x N we need

FIXPOINT COMPUTATIONS 203

which follows from inclusivity of u. We leave the reader to verify that the
morphisms

and
(a, a):(L?,, up, Tfk) + (Q, -=I,;~, fix)

constitute a fixpoint object in 49r.
Now it is time to verify that all the conditions required of the

Yr-indexed poset hold. We give the constructions of the adjoints and
operations which appear in the definition of a FIX hyperdoctrine, but omit
the verification of the conditions which the adjoints and operations satisfy.
First we define the right adjoint to

(TC, Fst(z))*:Yr(C,u’,y)~dpr(CxD,a’x a,y”cO

which we write as

(with u x an abbreviation for u’ x a), where we define

Vn(S, 3 x) Q(z)) 2 (V7c(S), 9”,) h(@(z)))
with

A”, Zf UC, NJ E WS) x L,(@(;,,(Y)

n u’~V’d~D.VM~~(tx).duMimplies(c,d)~~ (N,M)).

The right adjoint to

(idxz,z’dx~)*:~iPr(C~D~,u’x ur,yxTa)

+.S?r(CxD,u’x~,yxa),

which we write as

q :2’r(CxD,u,,yx+&‘r(CxD~,u~,yxTcr)

(with u x and uz abbreviations for u’ x u and u’ x uT), is defined by

•(~,_a,,~(u))~f(o(s),~o,, 0(@(u))),
where

gx ’ ‘2 {((c, e), (N E))E q (S) x r,,,,,,,(y x T@)
n -at I b’d~D.VM~~(a).duM,e= [d],

E=Val(M)implies (c,d)g,(iV,M)j.

M3:98,2-5

204 CROLE AND PITTS

We now define the left adjoint to

(idxr,idxvl)*:~r(CXD~, 4x +,yxTa)

+B(CxD, a’x a,yxa),

which we write as

O:&(CxD, c3,,yxa)~Yr(CxD.,uT,,yxTa),

where we define

O(S,~., @(u))= (o(s),g, 0(@(u)))

with

q”, 2 ((Cc, e), <N, ~91~ O(S) x Lc~cu,,W Ta)

n 4: I 3dE D.3ME f(a).e = Cd],

E= Val(M), (d, c)gx (N, M))}.

We define the + operation, where

+:L&‘r(CxD,(1,x u,yxa)x9r(CxD’, dcx a’,yxa’)

+ diPr(C x (D + D’), dc x (a + -=f), y x (a + a’))

and

(Z,~,,@(~))EY~(CXD, dcx a,yxa)

(J, 11>, Y(w)) E Yr(Cx D’, ac x 4, y x a’),

by taking the sum of these elements to be

(1-t 4 d3, Q(u) + VW)),
where

d3 dzr {((c, e), (N ~9) E U+ 4 x rGcL,)+ ac,,(~ x (a + ~‘1)
n uc x (a + a’) 1 3dc D.~ME I-(a).e = i(d),

E = M(M), (c, d) 9, (N, M) or

3d’~D’.3M’~lJa’).e=j(d’), E=lnr(M’),(c,d’)9, (N,M’))

The left adjoint to

(idxd,idxd)*:L4’r(CxDxD,-=fX,yxaxa)

+&(CxD,a,,yxa),

FIXPOINT COMPUTATIONS

written as

205

3(idxd):Lzr(CxD,-=l., yxcx)-bLfr(CxDxD,4’,,gxaxa),

is defined by

3(idx A)($5 x, Q(u)) fZf (3(idx d)(S), d”, , 3 x d)(@(u))),

where

~‘3 Fif {((c, e), (N, E))~Yidxd)(S) x ~3~idxd,,0~u~,(~ xa x Co

n 4’, 1 Eld~D.M4~T(a).e=d(d),

E=d(W,(c,d)a. <N,W). I

We are now in a position to prove the theorems stated in Section 3. We
need to make one further observation, namely

PROPOSITION 5.3. The FIX hyperdoctrine F;, arising from the pure FIX
logic, is initial amongst all FIX hyperdoctrines.

Proof. This is immediate from the definition of FIX hyperdoctrine
morphism. i

Using the initiality of 9, we see that there are FIX hyperdoctrine
morphisms [--a and I; and in addition there are obvious projections 7c and
n’, where

1-j :T-cd&y0

I:Y+Yr

These FIX hyperdoctrine morphisms satisfy the following commutative
diagrams:

206 CROLE AND PITTS

Let us now prove the Disjunction Property for the FIX logical system.
First note that the closed term E: CI + /3 corresponds to a morphism
E: unit + CI + /3 in 9. The action of the base functor part of I: .Y --t 40~ on
this morphism, using the above commutative diagrams, is

I(E)=(lIEll,E): (l,a,,,,,unit)~(Ucrli+U811,~~+~,cc+B).

Also, the following square commutes:

F(a + B) -+L ~wHl+uBn,~ci+~,~+D)
6*

I I
(I[El, E)f

P(unit) Lu b Yd*, dunr,, unit)

The theorem follows by observing the action of the two possible routes
of the square. Let z be a variable of type c(+ p, and consider
(@ + Y)(z) E 9(cr f /3). Then we have

L,,(E*((@ + W(z)) = I((@ + W(E))

= (U(@ + Yu)(E)l, s,it, (@ + y’)(E))

where because k(@ + Y)(E) by hypothesis, and I,,,, preserves greatest
elements, the relation aunrt must be non-empty. Also, we have

(UE4, E)*(L+BW+ y’)(z)))

= CUEa, E)*(II(@ + y)(,-)I, s+,s> (@+ W(z))

=(UW’(U(@+ W(Z)I),~+~, (@+ W(E)),
where

$+fi = ((*, idunilJE UE’ii-‘(lt(@+ y)(z)ll)

x =(@ + Y,,l&W n dunit I CCil(*)~,+,Joi~~.

But this relation is exactly sunir, hence is non-empty, yielding

U-KU(*) s+fi 6

that is,

IICU(*) +x+8 E.

By definition of the relation qcr+ p this means without loss of generality
that there is a global element ME r(a), that is a closed term M, for which

tE=a+B WW,

and from this we may derive k Q(M) using Proposition 3.5.

FIXPOINT COMPUTATIONS 207

The proof of the Existence Property is very similar. We take a proposi-
tion 0 (e, @) E S(Tcr) and use the square

ITZ S(Tcc)- =wnan., 4733 Ta)
E’

I !

CIEJ, El’

F(unit) - L”,, gr(l, uunLI, unit)

As above, this yields

sm = sx

= {(*, id)E ilEa-‘(Ie.O(e, @)I)

x ro (E, @) (unit) n qunir I bTlI(*) s E).

This has to be non-empty and so

ITEa sn 6

that is,

Hence there is some closed M for which k E=, Val(M) and using
Proposition 3.5 we have k D(M).

Finally we prove the Standardness of nut. Let N be a closed term of type
nat. Using the square

P(nat) I,,, =!WN -srt natI
N*

I I
(UN. N)*

F(unit) r h, Lift-(1, uuni,, unit)

and arguing in the same way as for the previous two theorems, we
conclude that

iIND(*) %z, N,

and from this we deduce that

t-N=.., SUCYO),

using the definition of thee,,! relation in the natural numbers object of
LZr. This completes the proofs of the theorems from Section 3.

208 CROLE AND PITT!3

We finish this section by remarking that the Existence Property
expresses a formal adequacy of the FIX logic for the metalanguage. Indeed,
we have

COROLLARY 5.4. Given a closed term E of type Ta, it is provably equal
to a value Val(M), where A4 is a closed term of type a, if and onl-v if the
c&?/20 interpretation

is not 1.

6. CONCLUDING REMARKS

The predicate xt e[xEa, eE T(a)] of evaluation is implicit in the FIX
logic, but as was pointed out in Remark 3.2, it is treated here in a very
“extensional” way as equivalent to Val(x) = e. It is possible to envisage a
weaker logic than FIX (and a corresponding kind of categorical structure)
in which x e e [x E a, e E T(a)] is an atomic predicate satisfying

M-SE N-=F(M)
Me Val(M) N t (Let(E, F))

and in which there are modified rules for the bounded quantifiers. For
some recent progress in this area we refer the reader to Pitts (1991). There
are strong connections of FIX to the traditional “axiomatic domain
theory” of LCF (Paulson, 1987) and to Plotkin’s approach to denotational
semantics using partial continuous functions (Plotkin, 1985). Our logic
appears inherently more constructive, since it is based on the notion of
evaluation of a (possibly non-terminating) computaton to a value, rather
than on non-termination and on information ordering between (possibly
partial) computations. However, the precise relatinship between the FIX
logic and “axiomatic domain theory” has yet to be clarified.

FIX establishes a novel approach to fixed point equations at the level of
functions. This technique can be extended to the level of types by using a
dependently typed logic which contains a universal type and a fixpoint
type. The fundamental idea is that a recursive type (domain equation)
induces a recursive function on the universal type. The fixpoint type yields
a lixpoint for this function; the type coded by this fixpoint corresponds to
the solution of the domain equation. For details see Crole (1991).

FIX is not an “integrated” logic-proofs of propositions are external to
the system. Undoubtedly something to aim for is a system combining

FIXPOINT COMPUTATIONS 209

features of FIX with those of the Calculus of Constructions (Coquand and
Huet, 1988) obtaining both the “terms-as-computations” and “terms-as-
proofs” paradigms in a single (consistent!) system.

ACKNOWLEDGMENTS

The authors thank the referees for their comments, and the members (M. Hyland, E. Moggi,
V. de Paiva, W. Phoa, E. Ritter) of the CLICS Club in Cambridge for numerious discussions
about this work.

RECEIVED September 24. 1990; FINAL MANUSCRIPT RECEIVED September 25, 1991

REFERENCES

COQUAND, T., AND HUET, G. (1988), The calculus of constructions, Inform. und Comput. 76,
95.

CROLE, R. L. (1991), “Programming Metalogics with a Fixpoint Type,” Ph.D. Thesis, Univer-
sity of Cambridge, U.K.

CROLE, R. L.. AND PINTS, A. A. (1990), New foundations for lixpoint computations, in
“Proceedings, 5th Annual Symposium on Logic In Computer Science,” pp. 489497, IEEE
Computer Society Press, Washington.

CURIEN, P.-L. (1986), “Categorical Combinators, Sequential Algorithms and Functional
Programming,” Pitman, London.

DUMMETT. M. (1977), “Elements of Intuitionism,” Oxford Univ. Press.
FREYD, P. J. (1991), Algebraically complete categories, in “Proceedings, Category Theory

1990, Como,” Lecture Notes in Mathematics, Vol. 1488, pp. 95-104, Springer-Verlag,
Berlin.

GIRARD. J.-Y. (1989), “Proofs and Types” (Tr. and with appendices by P. Taylor and
Y. Lafont), Cambridge Univ. Press, London/New York.

LAFONT. Y. (1988), “Logiques, Catigories et Machines,” Ph.D. Thesis, UniversitC de
Paris VII.

LAMBEK, J., AND SCOTT, P. J. (1986), “Introduction to Higher Order Categorical Logic,”
Cambridge Studies in Advanced Mathematics, vol. 7. Cambridge Univ. Press, London/
New York.

LEHMANN, D. J., AND SMYTH. M. B., (1981), Algebraic specification of data types: A synthetic
approach, Math. Systems Theory 14, 97.

MACLANE, S. (1971). “Categories for the Working Mathematician,” Springer-Verlag, Berlin.
MARTIN-Lij~, P. (1983), Notes on the domain theoretic interpretation of type thery, in

“Proceedings, Workshop on Semantics of Programming Languages,” Chalmers University.
MOGGI, E. (1988), “Computational Lambda-Calculus and Monads,” LFCS Technical Report

88-66, University of Edinburgh.
MOGGI, E. (1989), Computational lambda-calculus and monads, in “Proceedings, 4th Annual

Symposium on Logic in Computer Science.” pp. 14-23, IEEE Comput. Sot. Press.
Washington.

MOGGI, E. (1991), Notions of computations and monads, Inform. and Comput. 93, 55.
NORDSTRBM, B., PETERSSON, K., AND SMITH, J. M. (1990), “Programming in Martin-LGf’s

Type Theory,” Oxford Univ. Press.
PAULSON, L. C. (1987). “Logic and Computation.” Cambridge Univ. Press.

210 CROLE AND PITTS

PITTS, A. M. (1991). Evaluation logic, in “IV Higher Order Workshop, Banff 1990”
(G. Birtwistle, Ed.), pp. 162-189, Workshops in Computing, Springer-Verlag, Berlin.

PLOTKIN, G. D. (1977) LCF considered as a programming language, Theoret. Comput. Sci.
5, 223-255.

PLOTKIN, G. D. (1985) Denotational semantics with partial functions, unpublished lecture
notes from CSLI Summer School.

SCOTT, D. S. (1969) A type-theoretic alternative to CUCH, ISWIM, OWHY, unpublished
manuscript, University of Oxford.

SEELY, R. A. G. (1983). Hyperdoctrinds, natural deduction and the Beck condition, 2. Math.
Logik Grundlagen Math. 29, 505.

SMYTH, M. B., AND PLOTKIN, G. D. (1982) The category-theoretic solution of recursive
domain equations, SIAM J. Compuf. 11, 761.

