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Abstract

A standard monad of continuations, when constructed with domains in the world of FM-sets [M.J.
Gabbay, A.M. Pitts, A new approach to abstract syntax with variable binding, Formal Aspects Com-
put. 13 (2002) 341–363], is shown to provide a model of dynamic allocation of fresh names that is
both simple and useful. In particular, it is used to prove that the powerful facilities for manipulating
fresh names and binding operations provided by the “Fresh” series of metalanguages [M.R. Shinwell,
Swapping the atom: Programming with binders in Fresh O’Caml, Proc. MER�IN, 2003; M.R.
Shinwell, A.M. Pitts, Fresh O’Caml User Manual, Cambridge University Computer Laboratory,
September 2003, available at〈http://www.freshml.org/foc/〉; M.R. Shinwell,A.M. Pitts, M.J. Gabbay,
FreshML:Programmingwithbindersmadesimple, in:Proc. ICFP ’03,ACMPress, 2003, pp. 263–274]
respect�-equivalence of object-level languages up to meta-level contextual equivalence.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

Moggi’s use of category-theoretic monads to structure various notions of computational
effect[7] is by now a standard technique in denotational semantics; and thanks to the work
of Wadler [21] and others, monads are the accepted way of “tackling the awkward squad”
[8] of side-effects within pure functional programming. Of Moggi’s examples of monads,
we are here concerned with those for modellingdynamic allocation of fresh resources. 1
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1 In this paper the only type of resource we consider is freshly generatednames.
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Since these are not so well-known,2 let us recall a simple example of such a monad,T.
It is defined on the category ofSet-valued functors from the categoryI of finite cardinals
(i.e. the finite setsn = {0, . . . , n− 1} for n = 0,1,2, . . .) and injective functions between
them. Thus an objectA of this functor category gives us a family of setsA(n) of “A-values
in worldn”, wheren is the number of names created dynamically so far; and each injection
of n into a larger “world”n′ gives rise to a coercion fromA(n) toA(n′). Then the monad
T builds fromA an objectT Aof “computations ofA-values” whose value at eachn is the

dependent sumT A(n)
def= ∑

m∈I A(n + m) = {(m, x) | m ∈ I ∧ x ∈ A(n + m)}; such
“computations” simply create some numberm of fresh names and then return anA-value
in the appropriate world,n+m. The action ofT on a natural transformation� : A −→ A′
produces the natural transformationT � : T A −→ T A′ whose component atn ∈ I is
the function(T �)n : T A(n) −→ T A′(n) mapping(m, x) to (m, �n+m(x)). WhenA is
the object of names itself, given byA(n) = n = {0, . . . , n − 1}, there is a distinguished
global elementnew : 1 = I(0,−) −→ T A corresponding under the Yoneda Lemma to
the element(1,0) ∈∑

m∈I m = T A(0); this represents the computation whose evaluation
creates a name that is fresh with respect to the current world.
Although this is an attractive notion that has had nice applications (see [19], for example),

such dynamic allocation monads on functor categories have proved at best difficult and at
worst impossible to combine with some other important denotational techniques—those for
modelling recursively defined higher-order functions and algebraic identities. The difficulty
with higher-order functions is thatwhile domains in functor categories dohaveexponentials,
they are quite complicated things to work with in practice because of the indexing over
“possible worlds”. The difficulty with algebraic identities, such as

(let x ⇐ new in e)= e if x not free ine, (1)

(let x ⇐ new; x′ ⇐ new in e)= (let x′ ⇐ new; x ⇐ new in e) (2)

is that quotienting dynamic allocation monads in order to force such identities interacts
badly with the order-theoretic completeness properties used to model recursive definitions.
In this paper we get past these problems with recursively defined higher-order functions
and algebraic identities in two steps, both of which turn out to greatly simplify matters.
First, we replace use of functor categories with the category ofFM-sets[4]. 3 Although

this is equivalent to a category of functors,4 working with it is almost entirely like working
in the familiar category of sets: in particular exponentials are straightforward, as is the basic
theory of domains in FM-sets [18,16]. FM-sets are certain sets equipped with an action of
the group of permutations of a fixed, countably infinite setA of atoms; the key property
of FM-sets is that their elements havefinite support, a notion which provides a syntax-free
notion of “set of free names”. The existence of finite supports enables the dependence of
semantic objects upon parameterising names to be left implicit—a convenient simplification
compared with the explicit passing of parameterising name sets inherent in the “possible
worlds”/functor category approach.

2 Dynamic allocation monads are not mentioned in[7], but do appear in[6, Section 4.1.4].
3Also known asnominal setsin [11].
4 The ones fromI to Set that preserve pullbacks.
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Secondly, we feed back into denotational semantics the operational insight of[13] that
in the presence of fixpoint recursion, it is easier to validate contextual equivalences like
(1) (and many other more subtle ones that do not concern us here) by forgetting about
evaluation’s properties of intermediate name-creation in favour of its simple termination
properties. This leads to use of a Felleisen-style operational semantics [22], except that we
formulate Felleisen’s “evaluation contexts” as frame-stacks: see [10] for a recent survey. If
D is the domain of denotations of values of some type, then frame-stacks can be modelled
simply by elements of the strict continuous function spaceD�1⊥ where 1⊥ = {⊥,�} (one
element for non-termination, the other for termination); and since expressions are identified
if they have the same termination behaviour with respect to all frame-stacks, we can take
(D�1⊥)�1⊥ as the domain for interpreting expressions. Thus we are led to the use of
the followingcontinuation monad5

(−)⊥⊥ def= (−�1⊥)�1⊥. (3)

The notion of “finite support” now enters the picture: within the world of FM-sets, the
domain of names is simply a flat domainA⊥ on the FM-setA of atoms.We get an element
new ∈ (A⊥�1⊥)�1⊥ that models dynamic allocation by definingnew to send any
� ∈ A⊥�1⊥ to �(a) ∈ 1⊥, wherea ∈ A is some atomnot in the supportof the function
�. Not only do standard properties of support make this recipe well defined (the value of
�(a) is independent of whicha we use), butnew turns out to have good properties, such
as (1) (see Remark 4.5).6 We review those parts of “FM-domain theory” that we need in
Section 3.
It might seem that the continuation monad(−�1⊥)�1⊥ on FM-domains is too simple

to be useful. We show this is not so by using it to prove some extensionality properties
of contextual equivalence for the “Fresh” series of metalanguages [15,17,18]. In partic-
ular we give the first correct proof of the main technical result of [18],7 which shows
that FreshML’s powerful facilities for manipulating fresh names and binding operations do
indeed respect�-equivalence of object-level languages up to meta-level contextual equiva-
lence. Section 2 introduces a small version of FreshML, called Mini-FreshML, and states
the properties of contextual equivalence we wish to prove. Section 3 gives a monadic
denotational semantics for Mini-FreshML using the monad (3) on the category of FM-
cppos. We prove the adequacy of this denotational semantics for Mini-FreshML’s opera-
tional semantics by extending some standard methods based on logical relations for relat-
ing semantics to syntax [9]. Section 4 uses the logical relation from the previous section
to prove the desired extensionality and correctness properties for Mini-FreshML’s rep-
resentation of object-level syntax involving binders. Finally in Section 5 we draw some
conclusions.

5 It is possible to use other continuation monads, by replacing one or other uses of� in (3) by other kinds of
function space, but this simple version is enough for our purposes here.

6 new is closely related to the “freshness quantifier”Nintroduced in[4].
7 In [18] the authors attempted to use a direct- rather than continuation-based monadic semantics that turns out

to have problematic order-theoretic completeness properties.
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2. Mini-FreshML

We present a small, monomorphic languageMini-FreshML that encapsulates the core
freshness features of FreshML[18] and Fresh O’Caml [15]; the reader is referred to those
papers for motivation of the novel language features for manipulating bindablenames
(expressions of typename) andname-abstractions(expressions of type<<name>>�). Mini-
FreshML types� are given by the following grammar:

� ::= unit | name | � | �× � | <<name>>� | �→ �.

Here� ranges over a finite set of datatype names and we assume each� comes with a
top-level, ML-style type declaration of the form

� = C1 of �1| · · · |Cn of �n, (4)

where theCk areconstructorsand the corresponding constructor types�k are generated
from the same grammar as types� and in particular may involve (simultaneous) recursive
occurrencesof thedatatypenames�.Mini-FreshMLexpressionsearegivenby the following
grammar, wherex ranges over a denumerable set VId of value identifiers anda ranges over
another denumerable setA, disjoint from VId, whose elements we callatoms(these are the
closed values of typename):

e ::= x | () | a | Ck(e) | (e, e) | fresh | <<e>>e | swap e, e in e

| if e = e then e else e | fun x(x) = e | e e | let x = e in e

| let (x, x) = e in e | let <<x>>x = e in e

| match e with ( · · · |Ck(x) -> e| · · · ).

Note that local declarations of the formlet x = e in e′ are included more for conve-
nience thannecessity; sincewehaveexcludedML-style polymorphism fromMini-FreshML
(inorder to keep thingssimple), thisexpressionhas thesame typingandevaluationbehaviour
as the function application(fun f (x) = e′)e (wheref is a value identifier that does not
occur ine′).
Thevalues(i.e. expressions in canonical form) of Mini-FreshML,v, form the subset of

expressions generated by

v ::= x | () | a | Ck(v) | (v, v) | <<a>>v | fun x(x) = e.

We identify expressions up to�-conversion of bound value identifiers; the binding forms
are as follows (with binding positions underlined):

fun x(x′) = [−], let x = e in [−], let (x, x′) = e in [−],
let <<x>>x′ = e in [−], match e with ( · · · |Ck(x) -> [−] | · · · ).

We writee[v/x] for the capture-avoiding substitution of a valuev for all free occurrences
of the value identifierx in the expressione. We say thate is closedif it has no free value
identifiers. Even ifeis closed, itmaywell haveoccurrences of atomsa in it; wewrite supp(e)
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for thefinite set of atomsoccurring ine. 8 Note that therearenoexpressionconstructions that
bind atoms; in particular, although abstraction expressions<<e>>e′ are used to represent
binders in object-level syntax, they are not binding forms in Mini-FreshML itself.9 In
what follows we make heavy use of the operation on expressions ofswapping atoms:
(a a′) · e indicates the result of interchanging all occurrences of the atomsa anda′ in the
expressione.
We only consider expressions that are well-typed, given a typing context� consisting

of a finite map from value identifiers to types. We write� � e : � to indicate thate is
assigned type� in such a typing context� (and omit mention of� when it is empty). This
relation is inductively generated by rules that are mostly standard and which are given in
Appendix A. Let us just mention here that atomsa are assigned typename; and that ife is
an expression of typename ande′ one of type�, then the abstraction expression<<e>>e′
has type<<name>>�.
Evaluation of Mini-FreshML expressions can be formalised operationally using a “big-

step” relation⇓ on 4-tuples(a, e, v, a′), writtena, e ⇓ v, a′. Heree is a closed expression,
v is a closed value, anda ⊆ a′ are finite sets of atoms with the atoms ofe contained in
a. The intended meaning of this relation is that in the world with “allocated” atomsa, the
expressioneevaluates tov and allocates the fresh atomsa′ − a (evaluation offresh and
let <<x>>x′ = e in e′ causes dynamic allocation of fresh atoms—see below). Further
details of the relation are given elsewhere [18]. Instead, in this paper we use an equivalent
operational semantics based on the notion offrame stacks, or “evaluation contexts” [22];
see [10] for a recent survey of this technique. This abstracts away from the details of which
particular atomsandvalueshavebeenallocatedand insteadconcentrateson the single notion
of termination. In this formulation, as evaluation proceeds a stack ofevaluation framesis
built up. Each of these frames is a basic evaluation context: inside is a hole[−] for which
may be substituted another frame (as when composing frames to form a frame stack) or an
expression, which may or may not be in canonical form. Formally then, a frame stackS
consists of a (possibly empty) list of evaluation frames, thus

S ::= [] | S ◦F,

whereF ranges over frames as follows:

F ::= Ck([−]) | ([−], e) | (v, [−]) | <<[−]>>e | <<v>>[−]
| swap [−], e in e | swap v, [−] in e | swap v, v in [−]
| if [−] = e then e else e | if v = [−] then e else e

| [−] e | v [−] | let x = [−] in e

| let (x, x′) = [−] in e | let <<x>>x′ = [−] in e

| match [−] with ( · · · |Ck(x) -> e| · · · ).

8 The reason for this notation is the fact that this set of atoms is thesupportof e in the technical sense introduced
in Section3.

9 It is one of the main results of this paper (Theorem2.3) that the properties of Mini-FreshML contextual
equivalence are such that atoms ineoccurring ine′ behave up to contextual equivalence as though they are bound
in <<e>>e′; for example for atomsa, b then<<a>>a turns out to be contextually equivalent to<<b>>b.
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Then thetermination relation〈S, e〉↓ (read “e terminates when evaluated with stackS”)
can be inductively defined by rules that follow the structure ofe and then the structure of
S. For example:
• 〈S, fresh〉↓ holds if 〈S, a〉↓ does for some (or indeed as it turns out, for every)a ∈

A− supp(S), i.e. for some atoma not occurring in the frame stackS.
• 〈S ◦ let <<x>>x′ = [−] in e, <<a>>v〉↓ holds if 〈S, e[a′/x, ((a a′) · v)/x′]〉↓ does
for some (or indeed every)a′ ∈ A− supp(S, v, e).

The complete definition of the termination relation is given in AppendixB. Since we have
not defined the “big-step” relation⇓ here, we state the following relationship between it
and the termination relation without proof; the details can be found in [16].

Fact 2.1. For any closed Mini-FreshML expression e, 〈[], e〉↓ holds iff for any finite set
a ⊆ A containing the atoms of e, the relationa, e ⇓ v, a′ holds for some valuev and set
of atomsa′ ⊇ a.

Just as we only use well-typed expressions, we only consider well-typed frame stacks:
wewrite� � S : ��__ tomean that in typing context�, the frame stackStakes expressions
e of type � (in context�) and produces a well-typed result (of some type that we do not
need to name, since we only care about the termination ofewhen evaluated with stackS).
This judgement is defined by induction on the length of the stackSby

� � [] : ��__
�, [−] : � � F : �′ � � S : �′�__

� � S ◦F : ��__
,

where in the hypothesis�, [−] : � � F : �′ of the second rule, we regard[−] as a special
value identifier and typeF using the typing rules for expressions given in AppendixA.
In [18], it is claimed that the features of Mini-FreshML that are novel compared with

ML can be used to represent and to manipulate the terms of languages involving binding
operators in ways that are guaranteed to respect�-equivalence between those terms. That
paper shows that a wide range of syntax-manipulating functions can be very conveniently
expressed using the new features. Here we wish to give a formal proof of the fact that�-
equivalence between the terms of an “object language” is respected byMini-FreshMLwhen
we represent those termsasexpressions of a suitableMini-FreshMLdatatype. For simplicity
we use the untyped�-calculus as a running example of an object language involving binding
operators.10 Write� for the set of�-terms t, by which we mean abstract syntax trees (not
identified up to�-equivalence) given by

t ::= x | �x.t | t t,

where for variablesxweareusingelementsof the setVId ofMini-FreshMLvalue identifiers.
To represent such terms in Mini-FreshML we use a top-level type declaration containing:

� = Var of name|Lam of <<name>>�|App of �× �. (5)

10However, our results easily extend to any language with binders specified by anominal signature
[20, Definition 2.1].
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For each�-term t, define a Mini-FreshML expression[t]e by induction on the structure of
t as follows:

[x]e def= Var(x)

[�x.t]e def= let x = fresh in Lam(<<x>>[t]e)
[t t ′]e def= App([t]e, [t ′]e).




. (6)

Note that under this translation, free variables in�-terms are represented by free value
identifiers in Mini-FreshML: the set of free variables oft is the same as the set of free value
identifiers of[t]e. Note also that in a typing context� that assigns typename to each of those
free variables, we have� � [t]e : �. We want to relate�-equivalence of�-terms,t ≡� t ′,
to the operational behaviour of the Mini-FreshML expressions[t]e and[t ′]e of type�. To
do so, we shall use the traditional notion ofcontextual equivalencegiven by the following
definition.11

Definition 2.2 (Contextual equivalence). The type-respecting relation ofcontextual pre-
order, written� � e�ctxe

′ : �, is defined to hold if� � e : �, � � e′ : �, and for all closed,
well-typed expressionsC[e] containing occurrences ofe, if 〈[], C[e]〉↓ holds, then so does
〈[], C[e′]〉↓ (whereC[e′] is the expression obtained fromC[e] by replacing the occurrences
of ewith e′). The relation ofcontextual equivalence, ≈ctx is the symmetrisation of�ctx.
For closed typeable expressionseande′ we just writee ≈ctx e′ when∅ � e ≈ctx e′ : � holds
for some type� (and similarly for�ctx).

In the next sectionwe showhow to formulate a denotational semantics forMini-FreshML
which we use in Section4 to prove the following theorem (and other properties of Mini-
FreshML contextual equivalence).

Theorem 2.3(Correctness for expressions). For any�-terms t andt ′, with free variables
contained in the set{x0, . . . , xn} say,

t ≡� t ′⇔{x0 : name, . . . , xn : name} � [t]e ≈ctx [t ′]e : �.

If t and t ′ are�-equivalent, then their translations into Mini-FreshML only differ up
to renaming bound value identifiers; so since we identify Mini-FreshML expressions up
to �-equivalence, in this case[t]e and [t ′]e are equal Mini-FreshML expressions and in
particular are contextually equivalent. Thus the left-to-right direction of the above theorem
is straightforward and the force of the theorem lies in the right-to-left direction: if the
termination behaviour of[t]e and [t ′]e in any context is the same, thent and t ′ must be
�-equivalent.

Remark 2.4 (Representing≡�). Since �-equivalence is a decidable relation between
�-terms, it makes sense to ask whether, given a type declaration for booleans

bool = True of unit|False of unit

11We have formulated the definition using the termination relation↓; but note that in view of Fact2.1, we could
have used the big-step evaluation relation⇓.
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we can strengthen the above theorem and represent≡� by a function expressionaeq :
(� × �)→ bool in Mini-FreshML. Such an expressionaeq does indeed exist in Mini-
FreshML. Rather than give it explicitly, it is clearer to give the Fresh O’Caml version of it,
since FreshO’Caml’s richer syntax (in particular it’s richer language of patterns and built-in
boolean operations) enables one to expressaeq more clearly:12

let rec aeq(t,t’) = match t,t’ with

Var x, Var x’ -> if x=x’ then true else false

| Lam(<<x>>y),Lam(<<x’>>y’) -> aeq(y, swap x and x’ in y’)

| App(x,y), App(x’,y’) -> aeq(x,x’) && aeq(y,y’).

The Mini-FreshML version ofaeq has to use nestedmatch-expressions and simple pat-
terns to express the above more complicated patterns and also to express the boolean con-
junction &&. The precise sense in whichaeq represents≡� is described in Section 4
(see Remark 4.11).

3. Denotational semantics with FM-cppos

The FreshML language design was driven by the ability of the Fraenkel-Mostowski
permutation model of set theory with atoms to model binding,�-equivalence and freshness
of names [4]. So to give a denotational semantics to Mini-FreshML we could develop the
usual notion of pointed, chain-complete poset in the axiomatic FM-set theory of [4]. This
FM-set theory is just classical ZF set theorywith urelements and an axiomasserting a “finite
support property” (that is incompatible with the axiom of choice, it should be noted). So the
fundamental constructions of domain theory, such as limit-colimit solutions of recursive
domainequations, canbecarriedout in that axiomatic theory.Suchachangeofmathematical
foundations demands a certainmeta-logical sophistication from the reader which can render
the results somewhat inaccessible.So insteadherewe takea lesssophisticated,butequivalent
approach and work with domains in FM-set theory as ordinary (partially ordered) sets
with extra structure giving the effect on their elements of permuting atoms.13 Whichever
approach one takes, the main point is that domains in this new setting admit some relatively
simple, but novel constructions for names and name-binding with which we can give a
meaning to the novel features of Mini-FreshML. We concentrate on describing those new
constructs; a fuller development of FM-cppos is given in [16].
Recall from [11,18] that anFM-setis a setX equipped with anaction

perm(A)×X −→ X, written as(�, x) !→ � · x,

of the groupperm(A) of permutations of the setA of atoms (thus	 · x = x, where	 is the
identity permutation; and(�◦�′) · x = � · (�′ · x), where◦ is composition of permutations).

12 Indeed, the user has no need to make this declaration ofaeq in Fresh O’Caml, because the language has a
built-in structural equality function=, which at the type� declared in (5) already implementsaeq; so one can just
uset = t’ instead ofaeq(t, t’).
13Strictly speaking, what we call an FM-cppo below corresponds to an object in the universe of FM-setswhich

has empty supportand is a cppo in the axiomatic FM-set theory.
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Furthermore, it is required that everyx ∈ X isfinitely supported—meaning that there exists
a finite subseta ⊆ A (called a finitesupportfor x) such that(a a′) · x = x holds for
all a, a′ ∈ A − a. (Here(a a′) ∈ perm(A) is the permutation just interchanginga and
a′.) Eachx ∈ X in fact possesses aleastfinite support which we write as supp(x); thus if
a, a′ ∈ A − supp(x), then(a a′) · x = x. A function f between FM-setsX andY is called
equivariantif � · (f (x)) = f (� · x) holds for all� ∈ perm(A) andx ∈ X. The category of
FM-sets and equivariant functions is rich in properties, being in fact equivalent to a well-
known Grothendieck topos (of continuousG-sets, whenG is the topological group given
by perm(A) endowed with the finite information topology). Here we will just describe
finite products, power-objects and exponentials in this topos, since the associated notions
of finitely supported subset and function will be important in what follows.

Definition 3.1 (Finite products). The product ofX andY in the category of FM-sets and

equivariant functions is given by the usual cartesian product of setsX × Y
def= {(x, y) |

x ∈ X ∧ y ∈ Y } with permutation action given by� · (x, y)
def= (� · x,� · y). It is not

hard to see that with this action(x, y) is finitely supported becausex andy are, and that
supp(x, y) = supp(x) ∪ supp(y). The projection functionsX ←− X × Y −→ Y are
equivariant and makeX× Y into the categorical product ofX andY. The terminal object in
this category is just a one-element set 1= {0} endowed with the unique permutation action
� ·0 def= 0.

Definition 3.2 (Finitely supported subsets and functions). A subsetS ⊆ X of an FM-set
X is defined to be finitely supported if there is a finite set of atomsa ⊆ A such that for
all a, a′ ∈ A − a and allx ∈ S, (a a′) · x ∈ S. The set of all finitely supported subsets
of X becomes an FM-set, denotedPX, once we endow it with the permutation action
given by� · S = {� · x | x ∈ S}. TheequivariantsubsetsS ⊆ X are by definition those
finitely supported subsets for which we can takea to be empty (so thatx ∈ S implies
(a a′) · x ∈ S for all a, a′ ∈ A). (It is not hard to see that the subobjects ofX in the topos
of FM-sets and equivariant functions are naturally in bijection with the equivariant subsets
of X, with inclusion of subobjects corresponding to inclusion of subsets; andPX is indeed
the powerobject ofX in this topos.) A functionf between two FM-setsX andY is defined
to be finitely supported if its graph is a finitely supported subset ofX × Y ; it is not hard
to see that this is equivalent to requiring that there be a finite subseta ⊆ A such that for
all a, a′ ∈ A − a and allx ∈ X, (a a′) · (f (x)) = f ((a a′) · x) (i.e. f is “equivariant
away froma”). The set of all such functions becomes an FM-set, denotedYX, once we

endow it with the permutation action given by� · f def= �x ∈ X.� · (f (�−1 · x)), where
�−1 is the inverse of the permutation�. (This is indeed the exponential ofX andY in the
topos of FM-sets.) Note that the morphisms fromX toY in the category of FM-sets, i.e. the
equivariant functions fromX toY, are precisely the elements ofYX that have empty support.

Remark 3.3. The finitely supported subsets of an FM-set are closed under the usual
boolean operations. In particular, if a finite set of atomsa ⊆ A witnesses thatS ⊆ X

is finitely supported, then it also witnesses that the complement(X − S) ⊆ X is finitely
supported.
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We will make use of a version of Tarski’s fixed point theorem in the category of
FM-sets:

Lemma 3.4. AnFM-complete latticeis an FM-set L equipped with an equivariant partial
order relation$ such that every finitely supported subset has a greatest lower bound. Given
such an L, every elementf ∈ LL which is monotone possesses a least(pre-)fixed point.

Proof. The subset{x ∈ L | f (x) $ x} is supported by the same finite set of atoms that
supportsf and therefore has a greatest lower bound. As usual, this is the least (pre-)fixed
point of f. �

Definition 3.5 (FM-cpos and FM-cppos). An FM-cpo is an FM-setD equipped with an
equivariant partial order$ that possesses least upper bounds (lubs) for all
-chainsd0 $
d1 $ d2 $ · · · that are finitely supported, in the sense that there is a finite subseta ⊆ A

such that∀a, a′ ∈ A − a.∀n. (a a′) · dn = dn. (This is equivalent to requiring that the
subset{dn | n�0} ⊆ D be finitely supported in the sense of Definition3.2.) AnFM-cppo
is an FM-cpo with a least element⊥; note that since⊥ $ (a a′) · ⊥ (since⊥ is least) and
hence(a a′) · ⊥ $ (a a′) · (a a′) · ⊥ = ⊥, we have supp(⊥) = ∅. A morphismf of FM-
cpos is an equivariant function which is monotone and preserves lubs of finitely supported

-chains. A morphism of FM-cppos, writtenf : D ◦−→ E, has the same properties but
is also strict (f (⊥) = ⊥). FM-cpos (respectively FM-cppos) and their morphisms form a
categoryFM -Cpo (respectivelyFM -Cpo⊥).

Lemma 3.6(Least fixed points). Given an FM-cppo D, every function f from D to D that
is finitely supported(Definition 3.2),monotone and preserves lubs of finitely-supported

-chains possesses a least(pre-)fixed pointfix(f ) ∈ D.

Proof. Just note that the classical construction offix(f )as the lub of the chain⊥ $ f (⊥) $
f 2(⊥) $ · · · can be used here, because this chain is finitely supported (by anya that finitely
supportsf, since as we noted above,⊥ always has empty support).�

To each Mini-FreshML type� we assign an FM-cppo���. To do so we make use of the
following constructions on FM-cppos: smash product (− ⊗ −), coalesced sum (− ⊕ −),
lifting (−⊥), function space (−→−), strict function space (−�−), and atom-abstraction
([A]−). All but the last three are just as for classical domain theory [2]. The FM-cppo
D→D′ is given by the FM-set of finitely supported functionsf from D to D′ (Definition
3.2) that preserve the partial order and lubs of finitely supported
-chains; as usual, the
partial order onD→D′ is inherited fromD′ argument-wise. The FM-cppoD�D′ is the
sub-FM-cppo ofD→D′ consisting of those functions that also preserve⊥. The FM-cppo
[A]D generalises to domain theory the atom-abstraction construct of [4, Section 5] and is
defined as follows.

Definition 3.7 (Atom-abstraction). Given an FM-cpoD, the FM-cpo[A]D consists of
equivalence classes[a]d of pairs (a, d) ∈ A × D for the equivalence relation induced
by the pre-order:(a, d) $ (a′, d ′) iff (a a′′) · d = (a′ a′′) · d ′ for some atoma′′ not
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in {a} ∪ supp(d) ∪ {a′} ∪ supp(d ′); the permutation action is� · [a]d def= [�(a)](� · d)

and the partial order is induced by the above pre-order. The elements of[A]D are indeed
finitely supported: one can calculate that supp([a]d) = supp(d) − {a}. Finitely supported

-chains in[A]D possess lubs, which can be calculated as follows: given a chain[a0]d0 $
[a1]d1 $ · · · supported by a finite set of atomsa, picking anya ∈ A− a one can show that
(ao a) · d0 $ (a1 a) · d1 $ · · · is an
-chain inD supported bya ∪ {a}; taking its lub,d
say, then[a]d is a lub for the original chain[a0]d0 $ [a1]d1 $ · · ·. If D has a least element
⊥, then so does[A]D, namely[a]⊥ (for anya ∈ A).

As may be expected, all these constructions are functorial. Lifting and atom-abstraction
determine functorsFM -Cpo⊥−→FM -Cpo⊥; the smash product and sum determine func-
tors FM -Cpo⊥ × FM -Cpo⊥−→FM -Cpo⊥ and the function and strict function spaces
determine functorsFM -Cpoop⊥ ×FM -Cpo⊥−→FM -Cpo⊥. In fact the action of these con-
structs on morphisms enriches to locally continuous functors in the following sense. We
say that a functorF : FM -Cpo⊥−→FM -Cpo⊥ is locally FM-continuousif its action on
morphisms is induced by equivariant functionsFD,E : (D�E)→(FD�FE) that are
monotonic and preserve least upper bounds of finitely-supported chains. For example when
F = [A](−), FD,E sendsf ∈ (D�E) to the element[A]f ∈ ([A]D�[A]E) that maps
[a]d to [a′]f ((a a′) · d) wherea′ is any atom not in supp(f ) ∪ {a} ∪ supp(d) (the result is
independent of which sucha′ we choose).
For simplicity, we assume there is a single declaration (4) of a datatype� (and later take

the declaration to be (5)).14 Following [9,2], the denotation of� is the minimally invariant
FM-cppo associated with a locally FM-continuous functorF : FM -Cpoop⊥ × FM -Cpo⊥
−→ FM -Cpo⊥:

F(−,+)
def= F�1(−,+)⊕ · · · ⊕ F�n(−,+), (7)

where for each type� the functorF� is defined by induction on the structure of� as follows:

Funit(D
−, D+)

def= 1⊥,

Fname(D
−, D+)

def= A⊥,

F�(D
−, D+)

def= D+,

F<<name>>�(D
−, D+)

def= [A]F�(D
−, D+),

F�×�′(D
−, D+)

def= F�(D
−, D+)⊗ F�′(D

−, D+),

F�→�′(D
−, D+)

def= F�(D
+, D−)�(F�′(D

−, D+))⊥⊥.

Here(−)⊥⊥ is the continuation monad (3) defined in the Introduction; 1⊥ andA⊥ are flat

FM-cppos on the FM-sets 1
def= {�} (trivial action:� · � def= �) andA (canonical action:

� · a def= �(a)). Just as Lemma 3.6 shows that least fixed points can be constructed in the
usual way, so can minimally invariant solutions to such domain equations be constructed in

14For finitely many datatypes one just has to solve a finite set of simultaneous domain equations rather than a
single one.
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this setting using the normal technique of embedding-projection pairs[9,2] adapted to FM-
cppos, using finitely supported
-chains where classically one uses arbitrary
-chains.15

So letD be an FM-cppo which is a minimal invariant solution to the recursive domain
equationD = F(D, D). ThusD comes equipped with an isomorphism

i : F(D, D)�D (8)

and(D, i) is uniquely determined by the fact that the identity onD is fix(�), where� :
(D�D)→(D�D) is given by�(f ) = i ◦ F(f, f ) ◦ i−1.
We may now define the denotation��� of a type� as��� def= F�(D, D). Denotations of

typing contexts are given using a finite smash product:��� def= ⊗
x∈dom(�) ��(x)�. The

denotations of valuesv (of type � in context�), of frame stacksS (of argument type�
in context�) and expressionse (of type � in context�) are given by finitely supported
functions16 of the following kinds:

V�� � v : �� ∈ �������,
S�� � S : ��__� ∈ �������⊥,

E�� � e : �� ∈ �������⊥⊥,

where for each FM-cppoD we defineD⊥ def= D�1⊥. Intuitively, an element of���⊥
models a frame stack accepting a value of type� and returning� for termination, or⊥
for divergence. Just as the behaviour of expressions is determined by any enclosing frame
stack, the denotation of some expression in context is then a function in���⊥⊥ that accepts
the denotation of a frame stack in context and returns either⊥ or�. Thus, the denotations
of expressions in context make use of thecontinuation monad(−)⊥⊥ based on an FM-cppo
of “answers” given by 1⊥. We have the usual two monad operations for(−)⊥⊥, namely the
unit return ∈ D�D⊥⊥ given by

return (d)
def= �� ∈ D⊥. �(d) ∈ D⊥⊥ (9)

and the Kleisli lifting operation lift ∈ (D�E⊥⊥)�(D⊥⊥�E⊥⊥) that sends
f ∈ (D�E⊥⊥) ande ∈ D⊥⊥ to

lift (f )(e)
def= �� ∈ E⊥. e(�d ∈ D. f (d)(�)) ∈ E⊥⊥. (10)

We use the informal notationlet d ⇐ e in e′[d] for lift (f )(e) when f is given by some
expressione′[d] (involving d strict continuously).
The denotation of recursive function values makes use of the least fixed point operation

fix ∈ (D→D)�D from Lemma3.6. The denotation of thefresh expression makes use
of the elementnew∈ (A⊥)⊥⊥ mentioned in the Introduction:

E�� � fresh : name� def= � ∈ ���.new.

15A logicallymore sophisticated viewpoint is that we are carrying out the usual construction, but in the axiomatic
FM-set theory[4] rather than in usual axiomatic ZFC set theory.
16Note that these functions do not necessarily have empty support (considerV�∅ � a : name� for example, where

a ∈ A) and are thus not necessarily morphisms in the categoryFM -Cpo⊥.
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Herenew is the element of(A⊥)⊥⊥ that sends each� ∈ (A⊥)⊥ to�(a) ∈ 1⊥ wherea is any
element ofA− supp(�) (for each�, there are infinitely many sucha becauseA is infinite
and supp(�) is finite); this gives a well-defined (strict, continuous) function because for any
othera′ ∈ A − supp(�) we have(a a′) · � = � (since neithera nor a′ are in the support
of �) and hence�(a) = ((a a′) · �)(a) = (a a′) · (�((a′ a) · a)) = (a a′) · (�(a′)) = �(a′)
(where in the last step we use the fact that anyx ∈ 1⊥ satisfies(a a′) · x = x). The
denotation oflet <<x>>x = e in e′ expressions involves a similar use of choosing
some fresha ∈ A (mirroring the dynamic allocation involved in the evaluation of such
expressions), noting that the result is independent of which fresha is chosen.17 The full
definition ofE�− � by induction on the structure of expressions is given in Appendix C;
the definition ofV�− � by induction on the structure of values and making use ofE�− � is
given inAppendix D; the definition ofS�− � by induction on the length of frame stacks and
making us of bothE�− � andV�− � is given in Appendix E. The “continuation-passing
style” of these definitions is self-evident. Note that since a value is in particular an expres-
sion, it has a denotationquavalue,V�� � v : ��, andquaexpression,E�� � v : ��. The two
denotations are related via the unit (9) of the continuation monad:

Lemma 3.8. If v is a value satisfying� � v : �, thenE�� � v : �� = return ◦V�� � v : �� ∈
�������⊥⊥.

For closed valuesv of type�, we writeV�v� for the elementV� � v : ��(∅) of the FM-
cppo��� and use a similar convention for closed frame stacks and expressions.

Remark 3.9 (FM-sets of syntax). Note that the expressions ofMini-FreshML formanFM-
set. The action of a permutation of atoms on an expressione is given by applying the
permutation to the atoms occurring in any syntax tree representinge(recall that we identify
expressions up to�-conversion of bound value identifiers); and then the support of an
expression is in fact the finite set of atoms occurring in the expression. Furthermore, it is
easy to prove that the denotational semantics gives equivariant functions on syntax, so that,
for example(a a′) · E�� � e : ��() = E�� � (a a′) · e : ��((a a′) · ). In particular it is the
case that supp(E�� � e : ��()) ⊆ supp(e) ∪ supp().

We wish to use our denotational semantics to prove operational properties of Mini-
FreshML expressions. An important stepping-stone in this process is the construction of
certain type-indexedlogical relationswhich relate domain elements to values, frame stacks
and expressions respectively:

�val
� ⊆ ���× Val�, �stk

� ⊆ ���⊥ × Stack�, �exp
� ⊆ ���⊥⊥ × Exp�,

where Val� is the set of closed Mini-FreshML values of type�, Stack� is the set of well-
typed frame stacks expecting an argument of type� and Exp� is the set of closed expres-
sions of type�. These relations are all required to be equivariant subsets in the sense of
Definition 3.2. We also require them to be suitably admissible; for example, for each

17This is just a manifestation of the “some/any” property of fresh names[4, Proposition 4.10].
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v ∈ Val�, we require that{d | d�val
� v} to contain⊥ and be closed under lubs of finitely

supported
-chains in��� (and similarly for�stk
� and�exp

� ). Finally, the relations should
satisfy the following properties that follow the structure of types:

d�val
unit() (11)

d�val
namea⇔ d (= ⊥ ⇒ d = a, (12)

d�val
� Ck(v)⇔ ∃ dk ∈ ��k�.d = (i◦ ink)(dk) ∧ dk�val

�k
v, (13)

[a] d�val
<<name>>�<<a

′>>v⇔ (a a′′) · d�val
� (a′ a′′) · v

for somea ∈ A− supp(a, d, a′, v), (14)

(d1, d2)�val
�×�′(v1, v2)⇔ d1�val

� v1 ∧ d2�val
�′ v2, (15)

d�val
�→�′v⇔ ∀ d ′�val

� v′.d(d ′)�exp
�′ v v′, (16)

��stk
� S⇔ ∀ d�val

� v.�(d) = � ⇒ 〈S, v〉↓, (17)

��exp
� e⇔ ∀ ��stk

� S.�(�) = � ⇒ 〈S, e〉↓. (18)

In clause (13), i is the isomorphism from (8) and ink ∈ Dk�D1 ⊕ · · · ⊕ Dn is thekth
injection into a coalesced sum. Clause (14) makes use of the support of a tuple; as in
Definition 3.1, supp(a, d, a′, v) = {a} ∪ supp(d) ∪ {a′} ∪ supp(v) (and supp(v) is just the
finite set of atoms occurring in the valuev—see Remark 3.9). In clauses (16) and (17),
the notation∀d�val

� v.(−) stands for∀d ∈ ���, v ∈ Val�.d�val
� v ⇒ (−) (and similarly for

�stk
� in (18)). Clauses (17) and (18) define the logical relations for frame stacks and for

expressions in terms of that for values. Clauses (11)–(16) serve to define�val
� at compound

types� in terms of�val
� ; and�val

� = F(�val
� ,�val

� ) is a fixed point of a certain operator
acting on relations (whose definition we give in detail below). Unfortunately, due to the
negative occurrence of�val

� on the right-hand side of the clause (16) for function types,
this operator is non-monotonic; so it is non-trivial to deduce the existence of a suitable
relation�val

� . We do so by adapting the techniques of [9] to the world of FM-sets, as
follows.
For each type�, let R� be the set of finitely supported subsetsR ⊆ ��� × Val� with

the desired admissibility property, namely that for eachv ∈ Val�, the subset{d | (d, v) ∈
R} contains⊥ and is closed under lubs of finitely supported
-chains in���. This be-
comes an FM-set if we define the permutation action of� ∈ perm(A) on R ∈ R� to

be � ·R def= {(� · d,� · v) | (d, v) ∈ R}. Partially ordering its elements by inclusion, it
is not hard to see thatR� is in fact an FM-complete lattice (cf. Lemma 3.4), the greatest
lower bound of a finitely supported subset ofR� just being given by intersection. Given
R−, R+ ∈ R�, defineF�(R

−, R+) ∈ R� by induction on the structure of the type�,
as follows:

Funit(R
−, R+)

def= { (d, ()) | d ∈ 1⊥} ,
Fname(R

−, R+)
def= { (⊥, a) | a ∈ A} ∪ { (a, a) | a ∈ A} ,

F�(R
−, R+)

def= R+,

F<<name>>�(R
−, R+)

def= {([a] d, <<a′>>v) | ∃a′′∈A−supp(R−, R+, a, d, a′, v).

((a a′′) · d, (a′ a′′) · v)∈F�(R
−, R+)},
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F�×�′(R
−, R+)

def= {(〈d, d ′〉, (v, v′)) | (d, v) ∈ F�(R
−, R+) ∧

(d ′, v′) ∈ F�′(R
−, R+)},

F�→�′(R
−, R+)

def= {(d, fun f (x) = e) |

∀(d ′, v′) ∈ F�(R
+, R−),� ∈ ��′�⊥, S ∈ Stack�′ .

(∀(d ′′, v′′) ∈ F�′(R
−, R+).�(d ′′) = � ⇒ 〈S, v′′〉↓)

⇒ d(d ′)(�) = � ⇒ 〈S, (fun f (x) = e) v′〉↓ }.
(The notation “〈d, d ′〉” in the clause for product types indicates the smash pair such that

〈d1, d2〉 def= ⊥��1�⊗��2� when either ofd1 ∈ ��1� andd2 ∈ ��2� are bottom). Assuming the
single datatype� has a top-level declaration as in (4), we defineF(R−, R+) ∈ R� by

F(R−, R+)
def= {(ink(d), Ck(v)) | 1�k�n ∧ (d, v) ∈ F�k

(R−, R+)}.
Then the relation we seek is a fixed point�val

� = F(�val
� ,�val

� ), with the value logical

relation at other types given by�val
�

def= F�(�val
� ,�val

� ).
The definition ofR−, R+ !→ F(R−, R+) implies that it is an equivariant function

that is order-reversing in its first argument and order-preserving in its second. Therefore

F §(R−, R+)
def= (F (R+, R−), F (R−, R+)) determines a monotone equivariant function

from the FM-complete latticeRop
� × R� to itself. Therefore we can apply Lemma3.4 to

deduce that it has a least fixed point,(�−,�+) say. Thus�−,�+ ∈ R� satisfy
• �− = F(�+,�−) andF(�−,�+) = �+.
• For anyR−, R+ ∈ R�, if R− ⊆ F(R+, R−) andF(R−, R+) ⊆ R+, thenR− ⊆ �−
and�+ ⊆ R+.
• supp(�−) = ∅ = supp(�+).
From this it follows that�+ ⊆ �−. So to construct�val

� , it suffices to see that�− ⊆ �+, so
that we can take�val

� = �− = �+. To prove that inclusion holds, we appeal to the minimal
invariance property of the FM-cppo��� = D and the isomorphismi in (8). First, one can
prove from the definition ofF that the subset{f ∈ (D�D) | ∀(d, v) ∈ �−.(f (d), v) ∈
�+} is mapped to itself by the function� = i ◦F(f, f )◦ i−1 : (D�D)→(D�D)whose
least fixed point is the identity onD. Since that subset contains⊥ and is closed under lubs
of finitely supported
-chains, it follows from the construction offix(�) in Lemma 3.6 that
the subset contains the identity onD—which means that�− ⊆ �+, as required.
We next give the “fundamental property” of the logical relationswe have just constructed.

To state the property we need to introduce some terminology forvalue-substitutions, �,
which are finite partial functions from value identifiers to values. Given such a�, we write
e[�] for the result of the capture-avoiding simultaneous substitution of�(x) for x in e as
x ranges over dom(�); similarly for value-substitutions into valuesv[�], and into frame
stacksS[�]. Given a typing context�, let Subst� be the set of all value-substitutions�with
domain dom(�) and such that for eachx ∈ dom(�),�(x) is closed. Given� ∈ Subst� and
 ∈ ���, write��� to mean that for eachx ∈ dom(), (x)�val

�(x)
�(x).
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Lemma 3.10(Fundamental property of the logical relations). For all typing contexts�,
valuesv, frame stacks S and expressions e, we have that

� � v : � ⇒ ∀ ���.V�� � v : ���val
� v[�],

� � S : ��__⇒ ∀ ���.S�� � S : ��__��stk
� S[�],

� � e : � ⇒ ∀ ���.E�� � e : ���exp
� e[�].

Proof. These properties follow by induction on the derivation of the typing judgements,
using the definitions ofV�− �, S�− �, E�− � and the properties (11)–(18) of the logical
relations. �

Theorem 3.11(Computational adequacy). Given� � e : �, � ∈ Subst� andS ∈ Stack�,
then

〈S, e[�]〉↓ ⇔ E�� � e : ��(V���)(S�S�) = �,

whereV��� ∈ ��� maps eachx ∈ dom(�) to V��(x)�. In particular for all closed
typeable expressionse ∈ Exp�, valuesv ∈ Val� and frame stacksS ∈ Stack�, we have:
〈S, e〉↓⇔E�e�(S�S�) = � and〈S, v〉↓⇔S�S�(V�v�) = �.

Proof. The first sentence follows from the second one using a substitutivity property of the
denotational semantics

E�� � e : ��(V���) = E�e[�]� (19)

that is proved by induction on the structure ofe (and similarly for values and frame stacks).
The computational adequacy property for closed expressions is established by first proving
asoundnessproperty

〈S, e〉↓ ⇒ E�e�(S�S�) = � (20)

by induction on the derivation of〈S, e〉↓. The reverse implication is a corollary of Lemma
3.10:by the fundamental propertyof the logical relationwehaveE�e��exp

� eandS�S��stk
� S;

then properties (17) and (18) give the required implication.�

4. Extensionality and correctness results

We now examine how our denotational semantics of Mini-FreshML can be used to prove
the correctness result stated at the end of Section 2 (Theorem 2.3), which we recall centres
around the notion of contextual equivalence. The quantification over all contexts that is part
of the definition of contextual equivalence makes it hard to work with directly. Instead we
make use of an alternative characterisation in terms of Mason and Talcott’s notion ofCIU-
equivalence[5]. 18 We prove that this coincideswithMini-FreshML contextual equivalence
using the logical relation from the previous section.

18CIU = “Closed Instances of all Uses”.
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Definition 4.1 (CIU-equivalence). We write� � e ≈ciu e′ : � to indicate that the typeable
expressionseande′ of type� (in context�) are CIU-equivalent. This equivalence relation
is the symmetrisation of theCIU-pre-order relation, written� � e�ciue

′ : �, which by
definition holds if� � e : �, � � e′ : �, and for all closing substitutions� ∈ Subst� and all
closed frame stacksS, 〈S, e[�]〉↓ implies〈S, e′[�]〉↓.We writee�ciue

′ (respectively≈ciu)
wheneande′ are closed expressions and∅ � e�ciue

′ : � holds for some�.

To show that CIU-equivalence coincides with contextual equivalence we need to turn
frame stacks into (evaluation) contexts, as follows. The lemma is proved by a routine
induction on the structure of frame stacks,S.

Lemma 4.2. Define an operation mapping frame stacks S to contextsT (S) by induction
on the structure of S:

T ([]) def= [−] T (S ◦F)
def= (T (S))[F].

Then for all stacks S and expressions e, 〈[], T (S)[e]〉↓⇔〈S, e〉↓.

Theorem 4.3(Coincidence of≈ctx with≈ciu). For any typing context� and expressions
e, e′ it is the case that� � e�ctxe

′ : � iff � � e�ciue
′ : �. Thus the relations≈ctx and≈ciu

coincide.

Proof. We prove that�ctx and�ciu both coincide with the relation�e defined from the
denotational semantics and the logical relation as follows:

� � e�ee
′ : � def⇔ � � e, e′ : � ∧ ∀���.E�� � e : ��()�exp

� e′[�],
where� � e, e′ : � is the obvious conjunction of typing judgements. From the fundamental
property (Lemma3.10) we have� � e : � implies� � e�ee : �; and from property (18) of
the logical relation for expressions and the definition of�ciu we have that�e is closed
under composition with�ciu on the right. Therefore

� � e�ciue
′ : �⇒ � � e�ee

′ : �. (21)

The compositional nature of the denotational semantics and the fundamental property of the
logical relation ensure that if� � e�ee

′ : � holds, then so doesC[e]�eC[e′], for any context
C[−] for whichC[e] andC[e′] are closed well-typed expressions. Then by computational
adequacy (Theorem3.11) and property (18) of the logical relation we have that〈[], C[e]〉↓
implies〈[], C[e′]〉↓. Therefore

� � e�ee
′ : �⇒ � � e�ctxe

′ : �. (22)

To complete a circle of implications we just have to prove that the contextual pre-order is
contained within the CIU-pre-order. To do so, we first have to show that the “instantiation”
part of CIU, i.e. applying a value-substitution to an expression, is contextual. But we now
know from (21) and (22) that every CIU-equivalence is also a contextual equivalence. In
particular we have�-value conversion

� � (fun f (x) = e)(v) ≈ctx e[v/x] (23)
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since the corresponding CIU-equivalence is immediate from the definitions of≈ciu and
the termination relation〈−,−〉↓. Because of the way they are defined,�ctx and≈ctx are
compatible with the various expression-forming constructs of Mini-FreshML, i.e. when-
ever e�ctxe

′, thenC[e]�ctxC[e′] for any contextC (and similarly for≈ctx). Thus if
�, x : � � e�ctxe

′ : �′ and� � v : �, then� � (fun f (x) = e)v�ctx(fun f (x) = e′)v : �′;
and so by (23),� � e[v/x]�ctxe

′[v/x] : �′. From this it follows that we have

� � e�ctxe
′ : �⇒ ∀� ∈ Subst�.e[�]�ctxe

′[�]. (24)

So if� � e�ctxe
′ : �, then for all closing value-substitutions� ∈ Subst� and frame stacks

S ∈ Stack�, using the congruence property of�ctx and (24) we haveT (S)[e[�]]�ctxT (S)

[e′[�]]; hence〈[], T (S)[e[�]]〉↓ implies that〈[], T (S)[e′[�]]〉↓ and so by Lemma 4.2,
〈S, e[�]〉↓ implies〈S, e′[�]〉↓. Therefore

� � e�ctxe
′ : �⇒ � � e�ciue

′ : � (25)

and the circle of implications is complete.�

Combining Theorems3.11 and 4.3, we have:

Corollary 4.4 (Equality of denotation). If E�� � e : �� = E�� � e′ : ��, then � � e ≈ctx
e′ : �. In particular, if e ande′ are closed expressions of the same type, thenE�e� = E�e′�
impliese ≈ctx e′.

Remark 4.5. This result can be used to verify some algebraic identities such as (1) and (2).
For example, if� � e : � andx is an identifier not occurring free ine, then it is straightforward
to prove (by induction on the structure ofe) that

E�� � e : ��() = E��, x !→ �′ � e : ��([x !→ d])
for any ∈ ���, type�′ andd ∈ ��′�. Hence for any ∈ ��� and� ∈ ���⊥

E�� � let x = fresh in e : ���
= E�� � fresh : name�(�a ∈ �name�.

E��, x : name � e : ��([x !→ a])�) by definition ofE�− �
= E��, x : name � e : ��([x !→ a])� for somea ∈ A− supp(e,,�)

= E�� � e : ��� from above.

Thus by Corollary4.4, e ≈ctx let x = fresh in e holds whenx is an identifier not
occurring free ine. The identity (2) is similarly straightforward to verify.

Although equality of denotation implies contextual equivalence, we do not believe that
the converse is always true. In other words the denotational semantics is not “fully ab-
stract”, not only for the usual reasons concerning sequentiality [14], but also because of
the subtle examples of contextual equivalence that hold when dynamically allocated names
are combined with higher order functions: see [12,13]. We do not settle this question here,
because to do so would require the development of more subtle techniques for calculating
with our continuation-based denotational semantics. Instead we concentrate on using the
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denotational semantics as a tool for establishing extensionality and correctness properties
of Mini-FreshML contextual equivalence. We now have all the tools needed to prove these
properties.

Corollary 4.6 (Extensionality).
(i) For unit values: � v ≈ctx v′ : unit iff v = v′ = ().
(ii) For name values: � a ≈ctx a′ : name iff a = a′ ∈ A.
(iii) For data values: � Ck(v) ≈ctx Ck(v′) : � iff � v ≈ctx v′ : �k.
(iv) For pair values: � (v1, v2) ≈ctx (v′1, v′2) : �1×�2 iff � v1 ≈ctx v′1 : �1 and � v2 ≈ctx

v′2 : �2.
(v) For name-abstraction values: � <<a>>v ≈ctx <<a′>>v′ : <<name>>� iff � (a a′′) ·

v ≈ctx (a′ a′′) · v′ : � for some(or indeed, for every) a′′ ∈ A− supp(a, v, a′, v′).
(vi) For function values: � f ≈ctx f ′ : �→ �′ iff for all closedv of type�, � f v ≈ctx

f ′ v : �′.
Proof. First note that by Theorem4.3, it suffices to prove these extensionality properties
hold with respect to≈ciu. In each case, the left-to-right implications can be proved directly
from the definition of CIU-equivalence. Using this fact, together with properties (11)–(16)
of the logical relation for values, one can show by induction on the structure of values that
the relation

� � v�vv
′ : � def⇔ � � v, v′ : � ∧ ∀���.V�� � v : ��()�val

� v′[�]
is closed under composition with�ciu on the right. It follows from this and the reflexivity
of �v (Lemma3.10) that

� � v�ciuv
′ : �⇒ � � v�vv

′ : �.
Properties (17) and (18) together with Lemma 3.8 ensure that�v is contained in�e; and
we know from the proof of Theorem 4.3 that�e coincides with�ciu. Therefore all in
all, we have� � v�vv

′ : � holds iff � � v�ciuv
′ : �. Using this, each of the right-to-left

implications in the extensionality properties then follows from those required of the logical
relation in (11)–(16). �

We now turn to the issue of relating object language and metalanguage behaviours as
discussed at the end of Section 2, using the example of�-terms for the object language and
the Mini-FreshML datatype� declared in (5).

Lemma 4.7. For each�-term t, define a Mini-FreshML value[t]v by induction on the
structure of t as follows:

[x]v def= Var(x),

[�x.t]v def= Lam(<<x>>[t]v),
[t t ′]v def= App([t]v, [t ′]v).

Then for any�-terms t, t ′ and any value-substitution� that maps the free variables of t
andt ′ to atoms tinjectively (i.e.�(x) = �(x′)⇒ x = x′),we have[t]v[�] ≈ctx [t ′]v[�]⇔
t ≡� t ′.
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Proof. We make use of the fact[4, Proposition 2.2] that�-equivalence for�-termst ∈ �
can be inductively defined by the following rules:

x ∈ VId
x ≡� x

(x x′′) · t ≡� (x′ x′′) · t ′
x′′ ∈ VId − supp(x, t, x′, t ′)

�x.t ≡� �x′.t ′
t1 ≡� t ′1 t2 ≡� t ′2

t1 t2 ≡� t ′1 t ′2
.

Then the lemma is proved by induction on the size oft, making use of the extensionality
properties of Corollary4.6. �

Now consider translating a�-term t into an expression[t]e as in (6), then applying an
injective value-substitution of atoms for free identifiers to get a closed expression[t]e[�]
and finally evaluating it. Bound variables int get translated into identifiers bound tofresh,
which give rise to fresh atoms in the result of evaluating[t]e[�]. So we can expect that
result to be contextually equivalent to the value[t]v[�] provided the bound variables of
t are distinct from each other and from the free variables—in other words, provided the
“Barendregt variable convention” [3, Section 2.1.13] holds fort. It is convenient to formalise
that convention via a structurally inductive definition. For disjoint finite subsetsx, x′ of VId
we define a subset�(x; x′) ⊆ � inductively by the following rules.

x ∈ x

x ∈ �(x,∅)
t ∈ �({x} ∪ x, x′) x /∈ x

�x.t ∈ �(x, {x} ∪ x′)
t ∈ �(x, x′1) t ′ ∈ �(x, x′2) x′1 ∩ x′2 = ∅

t t ′ ∈ �(x, x′1 ∪ x′2)
.

If t ∈ �(x, x′) then: the free variables oft are contained withinx; the occurrences of bound
variables oft are mutually distinct and are contained withinx′; the sets of free and bound
variables oft are disjoint; and the support of—i.e. the set of all variables within—the term
t is contained withinx ∪ x′. Note that each termt ∈ � is �-equivalent to a term in�(x, x′)
for somex, x′. One can show by induction on the derivation from the above rules that if
t ∈ �(x, x′), then for any injective substitution� : VId→A with dom(�) = x ∪ x′ it is
the case thatE�[t]e[�]� = E�[t]v[�]�. Hence by Corollary 4.4 we have

Lemma 4.8. For t ∈ �(x, x′) and any injective substitution� : VId→A with dom(�) =
x ∪ x′, it is the case that� [t]e[�] ≈ctx [t]v[�] : �.

We are now in a position to prove the correctness theorem.

Proof of Theorem 2.3.As we observed earlier, one can show by induction over the rules
defining�-equivalence of�-terms (given in the proof of Lemma4.7) that if t ≡� t ′ then
[t]e and [t ′]e are the same Mini-FreshML expression (since we identify Mini-FreshML
expressions up to�-equivalence of bound value identifiers). So we just have to show that
{x0 : name, . . . , xn : name} � [t]e ≈ctx [t ′]e : � implies t ≡� t ′. By suitably renaming
bound variables we can find a finite setx′ and termst1, t ′1 ∈ �(x, x′) such thatt1 ≡� t and
t ′1 ≡� t ′; and hence[t1]e = [t]eand[t ′1]e = [t ′]e. So if{x0 : name, . . . , xn : name} � [t]e ≈ctx
[t ′]e : �, then{x0 : name, . . . , xn : name} � [t1]e ≈ctx [t ′1]e : �. Then choosing some injective
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substitution� : VId→A with domainx ∪ x′, we can apply Lemma4.8 to conclude that
� [t1]v[�] ≈ctx [t ′1]v[�] : �. Finally, we apply Lemma 4.7 to obtaint ≡� t1 ≡� t ′1 ≡� t ′.

�

Fix a bijection� : VId�A between the countably infinite sets of value identifiers and
of atoms. Lemma 4.7 tells us that the mappingt !→ [t]v[�] induces an injective function
from �-equivalence classes of�-terms to contextual equivalence classes of closed values
of type�. In fact this function is a bijection: from the typing rules of Mini-FreshML (see
Appendix A) it is not hard to see that every closed value of type� must be of the form
[t]v[�] for some�-term t. The contextual equivalence classes ofnon-valueexpressions of
type� are more complicated; but as the final theorem shows, a closed expression of type�
is either divergent or contextually equivalent to the “restriction” of some value. To prove it
we need the following property of divergent terms, which is a corollary of Theorems 3.11
and 4.3.

Lemma 4.9(Divergent terms). For a closed expression e of type� and the divergent term

� def= (fun f (x) = f (x))(),

e ≈ctx � ⇐⇒ ∀S.E�e�(S�S�) = ⊥⇔∀S.〈S, e〉(↓ .

Theorem 4.10(Form of expressions). For a closed Mini-FreshML expression e of the type
� declared in(5),eithere ≈ctx � or

e ≈ctx let x1 = fresh in · · · let xn = fresh in v

for some valuev of type�.

Proof. Using Lemma4.9we see that if� e ≈ctx � doesnothold, then〈[], e〉↓.We can now
apply the forwards direction of Fact 2.1 to deduce that there exists some closed valuev′ of
type�andsomefinite set of atomsa such that∅, e ⇓ a, v′withsupp(v′) ⊆ a. Pickabijection
� : x�a, wherex = {x1, . . . , xn} is a set of value identifiers, and replace each occurrence
of an atoma ∈ a in v′ with �−1(a) to obtain a (possibly open) valuev. Thusv′ = v[�]
and it is not hard to see thate ≈ciu let x1 = fresh in · · · let xn = fresh in v.
Now apply Theorem 4.3.�

Remark 4.11(Representing≡�). In Remark2.4 wementioned that≡� can be represented
in Mini-FreshML, in a certain sense, by the function expressionaeq : (� × �)→ bool
described there. We can now make the nature of the representation precise. One can prove
by induction on the structure of�-termst andt ′ for any injective substitution� : VId→A

whose domain contains the free variables oft, t ′ and whose image is the finite set of atoms
a say, that

t ≡� t ′ ⇒ ∃ a′ ⊇ a.(a, aeq([t]v[�], [t ′]v[�]) ⇓ True(), a′),

t (≡� t ′ ⇒ ∃ a′ ⊇ a.(a, aeq([t]v[�], [t ′]v[�]) ⇓ False(), a′).
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It follows from Theorem4.3 and Lemma 4.8 that

t ≡� t ′ ⇒ aeq([t]e[�], [t ′]e[�]) ≈ctx True() : bool
t (≡� t ′ ⇒ aeq([t]e[�], [t ′]e[�]) ≈ctx False() : bool.

5. Conclusion

In this paperwehavebegun to developdomain theory in theworld of FM-sets.Rather than
change foundation and work in FM-set theory, we took a concrete approach and developed
FM-cppos as ordinary sets equipped with extra structure. Really the only change from
classical domain theory is that onemust restrict to “finitely supported” functionsandsubsets.
What one gains is new constructs for fresh names and name-binding that can be combined
with familiar domain-theoretic constructs for modelling recursion both at the level of terms
and of types, to give the kind of refined semantics of fresh names and binders previously
associatedwithmorecomplicated (wewouldclaim) functor category techniques.Weapplied
the new approach, using a continuation monad with a very simple domain of “results”
(1⊥) to prove properties of FreshML. Variations on this theme seem very promising; for
example, replacing 1⊥ by S�1⊥ for a suitable (recursively defined) FM-cppo of “states”
should give a useful denotational semantics of ML-style references with no restriction on
the type of value stored—we plan to explore this elsewhere. Finally we should mention that
game semantics can also make good use of FM-sets to achieve new full abstraction results:
see [1].

Appendix A. Typing relation

The Mini-FreshML typing relation for expressions,� � e : �, is inductively defined by
the following axioms and rules.

� � x : � (x ∈ dom(�) and�(x) = �)
� � () : unit

� � a : name (a ∈ A)
� � e : �k

� � Ck(e) : � (� = C1 of �1| · · · |Cn of �n)

� � e : � � � e′ : �′
� � (e, e′) : �× �′ � � fresh : name

� � e : name � � e′ : �
� � <<e>>e′ : <<name>>�

� � e : name � � e′ : name � � e′′ : �
� � swap e, e′ in e′′ : �

�, f : �→ �′, x : � � e : �′
� � fun f (x) = e : �→ �′

� � e : �′ → � � � e′ : �′
� � e e′ : �

� � e : �′ �, x : �′ � e′ : �
� � let x = e in e′ : �
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� � e : �′ × �′′ �, x : �′, x′ : �′′ � e′ : �
� � let (x, x′) = e in e′ : �

� � e : <<name>>�′ �, x : name, x′ : �′ � e′ : �
� � let <<x>>x′ = e in e′ : �

� � e : name � � e′ : name � � e1 : � � � e2 : �
� � if e = e′ then e1 else e2 : �

� � e : �
∀k ∈ {1, . . . , n}. �, x : �k � ek : �

� � match e with (C1(x1) -> e1| · · ·
| Cn(xn) -> en) : �

(� = C1 of �1| · · · |Cn of �n)

Appendix B. Termination relation

〈S, e〉↓ is inductively defined by the following axiom and rules, whereS ranges over
frame stacks,e, e′, . . . over expressions,v, v′, . . . over values, anda, a′, . . . over atoms.
The definition is split into two parts for clarity.

Part 1: 〈S, v〉↓ wherev is a value.

〈[], v〉↓
〈S, Ck(v)〉↓

〈S ◦ Ck([−]), v〉↓
〈S ◦ (v, [−]), e〉↓
〈S ◦ ([−], e), v〉↓

〈S, (v′, v)〉↓
〈S ◦ (v′, [−]), v〉↓

〈S ◦ <<v>>[−], e〉↓
〈S ◦ <<[−]>>e, v〉↓

〈S, <<v>>v′〉↓
〈S ◦ <<v>>[−], v′〉↓

〈S ◦ swap a, [−] in e′′, e′〉↓
〈S ◦ swap [−], e′ in e′′, a〉↓

〈S ◦ swap a, a′ in [−], e′′〉↓
〈S ◦ swap a, [−] in e′′, a′〉↓

〈S, (a a′) · v〉↓
〈S ◦ swap a, a′ in [−], v〉↓

〈S ◦ v [−], e〉↓
〈S ◦ [−] e, v〉↓

v = (fun f (x) = e) 〈S, e[v/f, v′/x]〉↓
〈S ◦ v [−], v′〉↓
〈S, e[v/x]〉↓

〈S ◦ let x = [−] in e, v〉↓
〈S, e[v/x, v′/x′]〉↓

〈S ◦ let (x, x′) = [−] in e, (v, v′)〉↓
a′ ∈ A− supp(S, v, e) 〈S, e[a′/x, ((a a′) · v)/x′]〉↓

〈S ◦ let <<x>>x′ = [−] in e, <<a>>v〉↓
〈S ◦ if a = [−] then e1 else e2, e

′〉↓
〈S ◦ if [−] = e′ then e1 else e2, a〉↓

〈S, e1〉↓
〈S ◦ if a = [−] then e1 else e2, a

′〉↓ if a = a′
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〈S, e2〉↓
〈S ◦ if a = [−] then e1 else e2, a

′〉↓ if a (= a′

v = Ck(vk), for some 1�k�n 〈S, ek[vk/xk]〉↓
〈S ◦ match [−] with C1(x1) -> e1| · · · |Cn(xn) -> en, v〉↓

Part 2: 〈S, e〉↓ where e is non-value expression.

〈S ◦ Ck([−]), e〉↓
〈S, Ck(e)〉↓

a ∈ A− supp(S) 〈S, a〉↓
〈S, fresh〉↓

〈S◦ ([−], e′), e〉↓
〈S, (e, e′)〉↓

〈S ◦ <<[−]>>e′, e〉↓
〈S, <<e>>e′〉↓

〈S ◦ swap [−], e′ in e′′, e〉↓
〈S, swap e, e′ in e′′〉↓

〈S ◦ [−] e′, e〉↓
〈S, e e′〉↓

〈S ◦ let x = [−] in e′, e〉↓
〈S, let x = e in e′〉↓

〈S ◦ let (x, x′) = [−] in e′, e〉↓
〈S, let (x, x′) = e in e′〉↓

〈S ◦ let <<x>>x′ = [−] in e′, e〉↓
〈S, let <<x>>x′ = e in e′〉↓

〈S ◦ if [−] = e′ then e1 else e2, e〉↓
〈S, if e = e′ then e1 else e2〉↓

〈S ◦ match [−] with C1(x1) -> e1| · · · |Cn(xn) -> en, e〉↓
〈S, match e with C1(x1) -> e1| · · · |Cn(xn) -> en 〉↓ .

Appendix C. Denotation of expressions

Notation: In this and the following appendices, write�x.t for the strict function that maps
non-bottom elementsx to t. Extend this notation in the obvious way to write�〈d1, d2〉.t for
strict functionsD1⊗D2�D and� [a] d.t for strict functions[A]D�D′. (Note that this
notation imposes no conditions as to which particular representative in[A]D is chosen: the
semantics below makes this explicit.) We also write〈d1, d2〉 to indicate a smash pair (such
that 〈d1, d2〉 def= ⊥D1⊗D2 when either ofd1 ∈ D1 andd2 ∈ D2 are bottom). The notation
if a = a′ thend elsed ′ meansd if a anda′ are equal andd ′ otherwise.
The functionE�� � e : �� ∈ �������⊥⊥maps⊥ to itself and for non-bottomarguments

 is defined by induction on the structure ofeas follows:

• E�� � x : �� def= �� ∈ ��(x)�⊥.�((x))

• E�� � () : unit� def= �� ∈ �unit�⊥.�(�)

• E�� � a : name� def= �� ∈ �name�⊥.�(a)

• E�� � Ck(e) : �� def=
�� ∈ ���⊥.E�� � e : �k�(�d ∈ ��k�.�((i◦ ink)d))
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• E�� � (e, e′) : �× �′� def=
�� ∈ ��× �′�⊥.E�� � e : ��(�d ∈ ���.

E�� � e′ : �′�(�d ′ ∈ ��′�.�〈d, d ′〉))
• E�� � fresh : name� def= new def=

�� ∈ �name�⊥.�(a) (anya ∈ A− supp(�))

• E�� � <<e>>e′ : <<name>>�� def=
�� ∈ �<<name>>��⊥.E�� � e : name�(�a ∈ �name�.

E�� � e′ : ��(�d ∈ ���.�([a] d)))

• E�� � swap e, e′ in e′′ : �� def=
�� ∈ ���⊥.E�� � e : name�(�a ∈ �name�.

E�� � e′ : name�(�a′ ∈ �name�.E�� � e′′ : ��(�d ∈ ���.
�((a a′) · d))))

• E�� � fun f (x) = e : �→ �′� def=
�� ∈ ��→ �′�⊥.�(fix(�d ∈ ��→ �′�.�d ′ ∈ ���.

E��, f : �→ �′, x : � � e : �′�([f !→ d, x !→ d ′])))
• E�� � e e′ : �� def=

�� ∈ ���⊥.E�� � e : �→ �′�(�d ∈ ��→ �′�.
E�� � e′ : ��(�d ′ ∈ ���.d d ′ �))

• E�� � let x = e in e′ : �� def=
�� ∈ ���⊥.E�� � e : �′�(�d ′ ∈ ��′�.

E��, x : �′ � e′ : ��([x !→ d ′])�).

• E�� � let (x, x′) = e in e′ : �� def=
�� ∈ ���⊥.E�� � e : �1× �2�(�〈d1, d2〉 ∈ ��1× �2�.

E��, x : �1, x′ : �2 � e′ : ��([x !→ d1, x
′ !→ d2])�)

• E�� � let <<x>>x′ = e in e′ : �� def=
�� ∈ ���⊥.E�� � e : <<name>>�′�(� [a] d ′ ∈ �<<name>>�′�.

E��, x : name, x′ : �′ � e′ : ��([x !→ a′, x′ !→ (a a′) · d ′])�)

(anya′ ∈ A− supp(e, e′,,�, a, d ′))
• E�� � if e = e′ then e1 else e2 : �� def=

�� ∈ ���⊥.�� � e : name�(�a ∈ �name�.�� � e′ : name�(�a′ ∈ �name�.
if a = a′ thenE�� � e1 : ��� elseE�� � e2 : ���))

• E�� � match e with · · · |Ck(xk) -> ek| · · · : �� def=
�� ∈ ���⊥.E�� � e : ��(�d ′ ∈ ���.E��, xk : �k � ek : ��([xk !→ dk])�)

(for the uniquek anddk such thatd ′ = (i◦ ink)dk).

Appendix D. Denotation of values (expressions in canonical form)

The functionV�� � v : �� ∈ ������� maps⊥ to itself and for non-bottom arguments
 is defined by induction on the structure of the canonical formv as given below.
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• V�� � x : �� def= (x)

• V�� � () : unit� def= �
• V�� � a : name� def= a

• V�� � Ck(v) : �� def= (i◦ ink)(V�� � v : �k�)

• V�� � (v, v′) : �× �′� def= 〈V�� � v : ��, V�� � v′ : �′�〉
• V�� � <<a>>v : <<name>>�� def= [a] (V�� � v : ��)

• V�� � fun f (x) = e : �→ �′� def=
fix(�d ∈ ��→ �′�.�d ′ ∈ ���.

E��, f : �→ �′, x : � � e : �′�([f !→ d, x !→ d ′])).

Appendix E. Denotation of frame stacks

The functionS�� � S : ��__� ∈ �������⊥ maps⊥ to itself and for non-bottom ar-
guments is defined by induction on the structure ofSas follows. (The notationlet a =
d in d ′[a] meansd ′[a] if d ∈ A⊥ is the non-bottom element given bya ∈ A and⊥
otherwise.)

• S�� � [] : ��__� def= �x ∈ ���.�
• S�� � S ◦ Ck([−]) : �k�__� def= �v ∈ ��k�.S�� � S : ��__�((i◦ ink)v)

• S�� � S ◦ ([−], e) : ��__� def=
�d ∈ ���.E�� � e : �′�(�d ′ ∈ ��′�.S�� � S : �× �′�〈d, d ′〉)

• S�� � S ◦ (v, [−]) : �′�__� def=
�d ∈ ��′�.S�� � S : �× �′�〈V�� � v : ��, d〉

• S�� � S ◦ <<[−]>>e : name�__� def=
�a ∈ �name�.E�� � e : ��(�d ∈ ���.S�� � S : <<name>>��([a] d))

• S�� � S ◦ <<v>>[−] : ��__�()
def=

�d ∈ ���.S�� � S : <<name>>��(
[V�� � v : name�]

d)

• S�� � S ◦ swap [−], e′ in e′′ : name�__� def=
�a ∈ �name�.E�� � e′ : name�(�a′ ∈ �name�.E�� � e′′ : ��(�d ∈ ���.

S�� � S : ��__�((a a′) · d)))

• S�� � S ◦ swap v, [−] in e′′ : name�__� def=
let a = V�� � v : name� in �a′ ∈ �name�.E�� � e′′ : ��(�d ∈ ���.

S�� � S : ��__�((a a′) · d))

• S�� � S ◦ swap v, v′ in [−] : ��__� def=
let a = V�� � v : name� in let a′ = V�� � v′ : name� in

�d ∈ ���.S�� � S : ��__�((a a′) · d)

• S�� � S ◦ [−] e : (�→ �′)�__� def=
�d ∈ ��→ �′�.E�� � e : ��(�d ′ ∈ ���.d d ′(S�� � S : �′�__�))

• S�� � S ◦ v [−] : ��__� def=
�d ∈ ���.(V�� � v : �→ �′� d)(S�� � S : �′�__�)
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• S�� � S ◦ let x = [−] in e : ��__� def=
�d ∈ ���.E��, x : � � e : �′�([x !→ d])(S�� � S : �′�__�)

• S�� � S ◦ let (x, x′) = [−] in e : �× �′�__� def=
�〈d1, d2〉 ∈ ��× �′�.

E��, x : �, x′ : �′ � e : �′′�([x !→ d1, x
′ !→ d2])(S�� � S : �′′�__�)

• S�� � S ◦ let <<x>>x′ = [−] in e : <<name>>��__� def=
� [a] d ∈ �<<name>>��.E��, x : name, x′ : � � e : �′�

([x !→ a′, x′ !→ (a a′) · d])(S�� � S : �′�__�)

(anya′ ∈ A− supp(S, e,, a, d))

• S�� � S ◦ if [−] = e′ then e1 else e2 : ��__� def=
�a ∈ �name�.E�� � e′ : name�(�a′ ∈ �name�.

if a = a′ thenE�� � e1 : ��(S�� � S : ��__�)

elseE�� � e2 : ��(S�� � S : ��__�))

• S�� � S ◦ if v = [−] then e1 else e2 : ��__� def=
�a′ ∈ �name�.if V�� � v : name�() = a′

thenE�� � e1 : ��(S�� � S : ��__�)

elseE�� � e2 : ��(S�� � S : ��__�)

• S�� � S ◦ match [−] with · · · |Ck(xk) -> ek| · · · : ��__� def=
�d ∈ ���.E��, xk : �k � ek : ��([xk !→ dk])(S�� � S : ��__�)

(for the uniquek anddk such thatd = (i◦ ink)dk).
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