
Andrew Pitts’ chapter for
D. Sangorgi and J. Rutten (eds),

Advanced Topics in Bisimulation and Coinduction,
Cambridge Tracts in Theoretical Computer Science

No. 52, chapter 5, pages 197–232
(c© 2011 CUP)

5

Howe’s method for higher-order languages

5.1 Introduction

A fundamental requirement for any notion of equality between programs is that it be a

congruence, in other words an equivalence relation that is compatible with the various

syntactical constructs of the programming language. Being an equivalence relation, in

particular being transitive, allows one to use a familiar technique of equational reason-

ing, namely the deduction of an equality P ' P ′ via a chain of intermediate equalities,

P ' P1 ' · · · ' Pn ' P ′. Being compatible enables the use of an even more charac-

teristic technique of equational reasoning, substitution of equals for equals, whereby an

equality between compound phrases, C[P] ' C[P ′], is deduced from an equality between

sub-phrases, P ' P ′. If one regards the meaning of a program to be its '-equivalence

class, then compatibility says that this semantics is compositional—the meaning of a

compound phrase is a function of the meanings of its constituent sub-phrases.

This book is concerned with coinductively defined notions of program equality based

on the notion of bisimulation. For these, the property of being an equivalence relation

is easy to establish, whereas the property of compatibility can sometimes be difficult

to prove and indeed in some cases is false.1 This is particularly the case for languages

involving higher-order features, that is, ones permitting functions and processes to be

data that can be manipulated by functions and processes. For example, the language

might feature parameterized programs P (x) where the parameter x can be instantiated

not with simple data (booleans, numbers, names, finite trees, . . .), but with other

programs Q. In this case, although it is usually easy to see that a bisimilarity ' satisfies

∀Q. P (x) ' P ′(x) ⇒ P (Q) ' P ′(Q),

for compatibility of ' we have to establish the stronger property

∀Q,Q′. P (x) ' P ′(x) ∧ Q ' Q′ ⇒ P (Q) ' P ′(Q′).
1 The classic example is the failure of weak bisimilarity to be preserved by summation in Milner’s

CCS [Mil89, section 5.3].

1

2 Howe’s method for higher-order languages

This is often hard to prove directly from the definition of '.

In this chapter we present a method for establishing such congruence properties of

coinductively defined program equalities, due originally to Howe [How89]. It is one that

has proved to be particularly effective in the presence of higher-order functions. Howe’s

method was originally developed partly to give a direct proof that Abramsky’s notion

of applicative bisimilarity is a congruence for his ‘lazy’ λ-calculus [Abr90]. The latter

consists of the terms of the untyped λ-calculus equipped with a non-strict, or call-by-

name evaluation strategy.2 Abramsky’s original proof of congruence is via a denotational

semantics of the language3, whereas Howe’s method provides a more direct route to this

purely syntactic result, just making use of the language’s operational semantics. Such

syntactical methods can often be very brittle: small changes to the language’s syntax

or operational semantics may break the method. This has proved not to be the case

for Howe’s method; essentially the same technique has been applied, first by Howe and

then by others, to quite a variety of higher-order languages, both typed and untyped,

featuring both sequential functions and concurrent processes, and with a variety of

different operational semantics. Although far from being a universal panacea for proofs

of congruence, Howe’s method certainly deserves the space we give it in this book.

Chapter outline. Howe’s definitive account of his method [How96] uses a general

framework that can be specialized to a number of different functional languages and

evaluation strategies. Here we prefer to explain the method by giving some concrete

examples of it in action. To see the wood from the trees, the examples are as syntactically

simple as possible. In fact we use applicative similarity and bisimilarity for the untyped

λ-calculus with a call-by-value evaluation strategy as the running example; these notions

are explained in Sections 5.2 and 5.3. Then in Section 5.4 we see how far we can get with

a proof of the congruence property for applicative similarity directly from its coinductive

definition. This motivates the use of Howe’s ‘precongruence candidate’ construction,

which is explained in Section 5.5 and used to prove that applicative similarity for the

call-by-value λ-calculus is a precongruence and hence that applicative bisimilarity is a

congruence.

Section 5.6 explains an important consequence of this congruence result, namely

that applicative bisimilarity for this language coincides with a Morris-style [Mor69]

contextual equivalence, in which terms of the language are identified if they behave the

same in all contexts (with respect to some fixed notion of observation). The coincidence

of these two notions of program equality depends upon the deterministic nature of

evaluation in call-by-value λ-calculus. So in Section 5.7 we consider what happens if we

2 The terminology ‘lazy’ is now more commonly used as a synonym for a call-by-need evaluation
strategy (as used by the Haskell functional programming language, for example) rather than for
the call-by-name strategy.

3 It is a corollary of his ‘domain theory in logical form’ [Abr91]; see [Pit97a] for an alternative
denotational proof making use of logical relations.

5.1 Introduction 3

call-by-value call-by-name

applicative

{
similarity
bisimilarity

.v .n

'v 'n

contextual

{
preorder
equivalence

≤v ≤n

=v =n

CIU

{
preorder
equivalence

≤ciu
v ≤ciu

n

=ciu
v =ciu

n

Figure 5.1 Preorders and equivalences used in this chapter

add a non-deterministic feature; we use ‘erratic’ binary choice as our example. As Howe

observed, in such a non-deterministic setting his precongruence candidate construction

can still be used to prove congruence results for bisimilarities, via a finesse involving

transitive closure.

In Section 5.8 we illustrate a perhaps less well-known application of Howe’s method,

namely to proving ‘context lemmas’ [Mil77] for contextual equivalences. In general,

such lemmas tell us that two terms behave the same in all contexts, that is, are con-

textually equivalent iff they behave the same in some restricted collection of contexts.

Context lemmas are a useful way of establishing certain basic properties of contextual

equivalence—for example, that terms with the same reduction behaviour are contextu-

ally equivalent. We consider the restriction to contexts that are ‘Uses of Closed Instanti-

ations’ and the associated ‘CIU-equivalence’ of Mason and Talcott [MT91]. Specifically,

we use Howe’s method to show that for call-by-value λ-calculus with erratic choice, and

for the observational scenario based on ‘may-terminate’, CIU-equivalence is a congru-

ence and (hence) coincides with contextual equivalence. This result is representative

of the way Howe’s method can be used to establish context lemmas for contextual

equivalences.

Section 5.9 briefly considers the call-by-name version of all these results. Section 5.10

summarizes what is involved in Howe’s method and then in Section 5.11 we outline

some other applications of it that occur in the literature and assess its limitations.

Figure 5.1 gives the notation we use for the various types of preorder and equivalence

considered in this chapter.

Prerequisites. The reader is assumed to have some familiarity with the basic notions

of λ-calculus and its use in programming language semantics; see [Pie02, Chapter 5],

for example. The first few paragraphs of the next section summarize what we need of

this material.

4 Howe’s method for higher-order languages

5.2 Call-by-value λ-calculus

We take the set Λ of λ-terms and the subset V ⊆ Λ of λ-values to be given by the

following grammar

e ∈ Λ ::= v | e e

v ∈ V ::= x | λx. e
(5.1)

where x ranges over a fixed, countably infinite set Var of variables. An occurrence of

a variable x in a λ-term e is a free occurrence if it is not within the scope of any

λx. The substitution of e for all free occurrences of x in e′ is denoted e′{e/x}; more

generally a simultaneous substitution is written e′{e1, . . . , en/x1, . . . , xn}. As usual when

making a substitution e′{e/x}, we do not want free occurrences in e of a variable x′

to become bound by occurrences of λx′ in e′; in other words, substitution should be

‘capture-avoiding’. To achieve this we identify the syntax trees generated by the above

grammar up to α-equivalence of λ-bound variables: thus the elements of Λ and V are

really α-equivalence classes of abstract syntax trees, but we refer to a class by naming

one of its representatives. For example if x, y, z are distinct variables, then λy.x and

λz.x are equal λ-terms (being α-equivalent) and (λy.x){y/x} is λz. y, not λy. y.

The finite set of variables occurring free in e ∈ Λ is denoted fv(e). If x ∈ ℘fin(Var) is

a finite set of variables, we write

Λ(x)
def
= {e ∈ Λ | fv(e) ⊆ x}

V (x)
def
= {v ∈ V | fv(v) ⊆ x}

(5.2)

for the subsets of λ-terms and λ-values whose free variables are all in x. Thus Λ(∅) is

the subset of closed λ-terms and V (∅) is the set of closed λ-abstractions.

Call-by-value evaluation of closed λ-terms is the binary relation ⇓v ⊆ Λ(∅) × V (∅)
inductively defined by the following two rules.

v ⇓v v
(Val)

e1 ⇓v λx. e e2 ⇓v v e{v/x} ⇓v v
′

e1 e2 ⇓v v
′ (Cbv)

Exercise 5.2.1 Consider the closed λ-values

one
def
= λx.λy.x y

two
def
= λx.λy.x (x y)

succ
def
= λn.λx.λy.x (nx y)

5.3 Applicative (bi)similarity for call-by-value λ-calculus 5

(These are the first two ‘Church numerals’ and the successor function for Church numer-

als; see [Pie02, Sect. 5.2], for example.) For all u, v, w ∈ V (∅), show that succ one u v ⇓v

w if and only if two u v ⇓v w. Is it the case that succ one ⇓v two holds?

Exercise 5.2.2 Prove that evaluation is deterministic, that is, satisfies

e ⇓v v1 ∧ e ⇓v v2 ⇒ v1 = v2. (5.3)

Show that it is also partial, in the sense that for some closed λ-term e ∈ Λ(∅) there is

no v for which e ⇓v v holds. [Hint: consider e = (λx.xx)(λx.xx), for example.]

Call-by-value evaluation is sometimes called strict evaluation—in contrast with non-

strict, or call-by-name evaluation. We will consider the latter in Section 5.9.

5.3 Applicative (bi)similarity for call-by-value λ-calculus

We wish to define an equivalence relation ' ⊆ Λ(∅) × Λ(∅) that equates two closed

λ-terms e1, e2 ∈ Λ(∅) if they have the same behaviour with respect to call-by-value

evaluation. But what does ‘behaviour’ mean in this case? It is too simplistic to require

that e1 and e2 both evaluate to the same λ-value (or both diverge); for example we

might hope that the λ-term succ one from Exercise 5.2.1 is behaviourly equivalent to

the λ-value two even though it does not evaluate to it under call-by-value evaluation.

To motivate the kind of behavioural equivalence we are going to consider, recall that

a λ-abstraction λx. e is a notation for a function; and indeed via the operation of

substitution it determines a function on closed λ-values, mapping v ∈ V (∅) to e{v/x} ∈
Λ(∅). So if e1 ' e2 and ei ⇓v λxi. e

′
i (for i = 1, 2), it seems reasonable to require that

λx1. e′1 and λx2. e′2 determine the same functions V (∅)→ Λ(∅) modulo ', in the sense

that e′1{v/x1} ' e′2{v/x2} should hold for all v ∈ V (∅). This property of an equivalence

relation ' is not yet a definition of it, because of the circularity it involves. We can

break that circularity by taking the greatest4 relation with this property, in other words

by making a co-inductive definition.

Definition 5.3.1 (applicative simulation) A relation S ⊆ Λ(∅)×Λ(∅) is a (call-by-

value) applicative simulation if for all e1, e2 ∈ Λ(∅), e1 S e2 implies

e1 ⇓v λx. e′1 ⇒ ∃e′2. e2 ⇓v λx. e′2 ∧ ∀v ∈ V (∅). e′1{v/x} S e′2{v/x}. (v-Sim)

It is an applicative bisimulation if both S and its reciprocal Sop = {(e, e′) | e′ S e} are

applicative simulations. Note that the union of a family of applicative (bi)simulations

is another such. So there is a largest applicative simulation, which we call applicative

4 Taking the least such relation does not lead anywhere interesting, since that least relation is empty.

6 Howe’s method for higher-order languages

similarity and write as .v; and there is a largest applicative bisimulation, which we call

applicative bisimilarity and write as 'v.

Example 5.3.2 It follows from Exercise 5.2.1 that

{(succ one, two)} ∪ {(e, e) | e ∈ Λ(∅)}

is an applicative bisimulation. Hence succ one and two are applicatively bisimilar,

succ one 'v two.

Definition 5.3.1 (and Theorem 5.6.5 below) extends smoothly to many applied λ-

calculi. For example, it provides a useful tool for proving equivalences between pure

functional programs involving algebraic datatypes; see [Gor95] and [Pit97b, Section 3].

Applicative similarity is by definition the greatest post-fixed point for the monotone

endofunction F : ℘(Λ(∅)× Λ(∅))→ ℘(Λ(∅)× Λ(∅)) that maps S to

F (S)
def
= {(e1, e2) | ∀x, e′1. e1 ⇓v λx. e′1 ⇒ ∃e′2. e2 ⇓v λx. e′2 ∧

∀v. e′1{v/x} S e′2{v/x}}.

By the Knaster-Tarski Fixed-Point Theorem [San11, Theorem 2.3.21], it is also the

greatest fixed point gfp(F) and hence we have:

e1 .v e2 ⇔
∀x, e′1. e1 ⇓v λx. e′1 ⇒ ∃e′2. e2 ⇓v λx. e′2 ∧ ∀v. e′1{v/x} .v e

′
2{v/x}. (5.4)

Similarly, applicative bisimulation satisfies:

e1 'v e2 ⇔
∀x, e′1. e1 ⇓v λx. e′1 ⇒ ∃e′2. e2 ⇓v λx. e′2 ∧ ∀v. e′1{v/x} 'v e

′
2{v/x}

∧ ∀x, e′2. e2 ⇓v λx. e′2 ⇒ ∃e′1. e1 ⇓v λx. e′1 ∧ ∀v. e′1{v/x} 'v e
′
2{v/x}.

(5.5)

Exercise 5.3.3 Show that the identity relation {(e, e) | e ∈ Λ(∅)} is an applicative

bisimulation. Show that if S1 and S2 are applicative (bi)simulations, then so is their

composition S1 ◦ S2 = {(e1, e3) | ∃e2. e1 S1 e2 ∧ e2 S2 e3}. Deduce that .v is

a preorder (reflexive and transitive relation) and that 'v is an equivalence relation

(reflexive, symmetric and transitive relation).

Because evaluation is deterministic (Exercise 5.2.2), applicative bisimulation is the

equivalence relation generated by the preorder .v:

Proposition 5.3.4 For all e1, e2 ∈ Λ(∅), e1 'v e2 holds iff e1 .v e2 and e2 .v e1.

5.4 Congruence 7

Proof Since 'v and 'op
v are both applicative bisimulations, and hence both applicative

simulations, they are contained in the greatest one, .v. Thus e1 'v e2 implies e1 .v e2

and e2 .v e1.

Conversely, since .v satisfies property (v-Sim) and ⇓v satisfies (5.3), it follows that

.v ∩ .op
v is an applicative bisimulation and hence is contained in 'v. Thus e1 .v e2

and e2 .v e1 together imply e1 'v e2. 2

Exercise 5.3.5 Show that

(∀v ∈ V (∅). e1 ⇓v v ⇒ e2 ⇓v v) ⇒ e1 .v e2 (5.6)

[Hint: show that the union of {(e1, e2) | ∀v. e1 ⇓v v ⇒ e2 ⇓v v} with the identity

relation is an applicative simulation.]

Deduce that βv-equivalence is contained in applicative bisimilarity, that is, (λx. e)v 'v

e{v/x}.

Exercise 5.3.6 Show by example that η-equivalence is not contained in applicative

bisimilarity, in other words that e 'v λx. e x (where x /∈ fv(e)) does not always hold.

What happens if e is a λ-value?

Exercise 5.3.7 Show that λx. e1 .v λx. e2 holds iff e1{v/x} .v e2{v/x} holds for all

v ∈ V (∅).

5.4 Congruence

We noted in Exercise 5.3.3 that applicative bisimilarity is an equivalence relation. To

qualify as a reasonable notion of semantic equality for λ-terms, 'v should not only

be an equivalence relation, but also be a congruence; in other words it should also

respect the way λ-terms are constructed. There are two such constructions: formation

of application terms (e1, e2 7→ e1 e2) and formation of λ-abstractions (x, e 7→ λx. e).

The second is a variable-binding operation and to make sense of the statement that it

respects applicative bisimilarity we first have to extend 'v to a binary relation between

all λ-terms, open as well as closed. To do this we will regard the free variables in a

λ-term as implicitly λ-bound and use the property of .v noted in Exercise 5.3.7.

Definition 5.4.1 (open extension of applicative (bi)similarity) Given a finite set

of variables x = {x1, . . . , xn} ∈ ℘fin(Var) and λ-terms e, e′ ∈ Λ(x), we write

x ` e .v e
′ (5.7)

8 Howe’s method for higher-order languages

if e{v1, . . . , vn/x1, . . . , xn} .v e
′{v1, . . . , vn/x1, . . . , xn} holds for all v1, . . . , vn ∈ V (∅). Sim-

ilarly

x ` e 'v e
′ (5.8)

means e{v1, . . . , vn/x1, . . . , xn} 'v e
′{v1, . . . , vn/x1, . . . , xn} holds for all v1, . . . , vn ∈ V (∅).

Definition 5.4.2 (λ-term relations) The relations (5.7) and (5.8) are examples of

what we call a λ-term relation, by which we mean a set R of triples (x, e, e′) where

x ∈ ℘fin(Var) and e, e′ ∈ Λ(x). We will use mixfix notation and write x ` e R e′ to

indicate that (x, e, e′) ∈ R. We call a λ-term relation R symmetric if

∀x ∈ ℘fin(Var).∀e, e′ ∈ Λ(x). x ` e R e′ ⇒ x ` e′ R e, (Sym)

transitive if

∀x ∈ ℘fin(Var).∀e, e′, e′ ∈ Λ(x).

x ` e R e′ ∧ x ` e′ R e′ ⇒ x ` e R e′ (Tra)

and compatible if

∀x ∈ ℘fin(Var). x ∈ x ⇒ x ` x R x (Com1)

∀x ∈ ℘fin(Var).∀x ∈ Var − x.∀e, e′ ∈ Λ(x ∪ {x}).
x ∪ {x} ` e R e′ ⇒ x ` λx. e R λx. e′ (Com2)

∀x ∈ ℘fin(Var).∀e1, e
′
1, e2, e

′
2 ∈ Λ(x).

x ` e1 R e′1 ∧ x ` e2 R e′2 ⇒ x ` e1 e2 R e′1 e
′
2. (Com3)

Property (Com1) is a special case of reflexivity :

∀x ∈ ℘fin(Var).∀e ∈ Λ(x). x ` e R e. (Ref)

Indeed, it is not hard to see that a compatible λ-term relation has to be reflexive. We say

that R is a precongruence if it has the properties (Tra), (Com1), (Com2) and (Com3);

and we call it a congruence if it also satisfies property (Sym).

Exercise 5.4.3 Prove that every compatible λ-term relation is reflexive. Deduce that

property (Com3) implies

∀x ∈ ℘fin(Var).∀e1, e
′
1, e2 ∈ Λ(x). x ` e1 R e′1 ⇒ x ` e1 e2 R e′1 e2 (Com3L)

∀x ∈ ℘fin(Var).∀e1, e
′
1, e2 ∈ Λ(x). x ` e2 R e′2 ⇒ x ` e1 e2 R e1 e

′
2. (Com3R)

Show that if R is transitive, then (Com3L) and (Com3R) together imply (Com3).

Remark 5.4.4 (motivating Howe’s method) We will eventually prove that the open

5.4 Congruence 9

extension of applicative similarity is a precongruence relation (Theorem 5.5.5). It is il-

luminating to see how far we can get with a direct proof of this before we have to

introduce the machinery of Howe’s method. Combining Exercise 5.3.3 with the way

the open extension is defined from the relation on closed λ-terms in Definition 5.4.1, it

follows that properties (Tra), (Ref), and hence also (Com1), hold when R is .v. In the

same way, the property in Exercise 5.3.7 implies (Com2). So to complete the proof that

.v is a precongruence, we just have to prove that it has property (Com3); and for this

it is sufficient to prove the special case when x = ∅, that is, to prove

∀e1, e
′
1, e2, e

′
2 ∈ Λ(∅). e1 .v e

′
1 ∧ e2 .v e

′
2 ⇒ e1 e2 .v e

′
1 e
′
2. (∗)

Since we know that .v is a preorder, proving (∗) is equivalent to proving the following

two special cases (cf. Exercise 5.4.3).

∀e1, e
′
1 ∈ Λ(∅). e1 .v e

′
1 ⇒ ∀e2 ∈ Λ(∅). e1 e2 .v e

′
1 e2 (∗1)

∀e2, e
′
2 ∈ Λ(∅). e2 .v e

′
2 ⇒ ∀e1 ∈ Λ(∅). e1 e2 .v e1 e

′
2 (∗2)

Given the co-inductive definition of .v (Definition 5.3.1), an obvious strategy for prov-

ing these properties is to show that

S1
def
= {(e1 e2, e

′
1 e2) | e1 .v e

′
1 ∧ e2 ∈ Λ(∅)}

S2
def
= {(e1 e2, e1 e

′
2) | e1 ∈ Λ(∅) ∧ e2 .v e

′
2}

are contained in applicative simulations; for then Si is contained in the largest such,

.v, which gives (∗i). We leave the proof of this for S1 as a straightforward exercise

(Exercise 5.4.5). Proving (∗2) by the same method as in that exercise is not so easy. Let

us see why. It would suffice to show that

e2 .v e
′
2 (5.9)

e1 e2 ⇓v λx. e (5.10)

implies

∃e′. e1 e
′
2 ⇓v λx. e′ ∧ ∀v ∈ V (∅). e{v/x} .v e

′{v/x}. (†)

The syntax-directed nature of the rules (Val) and (Cbv) inductively defining ⇓v mean

that (5.10) holds because for some e3 and e4 we have

e1 ⇓v λx. e3 (5.11)

e2 ⇓v λx. e4 (5.12)

e3{λx. e4/x} ⇓v λx. e. (5.13)

10 Howe’s method for higher-order languages

Then since .v is an applicative simulation, from (5.9) and (5.12) we conclude that there

is some e′4 with

e′2 ⇓v λx. e′4 (5.14)

and ∀v. e4{v/x} .v e
′
4{v/x}, which by Exercise 5.3.7 implies

λx. e4 .v λx. e′4. (5.15)

So to prove (†) we just have to show that

∃e′. e3{λx. e′4/x} ⇓v λx. e′ ∧ ∀v. e{v/x} .v e
′{v/x}. (††)

In view of (5.13) and the fact that .v is an applicative simulation, to prove (††) we

just need to show that e3{λx. e4/x} .v e3{λx. e′4/x}. This would follow from (5.15) if we

knew that applicative similarity has the following substitution property:

∀x ∈ ℘fin(Var).∀x ∈ Var − x.∀e ∈ Λ(x ∪ {x}).∀v, v′ ∈ V (x).

x ` v .v v
′ ⇒ x ` e{v/x} .v e{v

′
/x}. (5.16)

Unfortunately the property (∗2) that we are trying to prove is very similar to this

property (consider taking e to be e1 x) and we are stuck. To get unstuck, in the next

section we use Howe’s method of constructing a relation (.v)
H

out of .v that has

property (5.16) by construction and which can be proved equal to .v via an induction

over evaluation ⇓v (the key Lemma 5.5.4).

Exercise 5.4.5 Prove property (∗1) by showing that

{(e1 e2, e
′
1 e2) | e1 .v e

′
1 ∧ e2 ∈ Λ(∅)} ∪.v

is an applicative simulation.

5.5 Howe’s construction

Given a λ-term relation R, the λ-term relation RH is inductively defined from R by

the following rules. It is an instance of what Howe calls the ‘precongruence candi-

5.5 Howe’s construction 11

date’ [How96, Sect. 3].

x ` x R e

x ` x RH e
(How1)

x ∪ {x} ` e1 RH e′1 x ` λx. e′1 R e2 x /∈ x
x ` λx. e1 RH e2

(How2)

x ` e1 RH e′1 x ` e2 RH e′2 x ` e′1 e′2 R e3

x ` e1 e2 RH e3

(How3)

We will need the following general properties of ()
H

whose proof we leave as an exercise.

Lemma 5.5.1

(i) If R is reflexive, then RH is compatible.

(ii) If R is transitive, then x ` e1 RH e2 and x ` e2 R e3 imply x ` e1 RH e3.

(iii) If R is reflexive and transitive, then x ` e1 R e2 implies x ` e1 RH e2. 2

Definition 5.5.2 (substitutivity and closure under substitution)

A λ-term relation R is called (value) substitutive if for all x ∈ ℘fin(Var), x ∈ Var − x,

e, e′ ∈ Λ(x ∪ {x}) and v, v′ ∈ V (x)

x ∪ {x} ` e R e′ ∧ x ` v R v′ ⇒ x ` e{v/x} R e′{v′/x}. (Sub)

Note that if R is also reflexive, then this implies

x ∪ {x} ` e R e′ ∧ v ∈ V (x) ⇒ x ` e{v/x} R e′{v/x}. (Cus)

We say that R is closed under value-substitution if it satisfies (Cus).

Note that because of the way the open extension of applicative similarity and bisimi-

larity are defined (Definition 5.4.1), evidently they are closed under value-substitution.

It is less clear that they are substitutive; this will follow from the coincidence of .v

with (.v)
H

that we prove below, because of the following result.

Lemma 5.5.3 If R is reflexive, transitive and closed under value-substitution, then

RH is substitutive and hence also closed under value-substitution.

Proof Property (Sub) for RH follows from property (Cus) for R by induction on the

derivation of x ∪ {x} ` e RH e′ from the rules (How1)–(How3), using Lemma 5.5.1(iii)

in case e is a variable. 2

Specialising Lemmas 5.5.1 and 5.5.3 to the caseR = .v, we now give the key property

needed to show that (.v)
H

is in fact equal to .v.

12 Howe’s method for higher-order languages

Lemma 5.5.4 (key lemma, version 1) If e1 ⇓v λx. e and ∅ ` e1 (.v)
H
e2, then

e2 ⇓v λx. e′ holds for some e′ satisfying {x} ` e (.v)
H
e′.

Proof We show that

E def
= {(e1, λx. e) | ∀e2. ∅ ` e1 (.v)

H
e2 ⇒

∃e′. e2 ⇓v λx. e′ ∧ {x} ` e (.v)
H
e′}

is closed under the two rules (Val) and (Cbv) inductively defining ⇓v.

Closure under (Val): When e1 = λx. e, for any e2 if ∅ ` λx. e (.v)
H
e2 holds, it must

have been deduced by an application of rule (How2) to

{x} ` e (.v)
H
e′1 (5.17)

λx. e′1 .v e2 (5.18)

for some e′1. Since .v is an applicative simulation, from (5.18) it follows that e2 ⇓v λx. e′

holds for some e′ with

{x} ` e′1 .v e
′. (5.19)

Applying Lemma 5.5.1(ii) to (5.17) and (5.19) gives {x} ` e (.v)
H
e′. So we do indeed

have (λx. e, λx. e) ∈ E .

Closure under (Cbv): Suppose

(e1, λx. e2), (e′1, λx. e′2), (e2{λx. e′2/x}, λx. e3) ∈ E .

We have to show that (e1 e
′
1, λx. e3) ∈ E . For any e, if ∅ ` e1 e

′
1 (.v)

H
e holds it must

have been deduced by an application of rule (How3) to

∅ ` e1 (.v)
H
e4 (5.20)

∅ ` e′1 (.v)
H
e′4 (5.21)

e4 e
′
4 .v e (5.22)

for some e4, e
′
4. Since (e1, λx. e2), (e′1, λx. e′2) ∈ E , it follows from (5.20) and (5.21) that

e4 ⇓v λx. e5 (5.23)

{x} ` e2 (.v)
H
e5 (5.24)

e′4 ⇓v λx. e′5 (5.25)

{x} ` e′2 (.v)
H
e′5

hold for some e5, e
′
5, and hence also that

∅ ` λx. e′2 (.v)
H
λx. e′5. (5.26)

5.6 Contextual equivalence 13

Now we can apply the substitutivity property of (.v)
H

(Lemma 5.5.3) to (5.24) and

(5.26) to get ∅ ` e2{λx. e′2/x} (.v)
H
e5{λx. e′5/x}. From this and the fact that (e2{λx. e′2/x}, λx. e3) ∈

E , it follows that for some e6 it is the case that

e5{λx. e′5/x} ⇓v λx. e6 (5.27)

{x} ` e3 (.v)
H
e6. (5.28)

Applying rule (Cbv) to (5.23), (5.25) and (5.27), we have that e4 e
′
4 ⇓v λx. e6. Then

since .v is an applicative simulation, from this and (5.22) we get that e ⇓v λx. e′ holds

for some e′ with

{x} ` e6 .v e
′ (5.29)

and hence also with {x} ` e3 (.v)
H
e′ (by Lemma 5.5.1(ii) on (5.28) and (5.29)).

Therefore we do indeed have (e1 e
′
1, λx. e3) ∈ E . 2

Theorem 5.5.5 (applicative bisimilarity is a congruence) The open extension of

applicative similarity is a precongruence relation and hence the open extension of ap-

plicative bisimilarity is a congruence relation.

Proof By Lemma 5.5.3, (.v)
H

is closed under value-substitution:

{x} ` e (.v)
H
e′ ⇒ ∀v ∈ V (∅). e{v/x} (.v)

H
e′{v/x}.

Therefore the key Lemma 5.5.4 implies that (.v)
H

restricted to closed λ-terms is an

applicative simulation. So it is contained in the largest one, .v:

∅ ` e1 (.v)
H
e2 ⇒ e1 .v e2.

Using closure of (.v)
H

under value-substitution once again, this lifts to open terms:

x ` e1 (.v)
H
e2 ⇒ x ` e1 .v e2.

In view of Lemma 5.5.1(iii), this means that the λ-term relations (.v)
H

and .v are

equal. Since (.v)
H

is compatible by Lemma 5.5.1(i) and since we already know that

.v is transitive, it follows that .v = (.v)
H

is a precongruence relation. 2

5.6 Contextual equivalence

One of the important consequences of Theorem 5.5.5 is that applicative bisimilarity

coincides with the standard notion of contextual equivalence for the call-by-value λ-

14 Howe’s method for higher-order languages

calculus. A λ-term context C is a syntax tree with a unique5 ‘hole’ [·]

C ∈ Con ::= [·] | λx.C | C e | eC (5.30)

and C[e] denotes the λ-term that results from filling the hole with a λ-term e:

[·][e] = e

(λx.C)[e] = λx.C[e]

(C e′)[e] = C[e] e′

(e′ C)[e] = e′ C[e].

(5.31)

We also write C[C ′] for the context resulting from replacing the occurrence of [·] in the

syntax tree C by the tree C ′.

Remark 5.6.1 (contexts considered too concrete) Note that (5.31) is a ‘captur-

ing’ form of substitution—free variables in e may become bound in C[e]; for example,

(λx.−)[x] = λx.x. This means that it does not make sense to identify contexts up to

renaming of λ-bound variables, as we do with λ-terms. For example, if x and x′ are

distinct variables, then C1 = λx. [·] and C2 = λx′. [·] are distinct contexts that give

different results when their hole is filled with x: C1[x] = λx.x 6= λx′.x = C2[x]. The

concreteness of the above notion of ‘context’ forces us to take care with the actual

names of bound variables. This might not seem so bad for the λ-calculus, because it

is syntactically so simple. However it becomes increasingly irksome if one is producing

fully formalized and machine-checked proofs, or if one is dealing with more complicated

programming languages with more complex forms of binding. Several different remedies

have been proposed for this problem of overly concrete representations of contexts. We

explain one of them in Remark 5.6.7, but postpone discussing it until we have given a

more-or-less classical development of contextual equivalence based on the above, rather

too concrete notion of context.

Continuing the ‘hygiene’ of keeping track of free variables through use of the sets

Λ(x) indexed by sets x of variables, and following [CH07, Fig. 7], let us inductively

5 In the literature one also finds treatments that use contexts with finitely many (including zero)
occurrences of the hole. While it does not affect the associated notion of contextual equivalence,
the restriction to ‘linear’ contexts that we use here makes for some technical simplifications.

5.6 Contextual equivalence 15

define subsets Con(x;x′) of contexts by the rules:

[·] ∈ Con(x;x)
(Con1)

C ∈ Con(x;x′ ∪ {x}) x /∈ x′

λx.C ∈ Con(x;x′)
(Con2)

C ∈ Con(x;x′) e ∈ Λ(x′)

C e ∈ Con(x;x′)
(Con3)

e ∈ Λ(x′) C ∈ Con(x;x′)

eC ∈ Con(x;x′)
(Con4)

For example, if x /∈ x then λx. [·] ∈ Con(x ∪ {x};x). The role in the above definition

of the double indexing over both x and x′ becomes clearer once one notes the following

properties, (5.32) and (5.33). They are easily proved, the first by induction on the

derivation of C ∈ Con(x;x′) from the rules (Con1)–(Con4), the second by induction on

the derivation of C ′ ∈ Con(x′;x′).

e ∈ Λ(x) ∧ C ∈ Con(x;x′) ⇒ C[e] ∈ Λ(x′) (5.32)

C ∈ Con(x;x′) ∧ C ′ ∈ Con(x′;x′) ⇒ C ′[C] ∈ Con(x;x′) (5.33)

In particular, the elements of Con(x; ∅) are closing contexts for λ-terms with free vari-

ables in x: if e ∈ Λ(x) and C ∈ Con(x; ∅), then C[e] ∈ Λ(∅) is a closed λ-term, which

we can consider evaluating.

Definition 5.6.2 (contextual equivalence) The contextual preorder with respect to

call-by-value evaluation is the λ-term relation given by

x ` e1 ≤v e2
def
= ∀C ∈ Con(x; ∅). C[e1]⇓v ⇒ C[e2]⇓v

where in general we write e⇓v to mean that e ⇓v v holds for some v. The λ-term relation

of contextual equivalence, x ` e1 =v e2, holds iff x ` e1 ≤v e2 and x ` e2 ≤v e1.

Exercise 5.6.3 Show that ≤v is a precongruence relation (Definition 5.4.2). [Hint: for

property (Com2), given C ∈ Con(x; ∅) consider C[λx. [·]] ∈ Con(x∪{x}; ∅); for property

(Com3), given C ∈ Con(x; ∅) consider C[e1 [·]] and C[[·] e′2] and use Exercise 5.4.3.]

Lemma 5.6.4 If x ` e1 .v e2 and C ∈ Con(x;x′), then x′ ` C[e1] .v C[e2].

Proof By induction on the derivation of C ∈ Con(x;x′) from the rules (Con1)–(Con4),

using Theorem 5.5.5. 2

16 Howe’s method for higher-order languages

Theorem 5.6.5 (applicative bisimilarity is contextual equivalence)

For all x ∈ ℘fin(Var) and e1, e2 ∈ Λ(x), x ` e1 .v e2 iff x ` e1 ≤v e2 (and hence

x ` e1 'v e2 iff x ` e1 =v e2).

Proof We first prove

x ` e1 .v e2 ⇒ x ` e1 ≤v e2. (5.34)

If x ` e1 .v e2, then for any C ∈ Con(x; ∅) by Lemma 5.6.4 we have C[e1] .v C[e2].

Since .v is an applicative bisimulation, this means in particular that C[e1]⇓v implies

C[e2]⇓v. So by definition, x ` e1 ≤v e2.

To prove the converse of (5.34), first note that it suffices to show that =v restricted to

closed λ-terms is an applicative simulation and hence contained in .v. For then, if we

have x ` e1 ≤v e2, by repeated use of the congruence property (Com2) (which we know

holds of =v from Exercise 5.6.3), we get ∅ ` λx. e1 =v λx. e2 and hence λx. e1 .v λx. e2;

but then we can use Exercise 5.3.7 to deduce that x ` e1 .v e2.

So we just have to show that {(e1, e2) | ∅ ` e1 ≤v e2} has the applicative simulation

property. If ∅ ` e1 ≤v e2 and e1 ⇓v λx. e′1, then C[e1]⇓v with C = [·], so C[e2]⇓v, that

is, e2 ⇓v λx. e′2 for some e′2. From Exercise 5.3.5 we thus have ei 'v λx. e′i and hence

by (5.34) that

∅ ` λx. e′1 =v e1 ≤v e2 =v λx. e′2.

So ∅ ` λx. e′1 ≤v λx. e′2 and hence for any v ∈ V (∅) we can use the congruence property

of ≤v (Exercise 5.6.3) to deduce that ∅ ` (λx. e′1) v ≤v (λx. e′2) v. From Exercise 5.3.5

and (5.34), we have ∅ ` (λx. e′i) v =v e
′
i{v/x} and therefore ∅ ` e′1{v/x} ≤v e

′
2{v/x}. Thus

{(e1, e2) | ∅ ` e1 ≤v e2} does indeed have property (v-Sim). 2

As a corollary of the coincidence of contextual equivalence with applicative bisimu-

lation, we have the following extensionality properties of λ-terms modulo =v.

Corollary 5.6.6 (extensionality) Given variables x = {x1, . . . , xn} and λ-terms e, e′ ∈
Λ(x), then x ` e =v e

′ iff ∅ ` λx. e =v λx. e′ iff

∀v1 . . . , vn ∈ V (∅). ∅ ` e{v1, . . . , vn/x1, . . . , xn} =v e{v1, . . . , vn/x1, . . . , xn}.

Proof Just note that these properties hold of 'v (by definition of the open extension

in Definition 5.4.1 and using Exercise 5.3.7); so we can apply Theorem 5.6.5. 2

Remark 5.6.7 (‘context free’ contextual equivalence) We noted in Remark 5.6.1

that the notion of context is unpleasantly concrete—it prevents one from working uni-

formly at the level of α-equivalence classes of syntax trees. In fact one can dispense

with contexts entirely and work instead with a co-inductive characterization of the

5.6 Contextual equivalence 17

contextual preorder and equivalence phrased in terms of λ-term relations. (This is an

instance of the ‘relational’ approach to contextual equivalence first proposed by Gor-

don [Gor98] and Lassen [Las98a, Las98b].) The contextual preorder turns out to be the

largest λ-term relation R that is both compatible (Definition 5.4.2) and adequate (for

call-by-value evaluation), which by definition means

∀e. e′ ∈ Λ(∅). ∅ ` e R e′ ⇒ (e⇓v ⇒ e′⇓v). (v-Adeq)

To see this, let CA be the collection of all compatible and adequate λ-term relations

and let

≤ca
v

def
=

⋃
CA. (5.35)

We first want to show that ≤ca
v ∈ CA and hence that ≤ca

v is the largest compatible

and adequate λ-term relation. Note that the identity relation {(x, e, e) | e ∈ Λ(x)}
is in CA; so ≤ca

v is reflexive and hence in particular satisfies compatibility property

(Com1). It is clear that properties (Com2) and (v-Adeq) are closed under taking unions

of relations, so that ≤ca
v has these properties; but the same is not true for property

(Com3). However, if R1,R2∈ CA then it is easy to see that the composition R1 ◦ R2

is also in CA; hence ≤ca
v ◦ ≤ca

v ⊆ ≤ca
v , that is, ≤ca

v is transitive. So by Exercise 5.4.3,

for (Com3) it is enough to show that ≤ca
v satisfies (Com3L) and (Com3R); and this is

straightforward, since unlike (Com3) these properties clearly are closed under taking

unions of relations.

So the largest compatible and adequate λ-term relation not only exists, but is reflexive

and transitive.

To see that ≤ca
v coincides with the contextual preorder, first note that it is immediate

from its definition that ≤v is adequate; and we noted in Exercise 5.6.3 that it is a

precongruence. So ≤v ∈ CA and hence ≤v ⊆ ≤ca
v . Since ≤ca

v is a precongruence we can

prove

x ` e1 ≤ca
v e2 ∧ C ∈ Con(x;x′) ⇒ x′ ` C[e1] ≤ca

v C[e2]

in the same way that Lemma 5.6.4 was proved. Thus

x ` e1 ≤ca
v e2 ⇒ ∀C ∈ Con(x; ∅). ∅ ` C[e1] ≤ca

v C[e2]

⇒ ∀C ∈ Con(x; ∅). C[e1]⇓v ⇒ C[e2]⇓v since ≤ca
v is adequate

⇒ x ` e1 ≤v e2.

So altogether we have that ≤ca
v is equal to ≤v.

Exercise 5.6.8 Show that =v is the largest λ-term relation that is both compatible

and bi-adequate:

∀e. e′ ∈ Λ(∅). ∅ ` e R e′ ⇒ (e⇓v ⇔ e′⇓v). (Bi-adeq)

18 Howe’s method for higher-order languages

Exercise 5.6.9 Adapt the proof of Theorem 5.6.5 to give a direct proof (that is, a

proof making no use of ≤v) of the fact that .v coincides with the relation ≤ca
v defined

in (5.35).

5.7 The transitive closure trick

We noted in Proposition 5.3.4 that because the evaluation relation ⇓v is deterministic,

applicative bisimilarity is the symmetrization of applicative similarity: 'v = .v ∩.op
v .

We used this observation in Section 5.5 to deduce that 'v is a congruence by using

Howe’s method to show that .v is a precongruence. What happens if we add features

to the λ-calculus that cause 'v to be different from .v ∩.op
v ? Can one apply Howe’s

method directly to 'v to deduce that it is a congruence in that case? Note that Howe’s

‘precongruence candidate’ construction ()
H

has an asymmetric nature: RH is obtained

from R by inductively closing under the compatibility properties (Com1)–(Com3) at

the same time composing with R on the right. (This is needed to get the proof of the

key Lemma 5.5.4 to go through.) So if we apply ()
H

to 'v we do not get a symmetric

relation, therefore it cannot coincide with 'v and hence in particular we cannot hope to

transfer the congruence properties of ('v)
H

to 'v in quite the same way that we did for

applicative similarity. However, as Howe observed [How96, Lemma 3.3], the transitive

closure of ('v)
H

is a symmetric relation and this fact is sufficient to deduce congruence

of 'v via ('v)
H

. We will illustrate this refinement of the method by adding an ‘erratic’

choice operator (⊕) to the call-by-value λ-calculus, which does indeed cause 'v to be

different from .v ∩.op
v (see Exercise 5.7.1).

Let the set Λ⊕ of λ⊕-terms and the subset V ⊕ ⊆ Λ⊕ of λ⊕-values consist of λ-terms

and λ-values (modulo α-equivalence) extended with a binary operation ⊕:

e ∈ Λ⊕ ::= v | e e | e⊕ e

v ∈ V ⊕ ::= x | λx. e
(5.36)

We write Λ⊕(x) (respectively V ⊕(x)) for the subset of λ⊕-terms (respectively λ⊕-values)

whose free variables are in the finite set x of variables. A λ⊕-term relation R is a family

of binary relations x ` () R () on Λ⊕(x), as x ranges over ℘fin(Var) (cf. Defini-

tion 5.4.2). R is a congruence if it has the properties (Sym), (Tra), (Com1)–(Com3)

and an additional compatibility property for the new term constructor:

∀x ∈ ℘fin(Var).∀e1, e
′
1, e2, e

′
2 ∈ Λ(x).

x ` e1 R e′1 ∧ x ` e2 R e′2 ⇒ x ` e1 ⊕ e2 R e′1 ⊕ e′2. (Com4)

(As before, satisfaction of (Com1)–(Com4) implies that R is reflexive; so a congruence

is in particular an equivalence relation.)

5.7 The transitive closure trick 19

We extend call-by-value evaluation to a relation ⇓v ⊆ Λ⊕(∅) × Λ⊕(∅) by adding to

(Val) and (Cbv) the two rules

ei ⇓v v

e1 ⊕ e2 ⇓v v
(i = 1, 2) (Ch)

The definitions of call-by-value applicative similarity (.v) and bisimilarity ('v) on

closed λ⊕-terms are as in Definition 5.3.1 except that Λ(∅) is replaced by the extended

set Λ⊕(∅); and these relations are extended to λ⊕-term relations as in Definition 5.4.1,

using closed λ⊕-value-substitutions.

Exercise 5.7.1 Defining

v1
def
= λx.x

v2
def
= λy. ((λx.xx) (λx.xx))

v
def
= λz. (v1 ⊕ v2)

e
def
= v ⊕ (λz. v1)⊕ (λz. v2),

show that v .v e .v v, but that v 6'v e. (Compare this with the examples in San-

giorgi [San11, Chapter6] showing the difference between trace equivalence and bisimi-

larity for labelled transition systems.)

We wish to prove that call-by-value applicative bisimilarity is a congruence for λ⊕-

terms. We can still do so using Howe’s precongruence candidate construction ()
H

,

which in this setting sends a λ⊕-term relation R to the λ⊕-term relation RH inductively

defined by the rules (How1)–(How3) from Section 5.5 together with an extra rule for

the new binary operation, ⊕:

x ` e1 RH e′1 x ` e2 RH e′2 x ` e′1 ⊕ e′2 R e3

x ` e1 ⊕ e2 RH e3

(How4)

The rule follows the same pattern as for the existing λ-calculus constructs and does not

disturb the validity of the general properties of ()
H

given in Lemmas 5.5.1 and 5.5.3.

More delicate is the analogue of the key Lemma 5.5.4, since it depends not only upon

the syntactical form of e⊕ e′, but also upon its operational semantics, as defined by the

rules (Ch).

Lemma 5.7.2 (key lemma, version 2) For all e1, λx. e, e2 ∈ Λ⊕(∅)

e1 ⇓v λx. e ∧ ∅ ` e1 ('v)
H
e2 ⇒

∃e′ ∈ Λ⊕. e2 ⇓v λx. e′ ∧ {x} ` e ('v)
H
e′. (5.37)

20 Howe’s method for higher-order languages

Proof This can be proved by showing that

E def
= {(e1, λx. e) | ∀e2. ∅ ` e1 ('v)

H
e2 ⇒

∃e′. e2 ⇓v λx. e′ ∧ {x} ` e ('v)
H
e′}

is closed under the rules (Val), (Cbv) and (Ch) inductively defining ⇓v for λ⊕-terms.

The proof of closure under (Val) and (Cbv) is exactly as in the proof of Lemma 5.5.4.

We give the proof of closure under the i = 1 case of (Ch), the argument for the other

case being symmetric.

So suppose (e1, λx. e) ∈ E . We have to show for any e′1 ∈ Λ⊕(∅) that (e1⊕e′1, λx. e) ∈
E . For any e2, if ∅ ` e1⊕e′1 ('v)

H
e2 holds it must have been deduced by an application

of rule (How4) to

∅ ` e1 ('v)
H
e3 (5.38)

∅ ` e′1 ('v)
H
e′3 (5.39)

e3 ⊕ e′3 'v e2 (5.40)

for some e3, e
′
3. Since (e1, λx. e) ∈ E , it follows from (5.38) that for some e′ it is the case

that

e3 ⇓v λx. e′ (5.41)

x ` e ('v)
H
e′. (5.42)

Applying (Ch) to (5.41), we get e3⊕e′3 ⇓v λx. e′. Since 'v is an applicative bisimulation,

it follows from this and (5.40) that

e2 ⇓v λx. e′ (5.43)

x ` e′ 'v e
′. (5.44)

Applying Lemma 5.5.1(ii) to (5.42) and (5.44), we get x ` e ('v)
H
e′. Therefore we do

indeed have (e1 ⊕ e′1, λx. e) ∈ E . 2

The lemma implies that ('v)
H

is an applicative simulation; but to get the applicative

bisimulation property we have to move to its transitive closure.

Definition 5.7.3 (transitive closure) The transitive closure of a λ⊕-term relation

R, is the λ⊕-term relation R+ inductively defined by the rules

x ` e R e′

x ` e R+ e′
x ` e R+ e′ x ` e′ R+ e′

x ` e R+ e′
(TC)

Exercise 5.7.4 Show that if R is compatible, then so is R+. Show that if R is closed

under value-substitution, then so is R+.

5.8 CIU-equivalence 21

Lemma 5.7.5 If a λ⊕-term relation R is an equivalence relation, then so is (RH)+.

Proof Being a transitive closure, (RH)+ is of course transitive; and since R is reflexive,

by Lemma 5.5.1(i) RH is reflexive and hence so is (RH)+. So the real issue is the

symmetry property. To prove x ` e (RH)+ e′ ⇒ x ` e′ (RH)+ e, it suffices to prove

x ` e RH e′ ⇒ x ` e′ (RH)+ e (5.45)

and then argue by induction on the derivation of x ` e (RH)+ e′ from the rules (TC).

To prove (5.45), one argues by induction on the derivation of x ` e RH e′ from the

rules (How1)–(How4), using Lemma 5.5.1(iii). In addition to that lemma, for closure

under (How2)–(How4) one has to use the fact that (RH)+ satisfies (Com2)–(Com4)

respectively, which follows from Lemma 5.5.1(i) and Exercise 5.7.4. 2

Theorem 5.7.6 Call-by-value applicative bisimilarity is a congruence relation for λ⊕-

terms.

Proof We show that 'v is equal to (('v)
H

)+. The former is an equivalence relation

and the latter is a compatible λ⊕-term relation by Lemma 5.5.1(i) and Exercise 5.7.4;

so altogether 'v = (('v)
H

)+ is a congruence relation.

We have 'v ⊆ ('v)
H ⊆ (('v)

H
)+ by Lemma 5.5.1(iii) and by definition of ()+. For

the reverse inclusion, since (('v)
H

)+ is closed under value-substitution (Lemma 5.5.3

and Exercise 5.7.4), it suffices to show that its restriction to closed λ⊕-terms is a call-

by-value applicative bisimulation. From Lemma 5.7.2 we get

e1 ⇓v λx. e ∧ ∅ ` e1 ('v)
H
e2 ⇒

∃e′ ∈ Λ⊕. e2 ⇓v λx. e′ ∧ ∀e′ ∈ Λ⊕(∅). ∅ ` e{e′/x} (('v)
H

)+ e′{e′/x}

(using the fact that (('v)
H

)+ is closed under value-substitution and contains 'v
H).

Therefore

e1 ⇓v λx. e ∧ ∅ ` e1 (('v)
H

)+ e2 ⇒
∃e′ ∈ Λ⊕. e2 ⇓v λx. e′ ∧ ∀e′ ∈ Λ⊕(∅). ∅ ` e{e′/x} (('v)

H
)+ e′{e′/x}.

So ∅ ` () (('v)
H

)+ () is an applicative simulation; and since by Lemma 5.7.5 it is a

symmetric relation, it is in fact an applicative bisimulation, as required. 2

5.8 CIU-equivalence

Howe’s method has been applied most often in the literature to prove congruence prop-

erties of various kinds of bisimilarity. It is less well known that it also provides a useful

22 Howe’s method for higher-order languages

method for proving congruence of ‘CIU’ equivalences. This form of equivalence was

introduced by Mason and Talcott in their work on contextual equivalence of impure

functional programs [MT91, MT92], but is prefigured by Milner’s Context Lemma for

contextual equivalence for the pure functional language PCF [Mil77]. In both cases

the form of program equivalence of primary concern is the kind studied in Section 5.6,

namely contextual equivalence. The quantification over all contexts that occurs in its

definition (recall Definition 5.6.2) makes it hard to prove either specific instances of,

or general properties of contextual equivalence. Therefore one seeks alternative char-

acterizations of contextual equivalence that make such tasks easier. One approach is

to prove a ‘context lemma’ to the effect that quantification over all contexts can be

replaced by quantification over a restricted class of contexts without affecting the asso-

ciated contextual equivalence. As we now explain, the coincidence of CIU-equivalence

with contextual equivalence is exactly such a result.

We take the acronym ‘CIU’ to stand for a permutation of ‘U ses of C losed I nstantiations’:

the ‘closed instantiations’ part refers to the fact that CIU-equivalence is first defined on

closed terms and then extended to open ones via closing substitutions (just as for ap-

plicative bisimulation in Definition 5.4.1); the ‘uses’ part refers to the fact that closed

terms are identified when they have the same evaluation behaviour in any context

that ‘uses’ its hole, that is, in any Felleisen-style evaluation context [FH92]. Thus CIU-

equivalence is a form of contextual equivalence in which restrictions are placed upon the

kind of contexts in which operational behaviour of program phrases is observed. The re-

strictions make it easier to establish some properties of CIU-equivalence compared with

contextual equivalence itself, for which there are no restrictions upon the contexts. Once

one has proved that CIU-equivalence is a congruence, it is straightforward to see that it

actually coincides with contextual equivalence. Therefore the notion of CIU-equivalence

is really a means of establishing properties of contextual equivalence, namely the ones

that stem from the reduction properties of terms, such as those in Exercise 5.8.5.

We illustrate these ideas in this section by defining CIU-equivalence for call-by-value

λ-calculus with erratic choice (⊕), using Howe’s method to prove that it is a congruence

and hence that it coincides with contextual equivalence.

We will adopt the more abstract, relational approach to contextual equivalence out-

lined in Remark 5.6.7: the contextual preorder ≤v for the call-by-value λ⊕-calculus is the

largest λ⊕-term relation that is both compatible (that is, satisfies (Com1)–(Com4)) and

adequate (that is, satisfies (v-Adeq)). At the same time, rather than using Felleisen’s

notion of ‘evaluation context’, which in this case would be

E ::= [·] | E e | v E ,
we will use an ‘inside out’ representation of such contexts as a stack of basic evaluation

frames (which in this case are [·]e and v[·]). Such a representation of evaluation con-

texts yields a convenient, structurally inductive characterization of the ‘may evaluate

5.8 CIU-equivalence 23

to some value in call-by-value’ property used in the definition of contextual equivalence

(Lemma 5.8.3); see [Pit02, Section 4] for a more detailed explanation of this point.

Definition 5.8.1 (frame stacks) The set Stk⊕ of call-by-value frame stacks is given

by

s ∈ Stk⊕ ::= nil | [·]e :: s | v[·] :: s. (5.46)

As for terms and values, we write Stk⊕(x) for the subset of frame stacks whose free

variables are in the finite set x. Given s ∈ Stk⊕(x) and e ∈ Λ⊕(x), we get a term

Es[e] ∈ Λ⊕(x), defined by: 
Enil[e]

def
= e

E[·]e′::s[e]
def
= Es[e e

′]

Ev[·]::s[e]
def
= Es[v e].

(5.47)

Definition 5.8.2 (transition and may-termination) The binary relation of call-

by-value transition between pairs (s , e) of frames stacks and closed λ⊕-terms

(s , e)→v (s′ , e′)

is defined by cases as follows:

((λx. e)[·] :: s , v)→v (s , e{v/x}) (→v1)

([·]e :: s , v)→v (v[·] :: s , e) (→v2)

(s , e e′)→v ([·]e′ :: s , e) (→v3)

(s , e1 ⊕ e2)→v (s , ei) for i = 1, 2. (→v4)

We write (s , e)↓(n)
v if for some closed value v ∈ V ⊕(∅) there exists a sequence of

transitions (s , e)→v · · · →v (nil , v) of length less than or equal to n; and we write

(s , e)↓v and say that (s , e) may terminate if (s , e)↓(n)
v holds for some n ≥ 0.

The relationship between this termination relation and ‘may evaluate to some value

in call-by-value’, e⇓v
def
= ∃v. e ⇓v v, is as follows.

Lemma 5.8.3 For all closed frame stacks s ∈ Stk⊕(∅) and closed λ⊕-terms e ∈ Λ⊕(∅),
(s , e)↓v iff Es[e]⇓v. In particular e⇓v holds iff (nil , e)↓v.

Proof The result can be deduced from the following properties of transition, evaluation

and termination, where→∗v stands for the reflexive-transitive closure of→v and ()@ ()

24 Howe’s method for higher-order languages

stands for the operation of appending two lists.

(s′ , Es[e])→∗v (s @ s′ , e) (5.48)

(s′ , Es[e])↓v ⇒ (s @ s′ , e)↓v (5.49)

e ⇓v v ⇒ (s , e)→∗v (s , v) (5.50)

(s , e)↓(n)
v ⇒ ∃v. e ⇓v v ∧ (s , v)↓(n)

v . (5.51)

Properties (5.48) and (5.49) are proved by induction on the length of the list s; (5.50)

by induction on the derivation of e ⇓v v; and (5.51) by induction on n (and then by

cases according to the structure of e).

Therefore if (s , e)↓v, then (nil , Es[e])↓v by (5.48) and hence Es[e]⇓v by (5.51).

Conversely, if Es[e] ⇓v v, then (nil ,Es[e])↓v by (5.50) and hence (s , e)↓v by (5.49).

2

Definition 5.8.4 (CIU-equivalence) Given e, e′ ∈ Λ⊕(∅), we define

e ≤ciu
v e′

def
= ∀s ∈ Stk⊕(∅). (s , e)↓v ⇒ (s , e′)↓v.

This is extended to a λ⊕-term relation, called the (call-by-value) CIU-preorder, via

closing value-substitutions:

x ` e ≤ciu
v e′

def
= ∀v1, . . . , vn ∈ V ⊕(∅).

e{v1, . . . , vn/x1, . . . , xn} ≤ciu
v e′{v1, . . . , vn/x1, . . . , xn}

(where x = {x1, . . . , xn}). CIU-equivalence is the symmetrization of this relation:

x ` e =ciu
v e′

def
= x ` e ≤ciu

v e′ ∧ x ` e′ ≤ciu
v e′.

It is clear from its definition that the λ⊕-term relation ≤ciu
v is a preorder (reflexive and

transitive) and hence that =ciu
v is an equivalence relation.

Exercise 5.8.5 Show that βv-equivalence holds up to =ciu
v :

x ` (λx. e) v =ciu
v e{v/x}.

Show that e1⊕e2 is the least upper bound of e1 and e2 with respect to the CIU-preorder,

≤ciu
v .

We will use Howe’s method to show that ≤ciu
v is a compatible λ⊕-term relation and

deduce that it coincides with the contextual preorder (and hence that =ciu
v coincides

with contextual equivalence). As for previous applications of Howe’s method, we know

that (≤ciu
v)

H
is a compatible λ⊕-term relation containing ≤ciu

v (Lemma 5.5.1). So for

compatibility of ≤ciu
v , we just need to show (≤ciu

v)
H⊆ ≤ciu

v . Since ≤ciu
v is defined on

5.8 CIU-equivalence 25

open terms by taking closing value-substitutions, both it and (≤ciu
v)

H
are closed under

value-substitution (Lemma 5.5.3); so it suffices to show for closed λ⊕-terms that

∅ ` e (≤ciu
v)

H
e′ ⇒ e ≤ciu

v e′

that is,

∅ ` e (≤ciu
v)

H
e′ ∧ (s , e)↓v ⇒ (s , e′)↓v.

We do this by proving the following analogue of the key Lemma 5.5.4. It uses an

extension of the Howe precongruence candidate construction ()
H

to (closed) frame

stacks: given a λ⊕-term relation R, the relation s RH s′ is inductively defined by:

nil RH nil

∅ ` e RH e′ s RH s′

[·]e :: s RH [·]e′ :: s′

{x} ` e RH e′ s RH s′

(λx. e)[·] :: s RH (λx. e′)[·] :: s′

(How-Stk)

Lemma 5.8.6 (key lemma, version 3)

∀s, e, s′, e′. s (≤ciu
v)

H
s′ ∧ ∅ ` e (≤ciu

v)
H
e′ ∧ (s , e)↓(n)

v ⇒ (s′ , e′)↓v (5.52)

Proof The proof is by induction on n. The base case n = 0 is straightforward, so we

concentrate on the induction step. Assume (5.52) holds and that

s1 (≤ciu
v)

H
s′ (5.53)

∅ ` e1 (≤ciu
v)

H
e′ (5.54)

(s1 , e1)→v (s2 , e2) (5.55)

(s2 , e2)↓(n)
v (5.56)

We have to show that (s′ ,e′)↓v and do so by analysing (5.55) against the four possible

cases (→v1)–(→v4) in the definition of the transition relation.

Case (→v1): So s1 = (λx. e)[·] :: s2, e1 = λx. e′1 and e2 = e{λx. e′1/x}, for some x, e

and e′1. Thus (5.53) must have been deduced by applying (Howe-Stk) to

{x} ` e (≤ciu
v)

H
e′ (5.57)

s2 (≤ciu
v)

H
s′2 (5.58)

where (λx. e′)[·] :: s′2 = s′. Since e1 = λx. e′1, (5.54) must have been deduced by an

application of (How2) to

{x} ` e′1 (≤ciu
v)

H
e′1 (5.59)

λx. e′1 ≤ciu
v e′ (5.60)

26 Howe’s method for higher-order languages

for some e′1. From Lemma 5.5.3 we have that that (≤ciu
v)

H
is substitutive; so since (5.59)

implies ∅ ` λx. e′1 (≤ciu
v)

H
λx. e′1, from this and (5.57) we get ∅ ` e{λx. e′1/x} (≤ciu

v)
H

e′{λx. e′1/x}, that is, ∅ ` e2 (≤ciu
v)

H
e′{λx. e′1/x}. Applying the induction hypothesis

(5.52) to this, (5.58) and (5.56), gives (s′2 , e
′{λx. e′1/x})↓v and hence also ((λx. e′)[·] ::

s′2 , λx. e′1)↓v. From this and (5.60) we get ((λx. e′)[·] :: s′2 , e′)↓v. In other words

(s′ , e′)↓v, as required for the induction step.

Case (→v2): So s1 = [·]e2 :: s, e1 = λx. e′1 and s2 = (λx. e′1)[·] :: s, for some s, x and

e′1. Thus (5.53) must have been deduced by applying (Howe-Stk) to

s (≤ciu
v)

H
s′2 (5.61)

∅ ` e2 (≤ciu
v)

H
e′2 (5.62)

(5.63)

where [·]e′2::s′2 = s′. Since e1 = λx. e′1, (5.54) must have been deduced by an application

of (How2) to

{x} ` e′1 (≤ciu
v)

H
e′1 (5.64)

λx. e′1 ≤ciu
v e′ (5.65)

for some e′1. By (How-Stk) on (5.61) and (5.64), we get s2 (≤ciu
v)

H
(λx. e′1)[·] :: s′2.

Applying the induction hypothesis (5.52) to this, (5.62) and (5.56) gives ((λx. e′1)[·]::s′2,
e′2)↓v and hence also ([·]e′2::s′2,λx. e′1)↓v. From this and (5.65) we get ([·]e′2::s′2,e′)↓v.

In other words (s′ , e′)↓v, as required for the induction step.

Case (→v3): So e1 = e2 e and s2 = [·]e :: s1, for some e. Thus (5.54) must have been

deduced by applying (How3) to

∅ ` e2 (≤ciu
v)

H
e′2 (5.66)

∅ ` e (≤ciu
v)

H
e′ (5.67)

e′2 e
′ ≤ciu

v e′ (5.68)

for some e′2 and e′. Applying (How-Stk) to (5.67) and (5.53) we get s2 (≤ciu
v)

H
[·]e′ ::s′.

Applying the induction hypothesis (5.52) to this, (5.66) and (5.56) gives ([·]e′::s′,e′2)↓v
and hence also (s′ , e′2 e

′)↓v. From this and (5.68) we get (s′ , e′)↓v, as required for the

induction step.

Case (→v4): We treat the i = 1 subcase of (→v4), the argument for the i = 2 subcase

being symmetric. So s1 = s2 and e1 = e2 ⊕ e, for some e. Thus (5.54) must have been

5.8 CIU-equivalence 27

deduced by applying (How4) to

∅ ` e2 (≤ciu
v)

H
e′2 (5.69)

∅ ` e (≤ciu
v)

H
e′

e′2 ⊕ e′ ≤ciu
v e′ (5.70)

for some e′2 and e′. Since s1 = s2, we can apply the induction hypothesis (5.52) to (5.53),

(5.69) and (5.56) to conclude that (s′ , e′2)↓v and hence also that (s′ , e′2⊕ e′)↓v. From

this and (5.70) we get (s′ , e′)↓v, as required for the induction step. 2

Theorem 5.8.7 (CIU-equivalence is contextual equivalence) For all x ∈ ℘fin(Var)

and e1, e2 ∈ Λ⊕(x), x ` e1 ≤ciu
v e2 iff x ` e1 ≤v e2 (and hence x ` e1 =ciu

v e2 iff

x ` e1 =v e2).

Proof Since ≤ciu
v is reflexive, so is the λ⊕-term relation (≤ciu

v)
H

and hence so is its

extension to closed frame stacks. So we can take s = s′ in Lemma 5.8.6 and conclude

that ∅ ` e (≤ciu
v)

H
e′ ⇒ e ≤ciu

v e′. As we remarked before the lemma, this is enough

to show that (≤ciu
v)

H
= ≤ciu

v and hence that ≤ciu
v is compatible. It is immediate from

Lemma 5.8.3 that it satisfies the adequacy property (v-Adeq) from Remark 5.6.7. So

≤ciu
v is contained in the largest compatible adequate λ⊕-term relation:

x ` e ≤ciu
v e′ ⇒ x ` e ≤v e

′. (5.71)

To prove the converse of this, first note that since the contextual preorder is compatible,

if ∅ ` e ≤v e
′ then ∅ ` Es[e] ≤v Es[e

′] (by induction on the length of the list s, using

(5.47)); hence by adequacy of ≤v and Lemma 5.8.3 we have

∅ ` e ≤v e
′ ⇒ ∅ ` e ≤ciu

v e′.

So if x ` e ≤v e′, then by compatibility of ≤v we have ∅ ` λx. e ≤v λx. e′ and

hence also ∅ ` λx. e ≤ciu
v λx. e′. Then supposing x = {x1, . . . , xn}, for any closed

values v1, . . . , vn, we can use the compatibility of ≤ciu
v (established in the first part

of this proof) together with the validity of βv-equivalence (Exercise 5.8.5) to get ∅ `
e{v1, . . . , vn/x1, . . . , xn} ≤ciu

v e′{v1, . . . , vn/x1, . . . , xn}. Therefore we do indeed have that

x ` e ≤v e
′ implies x ` e ≤ciu

v e′. 2

Remark 5.8.8 Theorem 5.8.7 serves to establish some basic properties of contextual

equivalence for the call-by-value λ⊕-calculus (such as βv-equivalence, via Exercise 5.8.5).

28 Howe’s method for higher-order languages

Nevertheless, in this call-by-value setting its usefulness is somewhat limited.6 This is

because of the presence in frame stacks of evaluation frames of the form (λx. e)[·].
For closed values v we have (λx. e)v⇓v iff e{v/x}⇓v; so testing may-termination with

respect to such evaluation frames is essentially the same as testing may-termination

in an arbitrary context. In the call-by-name setting the CIU Theorem gives a more

useful characterization of contextual equivalence; see Example 5.9.1. Nevertheless, such

‘context lemmas’ cannot help us with deeper properties that a contextual equivalence

may have (such as the extensionality and representation independence results considered

in [Pit02]), where bisimilarities, logical relations and related notions come into their own.

However, the weakness of CIU Theorems is also their strength; because they only give

a weak characterization of contextual equivalence, they seem to hold (and are relatively

easy to prove via Howe’s method) in the presence of a very wide range of programming

language features where other more subtle analyses are not easily available or are more

troublesome to develop; see [PS08, Appendix A], for example.

5.9 Call-by-name equivalences

In this section we consider briefly the call-by-name version of the results described so far.

Apart from changing the evaluation relation and using arbitrary substitutions instead

of value-substitutions, the essential features of Howe’s method for proving congruence

results remains the same.

Syntax. We will use the λ⊕-calculus from Section 5.7, that is, the untyped λ-calculus

extended with erratic choice, ⊕. Recall from there that a λ⊕-term relation is compatible

if it satisfies (Com1)–(Com4); is a precongruence if it is compatible and satisfies (Tra);

and is a congruence if it is a precongruence and satisfies (Sym). Howe’s ‘precongruence

candidate’ construction is similarly unchanged: it sends a λ⊕-term relation R to the

λ⊕-term relation RH inductively defined by rules (How1)–(How4).

Operational semantics. Call-by-name evaluation of closed λ⊕-terms is the binary

relation ⇓n ⊆ Λ⊕(∅)× V ⊕(∅) inductively defined by the rules

6 In fact the properties of =v for this calculus are rather subtle. For example, it is possible to show
that .v ∩ .op

v is strictly contained in =v: the untyped nature of the calculus means there are
expressions with unbounded non-deterministic behaviour (via the usual encoding of fixpoint
recursion and arithmetic), thereby allowing one to encode Lassen’s example separating mutual
similarity from contextual equivalence [Las98b, pp 72 and 90].

5.9 Call-by-name equivalences 29

v ⇓n v
(Val)

e1 ⇓n λx. e e{e2/x} ⇓n v

e1 e2 ⇓n v
(Cbn)

ei ⇓n v

e1 ⊕ e2 ⇓n v
(i=1,2) (Ch)

The call-by-name transition relation, (s , e)→n (s′ , e′), is given by

([·]e′ :: s , λx. e)→n (s , e{e′/x}) (→n1)

(s , e e′)→n ([·]e′ :: s , e) (→n2)

(s , e1 ⊕ e2)→n (s , ei) for i = 1, 2 (→n3)

where now s ranges over call-by-name frame stacks

s ::= nil | [·]e :: s. (5.72)

Defining

e⇓n
def
= ∃v ∈ V ⊕(∅). e ⇓n v (5.73)

(s , e)↓n
def
= ∃v ∈ V ⊕(∅). (s , e)→n · · · →n (nil , v) (5.74)

the analogue of Lemma 5.8.3 holds and in particular we have

e⇓n ⇔ (nil , e)↓n. (5.75)

Applicative (bi)similarity. A relation S ⊆ Λ⊕(∅)×Λ⊕(∅) is a call-by-name applica-

tive simulation if for all e1, e2 ∈ Λ⊕(∅), e1 S e2 implies

e1 ⇓n λx. e′1 ⇒ ∃e′2. e2 ⇓n λx. e′2 ∧ ∀e ∈ Λ⊕(∅). e′1{e/x} S e′2{e/x}. (n-Sim)

We write .n for the largest such relation and call it call-by-name applicative similarity.

A relation B ⊆ Λ⊕(∅)×Λ⊕(∅) is a call-by-name applicative bisimulation if both B and

its reciprocal Bop are call-by-name applicative simulations. We write 'n for the largest

such relation and call it call-by-name applicative bisimilarity. We extend .n and 'n to

λ⊕-term relations via closing substitutions:

x ` e .n e
′ def

= ∀e1, . . . , en ∈ Λ⊕(∅).
e{e1, . . . , en/x1, . . . , xn} .n e{e1, . . . , en/x1, . . . , xn}

(5.76)

x ` e 'n e
′ def

= ∀e1, . . . , en ∈ Λ⊕(∅).
e{e1, . . . , en/x1, . . . , xn} 'n e{e1, . . . , en/x1, . . . , xn}

(5.77)

30 Howe’s method for higher-order languages

(where x = {x1, . . . , xn}).
With these definitions, the proof that .n is a precongruence and that 'n is a congru-

ence proceeds as before, by using Howe’s method to show that these λ⊕-term relations

are compatible. For R = .n or R = 'n one proves the key lemma

e1 ⇓n λx. e ∧ ∅ ` e1 RH e2 ⇒ ∃e′. e2 ⇓n λx. e′ ∧ {x} ` e RH e′ (5.78)

by induction on the derivation of e1 ⇓n λx. e. In case R = .n, this gives .n = (.n)
H

and so .n inherits the compatibility property from (.n)
H

. In case R = 'n, one uses

the transitive closure trick from Section 5.7 to deduce from (5.78) that 'n = ((.n)
H

)+

and so 'n inherits the compatibility property from (('n)
H

)+.

Contextual equivalence. Taking the relational approach outlined in Remark 5.6.7,

we can define the call-by-name contextual preorder, =n, to be the largest λ⊕-term rela-

tion R that is both compatible and adequate for call-by-name evaluation:

∀e. e′ ∈ Λ⊕(∅). ∅ ` e R e′ ⇒ (e⇓n ⇒ e′⇓n) (n-Adeq)

(with the proviso that the existence of a largest such relation is not immediately obvi-

ous, but can be deduced as in the remark). Call-by-name contextual equivalence is the

symmetrization of this preorder: =n
def
= ≤n ∩ ≤op

n .

CIU-equivalence. Two closed λ⊕-terms are in the call-by-name CIU-preorder, e ≤ciu
n

e′, if for all call-by-name frame stacks s we have that (s, e) ↓n implies (s, e′) ↓n. This

is extended to a λ⊕-term relation via closing substitutions:

x ` e ≤ciu
n e′

def
= ∀e1, . . . , en ∈ Λ⊕(∅).

e{e1, . . . , en/x1, . . . , xn} ≤ciu
n e′{e1, . . . , en/x1, . . . , xn}

(where x = {x1, . . . , xn}). Call-by-name CIU-equivalence is the symmetrization of this

relation: =ciu
n

def
= ≤ciu

n ∩ (≤ciu
n)op .

The proof that ≤ciu
n is compatible is via the key lemma

∀s, e, s′, e′. s (≤ciu
n)

H
s′ ∧ ∅ ` e (≤ciu

n)
H
e′ ∧ (s , e)↓(n)

n ⇒ (s′ , e′)↓n (5.79)

which, like Lemma 5.8.6, is proved by induction on the number n of steps of transition

in (s, e)↓(n)
n and then by cases on the definition of the call-by-name transition relation

→n.

Compatibility of ≤ciu
n gives the call-by-name CIU-theorem:

≤ciu
n = ≤n and =ciu

n = =n (5.80)

as in the proof of Theorem 5.8.7, except that one uses validity of β-equivalence

x ` (λx. e)e′ =ciu
n e{e′/x} (5.81)

5.9 Call-by-name equivalences 31

rather than βv-equivalence. Because call-by-name frame stacks have a rather simple

form (they are just a list of closed terms waiting to be applied as arguments for a

function), this CIU-theorem is more useful than the call-by-value version. The following

example illustrates this.

Example 5.9.1 It is not hard to see that λx1.λx2. (x1 ⊕ x2) 6.n (λx1.λx2.x1) ⊕
(λx1.λx2.x2). However, it is the case that

λx1.λx2. (x1 ⊕ x2) ≤n (λx1.λx2.x1)⊕ (λx1.λx2.x2) (5.82)

(indeed the two terms are contextually equivalent). This can be shown by appealing to

the CIU-theorem and checking that

(s , λx1.λx2. (x1 ⊕ x2)) ↓n ⇒ (s , (λx1.λx2.x1)⊕ (λx1.λx2.x2)) ↓n (5.83)

holds for all call-by-name frame stacks s. For if s = nil or s = [·]e :: nil, then the

right-hand side of the implication in (5.83) holds. Whereas if s = [·]e1 :: [·]e2 :: s
′ is a

frame stack of length two or more, then the first three transitions of each configuration

are

(s , λx1.λx2. (x1 ⊕ x2))→n · →n (s′ , e1 ⊕ e2)→n (s′ , ei)

(s , (λx1.λx2.x1)⊕ (λx1.λx2.x2))→n (s , λx1.λx2.xi)→n · →n (s′ , ei)

for i = 1, 2; and hence

([·]e1 :: [·]e2 :: s
′ , λx1.λx2. (x1 ⊕ x2)) ↓n

⇒ (s′ , e1) ↓n ∨ (s′ , e2) ↓n
⇒ ([·]e1 :: [·]e2 :: s

′ , (λx1.λx2.x1)⊕ (λx1.λx2.x2)) ↓n.

Remark 5.9.2 The relationship between the various call-by-name equivalences con-

sidered in this section is:

('n) $ (.n ∩.op
n) $ (=n) = (=ciu

n).

The first inclusion is a consequence of the definition of applicative (bi)similarity; it is

proper because of Example 5.7.1 (which works the same for call-by-name as for call-

by-value). The second inclusion is a corollary of the compatibility property for .n; and

Example 5.9.1 shows that it is strict.

Exercise 5.9.3 Show that unlike for call-by-name contextual equivalence, the terms

λx1.λx2. (x1⊕x2) and (λx1.λx2.x1)⊕ (λx1.λx2.x2) are not call-by-value contextually

equivalent. [Hint: consider the call-by-value evaluation behaviour of t(λx1.λx2. (x1⊕x2))

and t((λx1.λx2.x1) ⊕ (λx1.λx2.x2)), where t
def
= λz. z z v2 v2 v1 v1 with v1 and v2 as

in Example 5.7.1.]

32 Howe’s method for higher-order languages

5.10 Summary

Having seen Howe’s method in action in a few different settings, let us summarize what

it involves.

(1). One has a notion R of program equivalence or preordering that one wishes to show

is compatible with the constructs of the programming language:

P1 R P2 ⇒ C[P1] R C[P2].

Higher-order features of the language make a direct proof difficult, often because any

proof of compatibility requires a proof of a closely related substitutivity property

P1 R P2 ⇒ P{P1/x} R P{P2/x}

(maybe with some restriction as to what P1 and P2 range over).

(2). Howe’s precongruence candidate construction builds a relation RH that is easily seen

to have the required compatibility and substitutivity properties. In the case when

R is a preorder, we get the desired properties of R by showing R = RH . In the

case when R is an equivalence, we get the desired properties of R by showing that

it is equal to the transitive closure (RH)+ of the precongruence candidate. (Use of

transitive closure overcomes the inherent asymmetry in the definition of RH .)

(3). The key step in proving R = RH or R = (RH)+ is to show that RH is contained

in R. This involves a delicate proof by induction over the operational semantics of

programs.

5.11 Assessment

Howe’s method was originally developed to prove congruence properties of bisimilarities

for untyped functional languages. The method has since been successfully applied to

bisimilarities for higher-order languages with types [Gor95, Pit97b], objects [Gor98],

local state [JR99] and concurrent communication [FHJ98, Bal98, GH05].

The transfer of the method from functions to process calculi has highlighted a couple

of drawbacks of Howe’s method, the first more important than the second.

First, the operational semantics of processes is usually specified in terms of transitions

labelled with actions, rather than in terms of evaluation to canonical form. Evaluation-

based applicative bisimilarities correspond to transition-based delay bisimilarities in

which externally observable actions are matched by actions preceded by a number of

internal (‘silent’) actions; see [San11, Chapter 4]. Howe’s method works well for proving

congruence properties for such delay bisimilarities; but it does not appear to work for the

more common weak bisimilarities in which externally observable actions are matched by

actions both preceded and followed by a number of internal actions. For these reasons

5.11 Assessment 33

Jeffrey and Rathke [JR00] advocate replacing Howe’s method with the use of Sangiorgi’s

trigger semantics from the higher-order π-calculus [San96]; see also [JR05, Appendix A].

Another more recent approach uses the notion of environment bisimulation introduced

by Sangiorgi, Kobayashi and Sumii [SKS07, Sum09], who show how to obtain congruence

(and ‘bisimilarity up to’) results for higher-order languages without the need to invoke

Howe’s method.

Secondly, the induction proof in step (3) of the method (that is, ‘key lemmas’ like

Lemma 5.7.2) relies heavily on the syntax-directed nature of the definition of the precon-

gruence candidate RH ; this does not interact well with a quotient by a structural con-

gruence that sometimes forms part of the operational semantics of processes; see [PR98],

for example.

Despite these caveats, Howe’s method is unusually robust compared with many tech-

niques based on operational semantics, witnessed by the fact that it can be applied to

prove congruence properties for a variety of different forms of program equivalence. We

believe it deserves a place in the semanticist’s tool kit.

References

[Abr90] S. Abramsky. The lazy λ-calculus. In D. A. Turner, editor, Research Topics in
Functional Programming, chapter 4, pages 65–117. Addison Wesley, 1990.

[Abr91] Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51:1–77, 1991.

[Bal98] M. Baldamus. Semantics and Logic of Higher-Order Prosesses: Characterizing Late
Context Bisimulation. PhD thesis, Fachbereich 13 — Informatik, Technishen Univer-
sität Berlin, 1998.

[CH07] K. Crary and R. Harper. Syntactic logical relations for polymorphic and recursive
types. In L. Cardelli, M. Fiore, and G. Winskel, editors, Computation, Meaning
and Logic, Articles dedicated to Gordon Plotkin, volume 172 of Electronic Notes in
Theoretical Computer Science, pages 259–299. Elsevier, 2007.

[FH92] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103:235–271, 1992.

[FHJ98] W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation for core
CML. J. Functional Programming, 8(5):447–491, September 1998.

[GH05] J. C. Godskesen and T. Hildebrandt. Extending Howe’s method to early bisimu-
lations for typed mobile embedded resources with local names. In FSTTCS 2005:
Foundations of Software Technology and Theoretical Computer Science 25th Inter-
national Conference, Hyderabad, India, December 15–18, 2005. Proceedings, volume
3821 of Lecture Notes in Computer Science, pages 140–151. Springer, 2005.

[Gor95] A. D. Gordon. Bisimilarity as a theory of functional programming. In Eleventh Con-
ference on the Mathematical Foundations of Programming Semantics, New Orleans,
1995, volume 1 of Electronic Notes in Theoretical Computer Science. Elsevier, 1995.

[Gor98] A. D. Gordon. Operational equivalences for untyped and polymorphic object calculi.
In Gordon and Pitts [GP98], pages 9–54.

[GP98] A. D. Gordon and A. M. Pitts, editors. Higher Order Operational Techniques in
Semantics. Cambridge University Press, 1998.

[How89] D. J. Howe. Equality in lazy computation systems. In 4th Annual Symposium on
Logic in Computer Science, pages 198–203. IEEE Computer Society Press, 1989.

[How96] D. J. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996.

34

References 35

[JR99] A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local names. In 14th
Annual Symposium on Logic in Computer Science, pages 56–66. IEEE Computer
Society Press, 1999.

[JR00] A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of concurrent ML
with local names. In Proc. 15th Annual Symposium on Logic in Computer Science,
pages 311–321. IEEE Computer Society Press, 2000.

[JR05] A. Jeffrey and J. Rathke. Contextual equivlanece for higher-order π-calculus revis-
ited. Logical Methods in Computer Science, 1:(1:4), April 2005.

[Las98a] S. B. Lassen. Relational reasoning about contexts. In Gordon and Pitts [GP98],
pages 91–135.

[Las98b] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
Department of Computer Science, University of Aarhus, 1998.

[Mil77] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer
Science, 4:1–22, 1977.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mor69] J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT,
1969.

[MT91] I. A. Mason and C. L. Talcott. Equivalence in functional languages with effects.
Journal of Functional Programming, 1:287–327, 1991.

[MT92] I. A. Mason and C. L. Talcott. Inferring the equivalence of functional programs that
mutate data. Theoretical Computer Science, 105:167–215, 1992.

[Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Pit97a] A. M. Pitts. A note on logical relations between semantics and syntax. Logic Journal
of the Interest Group in Pure and Applied Logics, 5(4):589–601, 1997.

[Pit97b] A. M. Pitts. Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts, editors, Semantics and Logics of Computation, Publications of the
Newton Institute, pages 241–298. Cambridge University Press, 1997.

[Pit02] A. M. Pitts. Operational semantics and program equivalence. In G. Barthe, P. Dybjer,
and J. Saraiva, editors, Applied Semantics, Advanced Lectures, volume 2395 of Lecture
Notes in Computer Science, Tutorial, pages 378–412. Springer, 2002. International
Summer School, APPSEM 2000, Caminha, Portugal, September 9–15, 2000.

[PR98] A. M. Pitts and J. R. X. Ross. Process calculus based upon evaluation to committed
form. Theoretical Computer Science, 195:155–182, 1998.

[PS08] A. M. Pitts and M. R. Shinwell. Generative unbinding of names. Logical Methods in
Computer Science, 4(1:4):1–33, 2008.

[San96] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Com-
putation, 131(2):141–178, 1996.

[San11] D. Sangiorgi. An Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, 2011.

[SKS07] D. Sangiori, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-
order languages. In Twenty-Second Annual IEEE Symposium on Logic In Computer
Science (LICS’07), pages 293–302. IEEE Computer Society Press, July 2007.

[Sum09] E. Sumii. A complete characterization of observational equivalence in polymorphic
lambda-calculus with general references. In Computer Science Logic, Proceedings
of 18th EACSL Annual Conference (CSL 2009), volume 5771 of Lecture Notes in
Computer Science, pages 455–469. Springer, 2009.

36 References

[Win93] G. Winskel. The Formal Semantics of Programming Languages. Foundations of
Computing. The MIT Press, Cambridge, Massachusetts, 1993.

List of Errata for
Andrew Pitts’ chapter for

D. Sangorgi and J. Rutten (eds),
Advanced Topics in Bisimulation and Coinduction,
Cambridge Tracts in Theoretical Computer Science

No. 52, chapter 5, pages 197–232
(c© 2011 CUP)

Lemma 5.5.1: Delete the word “transitive” from part (iii) of the lemma.

[Thanks to Naoki Kobayashi.]

Proof of Lemma 5.5.3: Replace “using Lemma 5.5.1(iii)” by “using Lemma 5.5.1(ii)”.

[Thanks to Naoki Kobayashi.]

Proof of Theorem 5.6.5: In the second paragraph of the proof, replace the three

occurrences of =v by ≤v:

‘To prove the converse of (5.34), first note that it suffices to show that ≤v restricted
to closed λ-terms is an applicative simulation and hence contained in .v. For then,
if we have x ` e1 ≤v e2, by repeated use of the congruence property (Com2) (which
we know holds of ≤v from Exercise 5.6.3), we get ∅ ` λx. e1 ≤v λx. e2 and hence
λx. e1 .v λx. e2; but then we can use Exercise 5.3.7 to deduce that x ` e1 .v e2.’

[Thanks to Taro Sekiyama.]

