Proof of Theorem 5.6.5: In the second paragraph of the proof, replace the three occurrences of $=_{\nu}$ by \leq_{ν}:

'To prove the converse of (5.34), first note that it suffices to show that \leq_{ν} restricted to closed λ-terms is an applicative simulation and hence contained in \leq_{ν}. For then, if we have $\exists \vdash e_1 \leq_{\nu} e_2$, by repeated use of the congruence property (Com2) (which we know holds of \leq_{ν} from Exercise 5.6.3), we get $\emptyset \vdash \lambda x. e_1 \leq_{\nu} \lambda x. e_2$ and hence $\lambda x. e_1 \leq_{\nu} \lambda x. e_2$; but then we can use Exercise 5.3.7 to deduce that $\exists \vdash e_1 \leq_{\nu} e_2$.'

[Thanks to Taro Sekiyama.]