
17

Locally Nameless Sets

ANDREW M. PITTS, University of Cambridge, UK

This paper provides a new mathematical foundation for the locally nameless representation of syntax with
binders, one informed by nominal techniques. It gives an equational axiomatization of two key locally nameless
operations, “variable opening” and “variable closing” and shows that a lot of the locally nameless infrastructure
can be de!ned from that in a syntax-independent way, including crucially a “shift” functor for name binding.
That functor operates on a category whose objects we call locally nameless sets. Functors combining shift with
sums and products have initial algebras that recover the usual locally nameless representation of syntax with
binders in the !nitary case. We demonstrate this by uniformly constructing such an initial locally nameless
set for each instance of Plotkin’s notion of binding signature. We also show by example that the shift functor
is useful for locally nameless sets of a semantic rather than a syntactic character. The category of locally
nameless sets is proved to be isomorphic to a known topos of !nitely supported!-sets, where! is the full
transformation monoid on a countably in!nite set. A corollary of the proof is that several categories that have
been used in the literature to model variable renaming operations on syntax with binders are all equivalent to
each other and to the category of locally nameless sets.

CCS Concepts: • Theory of computation→ Categorical semantics; Equational logic and rewriting;
Logic and veri!cation; • Software and its engineering→ Syntax.

Additional Key Words and Phrases: name binding, locally nameless, metatheory of syntax, co!nite quanti!ca-
tion, category theory, initial algebra, Agda

ACM Reference Format:
Andrew M. Pitts. 2023. Locally Nameless Sets. Proc. ACM Program. Lang. 7, POPL, Article 17 (January 2023),
27 pages. https://doi.org/10.1145/3571210

1 INTRODUCTION

Very many programming languages and logics feature syntactical constructs for binding various
sorts of name within lexical scopes. When reasoning about the properties of such languages, and
especially when creating fully formalized and machine-checked proofs, it is practically essential
to raise the level of abstraction when representing and computing with such syntax. Obviously
abstract syntax trees are more convenient than strings of symbols when it comes to representing
the structure of expressions. But if those syntax trees feature scoping constructs, it is extremely
desirable to have a representation mechanism that automatically factors out renaming of bound
names ("-equivalence). At the same time, the mechanisms for computing with representations
and moving between such abstract representations and more concrete ones have to be expressive,
machine implementable and humanly understandable. It is not easy to satisfy all these demands at
once.
Over the years several mechanisms for representing binding modulo "-equivalence have been

developed. One of the earliest was by de Bruijn [1972], who used numerical indices to count the
number of binding operations passed through on the way from (or to) a name site. The higher-order

Author’s address: Andrew M. Pitts, andrew.pitts@cl.cam.ac.uk, University of Cambridge, Department of Computer Science
and Technology, 15 JJ Thomson Avenue, Cambridge, UK, CB3 0FD.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART17
https://doi.org/10.1145/3571210

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0001-7775-3471
https://doi.org/10.1145/3571210
https://orcid.org/0001-7775-3471
https://doi.org/10.1145/3571210
Andrew Pitts
Updated version

17:2 Andrew M. Pi�s

approach of Pfenning and Elliott [1988] delegated the problem to be solved once and for all in a
typed _-calculus meta-framework, using one of the other approaches. At the other extreme Urban
and Tasson [2005] retain explicit names and develop packages of proved theorems (and associated
automation) for data quotiented by U-equivalence within classical higher-order logic by leveraging
the nominal theory of Gabbay and Pitts [2002]. We refer the reader to the excellent survey of
binding representations as of 2008 in Sect. 2 of the paper by Aydemir et al. [2008]; and to the
blog post of Cockx [2021] for a recent survey with emphasis on dependently-typed functional
programming using Agda [2023]. The various di�erent approaches have di�erent pros and cons
when it comes to ease of use, ease of implementation, e�ciency, etc.

After its survey, the paper of Aydemir et al. [2008] goes on to advocate the locally nameless
approach to represent binding structure, combined with the use of co�nite quanti�cation. A locally
nameless representation combines a nominal approach to unbound names with the use of de Bruijn
indices for bound ones. Thus free variables in terms still have names and those names do not
change if we enlarge the context in which we are using the term; so one retains the practically very
useful feature of the nominal approach that weakening (and equations between combinations of
weakenings) is invisible. At the same time, through the use of deBruijn indices one gets canonical
representation of syntax modulo U-equivalence as purely inductively de�ned sets without any
need for use of quotients (particularly helpful for proof assistants based on type theories where
inductive de�nition is the main mechanism for constructions). Given that free variables are still
represented by names, there is no need to consider terms with “dangling” indices pointing to levels
of binding higher than the ones that exist in the term. In other words one should cut down to the
(still inductively de�ned) subset of “locally closed” terms. Doing so avoids one of the main problems
with use of de Bruijn indices: the identity of a dangling index changes according to the context. For
example if we substitute a term under a binding construct we may have to do some shifting on
indices; and that can be error-prone for implementation and tricky for human understanding. The
locally nameless approach avoids this pitfall by insisting that reasoning only takes place (in the end)
for locally closed terms. The use of co�nite quanti�cation over names is crucial for making this a
viable approach. (This quanti�er specialises to the distinctive freshness quanti�er Nof nominal
logic [Pitts 2003] when the properties involved are �nitely supported.) The material in Aydemir
et al. [2008] and the follow-up journal paper by Charguéraud [2012] provide a compelling case that
the locally nameless approach does a good job of satisfying the competing engineering demands
involved in mechanisms for representing binding.
Here we address not so much the engineering aspects of the locally nameless approach, but

rather its mathematical foundations. We abstract from existing concrete uses of the locally nameless
representation a so-far unnoticed algebraic structure (the opening/closing algebra of Sect. 2.2) and
show that it can be used to give a purely equational development of many of the key notions
in the locally nameless approach (Sects 2 and 4). Why is this useful? For one thing, equational
logic has proved very useful in computer science and algorithmic techniques for it are highly
developed. Founding the locally nameless method on a relatively simple algebraic theory should
facilitate development of logic and type theory designed to make it easier to deploy the locally
nameless approach in practice (for example, by making invisible to the user some "boilerplate"
aspects of the locally nameless method). However, there is a more immediately useful outcome:
we are able to give an account of the locally nameless version of name binding (in the form of the
shift functor of Sect. 3.4) that applies to arbitrary “locally nameless sets” (De�nition 2.9) and not
just ones that are inductively de�ned sets of �nitary syntax; see Example 4.4 concerning semantic
continuations. Before this work we only knew what locally nameless syntax means; now we know
what "locally nameless semantics" means. This should be useful in practice, because it may enable

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

Locally Nameless Sets 17:3

the pleasant properties of the locally nameless representation to be used for situations where syntax
and semantics get mixed up – for example in proofs of normalization-by-evaluation.

The paper makes the following contributions:
• An equational axiomatization of opening/closing operations that su�ces to derive, indepen-
dently of any particular syntax, many of the other key concepts of the locally nameless
representation of syntax with binders: abstraction of a name, concretion by a name and the
“body” predicate; “not-a-free-variable-of” and “locally closed” properties, via a notion of �nite
support; and renaming and name swapping operations with expected properties. See Sect. 2.

• The algebras for our equational theory all of whose elements have �nite support are called
locally nameless sets. Using some existing semigroup theory, we prove that the category of
locally nameless sets is isomorphic to a pre-existing category, namely the topos1 of �nitely
supported "-sets where " is the full transformation monoid of all endofunctions on the
countably in�nite set of indices and names. In other words our equational axiomatization of
opening/closing operations completely characterises the action on �nitely supported objects
of all functions mapping indices and names to indices or names. A corollary of the proof is
that various categories for modelling renaming that have been considered in the literature
[Gabbay and Hofmann 2008; Popescu 2022; Staton 2007] are all equivalent to each other and
to this topos. See Sect. 3.

• We show that a shift endofunctor on locally nameless sets captures in a syntax-independent
fashion the notion of name abstraction appropriate for binding constructs in the locally
nameless representation. Combining it with sum and product functors, we prove that each of
Plotkin’s binding signatures automatically gives rise to an endofunctor of locally nameless
sets whose initial algebra recovers the locally nameless representation of syntax over the
signature with the correct notions of opening and closing, free variables and local closure.
We also give an example (from denotational semantics) involving the shift functor applied to
a non-syntactic locally nameless set. See Sect. 4.

• Agda [2023] was used to develop the theory of locally nameless sets and to check some
of the proofs in the paper. The Agda code [Pitts 2023] mainly targets proofs that involve
equational reasoning combined with the use of atoms and indices that are su�ciently fresh
(via co�nite quanti�cation). Some of these proofs involve a lot of nested case analysis on
elements of sets with decidable equality (atoms and indices); some of our equational axioms
are unfamiliar-looking and combinatorially complicated; and it is easy to forget to check
necessary freshness conditions are satis�ed when doing informal proofs. For all these reasons
the use of an interactive theorem prover to produce machine-checked proofs was essential to
gain assurance that the results in the paper are correct. Section 5 gives an overview of the
Agda development.

2 DEFINITION OF LOCALLY NAMELESS SETS
The nominal sets model of syntax with binders begins with the observation that most syntactic
constructions and properties are invariant under permuting names. So it considers abstract sets
equipped with an action of such permutations. Any �nite permutation is a composition of swapping
operations and this leads to a presentation of nominal sets founded upon sets equipped with a name
swapping operation satisfying a few simple equations; see [Pitts 2013, Section 6.1]. Here we take a
similar approach, but replace name swapping with the two fundamental operations of the locally
nameless representation: the “opening” operation that replaces a de Bruijn index with an atomic

1A topos is an elegant category theoretic notion that turns out to capture many aspects of (intuitionistic) higher-order logic
and type theory; see for example [Johnstone 1977, 2002].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:4 Andrew M. Pi�s

{8 � 0}{8 � 1}G = {8 � 1}G (��1)
{8 � 0}{ 9 � 0}G = { 9 � 0}G (��2)
{8 � 0}{8 � 0}G = {8 � 0}G (��3)
{8 � 0}{8 � 0}G = {8 � 0}G (��4)

8 < 9) {8 � 0}{ 9 � 1}G = { 9 � 1}{8 � 0}G (��5)
0 < 1) {8 � 0}{ 9 � 1}G = { 9 � 1}{8 � 0}G (��6)

8 < 9 ^ 0 < 1) {8 � 0}{ 9 � 1}G = { 9 � 1}{8 � 0}G (��7)
{8 � 1}{8 � 0}{ 9 � 1}G = { 9 � 1}{ 9 � 0}{8 � 0}G (��8)
{ 9 � 0}{8 � 0}{ 9 � 1}G = { 9 � 1}{8 � 1}{8 � 0}G (��9)

Fig. 1. The opening/closing axioms

name and the “closing” operation that abstracts away an atomic name by replacing it with an index.
These operations have some simple equational properties (some of which are not so obvious) and
this leads us to consider algebras for this equational theory, called opening/closing sets, or ��-sets
for short. Omitted proofs can be found in the Agda development [Pitts 2023], as indicated.

2.1 Indices and Atoms [Pitts 2023, Unfinite.agda]
We take De Bruijn indices [de Bruijn 1972] to be elements of the set N of natural numbers (typical
elements written 8, 9,:, . . .). Indices are compared using the usual total order relation (8 < 9) on N.
Atoms are elements of a �xed setA (typical elements written 0,1, 2, . . .) which we assume is disjoint
from N. Atoms are compared using equality (0 = 1) and its negation (0 < 1); in a constructive
setting we need to assume that these are complementary, that is,A has decidable equality. Crucially,
A is also assumed to be “un�nite”2 in the sense that for each = 2 N

801 2 A, . . . ,80= 2 A, 90 2 A, 0 < 01 ^ · · · ^ 0 < 0= (1)

Since the set of natural numbers has these properties, one could take A to be a bijective copy of N.

De�nition 2.1 (Co�nite quanti�cation). When discussing properties of atoms it is convenient
to use the “for all but �nitely many” quanti�er. It is an important tool for reasoning about locally
nameless representations of syntax with binders; see [Aydemir et al. 2008, Sect. 4]. To denote this
quanti�er we reuse the freshness quanti�er symbol Nfrom nominal logic [Pitts 2003], since that is a
special case of co�nite quanti�cation restricted to predicates that are �nitely supported in the sense
of nominal sets. For any set - (with decidable equality, if working constructively) let Fin- denote
the set of �nite subsets of - . If �(G) is a property of elements G 2 - , we write NG 2 - , �(G) for
the statement that �(G) holds for all but �nitely many G 2 - :

NG 2 - , �(G) , 9� 2 Fin- ,8G 2 - , G 8 �) �(G) (2)

2.2 OC-Sets [Pitts 2023, oc-Sets.agda]
In the locally nameless representation of syntax involving binding operations [Aydemir et al. 2008;
Charguéraud 2012] occurrences of free identi�ers in terms retain their names, but occurrences of
bound ones are anonymized using de Bruijn indices. Two fundamental operations on such terms are:
“open” a term by replacing an index with a name; and “close” a term by replacing a name with an
2The terminology is due to André Joyal [private communication].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Unfinite.html
https://amp12.github.io/LocallyNamelessSets/oc-Sets.html

Locally Nameless Sets 17:5

index. Abstracting away from syntactic details, given an arbitrary set - we de�ne opening/closing
operations for - to be given by a pair of functions N ⇥A ⇥ - � - , written

(8,0, G) 2 N ⇥A ⇥ - 7! {8 � 0}G 2 - “open index 8 with atom 0 in G”
(8,0, G) 2 N ⇥A ⇥ - 7! {8 � 0}G 2 - “close atom 0 with index 8 in G”

and satisfying the axioms in Fig. 1. An ��-set is a set equipped with such operations.
We shall see that sets of locally nameless terms equipped the “variable opening” and “variable

closing” operations from [Charguéraud 2012, Sects 3.1 and 3.2] provide examples of ��-sets. A
simple special case of that is provided by:

Example 2.2 (��-set of indices and atoms). The following functions N ⇥ A ⇥ - � - with
- = N [A satisfy the opening/closing axioms. (Recall that N and A are assumed to be disjoint.)

{8 � 0} 9 , if 8 = 9 then 0 else 9 {8 � 0}1 , 1

{8 � 0} 9 , 9 {8 � 0}1 , if 0 = 1 then 8 else 1

Remark 2.3. The reader may well ask of Fig. 1, why those equations and why just those—are
there some others we forgot? Axioms ��1–��7 express straightforward commutation properties
of “variable opening” and “variable closing” from [Charguéraud 2012], although they are not all
explicitly stated there. In particular, axioms ��3 and ��4 imply that variable opening and closing are
mutually inverse modulo suitable freshness and local closedness assumptions—the �����_����_���
and ����_�����_��� properties on page 369 of loc. cit.; see Corollaries 2.5 and 2.8. The interesting
point is that freshness and local closedness relations expressed in the abstract setting in terms of
the open/closing operations (see Sects 2.3 and 2.4) coincide in concrete syntactic examples with
their more usual de�nitions by induction on the structure of syntax; see Propositions 4.2 and
4.3. Axioms ��8 and ��9 are perhaps the least obvious ones. They allow us to express renaming
(atom-to-atom) and re-indexing (index-to-index) functions in terms of opening and closing; see
Sect. 2.7. Are the axioms enough? One pragmatic answer is that they su�ce to develop the basic
infrastructure of the locally nameless approach to representing syntax with binders independently
of any particular inductively de�ned datatype of syntax. A more mathematical answer is provided
by Theorem 3.5, which proves that the axioms in Fig. 1 completely characterise the action of
endofunctions of N [A on �nitely supported objects.3

2.3 Freshness [Pitts 2023, Freshness.agda]
Let - be an ��-set. For each 0 2 A and G 2 - , the freshness relation (cf. Remark 2.11 in [Pitts 2015])
is de�ned by

0 # G , {0 � 0}G = G (3)
Lemma 2.4 below (which is an immediate consequence of axiom ��2) shows that one can replace 0
in the above de�nition by any index without changing _ # _. We will see that in syntactic examples
this relation coincides with the usual “0 is not a free variable of G” relation (see Proposition 4.2).

Lemma 2.4. Let - be an ��-set - . For all 8, 9 2 N, 0 2 A and G 2 -
{8 � 0}G = G) { 9 � 0}G = G (4)

Hence if 0 # G then for any 8 2 N we have {8 � 0}G = G ; and conversely if {8 � 0}G = G holds for some
8 , then 0 # G . ⇤

3There is also the question of independence; for example, the author believes that axioms ��8 and ��9 are not derivable
from the others, but does not have a proof of that.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Freshness.html

17:6 Andrew M. Pi�s

Combining the lemma with axiom ��3 yields:

Corollary 2.5. In any ��-set we have that 0 # G) {8 � 0}{8 � 0}G = G . ⇤

2.4 Local Closedness [Pitts 2023, LocalClosedness.agda]
Let - be an ��-set. For each 8 2 N and G 2 - de�ne

8 � G , 89 � 8, 90 2 A, { 9 � 0}G = G (5)

For syntactic examples the relation 8 � G turns out to coincide with an inductively de�ned “G is
closed_at_level_8” relation; see Proposition 4.3. In case 8 = 0 this is the local closure predicate,
which plays a key role in the locally nameless approach to representation of syntax with binders;
cf. Sect. 3.3 in [Charguéraud 2012]. For example, by restricting to locally closed elements one can
avoid the need for error-prone index-shift operations when de�ning substitution.

The following is an immediate consequence of de�nition (5):

Lemma 2.6. Let - be an ��-set - . For all 8, 9 2 N, and G 2 - , if 9 � 8 and 8 � G , then 9 � G . Hence
if 8 � G or 9 � G , then max{8, 9} � G . ⇤

Using ��1 we have:

Lemma 2.7. Let - be an ��-set. For all 8 2 N, 0,1 2 A and G 2 -

{8 � 0}G = G) {8 � 1}G = G (6)

Hence if 8 � G then for any 9 � 8 and any 0 2 A we have { 9 � 0}G = G . ⇤

Combining this lemma with ��4 yields:

Corollary 2.8. In any ��-set we have that 8 � G) {8 � 0}{8 � 0}G = G . ⇤

2.5 Support [Pitts 2023, Support.agda]
Given an element G 2 - of an ��-set, say that � 2 FinA atom-supports G if 80 8 �, 0 # G (so that
� witnesses the fact that N0 2 A,0 # G holds). Say that 8 2 N index-supports G if 8 � G . We are
interested in the case where such atom- and index-supports exist for each element.

De�nition 2.9 (Locally nameless set). A locally nameless set is an ��-set - satisfying the
following two properties:

�nite atom-support : 8G 2 - , N0 2 A, 0 # G (7)
�nite index-support : 8G 2 - , 98 2 N, 8 � G (8)

Example 2.10 (Locally nameless set of indices and atoms). Write NA for the unionN[A of
the disjoint sets of indices and of atoms. We saw in Example 2.2 how to make it into an ��-set. It is
in fact a locally nameless set, because: each 0 2 A is atom-supported by {0} and index-supported
by 0; and each 8 2 N is atom-supported by ; and index-supported by 8 + 1.

Example 2.11 (Locally nameless set of _-terms modulo U-equivalence). The locally nameless
representation of all (open or closed) _-terms modulo U-equivalence uses the inductively de�ned
set ⇤ with constructors

bvar : N � ⇤, fvar : A � ⇤, lam : ⇤ � ⇤, app : ⇤ ⇥ ⇤ � ⇤ (9)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/LocalClosedness.html
https://amp12.github.io/LocallyNamelessSets/Support.html

Locally Nameless Sets 17:7

and with open/close operations recursively de�ned as follows (cf. sections 3.1 and 3.2 of [Char-
guéraud 2012]):

{8 � 0}(bvar 9) , if 8 = 9 then fvar0 else bvar 9 {8 � 0}(bvar 9) , bvar 9

{8 � 0}(fvar1) , fvar1 {8 � 0}(fvar1) , if 0 = 1 then bvar 8 else fvar1
{8 � 0}(lam C) , lam({8 + 1 � 0}C) {8 � 0}(lam C) , lam({8 + 1 � 0}C)

{8 � 0}(app(C, C 0)) , app({8 � 0}C, {8 � 0}C 0) {8 � 0}(app(C, C 0)) , app({8 � 0}C, {8 � 0}C 0)

This de�nition satis�es the axioms in Fig. 1. Indeed it turns out that ⇤ is a locally nameless set that
is the free algebra on NA for a suitable endofunctor on the category that we introduce in Sect. 3.
Not only this, but also the properties “not a free atom of” and “locally closed” that are de�ned
inductively on the structure of terms and play a fundamental role in the locally nameless approach,
coincide with the equationally de�ned notions of freshness and local closedness from sections 2.3
and 2.4; see the Agda development for details. We will see in Sect. 4 that all these properties of ⇤
are special cases of results that hold for the locally nameless representation of the syntax of terms
modulo U-equivalence for any binding signature.

We will need the following two properties of the opening/closing operations with respect to
freshness and local closedness. They follow from Lemma 2.4 together with axioms ��1, ��2, ��5,
��6 and ��7; see the Agda development for the details.

Lemma 2.12. Let - be an ��-set. For all 8 2 N, 0 2 A and G 2 - , if � 2 FinA atom-supports G ,
then � [{0} atom-supports {8 � 0}G and � � {0} atom-supports {8 � 0}G . ⇤

Lemma 2.13. Let - be an ��-set. For all 8, 9 2 N, 0 2 A and G 2 -

9 � G) 9 � {8 � 0}G (10)
8 + 1 � G) 8 � {8 � 0}G (11)

9 � G) max{ 9, 8 + 1} � {8 � 0}G (12)

⇤

2.6 Abstraction and Concretion [Pitts 2023, AbstractionConcretion.agda]
As mentioned in the Introduction, in the locally nameless approach to representing syntax the
meaningful part of a locally nameless set - is its locally closed part, de�ned as follows:

De�nition 2.14. Given an ��-set - and 8 2 N, de�ne lc8 (-) , {G 2 - | 8 � G}. In case 8 = 0,
lc0 (-) is called the locally closed part of - .

The 8 = 0 case of the opening and closing operations are of special interest. Adopting nominal
terminology but using the notation from [Aydemir et al. 2008; Charguéraud 2012], given a locally
nameless set - , for all G 2 - and 0 2 A we de�ne

\0G , {0 � 0}G “abstract atom 0 in G”
G0 , {0 � 0}G “concrete G at atom 0”

(13)

From (11) and (12) we have

G 2 lc1 (-)) G0 2 lc0 (-) (14)

G 2 lc0 (-)) \0G 2 lc1 (-) (15)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/AbstractionConcretion.html

17:8 Andrew M. Pi�s

By Corollaries 2.5 and 2.8 we also have

0 # G) \0 (G0) = G (16)

G 2 lc0 (-)) (\0G)0 = G (17)

(cf. properties �����_����_��� and ����_�����_��� from [Charguéraud 2012, p. 369]).

Remark 2.15 (body). Charguéraud [2012] de�nes a “body C” predicate for asserting that a term C
describes the body of a locally closed abstraction: for all but �nitely many names 0, the concretion
of C at 0 should be locally closed. For elements G of a locally nameless set - this de�nition becomes:
bodyG , N0 2 A, G0 2 lc0 (-). However, this turns out to be equivalent to G being in lc1 (-):

bodyG , 1 � G (18)

The right-to-left implication in (18) is immediate from (14). In the other direction, if � 2 FinA
witnesses that N0 2 A, G0 2 lc0 (-) holds, then since G has �nite atom-support we can choose
some 0 8 � with 0 # G . So G0 2 lc0 (-) (by assumption, since 0 8 �) and hence by (15), we have
\0 (G0) 2 lc1 (-); but since 0 # G , (16) gives us G 2 lc1 (-), as required.

2.7 Re-naming, Re-indexing and Name Swapping
[Pitts 2023, RenamingReindexingSwapping.agda]

Using the opening/closing operations of a locally nameless set it is possible to de�ne operations for
atom-for-atom substitution and atom swapping. To see this we need the following lemma whose
proof uses axioms ��8 and ��9 for the �rst time (together with Lemmas 2.4 and 2.7); the details are
in the Agda development.

Lemma 2.16. Let - be a locally nameless set. For all 0,1 2 A, 8, 9 2 N and G 2 -
8 � G ^ 9 � G) {8 � 1}{8 � 0}G = { 9 � 1}{ 9 � 0}G (19)
0 # G ^ 1 # G) { 9 � 0}{8 � 0}G = { 9 � 1}{8 � 1}G (20)

In view of the this lemma, we get well-de�ned operations of renaming and re-indexing for a
locally nameless set:

[1 [0]G , {8 � 1}{8 � 0}G for some/any 8 � G (21)

[8 7! 9]G , { 9 � 0}{8 � 0}G for some/any 0 # G (22)

Proposition 2.17 (Rensets). The renaming operation (21) satis�es the axioms for rensets given by
Popescu [2022]:

[0 [0]G = G (23)
0 < 2) [1 [0] [2 [0]G = [2 [0]G (24)

[2 [1] [1 [0]G = [2 [0] [2 [1]G (25)
1 < 00 < 0 < 10) [1 [0] [10 [00]G = [10 [00] [1 [0]G (26)

(Popescu uses a slightly more complicated axiom than (25), namely

1 < 3) [2 [1] [1 [0] [3 [1]G = [2 [0] [3 [1]G (27)

but (27) is implied by (25) modulo the other axioms, and use of the latter gives an equivalent
category of �nitely supported rensets.) Thus every ��-set is one of Popescu’s rensets.

P����. (23) follows from ��4 and Lemma 2.7; (24) follows from ��1 and Lemma 2.12; (25) follows
from ��8 and ��9; and (26) follows from ��5, ��6 and ��7. ⇤

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/RenamingReindexingSwapping.html

Locally Nameless Sets 17:9

Lemma 2.18. Given a locally nameless set - , for any G 2 - and 0 2 A we have

0 # G) (81 2 A, [1 [0]G = G)) (N1 2 A, [1 [0]G = G)) 0 # G (28)

P����. The �rst implication follows from de�nition (21), the second is trivial and the third
follows from (21) and ��9. ⇤

Corollary 2.19. Given a locally nameless set - , for any G 2 - and 0,1, 2 2 A, if 2 # G and 2 < 1,
then 2 # [1 [0]G .

P����. In case 1 = 0 the result follows from (23). If 1 < 0, then it follows from the lemma using
(24) and (26). ⇤

Remark 2.20 (Locally nameless sets as nominal sets). Property (28) implies that G satis�es
N0 2 A, N1 2 A, [1 [0]G = G , which means that G is �nitely supported in the sense of

rensets [Popescu 2022, Sect. 4]. Thus every locally nameless set is naturally a �nitely supported
renset. Popescu [2022] already notes that every �nitely supported renset is also a nominal set, using
the fact that nominal sets can be presented in terms of a name swapping operation G 7! (0 1)G [Pitts
2013, Sect. 6.1]. Name swapping can be de�ned in terms of renaming in the usual way (using
some/any fresh third name as an intermediary):

(0 1)G , [1 [2] [0 [1] [2 [0]G for some/any 2 with 2 # G and 2 < 0,1 (29)

That this de�nition is independent of the choice of 2 follows from Proposition 2.17, Lemma 2.18
and Corollary 2.19. The de�nition works for any renset, but for locally nameless sets one can show
that it is equivalent to the following de�nition in terms of opening and closing

(0 1)G = { 9 � 0}{8 � 1}{ 9 � 1}{8 � 0}G for some/any 8, 9 � G with 8 < 9 (30)

As for rensets, the nominal sets notion of support agrees with that of �nite atom-support from
De�nition 2.9 when we regard a locally nameless set as a nominal set as above. Although not every
nominal set is a locally nameless set, we will see in Sect. 3.5 that it is possible to freely generate a
locally nameless set from a nominal set.

We need the following properties of renaming and swapping for Theorem 3.5:

Lemma 2.21. In any locally nameless set the name-swapping (29) and renaming operations (21)
satisfy:

(0 0)G = G (31)
(0 1) (0 1)G = G = (0 1) (1 0)G (32)

1 < 2 < 0 < 3 < 1) (0 1) (2 3)G = (2 3) (0 1)G (33)
1 < 2 < 0) (0 1) (2 0)G = (2 1) (0 1)G (34)
1 < 2) [2 [1] (0 1)G = [0 [1] [2 [0]G (35)

1 < 2 < 0 < 3 < 1) (0 1) [3 [2]G = [3 [2] (0 1)G (36)
1 < 2 < 0) (0 1) [0 [2]G = [1 [2] (0 1)G (37)
1 < 2 < 0) (0 1) [2 [0]G = [2 [1] (0 1)G (38)

(0 1) [1 [0]G = [0 [1] (0 1)G (39)

P����. These properties follow from Proposition 2.17 by calculations similar to the ones in the
proof of that proposition. The details can be found in the accompanying Agda development. ⇤

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:10 Andrew M. Pi�s

Remark 2.22 (Duality of opening and closing). Although indices and atoms play di�erent
roles when it comes to the notion of support (Sect. 2.5) and to modelling binding operations (see
Sect. 4), there is a symmetry between them at the level of the equational theory in Fig. 1. Given an
equation derived from the axioms in that �gure, suppose the equation involves indices and atoms
from among the distinct lists 81, . . . , 8= and 01, . . . ,0= for some =. Consider the transformation that
interchanges each 8: with 0: at the same time interchanging opening operations {_ � _} with
closing operations {_� _}. Under this transformation ��1 corresponds with ��2, ��3 with ��4, ��5
with ��6, ��7 with itself, and ��8 with ��9. Thus the original equation is transformed into another
valid equation.

3 THE CATEGORY OF LOCALLY NAMELESS SETS
In this section we de�ne a category of locally nameless sets and prove that it is isomorphic to a
pre-existing topos, namely the topos of �nitely supported"-sets where" is the full transformation
monoid of all functions N [A � N [A (Theorem 3.5). In particular this shows that the axioms in
Fig. 1 completely characterise the action of endofunctions of N [A on �nitely supported objects.
We also de�ne an endofunctor on the category of locally nameless sets that captures in a syntax-
independent fashion the notion of name abstraction appropriate for binding constructs in the
locally nameless representation.

3.1 The Category of OC-Sets [Pitts 2023, Category.agda]
Recall the de�nition of ��-set from Sect. 2.2. A morphism 5 : - ! . of ��-sets is by de�nition a
function from the set - to the set . that commutes with the opening and closing operations:

5 ({8 � 0}G) = {8 � 0}(5 G) 5 ({8 � 0}G) = {8 � 0}(5 G) (40)

Clearly the collection of such functions is closed under composition and contains identity functions.
So we get a category of ��-sets and morphisms, that we denote by ��-Set .

Remark 3.1. Up to isomorphism ��-Set is the category SetOC of (left) OC-sets for the monoid
OC freely generated by the symbols > (8,0) and 2 (8,0) (as (8,0) ranges over N ⇥A) quotiented by the
monoid congruence generated by equations corresponding to the axioms in Fig. 1; for example,
axiom ��1 corresponds to the equation > (8,0)> (8,1) = > (8,1) , and similarly for the other axioms.
To see that there is an isomorphism between the categories ��-Set and SetOC , recall that left

actions of any monoid " on a set - correspond to monoid morphisms from " into the full
transformation monoid T- whose elements are all endofunctions of - with the monoid operation
being function composition and the unit being the identity function on- . So when" is the monoid
OC de�ned above, actions of it on- correspond to functions mapping the generators > (8,0) and 2 (8,0)
to functions - � - that satisfy the properties in Fig. 1, in other words, correspond to opening and
closing operations that make - into an ��-set. Furthermore, functions that preserve OC-actions
are the same thing as functions that commute with the opening and closing operations. Thus
��-Set is isomorphic to the category SetOC . (The notation SetOC is justi�ed by the fact that this is a
presheaf category, namely the category of Set-valued functors and natural transformations from
OC regarded as a category with one object and morphisms given by the elements of OC.)

Lemma 3.2. Let 5 : - ! . be a morphism of ��-sets. Then for all 0 2 A, 8 2 N and G 2 -
0 # G) 0 # 5 G (41)
8 � G) 8 � 5 G (42)

Hence if G is �nitely atom-supported (respectively �nitely index-supported) in - , then 5 G is �nitely
atom-supported (respectively �nitely index-supported) in . .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Category.html

Locally Nameless Sets 17:11

P����. From (40) we get that {0 � 0}G = G implies {0 � 0}(5 G) = 5 ({0 � 0}G) = 5 G , and
{8 � 0}G = G implies {8 � 0}(5 G) = 5 ({8 � 0}G) = 5 G . So if � 2 FinA atom-supports G in - , then
it also atom supports 5 G in . ; and if 8 index-supports G in - it also index-supports 5 G in . . ⇤

As for any category of "-sets, the product - ⇥ . of two objects - and . in the category
SetOC is given by the cartesian product of their underlying sets equipped with the OC-action:
< · (G,~) = (< · G,< · ~). So in particular the opening/closing operations for the product of two
��-sets are given by openening/closing in each component. From this we immediately have:

Lemma 3.3. Given ��-sets - and . , if 0 2 A, 8 2 N, G 2 - and ~ 2 . , then in - ⇥ . we have:

0 # (G,~) , 0 # G ^ 0 # ~ (43)
8 � (G,~) , 8 � G ^ 8 � ~ (44)

In particular, if � 2 FinA atom-supports G in - and ⌫ 2 FinA atom-supports ~ in . , then � [⌫
atom-supports (G,~) in - ⇥ . ; and if 8 2 N index-supports G in - and 9 index-supports ~ in . , then
max{8, 9} index-supports (G,~) in - ⇥ . . ⇤

3.2 The Category Lns

De�nition 3.4. Given a set (, let T(denote the full transformation semigroup on (. This is the set
of all functions (� (equipped with the associative operation of function composition. T(is not
just a semigroup, but also a monoid since it has a unit element given by the identity function on (.
As for any monoid, regarding it as a one-object category we can consider the presheaf category
SetT(of Set-valued functors and natural transformations on T(. More concretely its objects are
T(-sets, that is, sets - equipped with a unitary and associative action _ · _ : T(⇥ - � - ; and its
morphisms are functions that preserve the action. Given an object (- , ·) in SetT(one says that
G 2 - is supported by � 2 Fin (if

8<,<0 2 T(, (80 2 �, <(0) =<0 (0))) < · G =<0 · G (45)
(- , ·) is said to be �nitely supported if for all G 2 - there exists an � 2 Fin (that supports G . Let
(SetT()fs denote the full subcategory of SetT(whose objects are the �nitely supported T(-sets.

It is not hard to see that (SetT()fs is closed under taking �nite limits in the category SetT(and
that the inclusion (SetT()fs õ! SetT(has a right adjoint given on objects by sending (- , ·) 2 SetT(
to (-fs, ·), where -fs is the subset of - consisting of �nitely supported elements. It is easy to see
that the inclusion is comonadic and therefore we can apply [Johnstone 1977, Theorem 2.32] to
conclude that (SetT()fs is a topos with a geometric surjection to it from the presheaf topos SetT(.

Theorem 3.5. Let Lns denote the full subcategory of ��-Set whose objects are the locally nameless
sets (Sect. 2.5). Then Lns is isomorphic to the topos (SetT()fs when (= NA, the union of the set N of
indices and the set A of atoms.

The proof of this theorem occupies the next section. The theorem implies that Lns has rich cate-
gorical properties. For example it is cartesian closed and has a subobject classi�er (and can interpret
intuitionistic higher-order logic and dependent type theory). That structure can be described by
transferring across the isomorphism (SetTNA)fs � Lns known descriptions of exponentials and
subobject classi�ers in toposes of �nitely supported"-sets (cf. [Pitts 2015]). Those descriptions
have a Kripke-like character typical of presheaf toposes that make them more complicated to use
than, for example, the topos structure of nominal sets [Pitts 2013]. However, some aspects of the
category Lns are simple. For example, it is not hard to see that the forgetful functor Lns ! Set
creates �nite limits and �ltered colimits. We will rely on this fact implicitly in Sects 3.5 and 4.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:12 Andrew M. Pi�s

g0,0 = id (��1)
g1,0 � g1,0 = id = g1,0 � g0,1 (��2)

1 < 2 < 0 < 3 < 1) g1,0 � g3,2 = g3,2 � g1,0 (��3)
1 < 2 < 0) g1,0 � g0,2 = g1,2 � g1,0 (��4)

Y0,0 = id (��5)
2 < 0) Y1,0 � Y2,0 = Y2,0 (��6)

Y2,1 � Y1,0 = Y2,0 � Y2,1 (��7)
1 < 2 < 0 < 3) Y3,2 � Y1,0 = Y1,0 � Y3,2 (��8)

2 < 1) Y2,1 � g1,0 = Y0,1 � Y2,0 (��9)
1 < 2 < 0 < 3 < 1) g1,0 � Y3,2 = Y3,2 � g1,0 (��10)

1 < 2 < 0) g1,0 � Y0,2 = Y1,2 � g1,0 (��11)
1 < 2 < 0) g1,0 � Y2,0 = Y2,1 � g1,0 (��12)

g1,0 � Y1,0 = Y0,1 � g1,0 (��13)

Fig. 2. Axioms for full transformation semigroups

Remark 3.6 (Equivalent categories of renaming sets). A corollary of the proof in Sect. 3.3
is that (SetTA)fs is isomorphic to the category of �nitely supported rensets introduced by Popescu
[2022]. The proof also shows that cutting down from the full transformation monoid TA to the
submonoid (TA)�n of �nite endofunctions, we also have that (SetTA)fs is isomorphic to (Set(TA)�n)fs.
The latter is the category of nominal renaming sets studied by Gabbay and Hofmann [2008] and
proved equivalent by them to the category used by Staton [2007]; this con�rms a conjecture of
Popescu [2022, p 634]. Assuming A is in bijection with N (so that NA � A), then (SetTA)fs is
isomorphic to (SetTNA)fs and so by the theorem, all of these categories are equivalent to Lns.

3.3 Proof of Theorem 3.5
For any set (the full transformation semigroup T((De�nition 3.4) contains elements Y1,0 and g1,0 ,
where for all 0,1, 2 2 (

Y1,0 (2) , if 2 = 0 then 1 else 2 (46)

g1,0 (2) , if 2 = 0 then 1 else if 2 = 1 then 0 else 2 (47)

Let (T()�n denote the submonoid of the full transformation monoid T(whose elements are the
functions< : (� (that are �nite in the sense that N0 2 (, <(0) = 0 holds, or equivalently [<<id]
is a �nite set, where in general we write

[<<<0] , {0 2 (| <(0) <<0 (0)} (<,<0 : (� () (48)

Note that each 0,1 2 (we have Y1,0, g1,0 2 (T()�n, because [Y1,0<id] ✓ {0} and [g1,0<id] ✓ {0,1}.
Presentations of full transformationmonoids on �nite sets are known in the literature on semigroups,
beginning with Iwahori and Iwahori [1974]. Here we use Ganyushkin and Mazorchuk [2009] to
deduce the following result about the monoid (T()�n for any, possibly in�nite, set (.

Proposition 3.7. The monoid (T()�n is freely generated by the elements Y1,0 and g1,0 (where 0,1 2 ()
subject to the equations in Fig. 2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

Locally Nameless Sets 17:13

P����. For each � 2 Fin (consider the monoid generated by symbols Y1,0 and g1,0 with 0,1 2 �,
subject to the equations in Fig. 2. Equations ��1–��4 are known to present the symmetric group
of �nite permutations; see for example [Pitts 2013, Sect. 6.1] (which replaces ��3 and ��4 with the
single equation g1,0 � g3,2 � g1,0 = gg1,0 (3),g1,0 (2) , which is equivalent to them modulo ��1 and ��2).
Therefore it follows from Ganyushkin and Mazorchuk [2009, Theorem 9.3.1] that the whole set
of equations ��1–��13 restricted to 0,1, 2,3 2 � presents the �nite full transformation semigroup
T� with symbol Y1,0 (respectively g1,0) standing for the function � � � given by (46) (respectively
(47)). We can identify T� with the submonoid of (T()�n given by the �nite functions< 2 T(with
[<<id] ✓ �; and under this identi�cation the generators of T� become the �nite endofunctions on
(de�ned in (46) and (47). Since every< 2 (T()�n is in some T� (for example� = [<<id]) it follows
that these functions freely generate the whole of (T()�n subject to the equations in Fig. 2. ⇤

Now in De�nition 3.4 taking (to be the union NA of N and A, we show that there is a functor
� : (SetTNA)fs ! Lns sending each (- , ·) 2 (SetTNA)fs to the locally nameless set with underlying
set - and opening/closing operations given for all 8 2 N and 0 2 A by:

{8 � 0}G , Y0,8 · G {8 � 0}G , Y8,0 · G (49)

These operations satisfy the axioms in Fig. 1 because of the ��-set structure of NA (Example 2.2).
That each G 2 - has �nite atom-support (7) and �nite index-support (8) follows from the fact that
(- , ·) is �nitely supported, so that there is some � 2 FinNA satisfying (45). For then if 0 2 A ��,
we have 82 2 �, Y0,0 (2) = 2 = id(2) so that by (45) we have {0� 0}G = Y0,0 · G = id · G = G and thus
0 # G ; similarly if 8 2 N satis�es 8 � 1+max(N\�), then for any 80 2 A,82 2 �, Y0,8 (2) = 2 = id(2)
so that {8 � 0}G = Y0,8 · G = id · G = G and thus 1 +max(N \�) � G .
We can take the action of � : (SetTNA)fs ! Lns on morphisms to be the identity, because if

5 : (- , ·) ! (. , ·) is a morphism in (SetTNA)fs then in particular 5 commutes with the opening and
closing operations de�ned by (49). Trivially this makes � functorial (a faithful functor, in fact). To
prove the theorem we will show that � : (SetTNA)fs ! Lns is an isomorphism.

Proposition 3.8. For each locally nameless set - there is a unique unitary associative action _ � _ :
(TNA)�n ⇥ - � - satisfying for all 0 2 A and 8 2 N

Y0,8 � G = {8 � 0}G Y8,0 � G = {8 � 0}G (50)

Furthermore if 5 : - ! . in Lns, then for all< 2 (TNA)�n

8G 2 - , 5 (< � G) =< � (5 G) (51)

P����. Recall that unitary associative actions of (TNA)�n on a set - correspond to monoid
morphisms (TNA)�n ! T- and hence by Proposition 3.7 to functions mapping the generators
to elements of T- satisfying the equations in Fig. 2. Since NA is divided into two halves, on the
face of it4 there are eight di�erent kinds of generator: Y0,8 , Y8,0 , Y1,0 , Y 9,8 , g1,0 , g 9,8 , g0,8 and g8,0 , where
8, 9 2 N and 0,1 2 A. If - is a locally nameless set and we map the �rst two kinds of generator
to the functions in (50), then where to map the other six kinds of generator is forced if we are
to satisfy the equations in Fig. 2. We sketch why this is so and refer the reader to [Pitts 2023,
fsRenset.agda,FullTransformationSemigroup.agda] for the details.

4In fact g0,8 and g8,0 are equal, due to the symmetric nature of swapping.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/fsRenset.html
https://amp12.github.io/LocallyNamelessSets/FullTransformationSemigroup.html

17:14 Andrew M. Pi�s

First note that given 0,1 2 A and G 2 - , choosing any 8 2 N with 8 � G , we have

Y1,0 � G = Y1,0 � ({8 � 1}G) since 8 � G

= (Y1,0 � Y1,8) � G by (50)
= (Y1,8 � Y8,0) � G by ��7
= {8 � 1}{8 � 0}G by (50)
, [1 [0]G from (21), since 8 � G

There is a similar calculation for Y 9,8 � G versus [8 7! 9]G from (22). So we are forced to de�ne

Y1,0 � G , [1 [0]G Y 9,8 � G , [8 7! 9]G (52)

One can check that (50) and (52) do indeed satisfy axioms ��5–��8. In other words, - has a unique
renset structure not just with respect to A (as in Proposition 2.17), but with respect to the whole of
NA. Moreover, the fact that elements of - are �nitely atom- and indexed-supported implies that
each G 2 - is �nitely supported with respect to the NA-renset structure of - . For if � 2 FinA
atom-supports G and = 2 N index-supports it, then the �nite subset = [� , {8 2 N | 8 < =} [�
of NA has the property that for every 0,1 2 NA with 0 8 = [�, Y1,0 � G = G . (See [Pitts 2023,
fsRenset.agda].)
We saw in (29) how to de�ne a name-swapping operation (for names from A) satisfying the

properties in Lemma 2.21, which correspond to ��1–��4 and ��9–��13. We can do the same thing
with respect to names from the whole ofNA: given 0,1 2 NA and G 2 - , we can well-de�ne g1,0 �G
to be Y1,2 � Y0,1 � Y2,0 � G , where 2 is any element of NA not in the support of G and not equal
to 0 or 1; and this de�nition does satisfy the axioms in Fig. 2. Furthermore g1,0 � G is uniquely
determined by those axioms: for if we choose 2 to also not be in the support of g1,0 � G , we have
Y1,2 � g1,0 � G = g1,0 � G and hence

g1,0 � G = Y1,1 � Y1,2 � g1,0 � G by ��5
= Y1,2 � Y2,1 � g1,0 � G by ��7
= Y1,2 � Y0,1 � Y2,0 � G by ��9

For the last sentence of the corollary, note that (51) holds when< = id; and if it holds for<1 and
<2, it also holds for<1 �<2. Thus it su�ces to check (51) as< ranges over the generators; and
from above, we only need check that it holds for generators of the form Y0,8 and Y8,0 . But (50) and
the fact that 5 is a morphism of locally nameless sets together implies this. ⇤

Lemma 3.9. Suppose that - is a locally nameless set and that � is as in Proposition 3.8. If G 2 - is
atom-supported by� 2 FinA and index-supported by = 2 N, writing =[� for {0, . . . ,=�1}[� ✓ NA,
we have for all<,<0 2 (TNA)�n

(80 2 = [�, <(0) =<0 (0))) < � G =<0 � G (53)

P����. We proceed by induction on the size of the �nite set [<<<0] from (48); it is �nite because
it is contained in [<<id] [[<0<id] and we are assuming < and <0 are �nite functions. If this
set is empty, then < = <0 and (53) holds trivially. So suppose 80 2 = [�, <(0) = <0 (0), that
00 2 [<<<0] (and hence 00 8 = [�) and that the result holds for all <00,<000 2 (TNA)�n with
[<00<<000] of size one less than [<<<0]. We have to show that< � G =<0 � G .
Pick some 01 2 NA not in the �nite subset = [� [{00} [[<<id] [[<0<id] and consider

<00 , < � Y01,00 and<000 , <0 � Y01,00 in (TNA)�n. Thus<00 maps 00 to 01 and otherwise acts like
< (since 01 8 [<<id]); and similarly for<000. Therefore [<00<<000] = [<<<0] � {00} has strictly
smaller size than [<<<0]; and furthermore 80 2 = [�, <00 (0) =<(0) =<0 (0) =<000 (0). Hence

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/fsRenset.html

Locally Nameless Sets 17:15

by induction hypothesis we have<00 � G = <000 � G . Since G is index-supported by = and atom-
supported by�, =[� is a support for G regarded as anNA-renset (as in the proof of Proposition 3.8);
so since 00 8 =[�we have Y01,00 �G = G . Therefore<00 �G , (< �Y01,00)�G =<�Y01,00 �G =<�G ;
and similarly <000 � G = <0 � G . So < � G = <00 � G = <000 � G = <0 � G , as required for the
induction step. ⇤

We can now construct an inverse for the functor � : (SetTNA)fs ! Lns. Give a locally nameless
set - , de�ne a function _ · _ : TNA ⇥ - � - as follows: for each< 2 TNA and G 2 - de�ne

< · G , <0 � G (54)

where � is as in Proposition 3.8 and <0 2 (TNA)�n is any �nite endofunction satisfying 80 2
= [�, <(0) =<0 (0) with = 2 N an index-support for G and � 2 FinA an atom-support for it. This
de�nition makes sense because:

• If = and � are some index- and atom-supports for G , then we can take<0 to be the �nite
endofunction

<0 (0) ,
(
<(0) if 0 2 = [�
0 if 0 8 = [�

(55)

• (54) is independent of the choice of =,�,<0. For suppose G also has index- and atom-supports
=0 and �0 and that <00 2 (TNA)�n satis�es 80 2 =0 [�0, <(0) = <00 (0). It is easy to see
from the de�nitions in Sect. 2.3 and 2.4 that G is also index-supported by =00 , min{=,=0}
and atom-supported by �00 , � \ �0; furthermore by assumption on<0 and<00 we have
80 2 =00 [�00, <0 (0) =<(0) =<00 (0). Therefore<0 � G =<00 � G holds by Lemma 3.9.

So (54) does de�ne a function _ · _ : TNA ⇥ - � - . We show that it is an associative and unitary
action of the monoid TNA on - .

If<1,<2 2 TNA and G 2 - , letting = and � be index- and atom-supports for G , then by de�nition
<1·G =<01�G for some<01 2 (TNA)�n that agrees with<1 on=[�. We can choose=0 � = and�0 ◆ �
so that=0 index-supports and�0 atom-supports<01�G and furthermore=0[� ◆ {<01 (0) | 0 2 =[�}.
Then by de�nition<2 · (<01 � G) =<02 � (<01 � G) for some<02 2 (TNA)�n that agrees with<2 on
=0[�0. Thus<2 �<1 agrees with<02 �<

0
1 on=[� and hence by de�nition (<2 �<1) ·G = (<02 �<01)�G .

So using the fact that � is associative we have (<2 �<1) · G = (<02 �<01) � G = <02 � (<01 � G) =
<2 · (<01 � G) =<2 · (<1 · G).

For the unitary property, if G 2 - , then since id is �nite and agrees with itself on any support of
G we have by de�nition and the unitary property of � that id · G = id � G = G .

Thus from- 2 Lnswe have constructed ⌧ (-) , (- , ·) in SetTNA .⌧ (-) is actually in (SetTNA)fs:
for all G 2 - , if = 2 N index-supports G and � 2 FinA atom-supports it, then we claim that
= [� �nitely supports G in (- , ·) in the sense of De�nition 3.4. For if <1,<2 2 TNA satisfy
80 2 = [�, <1 (0) = <2 (0), then by de�nition<1 · G = <01 � G and<2 · G = <02 � G for some
<01,<

0
2 2 (TNA)�n that agree with<1 and<2 respectively on=[�. So<01 and<02 are also equal when

restricted to = [� and hence by Lemma 3.9 we have<01 � G =<02 � G ; and therefore<1 · G =<2 · G .
Note that if 5 : - ! . in Lns, then for all G 2 - and< 2 TNA we have 5 (< · G) = 5 (<0 � G) =

<0 � (5 G) =< · (5 G) by (54), (51) and the fact that = (respectively �) index-supports (respectively
atom-supports) 5 G when it does so for G . Therefore⌧ extends to a functor Lns! (SetTNA)fs whose
action on morphisms is the identity. We will show that it is a two-sided inverse for the functor � .
If - is a locally nameless set, then for each G 2 - , 8 2 N and 0 2 A, since Y0,8 and Y8,0 are in

(TNA)�n from (50) and (54) we have Y0,8 · G = Y0,8 � G = {8 � 0}G and Y8,0 · G = Y8,0 � G = {8 � 0}G .
Therefore � (⌧ (-)) = - in Lns.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:16 Andrew M. Pi�s

Conversely, if (- , ·) 2 (SetTNA)fs, let us write _ ·⌧ (� (-)) _ for the TNA-action on - that gives
⌧ (� (-)). We will show that it is equal to _ · _ and hence that ⌧ (� (-)) = - in (SetTNA)fs.

To see this, given< 2 TNA and G 2 - , suppose G is �nitely supported by (2 FinNA. Choose
some = 2 N and � 2 FinA so that = [� ◆ (and let<0 2 (TNA)�n be de�ned as in (55). Note that
= index-supports and � atom-supports G in � (-). For if 8 � = then 8 8 (so that for any 0 2 A
we have 82 2 (, Y0,8 (2) = 2 = id(2) and hence Y0,8 · G = id · G in (- , ·); thus in � (-) we have
{8 � 0}G , Y0,8 · G = id · G = G . Similarly, if 0 2 A �� then 0 8 (and we get {0 � 0}G = G in � (-).
Since< and<0 agree on = [� it follows from de�nition (54) that< ·⌧ (� (-)) G = <0 � G . By the
uniqueness part of Proposition 3.8, the action _ � _ constructed from the locally nameless set � (-)
is equal to _ · _. Therefore< ·⌧ (� (-)) G = <0 � G = <0 · G ; but since< and<0 agree on (which
supports G in (- , ·) we also have<0 · G =< · G . Thus altogether we have< ·⌧ (� (-)) G =< · G for
all< 2 TNA and G 2 - and hence ⌧ (� (-)) = - .
We have now proved that the functors � : (SetTNA)fs ! Lns and ⌧ : Lns ! (SetTNA)fs are

mutually inverse on objects. Since they both act on morphisms as the identity, they are in fact
mutually inverse as functors. Thus we have completed the proof that Lns and (SetTNA)fs are
isomorphic categories. ⇤

Remark 3.10. Note that the single-renaming functions Y0,8 and Y8,0 (for 0 2 A and 8 2 N) mentioned
in the proof of Theorem 3.5 do not generate the whole monoid TNA. For one thing, compositions
of them never take us out of the submonoid consisting of endofunctions< : NA � NA for which
[<<id] is �nite. But they do not even generate that submonoid, because any composition of a
non-empty list of such endofunctions is always non-injective. Something more is needed to generate
all the �nite endofunctions, for example the single-transposition (swapping) functions (47); see
Proposition 3.7. Nevertheless, the theorem shows that the single-renaming functions Y0,8 and Y8,0
together with the axioms in Fig. 1 completely characterise the action of all endofunctions (�nite or
not) of N [A on �nitely supported objects.

3.4 Shi� Functor [Pitts 2023, Shift.agda]
In the locally nameless representation of syntax, opening and closing operations have their indices
shifted up by one when they pass underneath (unary) binding constructs. Correspondingly, given
an arbitrary locally nameless set - we can form a new one "- that represents unary binding of
names independently of any particular syntax. The underlying set of "- is just that of - , but its
opening/closing operations are given by

{8 �+ 0}G , {8 + 1 � 0}G {8 �+ 0}G , {8 + 1 � 0}G (56)
Since _ + 1 preserves <, these operation satisfy the axioms in Fig. 1 and hence "- is an ��-set.
It inherits the �nite support properties (De�nition 2.9) from - and so is also a locally nameless
set. For given G 2 - , if � 2 FinA atom-supports G in - , it also atom-supports G in "- (by virtue
of Lemma 2.4); and if 8 � G holds in - , then 8 ·� 1 � G holds in "- (where ·� indicates truncated
subtraction).
Note that the mapping - 7! "- extends to a functor " : Lns! Lns . The action of " on a

morphism 5 : - ! . is the identity at the level of sets and functions: " 5 is just the function 5 ,
which does indeed satisfy (40) with respect to {_ �+ _} and {_ �+ _}, because of the way they are
de�ned in terms of {_ � _} and {_ � _}.
We noted in Sect. 3.2 that the forgetful functor Lns ! Set creates certain limits and colimits.

From the way in which the functor " : Lns! Lns is de�ned, we have the following result, which
will be useful in Sect. 4 when considering initial algebras of endofunctors on Lns.

Proposition 3.11. " : Lns! Lns preserves �nite limits and �ltered colimits. ⇤

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Shift.html

Locally Nameless Sets 17:17

3.5 Weakening Abstractions
An advantage of the nominal approach to dealing with syntax with binders [Pitts 2013], compared
with the use of de Bruijn indices, is that a name in some context of use does not change when
the context is weakened, whereas an index may have to. Since notations for explicit weakening
and calculations with them can be very burdensome (either to the implementor of a proof tool, or
to a user rolling their own metatheory within a general-purpose interactive theorem-prover) an
approach that enables weakening to be invisible is attractive.5 We will show that locally nameless
sets take this one step further, by also making implicit the operations for abstracting extra fresh
names.
For each nominal set - there is a nominal set of name-abstractions [A]- whose elements are

equivalence classes of pairs (0, G) 2 A⇥- for a syntax-independent form of U-equivalence; see [Pitts
2013, Chapter 4] where the equivalence class of (0, G) is written h0iG . Iterating this construction,
for each = 2 N one gets nominal sets [A]=- of =-ary abstractions h01, . . . ,0=iG (where 01, . . . ,0=
is an =-tuple of mutually distinct atoms).

Given< =, each element of [A]<- can be coerced into an element of [A]=- by padding out
the<-ary abstraction with = �< fresh names. However, these coercions are not identity functions.
By contrast the analogous construction for locally nameless sets is just an inclusion: if - is locally
nameless, since< = we have lc< (-) ✓ lc= (-) (by Lemma 2.6). We sketch how to make precise
the relationship between [A]=- and lc= (-).

We noted in Remark 2.20 that every locally nameless set supports a notion of name-swapping that
makes it into a nominal set. Morphisms of locally nameless sets preserve the swapping operation
and hence one gets a faithful functor � : Lns! Nom into the category Nom of nominal sets and
equivariant functions. If - 2 Nom and . 2 Lns, from a morphism 5 : - ! � (.) in Nom we
get a function 5 (1) : [A]- ! . well de�ned by 5 (1) (h0iG) = \0 (5 G), using the locally nameless
abstraction operation from (13). Iterating this we have functions 5 (=) : [A]=- ! . . One can
show that = 7! [A]=- is a diagram over (N,) whose (�ltered) colimit � (-) , colim= [A]=-
has opening and closing operations making it into a locally nameless set; and the functions 5 (=)

induce a function 5̂ : � (-) ! . which is a morphism in Lns. In this way we get a left adjoint
� : Nom! Lns that glues together the =-ary name abstractions of elements of - 2 Nom to make
a locally nameless set. It is not hard to see from its de�nition that � preserves �nite limits; therefore
the adjunction � a � constitutes a geometric morphism Lns! Nom. (In fact � has a left adjoint,
given by taking the locally closed part of a locally nameless set, so the geometric morphism is
essential [Johnstone 1977, Defn. 1.16]; and it is a surjection [loc. cit., Defn. 4.11] because � is faithful.)

4 INITIAL ALGEBRA SEMANTICS WITH LOCALLY NAMELESS SETS
In this section we show that the usual inductive de�nition of syntax using the locally nameless
representation of binders is a special case of the notion of initial algebra for endofunctors on Lns
involving the shift functor.

4.1 Binding Signatures [Pitts 2023, BindingSignature.agda]
For simplicity we make use of the notion of binding signature of Plotkin [1990], rather than the
slightly more �exible6 notion of nominal signature from [Pitts 2013; Urban et al. 2004]. Recall from
[Fiore et al. 1999] that a binding signature ⌃ = (Op, ar) is given by a set of operations Op and an arity
function ar : Op � ListN, the idea being that an operation c 2 Op of arity ar (c) = [=1, . . . ,=:]
5Nominal methods are not the only candidate for avoiding “weakening hell”; a synthetic approach in the sense of Sect. 4.3
could also achieve that.
6because it allows explicit name-sorts and multi-argument name-binding scopes

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/BindingSignature.html

17:18 Andrew M. Pi�s

takes : arguments and binds =8 names in its 8th argument (for 8 = 1, . . . ,:). For example, the
binding signature for untyped _-terms has operations, lam and app, with arities ar (lam) = [1] and
ar (app) = [0, 0].

Each binding signature ⌃ = (Op, ar) determines an endofunctor ⌃" : Lns! Lns using the shift
functor from Sect. 3.4 to interpret name-binding:

⌃" - ,
Õ

c2Op "ar (c) - (57)

In this de�nition, for each - 2 Lns and Æ= = [=1, . . . ,=:] 2 ListN, the locally nameless set "Æ= - is
given by the �nite product

"Æ= - , "=1 - ⇥ · · · ⇥ "=: - (58)
where for each = 2 N, the locally nameless set "= - is the =th iteration of the functor " at - :

"0- , - "=+1- , "("= -) (59)

For example if ⌃ is the binding signature for untyped _-termmentioned above, then ⌃" : Lns! Lns
is the functor whose action on objects sends each - 2 Lns to "- + (- ⇥ -).

4.2 Free ⌃"-Algebras
Recall that for each binding signature ⌃ there is a set of equivalence classes of terms over ⌃ modulo
U-equivalence of bound names (using the concrete syntax for terms from [Fiore et al. 1999, Sect. 2],
for example). This quotient set is in bijection with an inductively de�ned set using the locally
nameless representation [Charguéraud 2012] (one �rst de�nes all locally nameless terms and then
cuts down to the inductively de�ned subset of locally closed ones). Here we show that one can
obtain the same thing by forming the free ⌃"-algebra in Lns on the object NA (Example 2.10) and
then taking its equationally de�ned locally closed part (De�nition 2.14). To see this, we �rst recall
some standard results about free algebras of endofunctors.

Given a functor � : C! C on a categoryC and an object+ 2 C, the free � -algebra on+ is given by
an object � [+] 2 C equipped with morphisms +

]�! � [+] U � � (� [+]) with the universal property

that for any other such diagram +
5�! -

6 � � - in C, there is a unique morphism ⌘ : � [+] ! -
making the following diagram commute

+
] //

id
✏✏

� [+]

⌘
✏✏

� (� [+])

� ⌘
✏✏

Uoo

+
5
// - � -6
oo

(60)

If C has �nite coproducts and colimits of chains of some limit ordinal length _ that are preserved
by � , then by the classical theorem of Adámek [1974], the free � -algebra � [+] exists and is
given by iterating the functor + + � (_) starting at the initial object to get chain of length _ and
taking its colimit. Here we know that Lns has �ltered colimits and ⌃" preserves them (because of
Proposition 3.11). Therefore the free ⌃"-algebra ⌃" [NA] 2 Lns can be constructed as the colimit of
the countable chain

; ! NA + ⌃" ; ! NA + ⌃" (NA + ⌃" ;) ! NA + ⌃" (NA + ⌃" (NA + ⌃" ;)) ! · · · (61)

There is a more useful description of ⌃" [NA]. Consider the functor ⌃Id : Set ! Set de�ned
like (57)–(59) but using the identity functor Id : Set ! Set rather than the abstraction functor
" : Lns! Lns. Thus

⌃Id- =
Õ

c2Op -
|ar (2) | (where |Æ= | 2 N indicates the length of a list Æ= 2 ListN) (62)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

Locally Nameless Sets 17:19

is the �nitary polynomial functor derived from the signature ⌃ by ignoring the binding information
of arities. Although the free algebra ⌃Id [N [A] can be constructed as a countable colimit in Set

; ! N [A + ⌃Id ; ! N [A + ⌃Id (N [A + ⌃Id ;) ! · · · (63)

a possibly more familiar description of this set is as an inductively de�ned set � with constructors

var : N [A � � c : � ⇥ · · · ⇥� � � (c 2 Op) (64)

where the number of arguments of the constructor c 2 Op is the length of the list ar (c). For example,
writing bvar and fvar for the restriction of var to N and A respectively, in the case that ⌃ is the
signature for _ terms, we get the inductively de�ned set ⇤ in (9). Writing * : Lns! Set for the
forgetful functor, note that the diagrams

Lns

*
✏✏

" // Lns

*
✏✏

Set
Id
// Set

Lns ⇥ Lns
* ⇥*

✏✏

⇥ // Lns

*
✏✏

Set ⇥ Set ⇥
// Set

Lns ⇥ Lns
* ⇥*

✏✏

+ // Lns

*
✏✏

Set ⇥ Set +
// Set

commute and* maps NA to N [A. It follows that* sends the colimit of (61) in Lns to the colimit
of (63) in Set. In other words, the underlying set of the free ⌃"-algebra on NA, ⌃" [NA] 2 Lns, is
just the set � inductively de�ned in (64). Furthermore, since the constructor functions in (64) are
the images under * of morphisms of locally named sets, the open/close operations necessarily
satisfy the properties that are used by Charguéraud [2012, sections 3.1 and 3.2] to inductively de�ne
these operations:

{8 � 0}(bvar 9) = if 8 = 9 then fvar0 else bvar 9 {8 � 0}(bvar 9) = bvar 9
{8 � 0}(fvar1) = fvar1 {8 � 0}(fvar1) = if 0 = 1 then bvar 8 else fvar1

{8 � 0}c(C1, . . . , C:) = c({8 + =1 � 0}C1, . . . {8 + =: � 0}C:)
{8 � 0}c(C1, . . . , C:) = c({8 + =1 � 0}C1, . . . , {8 + =: � 0}C:) (where ar (c) = [=1, . . . ,=:])

So we have:

Theorem 4.1. For every binding signature ⌃, the usual locally nameless representation of the syntax of
⌃-terms modulo U-equivalence is given by the locally nameless set ⌃" [NA] that is the free ⌃"-algebra
on the locally nameless set NA of indices or atoms. ⇤

Not only does ⌃" [NA] agree with the set of terms mod U over a binding signature ⌃ de�ned in
locally nameless style, but also the usual inductive notions of “free variable” and “local closure” agree
with the equational notions that can be de�ned in any locally nameless set using the de�nitions
from Sects 2.3 and 2.5, as the next two propositions show. Their proofs proceed by induction
on the structure of C in the inductively de�ned set � (64); see the Agda development [Pitts 2023,
BindingSignature.agda] for details.

Proposition 4.2 (Freshness vs free variables). Given a binding signature ⌃, for all elements C
of the underlying set � (64) of the free ⌃"-algebra on NA, de�ne the �nite set fv(C) 2 FinA of free
variables as usual for the locally nameless representation of syntax:

fv(bvar 8) = ; fv(fvar0) = {0} fv(c(C1, . . . , C:)) = fv(C1) [· · · [fv(C:) (65)

Then for all 0 2 A and C 2 � we have: 0 # C , 0 8 fv(C). In particular, the validity of the �nite
atom-support property N0, 0 # C is witnessed by fv(C) 2 FinA. ⇤

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/BindingSignature.html

17:20 Andrew M. Pi�s

Proposition 4.3 (Index-support vs local closedness). Given a binding signature ⌃, for all elements
C of the underlying set � (64) of the free ⌃"-algebra on NA, the predicate

lc_at 8 C (“C is closed at level 8”)

from [Charguéraud 2012, Sect. 3.3] is inductively de�ned by the rules:

9 < 8

lc_at 8 (bvar 9)
8 2 N 0 2 A
lc_at 8 (fvar0)

lc_at(8 + =1) C1 · · · lc_at(8 + =:) C:
lc_at 8 (c(C1, . . . , C:))

Then for all 8 2 N and C 2 � we have: 8 � C , lc_at 8 C . In particular, the �nite index-support
property 98 2 N, 8 � C is witnessed by the fact that lv C � C , where lv C 2 N is given by:

lv(bvar 8) = 8 + 1 lv(fvar0) = 0 lv(c(C1, . . . , C:)) = max{lv(C1), . . . , lv(C:)}
⇤

Example 4.4 (Denotations via initiality). Let Dom denote the category of Scott domains and
Scott continuous functions [Scott 1982] and suppose that ⇡ 2 Dom is a domain with a retraction
onto its own exponential ⇡⇡ , so that there are Scott continuous functions lm : ⇡⇡ ! ⇡ and
ap : ⇡ ! ⇡⇡ with ap � lm = id. These can be used to give denotational semantics to the untyped
_-calculus in the following way. Let ⇡N[A denote the product in Dom of (N [A)-many copies of
⇡ and de�ne

C(⇡) , Dom(⇡N[A,⇡) (66)
to be the set of Scott continuous functions ⇡N[A ! ⇡ . We think of the elements d 2 ⇡N[A as
environments mapping indices and atoms to their denotations in ⇡ ; and the elements 2 2 C(⇡) as
(semantic) continuations mapping such environments to elements of⇡ . Every function< : N[A!
N [A induces a Scott continuous re-indexing function<⇤ : ⇡N[A ! ⇡N[A in Dom and hence
by pre-composition, a function<⇤⇤ : C(⇡) ! C(⇡) in Set. The mapping< 7! <⇤⇤ is functorial
and hence C(⇡) inherits the structure of an ��-set from that of NA (Sect. 2.2). For example, the
opening operation produces from a continuation 2 2 C(⇡) a continuation {8 � 0}2 2 C(⇡) that
maps each d 2 ⇡N[A to 2 (d � Y0,8), where Y0,8 : N [A ! N [A is as in (46); and similarly for
closing operations.
Since C(⇡) is an ��-set we can form the subset C(⇡)fs of �nitely atom- and index-supported

elements of C(⇡) to obtain a locally nameless set. (Recall from Sect. 3.2 that - 7! -fs gives a right
adjoint to the inclusion Lns õ! ��-Set.) Although C(⇡)fs has nothing per se to do with syntax, it
does have a binding operation, in the sense that there is a morphism in Lns

lm : "(C(⇡)fs) ! C(⇡)fs lm 2 d , lm(_3 2 ⇡ . 2 [d,3]) (2 2 "(C(⇡)fs), d 2 ⇡N[A) (67)

where [_, _] : ⇡N[A⇥⇡ � ⇡N[A[{⇤} � ⇡N[A inDom is induced by bijectionN[A[{⇤} � N[A
(we assume ⇤ 8 NA) that that shifts indices up by 1, leaves atoms unchanged and maps the unique
element ⇤ of {⇤} to index 0. (Note that it follows that _3 2 ⇡ . 2 [d,3] is Scott continuous, hence is
an element of ⇡⇡ to which we can apply lm : ⇡⇡ ! ⇡ in the de�nition of lm.) To see that (67) is a
morphism in Lns one just has to check that it commutes with the opening and closing operations
(since the fact that it yields �nitely supported elements follows from that); but this is a routine
calculation from the de�nitions. Similarly, but more simply, there are morphisms in Lns

ap : C(⇡)fs ⇥ C(⇡)fs ! C(⇡)fs ap(2, 20) d , ap(2 d) (20d) (2, 20 2 C(⇡)fs,3 2 ⇡N[A) (68)

vr : NA! C(⇡)fs vrD d , d (D) (D 2 NA, d 2 ⇡N[A) (69)

Hence C(⇡)fs is an ⌃"-algebra for the binding signature ⌃ for _-terms mentioned at the end of
Sect. 4.1; and by Theorem 4.1 there is a unique algebra morphism J_K : ⌃" [NA] ! C(⇡)fs in

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

Locally Nameless Sets 17:21

Lns with J_K � var = vr. We noted above that in general the underlying set of ⌃" [NA] is just the
inductively de�ned set of terms for the binding signature ⌃ de�ned in locally nameless style; and in
this particular case it is the locally nameless set ⇤ from Example 2.11. Furthermore, when restricted
to locally closed elements C 2 ⇤, for each environment d the element JCKd 2 ⇡ recovers the usual
denotational semantics of the term C in the domain ⇡ . This example of denotations-via-initiality
for locally nameless syntax should be compared with Fiore et al. [1999, end of Sect. 2] for the
mathematics of the de Bruijn representation, with Popescu [2022, Sect. 5.3] for his �nitely supported
renaming sets, and with Pitts [2006, Sect. 6.3] for the nominal approach (where one has to use some
ingenuity (unfortunately) to get the requisite recursion principle to apply).

Example 4.5 (Capture-avoiding substitution). In the preceding example, the fact that C(⇡)fs is
a locally nameless set does not depend much upon the speci�c nature of the category Dom—the
same de�nition (66) will work for an object ⇡ in any locally small category where the (N[A)-fold
product of ⇡ exists. Lns is such a category: the (N[A)-fold product of- 2 Lns is necessarily given
by the locally nameless core�ection (-N[A)fs of the product-N[A in ��-Set, which is itself created
by the forgetful functor to Set, that is, is the set of functions fromN[A to - with opening/closing
operations induced pontwise from those of - . Taking - to be the locally nameless set ⇤ of _-terms
(Example 2.11), we have a locally nameless set C(⇤)fs, where now

C(⇤) , Lns((⇤N[A)fs,⇤) (70)

is the set of morphisms (⇤N[A)fs ! ⇤ in Lns, equipped with the opening/closing operations given
by {8 � 0}2 = 2 � Y⇤0,8 and {8 � 0}2 = 2 � Y⇤8,0 . We think of the elements f 2 (⇤N[A)fs as (�nite)
substitutions of terms for indices and atoms. The locally nameless set C(⇤)fs carries the structure
of a ⌃"-algebra (when ⌃ is the signature for _-terms):

lam : "(C(⇤)fs) ! C(⇤)fs lam 2 f , lam(2 f) (71)
app : C(⇤)fs ⇥ C(⇤)fs ! C(⇤)fs app (2, 20) f , app(2 f, 20f) (72)

(where 2, 20 2 "(C(⇤)fs) and f 2 (⇤N[A)fs) and there is a morphism

var : NA! C(⇤)fs varD f , f (D) (D 2 NA,f 2 (⇤N[A)fs) (73)

Therefore by Theorem 4.1 there is a unique ⌃"-algebra morphism sub : ⇤ ! C(⇤)fs in Lns
with sub � var = var. This agrees with the usual, inductively de�ned notion of capture-avoiding
substitution for the locally nameless representation (cf. [Charguéraud 2012, Sect. 3.5])

sub (bvar 8) f = f 8
sub (fvar0) f = f 0
sub (lam C) f = lam(sub C f)

sub (app(C, C 0)) f = app(sub C f, sub C 0 f)
(74)

(where C, C 0 2 ⇤, 0 2 A and 8 2 N). This ignores the usual yoga of shifting dangling de Bruijn indices
within C when passing under binding constructs like lam—a selling point of the locally nameless
approach. However, as a result sub C f is only a correct de�nition of capture-avoiding substitution if
one restricts to locally closed C and f . In practice it is possible to maintain such local closedness
invariants while proving properties of locally nameless syntax, often through the use of co�nite
quanti�cation [Aydemir et al. 2008; Charguéraud 2012; McKinna and Pollack 1999]. However, doing
so means that one has to look outside the category Lns, as we discuss next.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:22 Andrew M. Pi�s

4.3 Towards Synthetic Locally Nameless
There are several results like Theorem 4.1 in the literature on the mathematics of syntax with
binding constructs. For example, the three in�uential papers that appeared together in LICS 1999
[Fiore et al. 1999; Gabbay and Pitts 1999; Hofmann 1999] all feature, in various categories, initial
algebra characterizations of syntax modulo U-equivalence using respectively nominal, de Bruijn and
weak higher-order representations. In the �rst case the category is the Schanuel topos (equivalently,
the topos of nominal sets) and in the second two cases it is toposes of presheaves for categories
of contexts and variable-renamings. Work on various kinds of sets-equipped-with-a-renaming-
action [Gabbay and Hofmann 2008; Popescu 2022] also feature such results. In all cases there is
an emphasis, more or less explicitly, on deriving from the initiality property (60) more useable
recursion and induction principles for reasoning about represented syntax. The utility of such
recursion and induction principles partly depends upon how many constructs of interest can be
expressed within the internal logic of the categories involved. For example, most constructs of
interest are invariant under name permutation and many have �nite support; and so nominal
recursion/induction [Pitts 2013, Chapter 8] is widely applicable in principle7. Compared with name
permutation, renaming preserves fewer constructs of interest (particularly not ones involving
logical negation) and this could make an initial algebra result in categories based on renaming less
easy to apply; but see [Popescu 2022] for the surprisingly good state of the art. The situation for
Lns is worse: its internal logic does not support by itself some of the key constructs needed for the
locally nameless approach. For example, taking the locally closed part (De�nition 2.14) of a locally
nameless set yields a nominal set, but not a locally nameless one (since it is not usually invariant
under the operation of closing an atom with an index); and yet as mentioned in Examples 4.4 and
4.5, use of the initiality theorem only gives correct notions of denotation and substitution when
restricting attention to locally closed elements.

Nevertheless, a synthetic account of locally nameless representations and computations with them
is a desirable goal (for the general reasons set out by Sterling [2021, Sect. 0.6]). In other words one
would like an expressive type theory or logic featuring axioms directly capturing the key features
of the mathematical analysis that this paper has provided. To be useful, expressiveness has to be
balanced by simplicity of the axiomatic notions and existence of a straightforward mathematical
model of them. For the latter, Lns by itself will not work; but a topos obtained from it may work,
for example by considering Lns relative to the topos of nominal sets as in Sect. 3.5. The internal
logic could then be a two-level type theory of some kind (some types being nominal-set-like, some
being locally-nameless-set-like) with the levels connected by a modality for local closure. To be
practically useful such a type theory will have to feature “Barendregt-enhanced” 8 recursion and
induction principles involving the co�nite quanti�er (De�nition 2.1), analogous to those considered
by Pitts [2006] and Popescu [2022, Theorem 11]. We leave investigation of such a synthetic account
for future work.

5 AGDA DEVELOPMENT
Agda [2023] was used to develop the theory of locally nameless sets and check some of the proofs.
The Agda code [Pitts 2023] mainly targets proofs that involve equational reasoning combined with
the use of atoms and indices that are su�ciently fresh (via co�nite quanti�cation). Agda was chosen
because of the author’s familiarity with it; as [Charguéraud 2012] reports, most developments so
far using the locally nameless representation have employed Coq or Isabelle/HOL. In this section

7But hampered in practice by its need to satisfy various kinds of freshness side-conditions.
8The name points to a relationship with the informal “variable condition” of Barendregt [1984, Appendix A].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

Locally Nameless Sets 17:23

we discuss some of the features of our Agda development, assuming some familiarity with Agda’s
concrete syntax.

5.1 Atoms and Cofinite�antification [Pitts 2023, Unfinite.agda]
For the decidable, “un�nite” (1) set A one could just take atoms to be in bijection with natural
numbers. We prefer another representation that focuses on the crucial property that given a �nite
set of atoms �, there is an atom (call it new �) not equal to any of the atoms in �. We make this the
de�nition of “atom” and use an inductive type A with a single constructor new of type Fset A �
A, where the elements of the indexed inductive type Fset X are trees representing �nite subsets
of X. One can prove that the type A has decidable equality, so that its equality _⌘_ : A � A �
Set has a Boolean complement _ 6⌘_ : A � A � Set. The de�nition of A makes it equivalent to a
type of well-founded trees (a W-type [Nordström et al. 1990, Chapter 15]); and using well-founded
induction one can prove the un�niteness property

unfinite : (A : Fset A) � new A 8 A

where _8_ is the non-membership predicate, inductively de�ned using decidability of equality
in A. Its de�nition makes use of Agda’s instance arguments (indicated by double braces {{_}}),
a special kind of implicit argument searched for by an algorithm separate from the one used for
normal implicit arguments. These instance arguments are the Agda equivalent of Haskell type
class constraints. Here they allow a certain amount of automation for proving non-membership
properties, in particular for thewitnesses involved in proving co�nite quanti�cations (De�nition 2.1),
using the following de�nition:

record N(P : A � Set) : Set where

constructor Ni
field

Ne1 : Fset A
Ne2 : (a : A){{_ : a 8 Ne1}} � P a

open Npublic
syntax N(l a � P) = Na : A , P

5.2 Locally Nameless Types [Pitts 2023, oc-Sets.agda,Support.agda]
The de�nition of ��-sets and locally nameless sets is straightforward, using a naive unbundled
approach to type classes (via Agda’s instance arguments, mentioned above). An ��-set structure
for a type X is an element of a record type oc (X : Set) with �elds

⇠> : N � A � X � X

<⇠ : N � A � X � X

oc1 : 8 i a b x � (i ⇠> a)((i ⇠> b)x) ⌘ (i ⇠> b)x

and also �elds oc2, . . .oc9 corresponding to the other axioms in Fig. 1. De�ning the associated
notions of freshness (3) and local closedness (5)

: {X : Set}{{_ : oc X}} � A � X � Set

a # x = (0 <⇠ a)x ⌘ x

� : {X : Set}{{_ : oc X}} � N � X � Set

i � x = (j : N){{_ : j � i}} � Õ
a : A , ((j ⇠> a)x ⌘ x)

then a locally nameless set structure for a type X is an element of the type lns(X), where

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Unfinite.html
https://amp12.github.io/LocallyNamelessSets/oc-Sets.html
https://amp12.github.io/LocallyNamelessSets/Support.html

17:24 Andrew M. Pi�s

record lns (X : Set) : Set where

field

{{ocSet}} : oc X

asupp : (x : X) � Na : A , (a # x)

isupp : (x : X) � Õ
i : N , (i � x)

5.3 Shi� Functor [Pitts 2023, Shift.agda]
The shift functor (Sect. 3.4) changes ��-set structure (and locally nameless structure) without
changing the underlying type

oc↑ : {X : Set}{{_ : oc X}} � oc X

⇠> {{oc↑}} i a x = (i +1 ⇠> a)x

<⇠ {{oc↑}} i a x = (i +1 <⇠ a)x

(the rest of the de�nition is omitted). This makes the functor conveniently invisible when building
inductive datatypes involving it (such as TrmS below). However, it does disrupt automatic inference
of structure, since Agda takes exception if it �nds two or more (or no) instances of a structure for
a given type. An alternative would be to make "- have an underlying set that is a record type
isomorphic to - .

5.4 Binding Signatures [Pitts 2023, BindingSignature.agda]
Rather than using lists of numbers as arities as in Sect. 4.1, we found it more convenient to use
functional arrays:

record Array (X : Set) : Set where

field

length : N

index : Fin length � X

where Fin : N � Set is the usual parameterised inductive type of �nite sets. We de�ne the type
of Plotkin-style binding signatures to be

record Sig : Set1 where

field

Op : Set

ar : Op � Array N

The inductive type of terms over such a signature (64) is then

data Trm (S : Sig) : Set where

var : NA � Trm S
op : (c : Op S) � (Fin(length(ar S c)) � Trm S) � Trm S

where NA is the disjoint union of N and A. For each signature S, the type Trm S has the structure
of a locally nameless set making it the free ⌃"-algebra on NA (Theorem 4.1); and an element’s
support as determined by the ��-algebra structure agrees with the usual inductively de�ned notions
(Propositions 4.2 and 4.3). The downside of using functional arrays rather than lists is that the
proof of these facts uses function extensionality. However, that principle is needed anyway when
proving the uniqueness part of Proposition 3.8 and the initiality property (60). We postulate function
extensionality in our Agda development, but an alternative might be to work in a type theory
in which it is provable, such as Cubical Agda [Vezzosi et al. 2019]. However, the current Agda

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://amp12.github.io/LocallyNamelessSets/Shift.html
https://amp12.github.io/LocallyNamelessSets/BindingSignature.html

Locally Nameless Sets 17:25

development does make use of Coquand’s original form of dependent pattern matching [Coquand
1992] for which uniqueness of identity proofs (UIP) is provable; in other words the development
uses the Agda option --with-K. It may be possible to eliminate use of UIP and to transfer the
development to Cubical Agda, but we have not investigated this.

5.5 “Mere” Existence
The use of a record type (or equivalently, a ⌃-type) to de�ne co�nite quanti�cation in Sect. 5.1
means that, given a proof of Na : A , P, applying the projection Ne1 to it we obtain an explicit
witness for the �nite subset of A on which P may not hold. This corresponds to how co�nite
quanti�cation occurs in mechanized metatheory using the locally nameless representation. For
example, a proof of typing in a system like that in [Charguéraud 2012, Fig. 1] contains explicit
occurrences of �nite sets witnessing the various co�nite quanti�cations in the proof (and hence
in particular there can be di�erent proofs of the same typing judgment). Similarly, when de�ning
locally nameless structure lns X we used a ⌃-type for the �nite index-support property isupp x of
x:X, instead of an existenial quanti�er as in (8). These choices su�ce for constructive proofs of
the results presented in Sects 2, 3.1–3.4 and 4; but not for Sect. 3.5, unless one moves to a classical
setting in which witnesses for in�nite families of existentially quanti�ed statements can be found
(for example via the Axiom of Choice).

The reason for this has to do with properties of the notion of “�nite support”. The theory of
nominal sets in [Pitts 2013] makes the assumption that every element of a nominal set possesses a
smallest �nite set of atoms that supports it. Swan [2017] has shown that this assumption implies the
non-constructive weak limited principle of omniscience (WLPO), which says that given a property %
of natural numbers, if we can decide for each G 2 N whether or not % G holds, then we can decide
whether or not the set {G 2 N | % G} is empty. There is strong (but unpublished) evidence that a
rich constructive theory of nominal sets can be developed if one just requires that for every element
of a constructive nominal set there merely exists some �nite set of atoms that supports it (without
assuming that there is a smallest such, or even assuming that there is a function mapping each
element to a support set for it).
The situation for locally nameless sets is likely to be the same. Therefore, where the current

Agda formalization uses the strong form of existential quanti�cation given by ⌃-types, one should
try instead to work with “mere” existence [Univalent Foundations Program 2013, Sect. 3.6]. For
example, the re�ection of nominal sets into locally nameless sets sketched in Sect. 3.5 involves a
countably in�nite colimit, which will be constructed by taking a quotient by a suitable equivalence
relation. Given an equivalence class, to see that there merely exists a �nite support for it, it su�ces
to pick a representative of the class and use its �nite support; but without some form of choice
principle one would not have the function assigning a support to each equivalence class that would
be required if one uses the de�nition of support in the current development.

6 CONCLUSION
The equational axiomatization of opening and closing in Fig. 1 is quite simple, although it does
have its subtleties (axioms ��8 and ��9). It came as a big surprise to the author that it su�ces to
derive so many of the key concepts of the locally nameless representation of syntax with binders,
independently of any particular syntax. The results in this paper show how to automatically derive
from a signature speci�cation a large part of the infrastructure described in [Charguéraud 2012,
Sect. 3.9]. At the moment what remains of that infrastructure is the use of recursion and induction
principles for ordinary inductively de�ned sets (rather than locally nameless sets) to de�ne speci�c
functions and relations needed for a particular development. It may be that this can be synthesised
into a new “locally nameless logic”, as discussed in Sect. 4.3.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

17:26 Andrew M. Pi�s

Less speculatively, the algebraic treatment of opening and closing has allowed us to relate the
mathematics of the locally nameless representation to nominal representations that are based on
the use of renaming functions, by showing that categories that have been used in the literature for
modelling those forms of representation are in fact equivalent to the category of locally nameless
sets introduced here.

For the �rst time we have a syntax-free account of the locally nameless version of name binding,
via the shift functor on locally nameless sets. Before this work one only knew what locally nameless
syntax means. As Example 4.4 illustrates, now one can make sense of "locally nameless semantics".
This could enable the pleasant properties of the locally nameless representation to be used for
situations where syntax and semantics get mixed up – for example in proofs of normalization-by-
evaluation [Berger and Schwichtenberg 1991] (see Pitts [2006, Sect. 6], for example). The equational
treatment of the locally nameless representation may also help to improve automated support in
theorem provers for this method of developing formal metatheory of programming languages and
logics. For example, it may be possible to combine our Agda development with the work of Escot
and Cockx [2022] to extend their encoding of datatypes to ones involving the shift functor, together
with a generic construction of locally nameless set structure for Agda datatypes that have such an
encoding.

ACKNOWLEDGMENTS
The author is grateful to the anonymous reviewers for their helpful comments and suggestions.

REFERENCES
Jiří Adámek. 1974. Free Algebras and Automata Realizations in the Language of Categories. Commentationes Mathematicae

Universitatis Carolinae 15, 4 (1974), 589–602. http://eudml.org/doc/16649
Agda 2023. The Agda Wiki. https://wiki.portal.chalmers.se/agda/Main/HomePage.
Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering

Formal Metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 3–15.
https://doi.org/10.1145/1328438.1328443

Henk P. Barendregt. 1984. The Lambda Calculus: Its Syntax and Semantics (revised ed.). North-Holland.
Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse of the Evaluation Functional for Typed _-Calculus. In 6th Annual

Symposium on Logic in Computer Science. IEEE Computer Society Press, 203–211. https://doi.org/10.1109/LICS.1991.151645
Arthur Charguéraud. 2012. The Locally Nameless Representation. Journal of Automated Reasoning 49, 3 (2012), 363–408.

https://doi.org/10.1007/s10817-011-9225-2
Jesper Cockx. 2021. 1001 Representations of Syntax with Binding. (Nov. 2021). Blog post https://jesper.sikanda.be/posts/1001-

syntax-representations.html.
Thierry Coquand. 1992. Pattern Matching with Dependent Types. In Proceedings of the 1992 Workshop on Types for Proofs

and Programs, Båstad, Sweden, Bengt Nordström, Kent Petersson, and Gordon D. Plotkin (Eds.). 66–79.
Nicolaas G. de Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation,

with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34 (1972), 381–392. https://doi.org/10.1016/
1385-7258(72)90034-0

Lucas Escot and Jesper Cockx. 2022. Practical Generic Programming over a Universe of Native Datatypes. Proc. ACM
Program. Lang. 6, ICFP, Article 113 (aug 2022), 25 pages. https://doi.org/10.1145/3547644

Marcelo P. Fiore, Gordon P. Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In 14th Annual Symposium
on Logic in Computer Science. IEEE Computer Society Press, 193–202. https://doi.org/10.1109/LICS.1999.782615

Murdoch J. Gabbay and Martin Hofmann. 2008. Nominal Renaming Sets. In Logic for Programming, Arti�cial Intelligence,
and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar, November 22–27, 2008. Proceedings (Lecture Notes in
Arti�cial Intelligence, Vol. 5330). Springer, 158–173. https://doi.org/10.1007/978-3-540-89439-1_11

Murdoch J. Gabbay and Andrew M. Pitts. 1999. A New Approach to Abstract Syntax Involving Binders. In 14th Annual
Symposium on Logic in Computer Science. IEEE Computer Society Press, 214–224. https://doi.org/10.1109/LICS.1999.782617

Murdoch J. Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects
of Computing 13 (2002), 341–363. https://doi.org/10.1007/s001650200016

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

http://eudml.org/doc/16649
https://wiki.portal.chalmers.se/agda/Main/HomePage
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/s10817-011-9225-2
https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/3547644
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.1007/s001650200016

Locally Nameless Sets 17:27

Olexandr Ganyushkin and Volodymyr Mazorchuk. 2009. Classical Finite Transformation Semigroups, An Introduction. Algebra
and Applications, Vol. 9. Springer, London.

Martin Hofmann. 1999. Semantical Analysis of Higher-Order Abstract Syntax. In 14th Annual Symposium on Logic in
Computer Science. IEEE Computer Society Press, 204–213. https://doi.org/10.1109/LICS.1999.782616

Nagayoshi Iwahori and Nabuko Iwahori. 1974. On a Set of Generating Relations of the Full Transformation Semigroups.
Journal of Combinatorial Theory (A) 16 (1974), 147–158. https://doi.org/10.1016/0097-3165(74)90040-5

Peter T. Johnstone. 1977. Topos Theory. Number 10 in LMS Mathematical Monographs. Academic Press.
Peter T. Johnstone. 2002. Sketches of an Elephant, A Topos Theory Compendium, Volumes 1 and 2. Number 43–44 in Oxford

Logic Guides. Oxford University Press.
James McKinna and Randy Pollack. 1999. Some Type Theory and Lambda Calculus Formalised. Journal of Automated

Reasoning 23 (1999), 373–409. https://doi.org/10.1023/A:1006294005493
Bengt Nordström, Kent Petersson, and Jan M. Smith. 1990. Programming in Martin-Löf’s Type Theory. Oxford University

Press.
Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM Press, 199–208. https://doi.org/10.1145/960116.54010
A. M. Pitts. 2003. Nominal Logic, A First Order Theory of Names and Binding. Information and Computation 186 (2003),

165–193. https://doi.org/10.1016/S0890-5401(03)00138-X
Andrew M. Pitts. 2006. Alpha-Structural Recursion and Induction. Journal of the ACM 53 (2006), 459–506. https:

//doi.org/10.1145/1147954.1147961
Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer

Science, Vol. 57. Cambridge University Press.
Andrew M. Pitts. 2015. Nominal Presentation of Cubical Sets Models of Type Theory. In 20th International Conference on

Types for Proofs and Programs (TYPES 2014) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 39). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 202–220. https://doi.org/10.4230/LIPIcs.TYPES.2014.202

Andrew M. Pitts. 2023. Agda code accompanying “Locally Nameless Sets”. https://doi.org/10.5281/zenodo.7121016
Browsable code: https://amp12.github.io/LocallyNamelessSets/.

Gordon D. Plotkin. 1990. An Illative Theory of Relations. In Situation Theory and its Applications, Volume 1, R. Cooper,
Mukai, and J. Perry (Eds.). CSLI Lecture Notes, Vol. 22. Stanford University, 133–146.

Andrei Popescu. 2022. Rensets and Renaming-Based Recursion for Syntax with Bindings. In Automated Reasoning : 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings (Lecture Notes in Computer Science,
Vol. 13385). Springer International Publishing AG, 618–639. https://doi.org/10.1007/978-3-031-10769-6_36

Dana S. Scott. 1982. Domains for Denotational Semantics. In Automata, Languages and Programming, Proceedings 1982
(Lecture Notes in Computer Science, Vol. 140), Mogens Nielson and Erik M. Schmidt (Eds.). Springer Berlin Heidelberg,
577–610. https://doi.org/10.1007/BFb0012801

Sam Staton. 2007. Name-Passing Process Calculi: Operational Models and Structural Operational Semantics. Ph. D. Dissertation.
University of Cambridge. Available as University of Cambridge Computer Laboratory Technical Report Number
UCAM-CL-TR-688.

Jonathan Sterling. 2021. First Steps in Synthetic Tait Computability, The Objective Metatheory of Cubical Type Theory. Ph. D.
Dissertation. Carnegie Mellon University, School of Computer Science. CMU-CS-21-142.

Andrew Swan. 2017. Some Brouwerian Counterexamples Regarding Nominal Sets in Constructive Set Theory. ArXiv e-prints
arXiv:1702.01556 [math.LO] (Feb. 2017), 9pp. https://doi.org/10.48550/arXiv.1702.01556

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations for Mathematics. http:
//homotopytypetheory.org/book, Institute for Advanced Study.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. 2004. Nominal Uni�cation. Theoretical Computer Science 323
(2004), 473–497. https://doi.org/10.1016/j.tcs.2004.06.016

Christian Urban and Christine Tasson. 2005. Nominal Techniques in Isabelle/HOL. In 20th International Conference on
Automated Deduction, CADE-20, Tallinn, Estonia, July 2005 (Lecture Notes in Computer Science, Vol. 3632). Springer-Verlag,
38–53. https://doi.org/10.1007/11532231_4

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda: A Dependently Typed Programming Language
with Univalence and Higher Inductive Types. Proc. ACM Program. Lang. 3, ICFP, Article 87 (July 2019), 29 pages.
https://doi.org/10.1145/3341691

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 17. Publication date: January 2023.

https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.1016/0097-3165(74)90040-5
https://doi.org/10.1023/A:1006294005493
https://doi.org/10.1145/960116.54010
https://doi.org/10.1016/S0890-5401(03)00138-X
https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1145/1147954.1147961
https://doi.org/10.4230/LIPIcs.TYPES.2014.202
https://doi.org/10.5281/zenodo.7121016
https://amp12.github.io/LocallyNamelessSets/
https://doi.org/10.1007/978-3-031-10769-6_36
https://doi.org/10.1007/BFb0012801
https://doi.org/10.48550/arXiv.1702.01556
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1007/11532231_4
https://doi.org/10.1145/3341691

	Abstract
	1 Introduction
	2 Definition of locally nameless sets
	2.1 Indices and Atoms [Unfinite.agda]PittsAM:locns-agda
	2.2 OC-Sets [oc-Sets.agda]PittsAM:locns-agda
	2.3 Freshness [Freshness.agda]PittsAM:locns-agda
	2.4 Local Closedness [LocalClosedness.agda]PittsAM:locns-agda
	2.5 Support [Support.agda]PittsAM:locns-agda
	2.6 Abstraction and Concretion [AbstractionConcretion.agda]PittsAM:locns-agda
	2.7 Re-naming, Re-indexing and Name Swapping [RenamingReindexingSwapping.agda]PittsAM:locns-agda

	3 The category of locally nameless sets
	3.1 The Category of OC-Sets [Category.agda]PittsAM:locns-agda
	3.2 The Category Lns
	3.3 Proof of Theorem 3.5
	3.4 Shift Functor [Shift.agda]PittsAM:locns-agda
	3.5 Weakening Abstractions

	4 Initial algebra semantics with locally nameless sets
	4.1 Binding Signatures [BindingSignature.agda]PittsAM:locns-agda
	4.2 Free Σ-Algebras
	4.3 Towards Synthetic Locally Nameless

	5 Agda development
	5.1 Atoms and Cofinite Quantification [Unfinite.agda]PittsAM:locns-agda
	5.2 Locally Nameless Types [oc-Sets.agda,Support.agda]PittsAM:locns-agda
	5.3 Shift Functor [Shift.agda]PittsAM:locns-agda
	5.4 Binding Signatures [BindingSignature.agda]PittsAM:locns-agda
	5.5 ``Mere'' Existence

	6 Conclusion
	References

